

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

COMPLEX NUMBERS

Solved Examples

1. If
$$a+ib=\sum_{k=1}^{101}i^k$$
, then (a, b) equals

A. (0, 1)

B.(0,0)

C.(0,-1)

D. (1, 1)

Answer: A

2. If
$$\left(rac{1+i}{1-i}
ight)^n = -1, n \in \mathit{N}$$
, then least value of n is

- A. 1
- B. 2
- C. 3
- D. 4

Answer: B

- **3.** The conjugate of a complex number z is $\frac{2}{1-i}$. Then Re(z) equals
 - A. -1
 - B. 0
 - C. 1

Answer: C

Watch Video Solution

The number of complex numbers z such that

$$|z-i| = |z+i| = |z+1|$$
 is

- A. 0
- B. 1
- C. 2
- D. infinite

Answer: B

5. If
$$z+2|z|=\pi+4i$$
, then Im (z) equals

A. π

B. 4

C. $\sqrt{\pi^2+16}$

D. None of these

Answer: B

Watch Video Solution

6. If |z|=z+3-2i, then ${\sf z}$ equals

A.
$$7/6+i$$

$$\mathsf{B.}-7/6+2i$$

$$\mathsf{C.} - 5 \, / \, 6 + 2i$$

D.
$$5/6+i$$

Answer: C

Watch Video Solution

7. If $\omega(\neq 1)$ is a cube root of unity and $\left(1+\omega^2\right)^{11}=a+b\omega+c\omega^2$, then (a, b, c) equals

- A. (1, 1, 0)
- B. (0, 1, 1)
- C. (1, 0, 1)
- D. (1, 1, 1)

Answer: A

Watch Video Solution

8. If $x^2+y^2=1$ and x
eq -1 then $\dfrac{1+y+ix}{1+y-ix}$ equals

A. 1 B.x + iyC. 2 D.y + ix**Answer: D** Watch Video Solution **9.** Write the value of arg(z) + arg(z) . A. 0 B. π $\mathsf{C.}\ 2\pi$ D. None of these **Answer: A** Watch Video Solution

10. If $z \in C \text{ and } 2z = |z| + i$, then z equals

A.
$$\dfrac{\sqrt{3}}{6}+\dfrac{1}{2}i$$

$$\mathsf{B.}\,\frac{\sqrt{3}}{6}+\frac{1}{3}i$$

C.
$$\frac{\sqrt{3}}{6} + \frac{1}{4}i$$

D.
$$\frac{\sqrt{3}}{6} + \frac{1}{6}i$$

Answer: A

11. If
$$z=\left(rac{1}{\sqrt{3}}+rac{1}{2}i
ight)^7+\left(rac{1}{\sqrt{3}}-rac{1}{2}i
ight)^7$$
 , then

A.
$$Re(z) = 0$$

B.
$$Im(z) = 0$$

C. Re (z)
$$> 0$$
, Im (z) < 0

D. Re (z)
$$< 0$$
, Im (z) > 0

Answer: B

Watch Video Solution

- **12.** If $\omega(
 eq 1)$ is a complex cube root of unity and $\left(1+\omega^4\right)^n=\left(1+\omega^8\right)^n$
- , then the least positive integral value of n is
 - A. 2
 - B. 3
 - C. 6
 - D. 12

Answer: B

13. If
$$z=rac{1+\cos heta+i\sin heta}{\sin heta+i(1+\cos heta)}(0< heta<\pi/2)$$
 then |z| equals

A.
$$2|\sin\theta|$$

B.
$$2|\cos\theta|$$

D.
$$|\cot(\theta/2)|$$

Answer: C

14. All the roots of $(z+1)^4=z^4$ lie on

A. a straight line parallel to x-axis

B. a straight line parallel to y-axis

C. a circle with centre at -1 + 0i

D. a circle with centre at 1 + i

Answer: B

Watch Video Solution

- **15.** Given α , β , respectively, the fifth and the fourth non-real roots of units, then find the value of $(1+\alpha)(1+\beta)\left(1+\alpha^2\right)\left(1+\beta^2\right)\left(1+\alpha^4\right)\left(1+\beta^4\right)$
 - A. α
 - $\mathsf{B}.\,\beta$
 - $\mathsf{C}.\,\alpha\beta$
 - D. 0

Answer: D

16. Suppose z_1, z_2, z_3 are vertices of an equilateral triangle whose circumcentre -3 + 4i, then $\left|z_1+z_2+z_3\right|$ is equal to

- B. $10\sqrt{3}$
- C. 15
- D. $15\sqrt{3}$

Answer: C

- **17.** If $z \neq 0$ lies on the circle $|z-1|=1 \,\, ext{and} \,\, \omega = 5/z$, then ω lies on
 - A. a circle
 - B. an ellipse
 - C. a straight line
 - D. a parabola

Answer: C

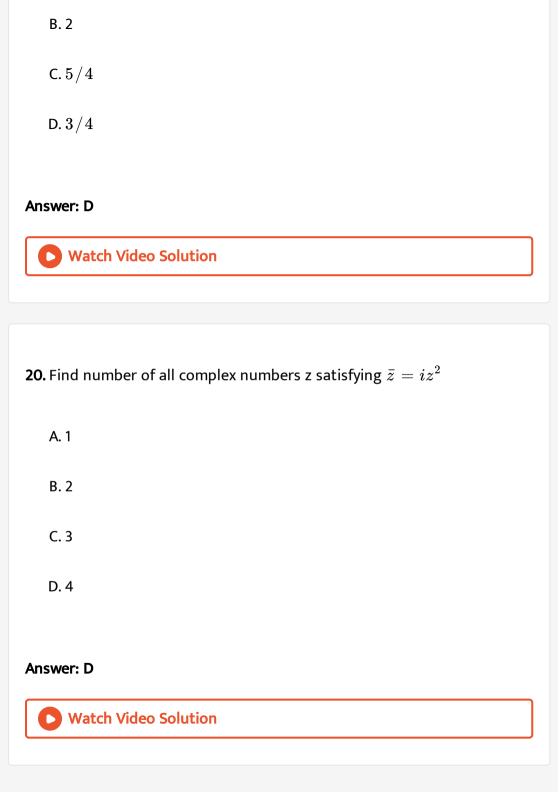
Watch Video Solution

- **18.** If $ar{z}=3i+rac{25}{z+3i}$, then $|{\sf z}|$ cannot exceed
 - A. 3
 - B. 8
 - C. 16
 - D. 18

Answer: B

View Text Solution

- **19.** If |z 1| = |z + 1| = |z 2i|, then value of |z| is
 - A. 1



Solved Examples Level 1

1. If $z \in C, z
otin R$, $\ {
m and} \ a = z^2 + 3z + 5$, then a cannot take value

2. Suppose a, b, c $\ \in C, \ \ {
m and} \ \ |a|=|b|=|c|=1 \ \ {
m and} \ \ abc=a+b+c,$

A.
$$-2/5$$

- B.5/2
- c. $\frac{11}{4}$
- D. $-\frac{11}{5}$

Answer: C

- then |bc + ca + ab| is equal to
 - A. 0
 - B. -1

C. 1

D. None of these

Answer: C

Watch Video Solution

- **3.** The number of complex numbers z which satisfy $z^2+2{\left|z\right|}^2=2$ is
 - A. 0
 - B. 2
 - C. 3
 - D. 4

Answer: D

4. Suppose $a \in R$ and the equation z + a|z| + 2i = 0 has no solution in

C, then a satisfies the relation.

A.
$$|a| > 1$$

B.
$$|a| \geq 1$$

C.
$$|a|>\sqrt{2}$$

D.
$$|a| \geq \sqrt{2}$$

Answer: B

Watch Video Solution

5. Suppose A is a complex number and $n \in N$, such that

$$A^n=(A+1)^n=1$$
, then the least value of n is 3 b. 6 c. 9 d. 12

A. 3

B. 6

C. 9

Answer: B

Watch Video Solution

- **6.** Let $z \neq i$ be any complex number such that $\dfrac{z-i}{z+i}$ is a purely imaginary number. Then $z+\dfrac{1}{z}$ is
 - A. a non-zero real number other than 1
 - B. a purely imaginary number
 - C. a non-zero real number
 - D. 0

Answer: C

7. The point $z_1,\,z_2,\,z_3,\,z_4$ in the complex plane are the vertices of a parallogram taken in order, if and only if.

$$(1)z_1+z_4=z_2+z_3$$
 (2) $z_1+z_3=z_2+z_4$

(3)
$$z_1+z_2=z_3+z_4$$
 (4) $z_1+z_3 \neq z_2+z_4$

A.
$$z_1 + z_4 = z_2 + z_3$$

B.
$$z_1 + z_3 = z_2 + z_4$$

C.
$$z_1 + z_2 = z_3 + z_4$$

D. None of these

Answer: B

Watch Video Solution

8. if the complex no z_1,z_2 and z_3 represents the vertices of an equilateral triangle such that $|z_1|=|z_2|=|z_3|$ then relation among z_1,z_2 and z_3

A.
$$z_1 + z_2 + z_3 = 0$$

B.
$$z_1 + z_2 - z_3 = 0$$

C.
$$z_1 - z_2 + z_3 = 0$$

$$\mathsf{D}.\,z_1+z_2+z_3\neq 0$$

Answer: A

Watch Video Solution

9.
$$\sum_{k=1}^6 \left(\sin, \frac{2\pi k}{7} - i\cos, \frac{2\pi k}{7}\right) = ?$$

B. 0

 $\mathsf{C}.-i$

D. i

Answer: D

attii video Solution

10. The complex number $\sin(x)+i\cos(2x)$ and $\cos(x)-i\sin(2x)$ are conjugate to each other for

A.
$$x=n\pi, n\in I$$

B.
$$x=\Big(n+rac{1}{2}\Big)\pi, n\in I$$

$$C. x = 0$$

D. no value of x

Answer: D

Watch Video Solution

11. If z_1 and z_2 are two complex number and a, b, are two real number then $\left|az_1-bz_2\right|^2+\left|bz_1+az_2\right|^2$ equals

A.
$$\left(a^2+b^2
ight)|z_1z_2|$$

B.
$$\left(a^2+b^2
ight)\left(z_1^2+z_2^2
ight)$$

C.
$$\left(a^2+b^2\right)\!\left|z_1\right|^2+\left|z_2\right|^2$$

D. $2ab|z_1z_2|$

Answer: C

Watch Video Solution

12. a and b are real numbers between 0 and 1 such that the points $z_1=a+i, z_2=1+bi, z_3=0$ form an equilateral triangle, then a and b are equal to

A.
$$a=b=2-\sqrt{3}$$

B.
$$a = 2 - \sqrt{3}, b = \sqrt{3} - 1$$

C.
$$a = \sqrt{3} - 1, b = 2 - \sqrt{3}$$

D. None of these

Answer: A

13. If z
eq 0 be a complex number and $rg(z) = -\pi/4$, then

A.
$$Reig(z^2ig)=0$$

B.
$$Im(z^2)=0$$

C.
$$Re(z^2) = Im(z^2)$$

D. None of these

Answer: A

Watch Video Solution

14. Let zandw be two non-zero complex number such that |z|=|w| and $arg(z)+arg(w)=\pi$, then z equals. w (b) -w (c) w (d) -w

A. w

B.-w

 $\mathsf{C.}\,\overline{w}$

D.
$$-\overline{w}$$

Answer: D

Watch Video Solution

- **15.** If |z|=1 and $\omega=rac{z-1}{z+1}$ (where $z\in -1$), then $\mathsf{Re}(\omega)$ is
 - A. 0

$$\mathsf{B.} - \frac{1}{\left|z+1\right|^2}$$

$$\operatorname{C.}\left|\frac{z}{z+1}\right|\frac{1}{\left|z+1\right|^{2}}$$

D.
$$\frac{\sqrt{2}}{\left|z+\right|^2}$$

Answer: A

16. Let z and w be two complex numbers such that

$$|Z| \leq 1, |w| \leq 1 \,\, ext{and} \,\, |z-iw| = |z-i\overline{w}| = 2 \, ext{and} \,\, ext{z}$$
 equals

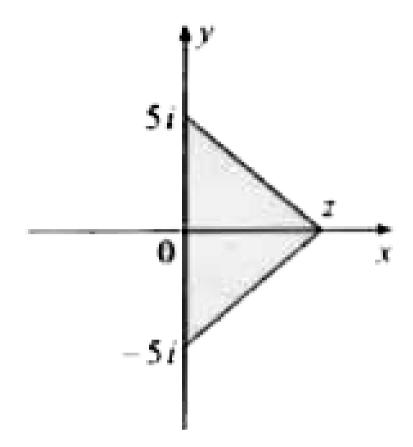
- A. 1 or i
- B. i or -i
- C. 1 or -1
- D. i or -1

Answer: C

Watch Video Solution

17. The complex numbers z = x + iy which satisfy the equation

$$\left|rac{z-5i}{z+5i}
ight|=1$$
, lie on



A. the x - axis

B. the straight line y = 5

C. a circle passing through origin

D. None of these

Answer: A

18. The inequality |z-4|<|z-2| represents

A.
$$Re(z) \geq 0$$

B.
$$Re(z) < 3$$

C.
$$Re(z) \leq 0$$

D.
$$Rez > 3$$

Answer: D

Watch Video Solution

19. If z_1 and z_2 are two complex numbers such that $\left|\frac{z_1-z_2}{z_1+z_2}\right|=1$, then

A.
$$z_2=kz_1, k\in R$$

$$\operatorname{B.} z_2 = ikz_1, k \in R$$

$$C. z_1 = z_2$$

D. None of these

Answer: B

Watch Video Solution

- **20.** For any complex number $z, \,$ find the minimum value of |z|+|z-2i|
 - A. 0
 - B. 1
 - C. 2
 - D. None of these

Answer: C

Watch Video Solution

21. If x=2+5i then the value of $x^3-5x^2+33x-19$ is

- A. -5
- B. -7
- C. 7
- D. 10

Answer: D

- **22.** If z=x+iy and $w=\frac{1-iz}{z-i}$, then |w|=1 implies that in the complex plane (A)z lies on imaginary axis (B) z lies on real axis (C)z lies on unit circle (D) None of these
 - A. z lies on the imaginary axis
 - B. z lies on the real axis
 - C. z lies on the unit circle
 - D. None of these

Answer: B

Watch Video Solution

- **23.** The real part of $z=rac{1}{1-\cos heta+i\sin heta}$ is
 - A. $\frac{1}{1-\cos\theta}$
 - B. $\frac{1}{2}$
 - C. $\frac{1}{2} \tan \theta$
 - D. 2

Answer: B

Watch Video Solution

24. If the imaginary part of $\frac{2z+1}{iz+1}$ is -4, then the locus of the point representing z in the complex plane is

- A. a straight line
- B. a parabola
- C. a circle
- D. an ellipse

Answer: C

Watch Video Solution

25. Show that the area of the triagle on the argand plane formed by the complex numbers Z, iz and z+iz is $\frac{1}{2}|z|^2$, where $i=\sqrt{-1}$.

- A. $\frac{1}{4}|z|^2$
- B. $\frac{1}{8}|z|^2$
- C. $\frac{1}{2}|z|^2$
- D. $\frac{1}{2}|z|$

Answer: C

26. If ω is a complex cube root of unity, then a root of the equation

$$\left|egin{array}{cccc} x+1 & \omega & \omega^2 \ \omega & x+\omega^2 & 1 \ \omega^2 & 1 & x+\omega \end{array}
ight|=0$$
, is

A.
$$x = 1$$

B.
$$x = \omega$$

$$\mathbf{C}.x = \omega^2$$

D.
$$x = 0$$

Answer: D

Watch Video Solution

27. Let z_1 and z_2 be two non - zero complex numbers such that

$$rac{z_1}{z_2}+rac{z_2}{z_1}=1$$
 then the origin and points represented by z_1 and z_2

A. lie on a straight line

B. form a right triangle

D. None of these

Watch Video Solution

 $a_0+a_6++, n\in N$

A. 1

 $B. 2^n$

C. 2^{n-1}

D. 3^{n-1}

Answer: D

Answer: C

C. form an equilateral triangle

28. If $\left(1+x+x^2\right)^n = a_0 + a_1 x + a_2 x^2 + \\ + a_{2n} x_{2n}, \,\, ext{find the value of}$

29. Let
$$z=egin{array}{cccc} 1&1-2i&3+5i\ 1+2i&-5&10i\ 3-5i&-10i&11 \end{array}$$
 , then

A. z is purely imaginary

B. z is purely real

C. z = 0

D. None of these

Answer: B

Watch Video Solution

30. if $(x+iy)^{rac{1}{3}}=a+ib$ then $\left(rac{x}{a}
ight)+\left(rac{y}{b}
ight)$ equals to

A.
$$4(a^2-b^2)$$

B.
$$2(a^2-b^2)$$

C.
$$2ig(a^2+b^2ig)$$

D. None of these

Answer: A

Watch Video Solution

31. If $z \varepsilon C$, the minimum value of |z| + |z-i| is attained at

A. exactly one point

B. exactly two points

C. infinite number of points

D. None of these

Answer: C

32. For all complex numbers
$$z_1,z_2$$
 satisfying $|z_1|=12$ and $|z_2-3-4i|=5$, the minimum value of $|z_1-z_2|$ is A. O

C. 7

D. 17

Answer: B

33. If z lies on the circle |z-1|=1, then $\dfrac{z-2}{z}$ is

A. 0

B. 2

C. -1

D. None of these

Watch Video Solution

34. If $1,\omega,\ldots,\omega^{n-1}$ are the n^{th} roots of unity,then value of $\frac{1}{2-\omega}+\frac{1}{2-\omega^2}.\ldots...+\frac{1}{2-\omega^{n-1}} \text{ equals}$

A.
$$\frac{1}{2^n - 1}$$

$$\mathsf{B.}\; \frac{n(2^n-1)}{2^n+1}$$

C.
$$\frac{(n-2)2^{n-1}}{2^n-1}$$

D. None of these

Answer: D

Watch Video Solution

35. If $\omega=\cos\frac{\pi}{n}+\mathrm{i}\sin\frac{\pi}{n}$, then value of $1+\omega+\omega^2+...+\omega^{n-1}$ is

A.
$$1+i\cot\left(rac{\pi}{2\pi}
ight)$$

D. None of these

 $B.1 + i \tan\left(\frac{\pi}{n}\right)$

Answer: A

Watch Video Solution

36. If |z|=1 $and z
eq \pm 1$, then all the values of $\dfrac{z}{1-z^2}$ lie on a line not passing through the origin $|z|=\sqrt{2}$ the x-axis (d) the y-axis

A. a line not passing through the origin.

B. |z| = 2

C. the x-axis

D. the y-axis

Answer: D

37. The locus of the center of a circle which touches the circles

$$|z-z_1|=a, |z-z_2=b|$$
 externally will be

- A. an ellipse
- B. a hyperbola
- C. a circle
- D. a pair of straight lines.

Answer: B

- **38.** If $\left|z^2-1\right|=\left|z\right|^2+1$, then z lies on
- (a) a circle
- (b) the imaginary axis

- (c) the real axis
- (d) an ellipse
 - A. a circle
 - B. the imaginary axis
 - C. the real axis
 - D. an ellipse

Answer: B

Watch Video Solution

39. If $z^2+z+1=0$ where z is a complex number, then the value of $\begin{pmatrix} 1 \end{pmatrix}^2 \begin{pmatrix} 2 & 1 \end{pmatrix}^2 \begin{pmatrix} 2 & 1 \end{pmatrix}^2$.

$$\left(z+rac{1}{z}
ight)^2 + \left(z^2 + rac{1}{z^2}
ight)^2 + \ + \left(z^6 + rac{1}{z^6}
ight)^2$$
 is

- A. 12
- B. 18
- C. 54

D. 6

Answer: A

Watch Video Solution

- **40.** If $|z+4| \leq 3$, then the maximum value of |z+1| is (1) 4 (B) 10 (3) 6
- (4) 0
 - A. 4
 - B. 10
 - C. 6
 - D. 0

Answer: C

41. Let z,w be complex numbers such that $ar{z}+i\overline{w}=0$ and $argzw=\pi$

Then argz equals

A.
$$\frac{3\pi}{4}$$

$$\operatorname{B.}\frac{\pi}{2}$$

$$\operatorname{C.}\frac{\pi}{4}$$

D.
$$\frac{5\pi}{4}$$

Answer: A

Watch Video Solution

42. If $z_1+z_2+z_3=0$ and $|z_1|=|z_2|=|z_3|=1$, then value of $z_1^2+z_2^2+z_3^2$ equals

Answer: B

Watch Video Solution

- **43.** If z satisfies the relation $|z-i|z|| = |z+i|z| \mid$ then
 - A. Im(z) = 0
 - B. |z| = 1
 - C. Re(z) = 0
 - D. None of these

Answer: A

44. If α and β are different complex numbers with $|\beta|=1$, then find $\left|rac{eta-lpha}{1-\overline{lpha}\,eta}
ight|.$

number

that

such

A. 1

B. $|\alpha|$

C. 2

D. None of these

Answer: A

Watch Video Solution

z be not a real

 $\left(1+z+z^2
ight)/\left(1-z+z^2
ight)\in R, ext{ then prove tha }|z|=1.$

45.

Let

- A. 1
- B. 2
- C. $\sqrt{3}$

D.
$$2\sqrt{3}$$

Answer: A

Watch Video Solution

- **46.** If $\left|z-rac{4}{z}
 ight|=2$, then the maximum value of |z|
 - A. 1
 - B. $2 + \sqrt{2}$
 - C. $\sqrt{3} + 1$
 - D. $\sqrt{5} + 1$

Answer: D

47. If $|\omega|=2$, then the set of points $z=\omega-rac{1}{\omega}$ is contained in or equal

to the set of points z satisfying

- A. circle
- B. ellipse
- C. parabola
- D. hyperbola

Answer: B

48. If
$$|z|=1, z
eq 1$$
, then value of arg $\left(rac{1}{1-z}
ight)$ cannot exceed

A.
$$\pi/2$$

B.
$$\pi$$

C.
$$3\pi/2$$

Answer: A

Watch Video Solution

- **49.** If $z \neq 1$ and $\frac{z^2}{z-1}$ is real, the point represented by the complex numbers z lies
 - A. on circle with centre at the origin.
 - B. either on the real axis or on a circle not passing through the origin.
 - C. on the imaginary axis.
 - D. either on the real axis or on a circle passing through the origin

Answer: B

$$\mathsf{c.} - \sqrt{3} \, \mathsf{d.} - \frac{1}{\sqrt{3}}$$

50. If $3^{49}(x+iy)=\left(rac{3}{2}+rac{\sqrt{3}}{2}I
ight)^{100}$ and x=ky then k is: -1/3 b. $\sqrt{3}$

B.
$$\pm 2\sqrt{2}$$

A. $\pm 1/3$

$$\mathsf{C.}\pm1/\sqrt{3}$$

D. $\pm 1/\sqrt{3}$

51. If
$$(4+i)(z+ar{z})-(3+i)(z-ar{z})+26i=0$$
, then the value of $\left|z\right|^2$ is

- A. 13
- B. 17
- C. 19

Answer: B

Watch Video Solution

 $z=a\Bigl({
m cos}rac{\pi}{5}+{
m i}\,{
m sin}rac{\pi}{5}\Bigr), a\in R, |a|<1$, Let **52.** then

$$S=z^{2015}+z^{2016}+z^{2017}+...$$
 equals

A.
$$\frac{a^{2015}}{z-1}$$

B.
$$\frac{a^{2015}}{1-z}$$

C.
$$\frac{a^{2015}}{1-a}$$

D.
$$\frac{a^{2015}}{a-1}$$

Answer: A

53. If $z = \sqrt{20i - 21} + \sqrt{20i + 21}$, than one of the possible value of |arg(z)| equals

54. If $(a+bi)^{11}=x+iy$, where a, b, x, $\mathsf{y} \in \mathsf{R}$, then $(b+ai)^{11}$ equals

A.
$$\pi/4$$

B. $\pi/2$

C.
$$3\pi/8$$

D. π

Answer: A

Watch Video Solution

A.y + ix

B.-y-ix

 $\mathsf{C.} - x - i y$

D. x + iy

Answer: B

View Text Solution

55. If $a,b,x,y\in R, \omega \neq 1$, is a cube root of unity and $(a+b\omega)^7=x+y\omega$, then $(b+a\omega)^7$ equals

A.
$$y+x\omega$$

$$B.-y-x\omega$$

$$\mathsf{C}.\,x+y\omega$$

$$\mathsf{D}.-x-y\omega$$

Answer: A

View Text Solution

Solved Examples Level 2

1. Let
$$z=\cos heta + i\sin heta$$
. Then the value of $\sum_{m o 1-15} Img(z^{2m-1})$ at

$$heta=2^\circ$$
 is:

- A. $\frac{1}{\sin 2^{\circ}}$
- $\mathsf{B.} \; \frac{1}{3 \mathrm{sin} \, 2^{\circ}}$
- $\mathsf{C.}\,\frac{1}{\sin 2^\circ}$
- D. $\frac{1}{4\sin 2^{\circ}}$

Answer: D

Watch Video Solution

Solved Examples Level 3

1. Let z=x+iy be a complex number where x and y are integers. Then, the area of the rectangle whose vertices are the roots of the equation $zz^3+zz^3=350$ is 48 (b) 32 (c) 40 (d) 80

- A. 48
- B. 32
- C. 40
- D. 80

Answer: A

Watch Video Solution

Solved Examples Level 4

 $z = (1-t)z_1 + iz_2$, for some real number t with 0 < t < 1 and $i=\sqrt{-1}$. If arg(w) denotes the principal argument of a non-zero compolex number w, then

and

1. Let z_1 and z_2 be two distinct complex numbers

A.
$$|z-z_1|+|z-z_2|=|z_1-z_2|$$

B. Arg
$$(z-z_1)={
m Arg}(z-z_2)$$

C.
$$egin{array}{c|c} z-z_1&ar z-ar z_1\ z_2-z_1&ar z_2-ar z_1 \end{array}=0$$
D. $Arg(z-z_1)=Arg(z_2-z_1)$

Watch Video Solution

Solved Examples Level 5

1. For complex numbers
$$z_1=x_1+iy_1$$
 and $z_2=x_2+iy_2$, (where $i=\sqrt{-1}$) we write $z_1\cap z_2$ of $x_1\leq x_2$ and $y_1\leq y_2$, then for all complex number z with $1\cap z$, we have $\frac{1-z}{1+z}\cap \ldots$ is

A.
$$\frac{1-z}{1+z}\cap -i$$

$$\mathsf{B.}\, 1 \cap \frac{1-z}{1+z}$$

$$\mathsf{C.}\ \frac{1-z}{1+z}\cap 0$$

$$\mathsf{D.}\,\frac{1+z}{1-z}\cap 0$$

Answer: C

Watch Video Solution

Solved Examples Level 6

- **1.** Let the complex numbers z_1,z_2 and z_3 be the vertices of an equallateral triangle. If z_0 is the circumcentre of the triangle , then prove that $z_1^2+z_2^2+z_3^2=3z_0^2$.
 - A. z_0^2
 - $\mathrm{B.}~3z_0^2$
 - C. z_0^3
 - D. $3z_0^3$

Answer: B

1. If ω is a complex cube root of unity, then the value of the expression

$$1(2-\omega)ig(2-\omega^2ig)+2(3-\omega)ig(3-\omega^2ig)+...+(n-1)(n-\omega)ig(n-\omega^2ig)(n-\omega^2ig)$$
 is equal to (A) $rac{n^2(n+1)^2}{4}-n$ (B) $rac{n^2(n+1)^2}{4}+n$ (C) $rac{n^2(n+1)}{4}-n$

$$\text{(D) } \frac{n(n+1)^2}{4} - n$$

A.
$$\frac{1}{4}n^2(n+1)^2 - n$$

B.
$$\frac{1}{4}n^2(n+1)^2 + n$$

C.
$$\frac{1}{4}n^2(n+1)-n$$

D.
$$\frac{1}{4}n(n+1)^2-n$$

Answer: A

1. Prove that there exists no complex number z such that

$$|z|<rac{1}{3} \, ext{ and }\, \sum_{r=1}^n a_r z^r=1$$
 , where $|a_r|<2$.

- A. 0
- B. 1
- C. 4
- D. infinite

Answer: A

Watch Video Solution

Solved Examples Level 9

- 1. a,b,c are integers, not all simultaneously equal, and ω is cube root of unity $(\omega \neq 1)$, then minimum value of $\left|a+b\omega+c\omega^2\right|$ is 0 b. 1 c. $\frac{\sqrt{3}}{2}$ d.
- $\frac{1}{2}$

A. $\sqrt{3}$
B. 1
C. 2
D. 3
Answer: B
Watch Video Solution
Solved Examples Level 10
Solved Examples Level 10
1. The region of Argand diagram defined by $ z\!-\!1 + z+1 \leq 4$ is
A. interior of an ellipse
1. The region of Argand diagram defined by $ z-1 + z+1 \leq 4$ is A. interior of an ellipse B. exterior of a circle

Answer: C

Watch Video Solution

Solved Examples Level 11

1. If z_1 and z_2 , are two non-zero complex numbers such that

$$|z_1+z_2|=|z_1|+|z_2|$$
 then $arg(z_1)-arg(z_2)$ is equal to (1) 0 (2) $-rac{\pi}{2}$

(3) $\frac{\pi}{2}$ (4) $-\pi$

A.
$$-\pi$$

$$B.-\pi/2$$

$$\mathsf{C}.\,\pi/2$$

D. 0

Answer: D

Solved Examples Level 12

1. If $|z-25i| \leq 15$. then $| ext{maximum} \ arg(z) - ext{minimum} \ arg(z)|$ equals

A.
$$2\cos^{-1}(3/5)$$

B.
$$2\cos^{-1}(4/5)$$

C.
$$\pi/2+\cos^{-1}(3/5)$$

D.
$$\sin^{-1}(3/5) - \cos^{-1}(3/5)$$

Answer: B

Solved Examples Level 13

1. If |z|=3, the area of the triangle whose sides are $z, \omega z$ and $z+\omega z$ (where ω is a complex cube root of unity) is

A. $9\sqrt{3}/4$

B. $3\sqrt{3}/2$

- $\mathsf{C.}\,5/2$
 - D. $8\sqrt{3}/3$

Answer: A

Watch Video Solution

Solved Examples Level 14

the

greatest and the least value of $|z_1+z_2|$

if

 $|z_1| = 24 + 7i and |z_2| = 6.$

Find

1.

- A. 31, 19
 - D 25 4
 - B. 25, 19

C. 31, 25

D. None of these

Answer: A

Watch Video Solution

Solved Examples Level 15

1. If $lpha,\,eta$ are the roots of $x^2+px+q=0,\,\,\,{
m and}\,\,\,\omega$ is a cube root of unity, then value of $\left(\omega lpha + \omega^2 eta
ight) \left(\omega^2 lpha + \omega eta
ight)$ is

A.
$$p^2$$

$$\mathsf{C.}\,p^2-2q$$

D.
$$p^2-3q$$

Answer: D

Solved Examples Level 16

1. Maximum distance from the origin of the points z satisfying the relation |z+1/z|=1 is

A.
$$(\sqrt{5} + 1)/2$$

B.
$$\left(\sqrt{5}-1\right)/2$$

$$\mathsf{C.}\,3-\sqrt{5}$$

D.
$$\left(3+\sqrt{5}
ight)/2$$

Answer: A

Watch Video Solution

Solved Examples Level 17

1. If $|z_1|+|z_2|=1$ and $z_1+z_2+z_3=0$ then the area of the triangle whose vertices are $z_1,\,z_2,\,z_3$ is $3\sqrt{3}\,/\,4$ b. $\sqrt{3}\,/\,4$ c. 1 d. 2

A.
$$3\sqrt{3}/4$$

B. $\sqrt{3}/4$

C. 1

D. 2

Answer: A

Watch Video Solution

Solved Examples Level 18

1. An equation of straight line joining the complex numbers a and ib

(where a, b
$$\varepsilon$$
 R and a, b \neq 0) is

A.
$$zigg(rac{1}{a}-rac{i}{b}igg)+ar{z}igg(rac{1}{a}+rac{i}{b}igg)=2$$

$$\mathtt{B.}\,z\bigg(\frac{1}{a}-\frac{i}{b}\bigg)+\bar{z}\bigg(\frac{1}{a}+\frac{i}{b}\bigg)=2$$

C.
$$z(a+ib)+ar{z}(a-ib)=2ab$$

D. None of these

Answer: A

Watch Video Solution

Solved Examples Level 19

- **1.** Two different non-parallel lines cut the circle |z|=r at points
- a, b, c and d, respectively. Prove that these lines meet at the point given

by
$$\frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$$

A.
$$rac{a^{-1}+b^{-1}+c^{-1}+d^{-1}}{a^{-1}b^{-1}+c^{-1}d^{-1}}$$

B.
$$\frac{ab+cd}{a+b+c+d}$$

C.
$$\frac{a^{-1}+b^{-1}-c^{-1}-d^{-1}}{a^{-1}b^{-1}-c^{-1}d^{-1}}$$

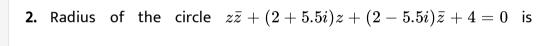
D. None of these

Answer: C

Solved Examples Numerical Answer Type Questions

1. If $1, x_1, x_2, x_3$ are the roots of $x^4-1=0$ and ω is a complex cube

root of unity, find the value of $rac{\left(\omega^2-x_1
ight)\left(\omega^2-x_2
ight)\left(\omega^2-x_3
ight)}{(\omega-x_1)(\omega-x_2)(\omega-x_3)}$



3. Radius of the circle
$$\left| rac{z-1}{z-3i}
ight| = \sqrt{2}$$

4. Suppose $z_1,\,z_2,\,z_3$ are vertices of an equilateral triangle with incentre at 1.1 + 0i, then $z_1^2+z_2^2+z_3^3$ is equal to ______

5. Let m = Slope of the line $|z+3|^2-|z-3i|^2=24$, then m + 1.73 is equal to

6. If $\omega
eq 1$ is a cube root of unity, then $rac{1}{\pi} {
m sin}^{-1} igg[ig(\omega^{73} + \omega^{83} ig) + {
m tan} rac{5\pi}{4} igg]$

is equal to

7. $\left(rac{1+\sqrt{3}i}{1-\sqrt{3}i}
ight)^{181}+\left(rac{1-\sqrt{3}i}{1+\sqrt{3}i}
ight)^{181}$ is equal to ______

attii video Solutioii

8. Let z_1, z_2 be two complex numbers satisfying the equations

$$\left|rac{z-4}{z-8}
ight|=1 ext{ and } \left|rac{z-8i}{z-12}
ight|=rac{3}{5}$$
, then $\sqrt{|z_1-z_2|}$ is equal to ______

- **9.** If z is a complex number, then the minimum value of |z-2.8|+|z-1.42| is _____
 - Watch Video Solution

- **10.** If $\dfrac{3z_1}{5z_2}$ is purely imaginary, then $\left|\dfrac{2z_1-z_2}{2z_1+z_2}\right|$ is equal to _____
 - Watch Video Solution

11. If $\omega \neq 1$ is a complex cube root of unity, then $5.23 + \omega + \omega^{\left(\frac{1}{2} + \frac{3}{8} + \frac{9}{32} + \frac{27}{128} + \dots\right)} \text{ is equal to } ____$

12. If conjugate of a complex number z is
$$\frac{2+5i}{4-3i}$$
, then $|\text{Re(z)} + \text{Im(z)}|$ is equal to

13. Let z be a complex number such that
$$Im(z) \neq 0$$
. If ${
m a}=z^2+5z+7$, then a cannot take value _____

14. Let
$$z_k=\cos\left(\frac{2k\pi}{7}\right)+i\sin\left(\frac{2k\pi}{7}\right)$$
, for $k=1,2,...,6$, then $\log_7|1-z_1|+\log_7|1-z_2|+....+\log_7|1-z_6|$ is equal to _____

16. Suppose z satisfies the equation
$$z^2+z+1=0. \ {\rm Let} \omega=\left(z+\frac{1}{z}\right)^2+\left(z^2+\frac{1}{z^2}\right)^2+\left(z^3+\frac{1}{z^3}\right)+\ldots+$$
 then $\left|\omega+\sqrt{301}i\right|$ is equal to ______

17. Suppose $\omega \neq 1$ is cube root of unity. If

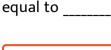
 $1(2-\omega)ig(2-\omega^2ig) + 2(3-\omega)ig(3-\omega^2ig) + \ldots + (n-1)(n-\omega)ig(n-\omega^2ig) =$

15. Let $S = \{z \in C \colon |z-2| = |z+2i| = |z-2i| \}$ then $\sum_{z=1}^{n} |z+1.5|$ is

, then n is equal to _____

18. If $z_1 \, ext{ and } \, z_2$ are two nonzero complex numbers and heta is a real number,

then
$$rac{1}{\left|z_1
ight|^2+\left|z_2
ight|^2}\Big[\left|(\cos heta)z_1-(\sin heta)z_2
ight|^2+\left|(\sin heta)z_1+(\cos heta)z_2
ight|^2\Big]$$
 is



- **19.** Eccentricity of the ellipse $|z-4|+|z-4i|=10\sqrt{2}$ is ______
 - Watch Video Solution

- **20.** Suppose a and b are two different complete numbers such that $\left|a+\sqrt{a^2-b^2}\right|+\left|a-\sqrt{a^2-b^2}\right|=|a+b|+4$ then |a-b| is equal to
 - **Watch Video Solution**

21. Suppose $z_1,\,z_2\,$ and $\,z_3$ are three distinct complex numbers such that

$$|z_1|=|z_2|=|z_3|=\sqrt{3}.$$
 If $z_1+z_2+z_3=0,\ \ {
m and}\ \ \Delta$ = area of triangle with vertices $A(z_1),B(z_2)\ \ {
m and}\ \ C(z_3)$, then ${32\over 9}\Delta^2$ is equal to ______.

22. Let P be a point on the circle |z+2-5i|=6 and A be the point (4 - 3i). Let D = max(AP), then $\frac{1}{32}$ D is equal to _____.

Exercise

1. The number of complex numbers satisfying (1 + i)z = i|z|

A. 0

B. 1

C. 2

D. infinite

Answer: B

Watch Video Solution

2. Suppose $a,b,c\in R$ and C<0. Let z = a + $(b+ic)^{2015}+(b-ic)^{2015}$,

then

A. Re (z) = 0

B. Im(z) = 0

C. Re(z) > 0, Im(z) < 0

D. Re(z) < 0, Im(z) > 0

Answer: B

3. The number of solutions of $z^2+|z|=0$ is

A. 1

B. 2

C. 3

D. infinite

Answer: C

Watch Video Solution

- **4.** The equation $\left| \frac{(1+i)z-2}{(1+i)z+4} \right| = k$ does not represent a circle when k is
 - A. 2
 - C. e

 $B. \pi$

D. 1

Answer: D

Watch Video Solution

- **5.** If $|z| \geq 5$, then least value of $\left|z \frac{1}{z}\right|$ is
 - A. 5
 - B. 24/5
 - C. 8
 - D.8/3

Answer: B

- **6.** Principal argument of $z=rac{i-1}{i\Big(1-\cosrac{2\pi}{7}\Big)+\sinrac{2\pi}{7}}$ is

B.
$$\frac{3\pi}{28}$$

$$\mathsf{C.}\ \frac{17\pi}{28}$$

$$\mathrm{D.}\ \frac{19\pi}{28}$$

Answer: C

Watch Video Solution

7. If
$$(x+iy)=\sqrt{rac{a+ib}{c+id}}$$
 then prove that $\left(x^2+y^2
ight)^2=rac{a^2+b^2}{c^2+d^2}$

A.
$$a^2+b^2$$

B.
$$\sqrt{a^2+b^2}$$

c.
$$\frac{a^2 + b^2}{c^2 + d^2}$$

D.
$$\sqrt{rac{a^2+b^2}{c^2+d^2}}$$

Answer: A

8. For any three complex numbers
$$z_1,z_2,z_3$$
, if $\Delta=egin{bmatrix}1&z_1&\overline{z_1}\\1&z_2&\overline{z_2}\\1&z_3&\overline{z_3}\end{bmatrix}$, then

A.
$$Re(\Delta)=0$$

B.
$$Im(\Delta)=0$$

C.
$$Re(\Delta) \geq 0$$

D.
$$Im(\Delta) \leq 0$$

Answer: B

- **9.** If $x,y,a,b\in R, a
 eq 0 \,\, ext{and} \,\, (a+ib)(x+iy) = \left(a^2+b^2\right)\!i$, then (x, y) equals
 - A. (a, b)
 - B.(a, 0)
 - C.(0,b)

Answer: D

Watch Video Solution

10. If $\omega(\neq 1)$ is a cube root of unity, then the value of $\tan\bigl[\bigl(\omega^{2017}+\omega^{2225}\bigr)\pi-\pi/3\bigr]$

$$\text{A.}-\frac{1}{\sqrt{3}}$$

B.
$$\frac{1}{\sqrt{3}}$$

$$\mathsf{C.}-\sqrt{3}$$

D.
$$\sqrt{3}$$

Answer: C

11. If z is purely imaginary and Im(z) < 0, then $arg(iar{z}) + arg(z)$ is equal to

A.
$$\pi$$

B. 0

C.
$$\pi/2$$

 $D. - \pi/2$

Answer: C

Watch Video Solution

12. The inequality a+ib>c+id is true when

A.
$$a>c, b>d>0$$

$$\mathtt{B.}\,a>c,b=d=0$$

$$\mathsf{C.}\,a>c,b=d>0$$

D. None of these

Answer: B

Watch Video Solution

13. Let $z \in C$ be such that $Reig(z^2ig) = 0$, then

A.
$$|Re(z)|+Im(z)=0$$

$$\mathsf{B.}\left|Re(z)\right|=\left|Im(z)\right|$$

$$\mathsf{C.}\,Re(z)+|Im(z)|=0$$

$$D. Re(z) = 0 \text{ or } Im(z) = 0$$

Answer: B

Watch Video Solution

14. If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers then

$$\operatorname{\sf arg}\!\left(rac{z_1}{z_4}
ight) + arg\!\left(rac{z_2}{z_3}
ight)$$
 equals

A.
$$0, \pi$$

B.
$$\pi$$
, $-\pi$

C.
$$\frac{\pi}{2}$$
, $\frac{3\pi}{2}$

D. 0, 2π

Answer: D

Watch Video Solution

15. If
$$z=x+iy ext{ and } 0 \leq \sin^{-1}\!\left(\frac{z-4}{2i}\right) \leq \frac{\pi}{2}$$
 then

A.
$$x=4, 0 \leq y \leq 2$$

$$\mathsf{B.}\, 0 \leq x \leq 4, 0 \leq y \leq 2$$

$$\mathsf{C.}\,x=0,0\leq y\leq 2$$

D. None of these

Answer: A

16. If $a>0 \,\, {
m and} \,\, z|z|+az+3i=0$, then z is

A. 0

B. purely imaginary

C. a positive real number

D. a negative real number

Answer: B

Watch Video Solution

17. If z is a complex numbers such that z
eq 0 and $\operatorname{Re}(z) = 0$, then

A.
$$Re(z^2)=0$$

B.
$$Im(z^2)=0$$

C.
$$Re(z^2) = Im(z^2)$$

D.
$$Im(z^2) < 0$$

Answer: B

Watch Video Solution

- **18.** If $z_k=\cos\!\left(rac{k\pi}{10}
 ight)+i\sin\!\left(rac{k\pi}{10}
 ight)$, then $z_1z_2z_3z_4$ is equal to
 - A. -1
 - B. 2
 - C. -2
 - D. 1

Answer: A

Watch Video Solution

19. If $|z_1|=|z_2|=1, z_1z_2\neq -1 \text{ and } z=rac{z_1+z_2}{1+z_1z_2}$ then

A. z is a purely real number

B. z is a purely imaginary number

C. |z| = 1

D. None of these

Answer: A

Watch Video Solution

20. If $z \in C$, then $Reig(ar{z}^2ig) = k^2, \, k > 0$, represents

A. an ellipse

B. a parabola

C. a circle

D. a hyperbola

Answer: D

Exercise Level 1

1. If $\omega \neq 1$ is a cube root of unity, then $1, \omega, \omega^2$

A. are vertices of an equilateral triangle

B. lie on a straight line

C. lie on a circle of radius $\sqrt{3/2}$

D. None of these

Answer: A

Watch Video Solution

2. If α,β,γ are the cube roots of p then for any x,y and z

$$rac{xlpha+yeta+z\gamma}{xeta+y\gamma+zlpha}$$
 is

A. ω , 1

B.
$$\omega$$
, ω^2

$$\mathsf{C}.\,\omega^2,\,1$$

D. 1,
$$\omega$$
, ω^2

Answer: B

Watch Video Solution

3. ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD=2AC.If he point D and M represent the complex numbers 1+i and 2-i respectively, then A represents the complex number.....or.....

A.
$$3 - \frac{1}{2}i, 1 + \frac{3}{2}i$$

$${\rm B.}\,3+\frac{1}{2}i,1+\frac{3}{2}i$$

$$\mathsf{C.}\,3 - \frac{1}{2}i, 1 - \frac{3}{2}i$$

$${\tt D.\,3} + \frac{1}{2}i, 1 - \frac{3}{2}i$$

Answer: C

Watch Video Solution

4. Let a, be the roots of the equation $x^2+x+1=0$. The equation whose roots are α^{19} and β^7 are:

A.
$$x^2 - x - 1 = 0$$

B.
$$x^2 - x + 1 = 0$$

C.
$$x^2 + x - 1 = 0$$

D.
$$x^1 + x + 1 = 0$$

Answer: D

Watch Video Solution

5. If ω is a cube root of unity then find the value of $\sin\Bigl(\bigl(\omega^{10}+\omega^{23}\bigr)-\frac{\pi}{4}\Bigr)$

,

B. 1, 1

C. 1, 0

ær. F

D. -1, 1

Answer: C

 $A. - \frac{\sqrt{3}}{2}$

 $\mathrm{B.}-\frac{1}{\sqrt{2}}$

 $\mathsf{C.}\;\frac{1}{\sqrt{2}}$

D. $\frac{\sqrt[3]{3}}{2}$

■ Watch Video Solution

Water video solution

and B are respectively the numbers

6. If $\omega(\,
eq 1)$ is a cube root of unity and $\left(1+\omega
ight)^{2017}=A+B\omega$. Then A

7. If ω is the complex cube root of unity then

$$egin{array}{c|ccc} 1&1+i+\omega^2&\omega^2\ 1-i&-1&\omega^2-1\ -i&-i+\omega-1&-1 \end{array} =$$

- A. 0
- B. 1
- C. i
- D. ω

Answer: A

Watch Video Solution

8. If ω is an imaginary cube root of unity, then $\left(1-\omega-\omega^2
ight)^7$ equals

A. 128 ω

 $\mathrm{B.}-128\omega$

C. 128 ω^2

 $D. - 128\omega^{2}$

Answer: D

Watch Video Solution

9. If
$$egin{array}{c|ccc} 4 & 3i & 1 \ 20 & 3 & i \end{array} = x+iy, i = \sqrt{-1}$$
 then

A.
$$x = 3, y = 1$$

B.
$$x = 1, y = 3$$

C.
$$x = 0, y = 3$$

D.
$$x = 0, y = 0$$

Answer: D

10. If arg(z) < 0, then find arg(-z) - arg(z).

$$\mathsf{B.}-\pi$$

$$\mathsf{C.} - \frac{\pi}{2}$$

D.
$$\frac{\pi}{2}$$

Answer: A

Watch Video Solution

11. If z_1,z_2,z_3 are complex numbers such that $|z_1|=|z_2|=|z_3|=\left|rac{1}{z_1}+rac{1}{z_2}+rac{1}{z_3}
ight|=1$ then $|z_1+z_2+z_3|$ is equal to

A. equal to 1

B. less than 1

C. greater than 3

D. equal to 3

Answer: A

Watch Video Solution

12. Let z_1 and z_2 be nth roots of unity which subtend a right angle at the origin. Then n must be of the form (1) 4k+1 (2) 4k+2 (3) 4k+3 (4) 4k

A.4k + 1

B.4k + 2

C.4k + 3

D. 4k

Answer: D

13. The complex number z_1, z_2 and z_3 satisfying $\dfrac{z_1-z_3}{z_2-z_3}=\dfrac{1-i\sqrt{3}}{2}$ are the vertices of a triangle which is:

A. of area zero

B. right-angled isosceles

C. equilateral

D. obtuse-angle isosceles

Answer: C

14. Let
$$\omega=-rac{1}{2}+irac{\sqrt{3}}{2}$$
, then the value of the determinant

$$egin{array}{c|ccc} 1 & 1 & 1 \ 1 & -1 - \omega^2 & \omega^2 \ 1 & \omega^2 & \omega^4 \end{array}$$
 , is

A.
$$3\omega$$

B.
$$3\omega(\omega-1)$$

 $C. 3\omega^2$

D. $3\omega(1-\omega)$

Answer: B

Watch Video Solution

15. The inequality |z-i|<|z+i| represents the region

A. Re(z) > 0

B. Re(z) < 0

 $\mathsf{C}.\,Im(z)>0$

D. Im(z) < 0

Answer: C

16. Show that if
$$iz^3+z^2-z+i=0$$
, then $|z|=1$

17. If $x+iy=rac{1}{1-\cos heta+2i\sin heta},$ $heta
eq 2n\pi,$ $n\in I$, then maximum

A. Re
$$z = 0$$

B.
$$Im z = 0$$

D. None of these

Answer: C

- A. 1
- B. 2
- $\mathsf{C.}\,\frac{1}{2}$ D. $\frac{1}{3}$

Answer: C

Watch Video Solution

- **18.** The equation $z^3=ar{z}$ has
 - A. no solution
 - B. two solutions
 - C. five solutions
 - D. infinite number of solutions

Answer: C

Watch Video Solution

19. If $z=5+t+i\sqrt{25-t^2},$ ($-5\leq t\leq 5$), then locus of z is a curve which passes through

$${\rm B.}-2+3i$$

$$C.2 + 4i$$

$$D. -2 - 3i$$

Answer: C

Watch Video Solution

20. If
$$\omega$$
 is complex cube root of that $\dfrac{1}{a+\omega}+\dfrac{1}{b+\omega}+\dfrac{1}{c+\omega}=2\omega^2$ and $\dfrac{1}{a+\omega^2}+\dfrac{1}{b+\omega^2}+\dfrac{1}{c+\omega^2}=2\omega$ then the value of $\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=$

C.
$$-1+\omega^2$$

D. None of these

Answer: A

Watch Video Solution

21. if |z-iRe(z)|=|z-Im(z)| where $i=\sqrt{-1}$ then z lies on

A. Re
$$(z) = 2$$

B.
$$Im(z) = 2$$

C. Re
$$(z) + Im(z) = 2$$

D. None of these

Answer: D

Watch Video Solution

22. If ω is a complex cube root of unity, then value of expression $\cos\left[\left\{(1-\omega)\left(1-\omega^2\right)+...+(12-\omega)\left(12-\omega^2\right)\right\}\frac{\pi}{370}\right]$

B. 0

C. 1

D. $\sqrt{3}/2$

Answer: C

Watch Video Solution

23. If roots of the equation $z^2+az+b=0$ are purely imaginary then

A.
$$ig(b-ar{b}ig)^2+(a+ar{a})ig(ar{a}b+aar{b}ig)=0$$

B.
$$\left(b-ar{b}
ight)^2+\left(a-ar{a}
ight)^2=0$$

C.
$$\left(b+ar{b}
ight)^2-\left(a-ar{a}
ight)^2=0$$

D. None of these

Answer: A

24. The system of equations $|z+1-i|=\sqrt{2} \,\, {
m and} \,\, |z|=3$ has

A. no solution

B. one solution

C. two solutions

D. infinite number of solutions

Answer: A

25. If
$$8\iota z^3$$
+ $12z^2$ - $18z$ + 27ι =0 then: a. $|z|=rac{3}{2}$ b. $|z|=rac{2}{3}$ c. $|z|=1$

A.
$$|z|=rac{3}{2}$$

$$\operatorname{B.}|z|=\frac{2}{3}$$

C.
$$|z| = 1$$

D.
$$|z|=rac{3}{4}$$

Answer: A

Watch Video Solution

- **26.** If a complex number z lies in the interior or on the boundary of a circle or radius 3 and center at $(\,-4,0)$, then the greatest and least values of |z+1| are
 - A. 4
 - B. 5
 - C. 10
 - D. 9

Answer: C

27. If
$$x+iy=rac{3}{2+\cos heta+i\sin heta}$$
 , then show that $x^2+y^2=4x-3$

- B. 3
- C. 4
- D. 5

Answer: B

28. Suppose z_1, z_2, z_3 represent the vertices A, B and C respectively of a

$$\Delta ABC$$
 with centroid at G. If the mid point of AG is the origin, then

A.
$$z_1 + z_2 + z_3 = 0$$

$$\mathsf{B.}\, 2z_1 + z_2 + z_3 = 0$$

$$\mathsf{C.}\,z_1 + z_2 + 4z_3 = 0$$

D.
$$4z_1 + z_2 + z_3 = 0$$

Answer: D

Watch Video Solution

- **29.** Suppose that three points $z_1,\,z_2,\,z_3$ are connected by the relation $az_1+bz_2+cz_3=0$, where a + b + c = 0, then the points are
 - A. vertices of a right triangle
 - B. vertices of an isosceles triangle
 - C. vertices of an equilateral triangle
 - D. collinear

Answer: D

Watch Video Solution

30. If the number $\frac{z-1}{z+1}$ is purely imaginary, then

$$\operatorname{B.}|z|<1$$

$$\mathsf{C.}\left|z
ight|>1$$

D.
$$|z| \geq 2$$

Answer: A

Watch Video Solution

31. If z s a complex number such that $-\frac{\pi}{2} \leq argz \leq \frac{\pi}{2}$, then which of the following inequality is true

A.
$$|z-ar{z}| \leq |z| |arg(z) - arg(ar{z})|$$

$$\texttt{B.}\, |z-\bar{z}| \leq |arg(z)-arg(\bar{z})|$$

C.
$$|z-ar{z}|>|z||arg(z)-arg(ar{z})|$$

D. None of these

Answer: A

32. If $|\omega|=1$, then the set of points $z=\omega+\frac{1}{\omega}$ is contained in or equal to the set of points z satisfying.

A.
$$|Re(z)| \leq 2$$

$$B.|z| \leq 1$$

C.
$$|z| = 1$$

D.
$$|Im(z)| > 2$$

Answer: A

Watch Video Solution

33. The number of complex numbers z such that |z|=1 and |z/z+z/z=1 is $(arg(z)\in [0,2\pi))$ 4 b. 6 c. 8 d.

m or ethan8

B. 2

C. 4

D. 8

Answer: D

Watch Video Solution

34. If $|z_1|=|z_2|=|z_3|=1$ are two complex numbers such that

 $|z_1|=|z_2|=\sqrt{2}$ and $|z_1+z_2|=\sqrt{3}$, then $|z_1-z_2|$ equation

A. $2\sqrt{2}$

B. $\sqrt{5}$

C. 3

D. $2-\sqrt{2}$

Answer: B

35. Let z_1,z_2,z_3 be three non-zero complex numbers such that $z_1ar z_2=z_2ar z_3=z_3ar z_1$, then z_1,z_2,z_3

A. are vertices of an equilateral triangle

B. are vertices of an isosceles triangle

C. lie on a straight line

D. None of these

Answer: A

Watch Video Solution

36. If $|z_1|=|z_2|=|z_3|=1$ then value of $|z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2$ cannot exceed

A. 3

B. 6

C. 9

D. 12

Answer: C

Watch Video Solution

37. Let $z_1z_2,\,z_3,\,$ be three complex number such that $z_1+z_2+z_3=0$ and $|z_1|=|z_2|=|z_3|=1$ then Let $\left|z_1^2+2z_2^2+z_3^2 ight|$ equals

A. 1

B. 2

C. 3

D. 4

Answer: A

38. Let z_1,z_2,z_3 be three complex numbers such that $|z_1|=|z_2|=|z_3|=1$ and $z=(z_1+z_2+z_3)igg(rac{1}{z_1}+rac{1}{z_2}+rac{1}{z_3}igg)$, then

A. 1

|z| cannot exceed

B. 3

C. 6

D. 9

Answer: D

Watch Video Solution

39. Suppose z is a complex number such that $z \neq -1, |z|=1, \text{ and } arg(z)=\theta.$ Let $\omega=\dfrac{z(1-\bar{z})}{\bar{z}(1+z)},$ then Re (ω) is equal to

A.
$$1+\cos(heta/2)$$

B.
$$1-\sin(heta/2)$$

$$\mathsf{C.} - 2\sin^2(\theta/2)$$

D.
$$2\cos^2(\theta/2)$$

Answer: C

Watch Video Solution

40. Let $a=Im\Big(rac{1+z^2}{2iz}\Big)$, where z is any non-zero complex number.

Then the set $A=\{a\!:\!|z|=1\ {
m and}\ z
eq\pm 1\}$ is equal to

D. (-1, 0]

Answer: A

41. Number of complex numbers such that
$$|\mathsf{z}|$$
 = 1 and $z=1-2ar{z}$ is

Answer: A

- **42.** Let z_1,z_2 be two complex numbers such that $z_1 \neq 0$ and z_2/z_1 is purely real, then $\left|\frac{2iz_1+5z_2}{2iz_1-5z_2}\right|$ is equal to
 - A. 3
 - B. 2

C. 1

D. 0

Answer: C

Watch Video Solution

43. If $z=iig(1+\sqrt{3}ig),$ $ext{then} z^4+2z^3+4z^2+5$ is equal to

A. 5

B. -5

C. $2\sqrt{3}i$

D. $-2\sqrt{3}i$

Answer: A

View Text Solution

44. If the fourth roots of unity are z_1, z_2, z_3, z_4 and $z_1^2 + z_2^2 + z_3^2 + z_4^2$ is equal to:

A.
$$-a^2$$

B. |a| - a

C.a + |a|

 $D. a^2$

Answer: C

45. Suppose
$$arg(z)= -5\pi/13$$
, then $arg\Big(rac{z+ar{z}}{1+zar{z}}\Big)$ is

A.
$$-5\pi/13$$

B.
$$5\pi/13$$

$$\mathsf{C}.\,\pi$$

D. 0

Answer: C

Watch Video Solution

- number of values of $\theta \in (0,\pi]$, such that 46. The
- $(\cos\theta+i\sin\theta)(\cos3\theta+i\sin3\theta)(\cos5\theta+i\sin5\theta)(\cos7\theta+i\sin7\theta)(\cos9\theta)$

is

- A. 11

 - B. 13
 - C. 14

D. 16

Answer: B

47. If $z \in C - \{0, \ -2\}$ is such that $\log_{(1/7)}|z-2| > \log_{(1/7)}|z|$ then

A.
$$Re(z) > 1$$

B. Re(z) < 1

 $\mathsf{C}.\,Im(z)>1$

 $\mathsf{D}.\, Im(z)<1$

Answer: A

Watch Video Solution

48. Im $\left(\frac{2z+1}{iz+1}\right)=5$ represents

A. a circle

B. a straight line

C. a parabola

D. an ellipse

Answer: A

Watch Video Solution

 $Im(z_1 + z_2) = 0, Im(z_1z_2) = 0$, then:

49. If z_1, z_2 are two complex numbers such that

A.
$$z_1=\,-\,ar{z}_2$$

B.
$$z_1 = z_2$$

$$\mathsf{C}.\,z_1=\bar{z}_2$$

D. None of these

Answer: D

Watch Video Solution

50. The number $\frac{(1+i)^n}{(1-i)^{n-2}}$ is equal to

A.
$$i^{n+1}$$

 $\mathsf{B.} - 2i^{n+1}$

C. i^{n+2}

 $\mathsf{D.} - 2i^{n+2}$

Answer: B

Watch Video Solution

51. Let $\omega eq 1$, be a cube root of unity, and $f \colon I o C$ be defined by $f(n)=1+\omega^n+\omega^{2n}$, then range of f is

- A. {0}
- $B. \{0, 3\}$
- C. {0, 1, 3}
- D. {0, 1}

Answer: B

52. If
$$z+rac{1}{z}=2\cos\theta, z\in \mathrm{C}$$
 then $\mathrm{z}^{2n}-2z^n\cos(n\theta)$ is equal to

A. 1

B. 0

C. -1

D.-n

Answer: C

Watch Video Solution

53. If $\omega
eq 1$ is a cube root of unity, then $z = \sum_{k=1}^{60} \omega^k - \prod_{k=1}^{30} \omega^k$ is equal to

A. 0

B. ω

 $\mathsf{C}.\,\omega^2$

D. -1

Answer: D

Watch Video Solution

54. Let g(x) and h(x) be two polynomials with real coefficients. If $p(x)=g(x^3)+xh(x^3)$ is divisible by x^2+x+1 , then

A.
$$g(1) = 0$$
, $h(1) = 1$

B.
$$g(1) = 1, h(1) = 0$$

C.
$$g(1) = 0$$
, $h(1) = 0$

D.
$$g(1) = 1, h(1) = 0$$

Answer: C

55. If x^2-x+1 divides the polynomial $x^{n+1}-x^n+1$, then n must be of the form

A. 3k + 1

B. 6k + 1

C. 6k - 1

D. 3k - 1

Answer: B

View Text Solution

Exercise Level 2

1. The complex number $z_1,\,z_2,\,z_3$ are the vertices A, B, C of a parallelogram

ABCD, then the fourth vertex D is:

A.
$$rac{1}{2}(z_1+z_2)$$

Answer: D

B. $\frac{1}{4}(z_1+z_2-z_3-z_4)$

Watch Video Solution

C. $\frac{1}{3}(z_1+z_2+z_3)$

D. $z_1 + z_3 - z_2$

- 1. If a, b and c are three integers such that at least two of them are unequal and $\omega(\neq 1)$ is a cube root of unit, then the least value of the
- expression $\left| a + b\omega + c\omega^2 \right|$ is

B. 1

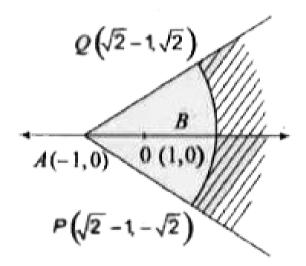
A. 0

- $\mathsf{C.}\,\frac{\sqrt{3}}{2}$
- $D. \frac{1}{2}$

Watch Video Solution

Exercise Level 4

1. The shaded region in Figure is given by



A.
$$\left\{z{:}|z-1|<2,|arg(z+1)|<rac{\pi}{2}
ight\}$$

B.
$$\left\{z{:}|z+1|<2,|arg(z+1)|<rac{\pi}{2}
ight\}$$

C.
$$\left\{z{:}|z-1|>2, |arg(z-1)|<rac{\pi}{4}
ight\}$$

D.
$$\left\{\mathrm{z}: \left|z+1\right|>2, \left|arg(z+1)\right|<rac{\pi}{4}
ight\}$$

Answer: D

Watch Video Solution

Exercise Level 5

1. If
$$w=lpha+ieta$$
 where $B\eta 0$ and $z
eq 1$ satisfies the condition that

$$\left(rac{w-\overline{w}z}{1-z}
ight)$$
 is purely real then the set of values of z is

A.
$$\{z : |z| = 1\}$$

$$\mathrm{B.}\left\{z{:}\bar{z}=z\right\}$$

$$\mathsf{C}.\left\{z{:}|z|\neq 1\right\}$$

D.
$$\{z : |z| = 1, z \neq 1\}$$

Answer: D

Exercise Level 6

1. Let z and w be non - zero complex numbers such that $zw=\left|z^{2}\right|$ and

 $|z-ar{z}|+|w+\overline{w}|=4.$ If w varies, then the perimeter of the locus of z

A. rectangle

is

- B. square
- C. rhombus
- D. trapezium

Answer: B

Watch Video Solution

Exercise Level 7

1. Let $z=1-t+i\sqrt{t^2+t+2}$, where t is a real parameter.the locus of the z in argand plane is

A. a parabola

B. an ellipse

C. a hyperbola

D. a pair of straight lines.

Answer: C

Watch Video Solution

Exercise Level 8

1. $Z_1 \neq Z_2$ are two points in an Argand plane. If $a|Z_1|=b|Z_2|$, then prove that $\frac{aZ_1-bZ_2}{aZ_1+bZ_2}$ is purely imaginary.

A. in the 1st quadrant

B. in the 3rd quadrant

C. on the real axis

D. on the imaginary axis

Answer: D

Watch Video Solution

Exercise Level 9

1. If $z \in C$, then least value of the expression |z| + |1-z| + |z-2| is

A. 4

B.3/2

C. 2

D. cannot be determined

Answer: C

Exercise Level 10

1. If
$$k>0,\,k
eq 1,\;\; ext{and}\;\;z_1,\,z_2\in C$$
 , then $\left|rac{z-z_1}{z-z_2}
ight|$ = k represents

- A. a circle
- B. an ellipse
- C. a parabola
- D. a hyperbola

Answer: A

Watch Video Solution

Exercise Level 11

1. If $|z_1|=|z_2|=|z_3|$ and $z_1+z_2+z_3=0$, then z_1,z_2,z_3 are vertices

A. are vertices of a right triangle

B. an equilateral triangle

C. an obtuse angled triangle

D. None of these

Answer: B

of

Watch Video Solution

Exercise Level 12

1. If
$$w=\cos \frac{\pi}{n}+i\sin \frac{\pi}{n}$$
 then value of $1+w+w^2+......+w^{n-1}$ is :

A.1 + i

 $\mathsf{B.}\,1+i\tan(\pi/2n)$

$$\mathsf{C.}\,1+i\cot(\pi/2n)$$

D. None of these

Answer: C

Watch Video Solution

Exercise Level 13

1. Let
$$z_1,z_2$$
 be two non-zero complex numbers such that $|z_1+z_2|=|z_1-z_2|$, then $rac{z_1}{ar z_1}+rac{z_2}{ar z_2}$ equals

- A. 0
 - ۱. U
 - B. 1
 - C. -1
 - D. None of these

Answer: A

Exercise Level 14

1. If
$$|z_1| = 2 \,\, ext{and} \,\, (1-i)z_2 + (1+i)ar{z}_2 = 8\sqrt{2}$$
, then

A. minimum value of
$$|z_1-z_2|$$
 is 1

B. minimum value of
$$|z_1-z_2|$$
 is 2

C. maximum value of
$$|z_1-z_2|$$
 is 8

D. maximum value of
$$|z_1-z_2|$$
 is 4

Answer: B

Watch Video Solution

Exercise Level 15

1. If z_1 lies on |z| = r, then equation of tangent at z_1 is

A.
$$rac{z}{ar{z}_1}+rac{ar{z}}{ar{z}_1}=2$$

B.
$$rac{z}{ar{z}_1}+rac{ar{z}}{ar{z}_1}=r$$

C.
$$rac{z}{ar{z}_1}+rac{ar{z}}{z_1}=2$$
D. $rac{z}{ar{z}_1}+rac{ar{z}}{z_1}=r$

Answer: A

Watch Video Solution

Exercise Level 16

1. If
$$z \in C$$
, then minimum value of $|z-2+3i|+|z-1+i|$ is

A.
$$\sqrt{5}$$

C.
$$\sqrt{13}-\sqrt{2}$$

B. $2\sqrt{5}$

Answer: A

Watch Video Solution

Exercise Level 17

- **1.** If a>0 and the equation $\left|z-a^2\right|+\left|z-2a\right|=3$, represents an ellipse, then 'a' belongs to the interval
 - A.(0,3)
 - $B.(0,\infty)$
 - C. (1, 3)
 - $D.(3,\infty)$

Answer: A

1. If the points A(z), B(-z) and C(1-z) are the vertices of an equilateral triangle, then value of z is

A.
$$1\pmrac{i\sqrt{3}}{2}$$

B.
$$\frac{1}{2}(1\pm i)$$

C.
$$rac{1}{4}ig(1\pm\sqrt{3}iig)$$

D.
$$rac{1}{3}ig(1\pm\sqrt{3}iig)$$

Answer: C

Watch Video Solution

Exercise Level 19

1. If $|z+1|+|z-3|\leq 10$, then the range of values of $|{\sf z}$ - 7| is

A. [0, 10]

B. [3, 13]

- C. [2, 12]
 - D. [7, 9]
- **Answer: B**

Watch Video Solution

1. If $\omega
eq 1$ is a cube root of unity and $|z-1|^2+2|z-\omega|^2=3ig|z-\omega^2ig|^2$

Exercise Level 20

then z lies on

- A. a straight line
- B. a parabola
- C. an ellipse
- D. a rectangular hyperbola

Answer: A

Watch Video Solution

Exercise Level 21

1. The least positive integer n for which $\left(\frac{1+i}{1-i}\right)^n=\frac{2}{\pi}{
m sin}^{-1}\!\left(\frac{1+x^2}{2x}\right)$

, where $x>0 \,\, {
m and} \,\, i=\sqrt{-}1$ is

- A. 2
- B. 4
- C. 8
- D. 32

Answer: B

Exercise Numerical Answer Type Questions

1. Suppose $a\in R$ and $z\in C$. If |z|=2 and $\frac{z-\alpha}{z+\alpha}$ is purely imaginary, then 1.25 $|\alpha|$ is equal to _____.

2. If lpha andeta are roots of the equation $x^2-2x+2=0$, then the least calue of n for which $\left(rac{lpha}{eta}
ight)
ight)^n=1$ is

3. Let $S=\left\{rac{2lpha+3i}{2lpha-3i}\!:\!lpha\in R
ight\}\!.$ All the points of S lie on a circle of radius

4. Let $\omega
eq 1$ be cube root of unity. Suppose $\left(1+\omega\right)^{2023} = A + B\omega$

where A, B $\,\in\,$ R, then $|A+Bi|^2$ is equal to ______.

5. If $(7+i)(z+ar{z})-(4+i)(z-ar{z})+116i=0$ then $zar{z}$ is equal to

6. Let C_1 be the curve represented by $\dfrac{2z+i}{z-2}$ is purely imaginary, and C_2 be the curve represented by $arg\bigg(\dfrac{z+i}{z+1}\bigg)=\dfrac{\pi}{2}.$ Let m = slope of the common chord of C_1 and C_2 , then |m| is equal to _____.

7. Let $a=3+4i, z_1$ and z_2 be two complex numbers such that $|z_1|=3$ and $|z_2-a|=2$, then maximum possible value of $|z_1-z_2|$ is

- **8.** Let lpha be the real and eta,γ be the complex roots of $x^3+3x^2+3x+28=0$, then $|lpha+2eta+2\gamma|$ = _____.
 - Watch Video Solution

9. Let
$$z=\left(rac{2}{i+\sqrt{3}}
ight)^{200}+\left(rac{2}{i-\sqrt{3}}
ight)^{200}, ext{then}ig|z+(1.7)^2ig|$$

10. Let z be a non-zero complex number such that area of the triangle with vertices P(z), $Q\Big(ze^{\pi i/6}\Big)$ and $R\Big(z\Big(1+e^{\pi i/6}\Big)\Big)$ is 0.64, then z lies on a circle of diameter .

11. Suppose $x, y \in R$. If $x^2 + y + 4i$ is conjugate of $-3 + x^2yi$, then maximum possible value of $\left(|x|+|y|
ight)^2$ is equal to _____.

12. All the roots of the equation $x^{11} - x^6 - x^5 + 1 = 0$ lie on a circle of radius .

14. Suppose,
$$a,b,c\geq 0,c\neq 1,$$
 $a^2+b^2+c^2=c.$ If $\left|rac{a+ib}{2-c}
ight|=rac{1}{2}$, then c is equal to ______.

15. Let
$$z_1,z_2,z_3$$
 be the roots of $iz^3+5z^2-z+5i=0$, then

16. Let $S = \left\{z \in C \colon z^2 = 4(i\bar{z})^2\right\}$, then $\sum_z \left|z + \frac{1}{2}i\right|$ = _____.

 $|z_1| + |z_2| + |z_3| =$ _____.

18. If
$$lpha=\cos\Bigl(rac{8\pi}{11}\Bigr)+i\sin\Bigl(rac{8\pi}{11}\Bigr)$$
 then $Re\bigl(lpha+lpha^2+lpha^3+lpha^4+lpha^5\bigr)$ is

19. Eccentricity of conic
$$|z-5i|+|z+5i|=25$$
 is _____.

20. If
$$lpha$$
 is a non-real root of $x^6=1$ then $\dfrac{lpha^5+lpha^3+lpha+1}{lpha^2+1}=$

Questions From Previous Years Aieee Jee Main Papers

1. Let zandw be two non-zero complex number such that |z|=|w| and

$$arg(z) + arg(w) = \pi$$
 , then z equals. w (b) $-w$ (c) w (d) $-w$

A. \overline{w}

 $\mathsf{B.}-\overline{w}$

C. w

D.-w

Answer: B

Watch Video Solution

2. If |z-4| < |z-2|, then

A. Re(z) > 0

B. Re(z) < 0

 $C. \, Re(z) > 3$

D. Re(z) > 2

Answer: C

Watch Video Solution

3. The locus of the center of a circle which touches the circles

$$|z-z_1|=a, |z-z_2=b|$$
 externally will be

- A. an ellipse
- B. a hyperbola
- C. a circle
- D. a pair of straight lines.

Answer: B

- **4.** If $\left(rac{1+i}{1-i}
 ight)^x=1$, then
- $n\in N.$

A. x = 2n, where n is any positive integer

B. x = 4n + 1, where n is any positive integer

C. x = 2n + 1, where n is any positive integer

D. x = 4n, where n is any positive integer

Answer: D

Watch Video Solution

5. z and w are two complex number such that

$$|zw|=1 \,\, ext{and} \,\, arg(z) - arg(w) = rac{\pi}{2}, \,\, ext{then show that} \, ar{z}w = \,\, -i.$$

A. -1

B. i

 $\mathsf{C.}-i$

D. 1

Answer: C

6. Let z_1 and z_2 be the roots of $z^2+az+b=0$. If the origin, z_1 and z_2 from an equilateral triangle, then

A.
$$a^2=2b$$

$$\mathrm{B.}\,a^2=3b$$

$$\mathsf{C}.\,a^2=4b$$

$$D. a^2 = b$$

Answer: B

Watch Video Solution

7. Let z,w be complex numbers such that $ar{z}+i\overline{w}=0$ and $argzw=\pi$

Then argz equals

A.
$$\frac{3\pi}{4}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{4}$$

D.
$$\frac{5\pi}{4}$$

Watch Video Solution

8. If
$$z=x-iy$$
 and $z'^{rac{1}{3}}=p+iq$, then $rac{1}{p^2+q^2}\Big(rac{x}{p}+rac{y}{q}\Big)$ is equal to

- A. 2
- B. -1
- C. 1
- D. -2

Answer: D

- **9.** If $\left|z^2-1\right|=\left|z\right|^2+1$, then z lies on (a) a circle (b) the imaginary axis
- (c) the real axis (d) an ellipse
 - A. a circle
 - B. the imaginary axis
 - C. the real axis
 - D. an ellipse

Answer: B

- **10.** If the cube roots of unity are $1, \omega, \omega^2$, then the roots of the equation
- $(x-1)^3 + 8 = 0$, arte
 - A. $-1,\,1-2\omega,\,1-2\omega^2$
 - B. -1, $1+2\omega,$ $1+2\omega^2$
 - C. $-1, -1 + 2\omega, -1 2\omega^2$

$$D. -1, -1, -1$$

Watch Video Solution

- 11. If $w=\dfrac{z}{z-\frac{1}{3}i}$ and $|\mathbf{w}|$ =1, then z lies on
 - A. straight line
 - B. a parabola
 - C. an ellipse
 - D. a circle

Answer: A

12. If
$$z_1$$
 and z_2 , are two non-zero complex numbers such that $|z_1+z_2|=|z_1|+|z_2|$ then $arg(z_1)-arg(z_2)$ is equal to (1) 0 (2) $-\frac{\pi}{2}$

(3)
$$\frac{\pi}{2}$$
 (4) $-\pi$

$$B.-\frac{\pi}{2}$$

C.
$$\frac{\pi}{2}$$

D.
$$\pi$$

Watch Video Solution

13. $\sum_{k=1}^{10} \left(\frac{\sin(2k\pi)}{11} + i \frac{\cos(2k\pi)}{11} \right)$

$$\kappa - 1$$

A.
$$-i$$

Watch Video Solution

14. If $z^2+z+1=0$ where z is a complex number, then the value of

$$\left(z+rac{1}{z}
ight)^2+\left(z^2+rac{1}{z^2}
ight)^2+....\ +\left(z^6+rac{1}{z^6}
ight)^2$$
 is

A. 12

B. 18

C. 54

D. 6

Answer: A

15. If
$$|z+4| \leq 3$$
 , then the maximum value of $|z+1|$ is (1) 4 (B) 10 (3) 6 (4) 0

16. The conjugate of a complex number is $\dfrac{1}{i-1}$. Then the complex

- A. 4
- B. 10
- C. 6
- D. 0

Answer: C

- number is (1) $\frac{-1}{i-1}$ (2) $\frac{1}{i+1}$ (3) $\frac{-1}{i+1}$ (4) $\frac{1}{i-1}$ A. $\frac{-1}{i-1}$
 - B. $\dfrac{1}{i+1}$
 - i+1C. $\frac{-1}{i+1}$

D.
$$\frac{1}{i-1}$$

Answer: C

Watch Video Solution

- **17.** If $\left|z-rac{4}{z}
 ight|=2$, then the maximum value of |z|
 - A. 1
 - B. $2 + \sqrt{2}$
 - C. $\sqrt{3} + 1$
 - D. $\sqrt{5} + 1$

Answer: D

$$|z-1|=|z+1|=|z-i|$$
 is

number of complex numbers

19. If $\omega($ eq 1) be a cube root of unity and $\left(1+\omega\right)^{7}=A+B\omega$, then A

such

z

that

The

18.

Answer: D

Watch Video Solution

and B are respectively the numbers.

Answer: C

Watch Video Solution

- **20.** Let lpha, eta be real and z be a complex number. If $z^2+\alpha z+\beta=0$ has two distinct roots on the line Re z=1 , then it is necessary that : (1) $b\in (0,1)$ (2) $b\in (-1,0)$ (3) |b|=1 (4) $b\in (1,\infty)$
 - A. $eta \in (1,\infty)$
 - B. $eta \in (0,1)$
 - C. $\beta(-1,0)$
 - D. $|\beta|=1$

Answer: A

21. If $z \neq 1$ and $\frac{z^2}{z-1}$ is real, the point represented by the complex numbers z lies

A. on a circle with centre at the origin.

B. either on the real axis or on a circle not passing through the origin.

C. on the imaginary axis.

D. either on the real axis or on a circle passing through the origin

Answer: D

22. The area of the triangle on the Arand plane formed by the complex numbers z, iz and z+iz is?

A.
$$2|z|^{2}$$

$$\operatorname{B.} \frac{1}{2} |z|^2$$

$$\mathsf{C.}\left.4|z|^2\right.$$

D.
$$|z|^2$$

Answer: B

Watch Video Solution

23. If z is a complex number of unit modulus of modulus and argument θ ,

then $argigg(rac{1+z}{1+ar{z}}igg)$ equals to

A.
$$\frac{\pi}{2}- heta$$

 $B. \theta$

 $\mathsf{C}.\,\pi- heta$

 $\mathsf{D}.- heta$

Answer: B

24. if
$$\dfrac{5z_2}{7z_1}$$
 is purely imaginary number then $\left|\dfrac{2z_1+3z_2}{2z_1-3z_2}\right|$ is equal to

- A. 2
- B. 5
- C. 3
- D. 1

Answer: D

Watch Video Solution

25. Let $a=Im\Big(rac{1+z^2}{2iz}\Big)$, where z is any non-zero complex number.

Then the set $A=\{a\!:\!|z|=1\ {
m and}\ z
eq\pm 1\}$ is equal to

- A. (-1, 1)
 - B. [-1, 1]
- C. [0, 1)

Watch Video Solution

- **26.** If a complex number z satisfies $z+\sqrt{2}|z+1|+i=0$, then $|\mathsf{z}|$ is equal to:
 - A. 2
 - B. $\sqrt{3}$
 - C. $\sqrt{5}$
 - D. 1

Answer: C

27. If z is a complex number such that $|z| \geq 2$ then the minimum value of

$$\left|z+rac{1}{2}
ight|$$
 is

A. is strictly greater than 5/2

B. is strictly greater that 3/2 but less than 5/2

C. is equal to 5/2

D. lies in the interval (1, 2)

Answer: D

Watch Video Solution

28. Let $w(Imw \neq 0)$ be a complex number. Then the set of all complex numbers z satisfying the equal $w-\overline{w}z=k(1-z)$, for some real number k, is :

A.
$$\{z\!:\!|z|=1\}$$

$$\mathrm{B.}\,\{z\!:\!z=\bar{z}\}$$

C.
$$\{z: z \neq 1\}$$

D.
$$\{z : |z| = 1, z \neq 1\}$$

Answer: D

Watch Video Solution

29. If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers then

$$\mathsf{arg}igg(rac{z_1}{z_4}igg) + argigg(rac{z_2}{z_3}igg)$$
 equals

B.
$$\frac{\pi}{2}$$

C.
$$\frac{3\pi}{2}$$

D.
$$\pi$$

Answer: A

30. Let $z \neq i$ be any complex number such that $\dfrac{z-i}{z+i}$ is a purely imaginary number. Then $z+\dfrac{1}{z}$ is

A. 0

B. any non-zero real number other than 1

C. any non-zero real number

D. a purely imaginary number

Answer:

31. For all complex numbers z of the form $1+ilpha, lpha \in \mathrm{R} \ \mathrm{if} \ \mathrm{z}^2=x+iy$,

then

A.
$$y^2 - 4x + 2 = 0$$

B.
$$y^2 + 4x - 4 = 0$$

C.
$$y^2 - 4x + 4 = 0$$

D.
$$y^2 + 4x + 2 = 0$$

Answer: B

Watch Video Solution

- **32.** A complex number z is said to be uni-modular if |z|=1. Suppose z_1 and z_2 are complex numbers such that $\frac{z_1-2z_2}{2-z_1z_2}$ is uni-modular and z_2 is not uni-modular. Then the point z_1 lies on a:
 - A. straight line parallel to the x-axis.
 - B. straight line parallel to the y-axis.
 - C. circle of radius 2.
 - D. circle of radius $\sqrt{2}$

Answer: C

33. The largest value of r for which the region represented by the set

$$\{\omega\in\mathbb{C}/|\omega-4-i|\le r\}$$
 is contained in the region represented by the set $\{z\in\mathbb{C}/|z-1|\le |z+i|\},$ is equal to

A.
$$\sqrt{17}$$

B. $\sqrt{2}$

C. $\frac{3}{2}\sqrt{2}$

D. $\frac{5}{2}\sqrt{2}$

Answer: D

Watch Video Solution

34. If Z is a non-real complex number, then find the minimum value of

 $rac{Imz^5}{Im^5z}$

A. -1

B. -2

C. -4

D. -5

Answer: C

Watch Video Solution

35. A value of for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ purely imaginary, is : (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3)

$$\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$$
 (4) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

A. $\frac{\pi}{3}$

B. $\frac{\pi}{6}$

 $\mathsf{C.}\sin^{-1}\!\left(\frac{\sqrt{3}}{4}\right)$ $\mathsf{D.}\sin^{-1}\!\left(\frac{1}{\sqrt{3}}\right)$

Answer: D

36. The point represented by 2+i in the Argand plane moves 1 unit eastwards, then 2-units northwards and finally from there $2\sqrt{2}$ units in the south-westwards direction. Then its new position in the Argand plane is at the point represented by

- A.1 + i
- B.2 + 2i
- $\mathsf{C.} 2 2i$
- D. -1 i

Answer: A

Watch Video Solution

37. Let z=1+ai be a complex number, a>0,such that z^3 is a real number. Then the sum $1+z+z^2+...+z^{11}$ is equal to:

A. 1365 $\sqrt{3}i$

B. $-1365\sqrt{3}i$

 $C. - 1250\sqrt{3}i$

D. 1250 $\sqrt{3}i$

Answer: B

Watch Video Solution

38. Let $z \in C$, the set of complex numbers. Thenthe equation,

2|z+3i|-|z-i|=0 represents :

A. a circle with radius 8/3

B. a circle with diameter 10/3

C. an ellipse with length of major axis 16/3

D. an ellipse with length of minor axis 16/9

Answer: A

39. The equation $Im\Big(\frac{iz-2}{z-i}\Big)+1=0,$ z&arepsilon; C, z
eq i represents a part of a circle having radius equalto.4

- A. 2
- B. 1
- $\mathsf{C.}\,3/4$
- D.1/2

Answer: C

- **40.** If $lpha, eta \in C$ are the distinct roots of the equation $x^2-x+1=0$, then $lpha^{101}+eta^{107}$ is equal to
 - A. 0
 - B. 1

C. 2

D. -1

Answer: B

Watch Video Solution

41. The set of all $\alpha\in R$ for which $w=\dfrac{1+(1-8\alpha)z}{1-z}$ is a purely imaginary number, for all $z\in C$, satisfying |z|=1 and $Re(z)\neq 1$, is

A. an empty set

B. {0}

$$C.\left\{0,\frac{1}{4},-\frac{1}{4}\right\}$$

D. equal to R

Answer: B

42. If $|z-3+2i| \leq 4$, (where $i=\sqrt{-1}$) then the difference of greatest

and least values of |z| is

A.
$$2\sqrt{13}$$

B. 8

C.
$$4+\sqrt{13}$$

D.
$$\sqrt{13}$$

Answer: C

Watch Video Solution

43. The least positive integer n for which $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^n=1$, is

B. 3

C. 5

Answer: B

Watch Video Solution

44. Let
$$A=\left\{ heta\in \left(-rac{\pi}{2},\pi
ight)\colon rac{3+2i\sin heta}{1-2\sin heta} ext{ is purely imaginary }
ight\}$$

Then the sum of the elements in A is

- A. $\frac{5\pi}{6}$
- B. π
- C. $\frac{3\pi}{4}$
- D. $\frac{2\pi}{3}$

Answer: A

45. Let Z_0 is the root of equation $x^2+x+1=0$ and

$$Z=3+6i(Z_0)^{81}-3i(Z_0)^{93}$$
 Then arg (Z) is equal to (a) $rac{\pi}{4}$ (b) $rac{\pi}{3}$ (c) π

(d) $\frac{\pi}{6}$

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{6}$$

C. $\frac{\pi}{3}$

Answer: A

Watch Video Solution

46. Let z_1 and z_2 be any two non-zero complex numbers such that $|3|z_1|=2|z_2|. ext{ If } |z=rac{3z_1}{2z_2}+rac{2z_2}{3z_1}$, then

A.
$$Re(z) = 0$$

B.
$$|z|=\sqrt{rac{5}{2}}$$

$$\operatorname{C.}|z| = \frac{1}{2} \sqrt{\frac{17}{2}}$$

D. Im(z) = 0

Answer:

Watch Video Solution

47. If
$$z=\left(rac{\sqrt{3}}{2}+rac{i}{2}
ight)^5+\left(rac{\sqrt{3}}{2}-rac{i}{2}
ight)^5$$
 , then

$$A. I(z) = 0$$

$$\mathtt{B.}\,R(z)>0\ \mathrm{and}\ I(z)>0$$

$$\mathsf{C.}\ Re(z)<0\ \mathrm{and}\ I(z)>0$$

D.
$$Re(z) = -3$$

Answer: A

48. If x,y are real and $\left(-2-\frac{i}{3}\right)^3=\frac{x+iy}{27}$ then value of y-x is equal to (A) 91 (B) -91 (C) 85 (D) -85

B. 85

Answer: D

49. Let
$$\frac{z-\alpha}{z+\alpha}$$
 is purely imaginary and $|z|=2,$ $\alpha \varepsilon R$ then α is equal to (A) 2 (B) 1 (C) $\sqrt{2}$ (D) $\sqrt{3}$

C.
$$\sqrt{2}$$

$$D. \frac{1}{2}$$

Answer: B

Watch Video Solution

50. Let Z_1 and Z_2 be two complex numbers satisfying $|Z_1|=9$ and

$$|Z_2-3-4i|=4$$
. Then the minimum value of $|Z_1-Z_2|$ is

- A. 0
- B. 1
- $C.\sqrt{2}$

D. 2

Answer: A

51. If lpha and eta be the roots of the equation $x^2-2x+2=0$, then the least value of n for which $\left(\frac{\alpha}{\beta}\right)^n=1$ is:

B. 5

C. 4

D. 3

Answer: C

Watch Video Solution

52. if
$$z=rac{\sqrt{3}}{2}+rac{i}{2}ig(i=\sqrt{-1}ig)$$
 , then $ig(1+iz+z^5+iz^8ig)^9$ is equal to:

A. 0

B. 1

C. $(-1+2i)^9$

$$1+2i)$$

Answer: D

Watch Video Solution

- **53.** All the points in the set $S=\left\{rac{lpha+i}{lpha-i}\!:\!lpha\in R
 ight\}ig(i=\sqrt{-1}ig)lie$ on a
 - A. straight line whose slope is 1
 - B. circle whose radius is 1
 - C. circle whose radius is $\sqrt{2}$
 - D. straight line whose slope is -1

Answer: B

Watch Video Solution

54. Let $z \in C$ be such that |z| < 1.If $\omega = \dfrac{5+3z}{5(1-z)}$ then

B. 4 Im (w) > 5

C. 5 Re (w) > 1

Answer: C

Watch Video Solution

55. If
$$a>0$$
 and $z=\dfrac{\left(1+i\right)^2}{a-1}$ has magnitude $\sqrt{\dfrac{2}{5}}\mathrm{the}\bar{z}is$ equal to

$${\rm A.} - \frac{1}{5} + \frac{3}{5}i$$

$${\rm B.} \, \frac{1}{5} - \frac{3}{5}i$$

$$\mathsf{C.} - \frac{1}{5} - \frac{3}{5}i$$

C.
$$-\frac{1}{5} - \frac{3}{5}i$$
D. $-\frac{1}{5} - \frac{3}{5}i$

Answer: C

If zandw are two complex number such that

$$|zw|=1 and arg(z)-arg(w)=rac{\pi}{2}$$
 , then show that $zw=-i\cdot$

A.
$$ar{z}w=i$$

56.

B.
$$z\overline{w}=rac{1}{\sqrt{2}}(\,-1+i)$$

C.
$$z\overline{w}=rac{1}{\sqrt{2}}(1-i)$$

D.
$$ar{z}w=-i$$

Answer: D

Watch Video Solution

57. The equation |z - i| = |z - 1| represents:

A. a circle of radius 1

B. a circle of radius 1/2

C. the line through the origin with slope -1

D. the line through the origin with slope 1.

Answer: D

Watch Video Solution

58. if $\dfrac{2z-n}{2z+n}=2i-1, n\in N\in N$ and IM(z)=10, then

A. n = 20 and Re(z) = -10

B. n = 40 and Re(z) = -10

C. n = 40 and Re(z) = 10

D. n = 20 and Re(z) = 10

Answer: B

Watch Video Solution

Questions From Previous Years B Architecture Entrance Examination Paper

1.
$$\frac{5+i\sin\theta}{5-3i\sin\theta}$$
 is a real number when

A.
$$heta=\pi/4$$

B.
$$\theta = -\pi$$

C.
$$heta=-\pi/2$$

D.
$$heta=\pi/2$$

Answer: B

Watch Video Solution

2. Two points P and Q in the Argand diagram represent z and 2z + 3 + i.

If P moves on a circle with centre at the origin and radius 4, then the

locus of Q is a circle with centre

A.
$$-2-i,6$$

B.
$$2-i,3$$

$$\mathsf{C.}\,2+i,6$$

D.
$$2 + i, 3$$

Answer: C

Watch Video Solution

- 3. Let z be a complex number such that |z| = 2, then maximum possible value of $\left|z + \frac{2}{z}\right|$ is
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: C

4. If
$$i=\sqrt{-1}$$
, then $4+3\bigg(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\bigg)^{127}+5\bigg(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\bigg)^{124}$ is equal to

A.
$$4\sqrt{3}i$$

B.
$$2\sqrt{3}i$$

$$\mathsf{C.}\,1-\sqrt{3}i$$

D.
$$1 + \sqrt{3}i$$

argument and satisfying $|z-5i| \leq 1$ is

5. The real part of a complex number z having minimum principal

A.
$$\frac{2}{5}\sqrt{6}$$

B. 0

$$\text{C.} \ \frac{2}{\sqrt{5}}$$

$$\text{D.} -\frac{1}{5}\sqrt{6}$$

Watch Video Solution

6. Show that the area of the triangle on the Argand diagram formed by the complex number z,iz and z+iz is $\frac{1}{2}|z|^2$

B.
$$\frac{1}{2}|z|^2$$

$$\mathsf{C.}\left|z\right|^2$$

D.
$$2|z|^2$$

Answer: B

7. Two circles in the complex plane are

$$C_1\!:\!|z-i|=2 \ C_2\!:\!|z-1-2i|=4$$
 then

- A. C_1 and C_2 touch each other
- B. C_1 and C_2 intersect at two distinct points
- C. C_1 lies within C_2
- D. C_2 lies within C_1

Answer: C

Watch Video Solution

8. If $z=iig(i+\sqrt{2}ig)$, then value of $z^4+4z^3+6z^2+4z$ is

A. -5

B. 3

C. 6

D. -9

Watch Video Solution

9. Suppose z is a complex number such that z
eq -1, |z|=1 and $arg(z)=\theta.$ Let $w=rac{z(1-ar{z})}{ar{z}(1+z)}$, then Re(w) is equal to

A.
$$1+\cos\left(rac{ heta}{2}
ight)$$

$${\tt B.}\,1-\sin\!\left(\frac{\theta}{2}\right)$$

$$\mathsf{C.} - 2\sin^2\!\left(rac{ heta}{2}
ight)$$

D.
$$2\cos^2\left(\frac{\theta}{2}\right)$$

Answer: C

10. If $|z_1|=|z_2|=|z_3|=1$ and $z_1+z_2+z_3=\sqrt{2}+i$, then the number $z_1\bar{z}_2+z_2\bar{z}_3+z_3\bar{z}_1$ is :

A. a positive real number

B. a negative real number

C. always zero

D. a purely imaginary number

Answer: D

Watch Video Solution

11. Let $S=\{z\in C\colon z(iz_1-1)=z_1+1,\,|z_1|<1\}$. Then, for all $z\in S$, which one of the following is always true ?

A. Rez + Imz < 0

 $\mathrm{B.}\,Rez<0$

C. Rez-Imz>1

D. Rez - Imz < 0

Answer:

Watch Video Solution

- **12.** If $\left(4+3i\right)^2=7+24i$, then a value of $\left(7+\sqrt{-576}
 ight)^{1/2}-\left(7-\sqrt{-576}
 ight)^{1/2}$ is :
 - A.-6i
 - B.-3i
 - C. 2i
 - D. 6

Answer: A

13. Let
$$A=\{z\in\mathbb{C}\colon |z|=25) \text{ and } B=\{z\in\mathbb{C}\colon |z+5+12i|=4\}.$$

Then the minimum value of $|z - \omega|$, for $z \in A$ and $\omega \in B$, is

B. 8

C. 9

D. 6

Answer: B

Watch Video Solution

14. If
$$z_1, z_2$$
 and z_3 are three distinct complex numbers such that

$$|z_1|=1, |z_2|=2, |z_3|=4, arg(z_2)=arg(z_1)-\pi, arg(z_3)=arg(z_1)+\pi$$
 , then z_2z_3 is equal to

$$\mathsf{B.}\,8iz_1^2$$

A. $-8iz_1^2$

$${\rm C.}-\frac{8i}{z_i^2} \\ {\rm D.}~\frac{8i}{z_i^2}$$

Watch Video Solution

15. The locus of the point $w=Re(z)+rac{1}{z}$, where |z|=3, in complex plane is:

A. parabola

B. a circle

C. an ellipse

D. a hyperbola

Answer: C

16. Let $z(\neq -1)$ be any complex number such that |z| = 1. Then the imaginary part of $\frac{\bar{z}(1-z)}{z(1+\bar{z})}$ is : (Here $\theta = \text{Arg}(z)$)

A.
$$-\tan\left(\frac{\theta}{2}\right)\sin\theta$$

$$\mathrm{B.}\tan\!\left(\frac{\theta}{2}\right)\!\cos\theta$$

$$\mathsf{C.}- an\!\left(rac{ heta}{2}
ight)\!\cos heta$$

D. $\tan\left(\frac{\theta}{2}\right)\sin\theta$

Answer: C

Watch Video Solution

17. Let $u=rac{1}{2}ig(-1+\sqrt{3}iig)$ and $z=u-u^2-2$. Then the value of $z^4+3z^3+2z^2-11z-6$ is :

B. -1

C. 2

D. -2

Answer: A

View Text Solution