©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

HYPERBOLA

Illustration

1. Find the eccentricity, length of a latus rectum, equations of the latus rectum of the
hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.

D Watch Video Solution

2. Find the centre, foci and the eccentricity of the hyperbola.
$11 x^{2}-25 y^{2}-44 x+50 y-256=0$

(Watch Video Solution

3. e_{1} is the eccentricity of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1$ and e_{2} is the eccentricity of the
hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{b^{2}}=1$ such that $e_{1}, e_{2}=1$ find the value of b

D Watch Video Solution

4. If $y=m x+1$ is a tangent to the hyperbola
$4 x^{2}-25 y^{2}=100$, find the value of 25 $m^{4}+5 m^{2}+1$.

D Watch Video Solution
5. Find the equation of the normal to the hyperbola $4 x^{2}-9 y^{2}=144$ at the point whose eccentric angle θ is $\pi / 3$

D Watch Video Solution

6. Find the equation of the chord of contact of
the point $(5,1)$ to the hyperbola,
$x^{2}-4 y^{2}=16$. Also find the mid-point of this
chord.
7. Find the points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2$ from which two perpendicular tangents can be drawn to the circle $x^{2}+y^{2}=a^{2}$

- Watch Video Solution

8. If the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=25$ in four points, then find the product of the ordinates of these points.

Solved Examples Concept Based Single Correct Answer Type Questions

1. If e_{1}, and e_{2} are respectively the eccentricities of the conics $\frac{x^{2}}{25}-\frac{y^{2}}{11}=1$ and $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$ then $e_{1} e_{2}$ is equal to
A. $\frac{10}{9}$
B. $\frac{4}{3}$
C. $\frac{9}{10}$
D. $\frac{8}{5}$

Answer: C

- Watch Video Solution

2. If $x-\sqrt{5} y+c=0$ is a tangent to the
hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{4}=1$ then the value of c is
A. $\pm 3 \sqrt{5}$
B. $\pm \sqrt{5}$
C. $\pm 2 \sqrt{5}$

D. none of these

Answer: B

- Watch Video Solution

3. If the tangent at the point
$P(a \sec \theta, b \tan \theta)$ to the hyperbola passes through the point where a directrix of the hyperbola meets the positive side of the transverse axis, then θ is equal to

$$
\text { A. } \cos ^{-1}(1 / e)
$$

> B. $\tan ^{-1}(1 / e)$
> C. $\cot ^{-1}(1 / e)$
> D. $\sec ^{-1}(1 / e)$

Answer: A

D Watch Video Solution

4. The circle described on the line joining the foci of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ as a diameter passes through an end of the latus
rectum of the parabola $y^{2}=4 a x$, the length of the latus rectum of the parabola is
A. $2 \sqrt{5}$ units
B. 5 units
C. $4 \sqrt{5}$ units
D. $5 \sqrt{5}$ units

Answer: C
(Watch Video Solution

$$
\begin{aligned}
& \text { 5. The curve repersented by } \\
& x=5\left(t+\frac{1}{t}\right), y=\left(t-\frac{1}{t}\right), t \neq 0 \text { is }
\end{aligned}
$$

A. a point of straight lines
B. an ellipse
C. a hyperbola
D. a rectangular hyperbola

Answer: C
6. If the distance between two directrices of a
rectangular hyperbola is 15 , then the distance between its foci in units is:
A. $15 \sqrt{2}$
B. 30
C. 60
D. 45

Answer: B
7. If two perpendicular tangents can be drawn from the point (α, β) to the hyperbola $x^{2}-y^{2}=a^{2}$ then (α, β) lies on
A. $y= \pm x$
B. $x^{2}+y^{2}=a^{2}$
C. $x^{2}+y^{2}=2 a^{2}$
D. $y^{2}=4 a x$

Answer: A

- Watch Video Solution

8. The tangent at an extremity (in the first quadrant) of latus rectum of the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ meets x-axis and y - axis at A and B respectively. Then $(O A)^{2}-(O B)^{2}$, where O is the origin, equal to

$$
\begin{aligned}
& \text { A. }-\frac{20}{9} \\
& \text { B. } \frac{16}{9} \\
& \text { C. } 4 \\
& \text { D. }-\frac{4}{3}
\end{aligned}
$$

- Watch Video Solution

9. If $P Q$ is a double ordinate of the hyperbola such that OPQ is an equilateral triangle, being the centre of the hyperbola, then eccentricity e of the hyperbola satisfies

$$
\begin{aligned}
& \text { A. } e=\frac{2}{\sqrt{3}} \\
& \text { B. } e=\frac{\sqrt{3}}{2} \\
& \text { C. } e>\frac{2}{\sqrt{3}} \\
& \text { D. } 1<e<\frac{2}{\sqrt{3}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

10. If the tangent and normal to the hyperbola
$x^{2}-y^{2}=4$ at a point cut off intercepts a_{1}
and a^{2} respectively on the x-axis, and b_{1} and b_{2}
respectively on the y-axis, then the value of
$a_{1} a_{2}+b_{1} b_{2}$ is
A. -1
B. 0
C. 4
D. 1

Answer: B

D Watch Video Solution

11. The rectangular hyperbola $x y=16$ and the circle $x^{2}+y^{2}=32$ meet at a point P in the first quadrant. Equation of the common tangent to two curves at P is
A. $x+y-4=0$
B. $x+y+4=0$
C. $x+y-8=0$
D. $x+y+8=0$

Answer: C

D Watch Video Solution
12. If hyperbola $\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2}}=1$ passes through
the focus of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then find
the eccentricity of hyperbola.
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $3 / 2$
D. $\sqrt{3 / 2}$

Answer: B

D Watch Video Solution

13. Which one of the following is independent
of $(0<\alpha<\pi / 2)$ for the hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$
A. eccentricity
B. equation of a directrix
C. absicssa of foci
D. abscissa of vertices

Answer: C

- Watch Video Solution

14. If e_{1} and e_{2} are the eccentricities of the hyperbola and its conjugate hyperbola respectively then $\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}$ is equal to

> A. $\frac{5}{4}$
> B. $\frac{4}{5}$
C. 1
D. $\frac{1}{2}$

Answer: C
15. The normal at $P\left(x_{1}, y_{1}\right)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the coordinate axes at A and B. If O, is u the origin and e, the eccentricity of the hyperbola, then
A. $O A=e^{2} x_{1}$
B. $O B=e^{2} x_{1}$
C. $O A=e^{2} y_{1}$
D. $O B=e^{2} x_{1}$

Answer: A

Solved Examples Level 1 Single Correct Answer

 Type Questions1. If the latus rectum of a hyperbola subtend an angle of $60 A^{\circ}$ at the other focus, then eccentricity of the hyperbola is
A. 2
B. $\frac{\sqrt{3}+1}{2}$
C. $2 \sqrt{3}$

D. $\sqrt{3}$

Answer: D

D Watch Video Solution

2. The locus of the foot of the perpendicular drawn from the origin to any tangent to the
hyperbola $\frac{x^{2}}{36}-\frac{y^{2}}{16}=1$ is
A. $\left(x^{2}+y^{2}\right)^{2}=36 x^{2}-16 y^{2}$
B. $\left(x^{2}-y^{2}\right)^{2}=36 x^{2}-16 y^{2}$
C. $\left(x^{2}+y^{2}\right)^{2}=36 x^{2}+16 y^{2}$
D. $\left(x^{2}-y^{2}\right)^{2}=36 x^{2}+16 y^{2}$

Answer: A

D Watch Video Solution

3. The locus of the middle points of the portions of the tangents of the hyperbola. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ included between the axes is

$$
\text { A. } a^{2} x^{2}-b^{2} y^{2}=x^{2} y^{2}
$$

B. $b^{2} x^{2}-a^{2} y^{2}=x^{2} y^{2}$
C. $b^{2} x^{2}-a^{2} y^{2}=4 x^{2} y^{2}$
D. $a^{2} x^{2}-b^{2} y^{2}=4 x^{2} y^{2}$

Answer: C

D Watch Video Solution

4. If the slope of a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $2 \sqrt{2}$ then the eccentricity e of the hyperbola lies in the interval
A. $1, \sqrt{2}$
B. $1,2 \sqrt{2}$
C. 1,3
D. 1,4

Answer: C

D Watch Video Solution

5. If $\frac{x^{2}}{\lambda+3}+\frac{y^{2}}{2-\lambda}=1$ represents a hyperbola then
A. $\lambda \in(2,3)$
B. $\lambda \in(-2,3)$
C. $\lambda \in(-3,2)$
D. $\lambda \in(2, \infty)$

Answer: C

D Watch Video Solution

6. The normal to the curve at $P(x, y)$ meets the
x-axis at G. If the distance of G from the origin
is twice the abscissa of P, then the curve is
A. ellipse
B. parabola
C. circle
D. hyperbola or ellipse

Answer: D

D Watch Video Solution

7. If the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=c^{2}$ in four points $P\left(x_{1}, y_{1}\right)$,
$Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right), S\left(x_{4}, y_{4}\right)$, then which of
the following need not hold.
(a) $x_{1}+x_{2}+x_{3}+x_{4}=0$
(b) $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=c^{4}$
(c) $y_{1}+y_{2}+y_{3}+y_{4}=0$
(d) $x_{1}+y_{2}+x_{3}+y_{4}=0$
A. $x_{1}+x_{2}+x_{3}+x_{4}=0$
B. $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=c^{4}$
C. $y_{1}+y_{2}+y_{3}+y_{4}=0$
D. $x_{1}+y_{2}+x_{3}+y_{4}=0$

Answer: D
8. Show that the normal to the rectangular hyperbola $x y=c^{2}$ at the point t meets the curve again at a point t^{\prime} such that $t^{3} t^{\prime}=-1$.
A. $t^{3} t^{\prime}=1$
B. $t^{3} t^{\prime}=-1$
C. $t t^{\prime}=1$
D. $t t^{\prime}=-1$
9. If the normal at P to the rectangular hyperbola $x^{2}-y^{2}=4$ meets the axes of x and
y in G and g respectively and C is the centre of the hyperbola, then $2 \mathrm{PC}=$
A. PG
B. pg
C. Gg
D. none of these

Answer: C

D Watch Video Solution

10. If e_{1}, e_{2} are the eccentricites of the
hyperbla $2 x^{2}-2 y^{2}=1$ and the ellipse
$x^{2}+2 y^{2}=2$ respectively then
A. $e_{1}+e_{2}=1$
B. $e_{1} e_{2}=1$
C. $e_{1}^{2}+e_{2}^{2}=1$
D. none of these

Answer: B

- Watch Video Solution

11. The line $2 x+y=1$ touches a hyperbola and passes through the point of intersection of a directrix and the x-axis. The equation of the hyperbola is

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{1}-\frac{y^{2}}{3}=1 \\
& \text { B. } \frac{x^{2}}{1}-\frac{y^{2}}{3}=2 \\
& \text { C. } \frac{x^{2}}{3}-\frac{y^{2}}{1}=1
\end{aligned}
$$

D. $\frac{x^{2}}{3}-\frac{y^{2}}{1}=2$

Answer: A

D Watch Video Solution

12. The equation of the hyperbola whose foci
are $(-2,0)$ and $(2,0)$ and eccentricity is 2 is given by

$$
\text { A. } x^{2}-3 y^{2}=3
$$

$$
\text { B. } 3 x^{2}-y^{2}=3
$$

C. $-x^{2}+3 y^{2}=3$
D. $-3 x^{2}+y^{2}=3$

Answer: B

D Watch Video Solution

13. let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be reciprocal to that of the ellipse $x^{2}+4 y^{2}=4$. if the hyperbola passes
through a focus of the ellipse then: (a) the equation of the hyperbola is $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$
(b) a focus of the hyperbola is $(2,0)$ (c) the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$ (d) the equation of the hyperbola is $x^{2}-3 y^{2}=3$
A. the equation of the hyperbola is

$$
\frac{x^{2}}{3}-\frac{y^{2}}{2}=1
$$

B. a focus of the hyperbola is $\sqrt{(3), 0}$
C. the eccentricity of the hyperbola is

$$
\sqrt{5 / 3}
$$

D. the equation of the hyperbola is

$$
x^{2}-3 y^{2}=3
$$

Answer: D

D Watch Video Solution

14. If the normal at the point P intersects the x-axis at $(9,0)$ then the eccentricity of the hyperbola is
A. $\sqrt{\frac{5}{2}}$
B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer: B

- View Text Solution

15. The foci of the ellips $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide ,then the value of b^{2} is
A. 9
B. 7
C. 41

D. 12

Answer: B

D Watch Video Solution

16. If the tangents at the point
$(a \sec \alpha, b \tan \alpha)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the transverse axis at T,
then the distance of T from a focus of the
hyperbola, is
A. $a(e-\cos \alpha)$
B. $a b(e+\cos \alpha)$
C. $a(e+\cos \alpha)$
D. $\sqrt{a^{2} e^{2}+b^{2} \cot ^{2} \alpha}$

Answer: A

D Watch Video Solution

17. The distannce between the tangent to the
hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{3}=1$ parallel to the line $\mathrm{y}=\mathrm{x}$ +2 is
A. 2
B. $2 \sqrt{2}$
C. $\sqrt{2}$
D. 1

Answer: C

D Watch Video Solution
18. Find the locus of the middle points of the normals chords of the rectangular hyperbola $x^{2}-y^{2}=a^{2}$.
A. $\left(y^{2}-x^{2}\right)^{3}=4 a^{2} x^{2} y^{2}$
B. $\left(y^{2}-x^{2}\right)^{2}=4 a^{2} x^{2} y^{2}$
C. $\left(y^{2}+x^{2}\right)^{3}=4 a^{2} x^{2} y^{2}$
D. $\left(y^{2}+x^{2}\right)^{2}=4 a^{2} x^{2} y^{2}$

Answer: A

D Watch Video Solution

19. If $y=m x+6$ is a tangent to the hyperbola he parabola $y^{2}=4 a x$, then the length of the latus rectum of the parabola is
A. $6 \sqrt{\frac{17}{20}}$
B. $4 \sqrt{\frac{17}{20}}$
C. $24 \sqrt{\frac{17}{20}}$
D. $\sqrt{\frac{17}{20}}$

Answer: C

- View Text Solution

20. P is a point on the hyperbola The tangent at P meets the transverse axis at T, N is the foot of the perpendicular from P to the
transverse axis. If O is the origin, then ON.OT is equal to.
A. 81
B. 49
C. 81
D. -49

Answer: A

D View Text Solution
21. The product of the perpendiculars from the
foci on any tangent to the hyperbol $\frac{x^{2}}{64}-\frac{y^{2}}{9}=1$ is
A. 8
B. 9
C. 16
D. 18

Answer: B
22. If the normal at P on the hyperbola meets
the transverse axis at G, S is a foci and the eccentricity of the hyperbola then SG:SP is equal to
A. a
B. b
C. e
D. $1 / e$

Answer: C

23. If the chords of contacts of the tangents
from the points ($\mathrm{x} \mathrm{y}_{\mathrm{y}}$) and (x_{2}, y_{2}) to the hyperbola $2 x^{2}-3 y^{2}=6$ are at right angle, then $4 x_{1} x_{2}+9 y_{1} y_{2}$ is equal to
A. -1
B. 0
C. 6
D. -12

Answer: B

Diew Text Solution

24. Consider a branch of the hypebola
$x^{2}-2 y^{2}-2 \sqrt{2} x-4 \sqrt{2} y-6=0 \quad$ with
vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A , then the area of the triangle $A B C$ is (A) $1-\sqrt{\frac{2}{3}}$ (B)
$\sqrt{\frac{3}{2}}-1$ (C) $1+\sqrt{\frac{2}{3}}$ (D) $\sqrt{\frac{3}{2}}+1$
A. $1-\sqrt{\frac{2}{3}}$
B. $\sqrt{\frac{3}{2}}-1$
C. $1+\sqrt{\frac{2}{3}}$
D. $\sqrt{\frac{3}{2}}+1$

Answer: B

- Watch Video Solution

25. Normal at point $(5,3)$ to the rectangular hyperbola $\mathrm{xy}-\mathrm{y}-2 \mathrm{x}-2=0$ meets the curve at
the point whose coordinates are
A. $0,-2$
B. $-1,0$
C. $\frac{1}{4},-\frac{10}{3}$
D. $\frac{3}{4},-14$

Answer: D

D View Text Solution

Solved Examples Level 2 Single Correct Answer
Type Questions

1. If $(a \sec \alpha, b \tan \alpha)$ and $(a \sec \beta, b \tan \beta)$ be the ends of a chord of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ passing through the
focus
(ae,0) then
$\tan \left(\frac{\alpha}{2}\right) \tan \left(\frac{\beta}{2}\right)$ is equal to
A. $\frac{1+e}{1-e}$
B. $\frac{e+1}{e-1}$
C. $\frac{1-e}{1+e}$
D. $\frac{e-1}{e+1}$

Answer: C
2. Find the equation of the asymptotes of the
hyperbola
$3 x^{2}+10 x y+9 y^{2}+14 x+22 y+7=0$
A.
$3 x^{2}+10 x y+8 y^{2}+14 x+22 y+11=0$
B.

$$
3 x^{2}+10 x y+8 y^{2}-14 x-22 y+13=0
$$

C.

$$
3 x^{2}-10 x y+8 y^{2}+14 x+22 y+15=0
$$

$$
3 x^{2}+10 x y+8 y^{2}+14 x+22 y+15=0
$$

Answer: D

- Watch Video Solution

3. The product of perpendicular drawn from any points on a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to
its asymptotes is
A. $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
B. $\frac{1}{\left(a^{2}\right)+\frac{1}{b^{2}}}$
C. $(1)\left(a^{2}\right)-(1)\left(b^{2}\right)$
D. $a^{2} b^{2}$

Answer: A
4. If $(5,12)$ and $(24,7)$ are the focii of a hyperbola passing through origin, then
A. $\sqrt{386 / 12}$
B. $\sqrt{386 / 13}$
c. $\sqrt{386 / 25}$
D. $\sqrt{386 / 38}$

Answer: A

D Watch Video Solution

5. The equation of a tangent to the hyperbola $16 x^{2}-25 y^{2}-96 x+100 y-356=0$, which makes an angle $\pi / 4$ with the transverse axis, is
A. $y=x+2$
B. $y=x+4$
C. $x=y+3$
D. $x+y+2=0$

Answer: A
6.
Let $P(a \sec \theta, b \tan \theta)$ and
$Q(a \sec \phi, b \tan \phi)$ where is the point of intersection of normals at P and Q then k is equal to

$$
\begin{aligned}
& \text { A. } \frac{a^{2}+b^{2}}{a} \\
& \text { B. }-\left[\frac{a^{2}+b^{2}}{a}\right] \\
& \text { C. } \frac{a^{2}+b^{2}}{b} \\
& \text { D. }-\left[\frac{a^{2}+b^{2}}{b}\right]
\end{aligned}
$$

Answer: D

- View Text Solution

7. If P is a point on the rectangular hyperbola $x^{2}-y^{2}=a^{2}, C$ is its centre and S, S^{\prime} are the two foci , then the product $\left(S P . S^{\prime} P\right)=$
A. 2
B. $C P^{2}$
C. $C S^{2}$
D. $S S^{2}$
8. If p is the length of the perpendicular from a focus upon the tangent at any point P of the the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and r is the distance of P from the foicus, then $\frac{2 a}{r}-\frac{b^{2}}{p^{2}}$ is equal to
A. -1
B. 0
C. 1
D. 2

Answer: C

D Watch Video Solution

9. A hyperbola having the transverse axis of
length $2 \sin \theta$ is confocal with the ellipse
$3 x^{2}+4 y^{2}=12$. Then its equation is
$x^{2} \cos e c^{2} \theta-y^{2} \sec ^{2} \theta=1$
$x^{2} \sec ^{2} \theta-y^{2} \cos e c^{2} \theta=1$
$x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
$x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$
A. $x^{2} \cos e c^{2} \theta-y^{2} \sec ^{2} \theta=1$
B. $x^{2} \sec ^{2} \theta-y^{2} \cos e c^{2} \theta=1$
C. $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
D. $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$

Answer: A

- Watch Video Solution

10. If a hyperbola passing through the origin
has $3 x-4 y-1=0$ and $4 x-3 y-6=0$ as
its asymptotes, then find the equation of its transvers and conjugate axes.
A. $x+y-5=0$
B. $x-7 y-5=0$
C. $x-y-1=0$
D. $x+y-1=0$

Answer: B

Solved Examples Numerical Answer Type

 Questions1. If the tangent and normal to the rectangular
hyperbola $\mathrm{xy}=16$ at point $(8,2)$ cut off intercepts a_{1}, a_{2} on the x axis and $b_{1} b_{2}$ on the
y axis then $a_{1} a_{2}+b_{1} b_{2}+7 / 2$ equals

- Watch Video Solution

2. A circle meets the rectangular hyperbola $x y=$

1 at $A_{1} A_{2}, A_{3}$ and A_{4} be the distances from
the y axis then minimum value of $d_{1}+d_{2}+d_{3}+d_{4}$ is

- View Text Solution

3. Let I be the length of the chord of the
hyperbola $x^{2}-y^{2}=8$, whose mid-point is
$(4,2)$, then I equals
4. Suppose the normal to the hyperbola $\mathrm{xy}=4$ at $(2,2)$ meets hyperbola again at $A\left(2 a, \frac{2}{a}\right)$ and the normal to the hyperbola $\mathrm{xy}=4$ at A meets the hyperbola at $B(h, k)$, then $h / 4$ is equal to

- Watch Video Solution

5. Let $e(\lambda)$ be eccentricity of the hyperbola
$\frac{x^{2}}{a^{2}+\lambda}-\frac{y^{2}}{b^{2}+\gamma}=1$
where $a^{2}>b^{2}$ and $\gamma \geq 1$ if $e(\lambda)$ is least when
$\lambda=\lambda_{0}$ then λ_{0} is equal to

D View Text Solution
6. If for different values of α, the locus of point of intersection of two straight lines
$\sqrt{3} a x+a y-4 \sqrt{3} \alpha=0$ is hyperbola with eccentricity e, then e is equal to
7. The line $2 x+y=1$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

D Watch Video Solution

8. Suppose $0<\theta<\frac{\pi}{2}$ if the eccentricity of
the hyperbola $x^{2}-y^{2} \operatorname{cosec} 2=5$ is $\sqrt{7}$
times the eccentricity of the ellipse $x^{2} \operatorname{cosec}^{2} \theta+y^{2}=5$ then θ is equal to

- Watch Video Solution

9. Suppose equation of a hyperbola H is f distance between two parallel tangents of slope 3 is 4 , then value of b is

D View Text Solution
10. Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b)$, If the extremities of the latus rectum of the with positive ordinates lie on the parabola $x^{2}=3(y+3)$, then length of the transverse axis of ellipse is

D Watch Video Solution

11. Let a hyperbola passes through the focus of the ellipse $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$. The transverse and conjugate axes of this hyperbola coincide with
the major and minor axes of the given ellipse,
also the product of eccentricities of given ellipse and hyperbola is 1 , then

D Watch Video Solution

Exercise Concept Based Single Correct Answer Type Questions

1. If e is the eccentricity of the hyperbol and r
is
the
radius
of
the
circle
$x^{2}+y^{2}-6 x-18 y+87=0$, then the value of er is equal to
A. $2 \sqrt{3}$
B. $2 / \sqrt{3}$
C. 2
D. 3

Answer: c

D View Text Solution
2. If m_{1} and m_{2} are two values of m for which
the line $\mathrm{y}=m x+2 \sqrt{5}$ is a tangent to the
hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{16}=1$ then the value of $\left|m_{1}+\frac{1}{m_{2}}\right|$ is equal to
A. $\frac{8}{3}$
B. $\frac{10}{3}$
C. 0
D. 9

Answer: a
3. Distance between the directrices of the
hyperbola $\frac{x^{2}}{49}-\frac{y^{2}}{16}=1$ is

> A. $\frac{\sqrt{65}}{7}$
> B. $\frac{49}{\sqrt{65}}$
> C. $\frac{\sqrt{33}}{4}$
> D. $\frac{98}{\sqrt{65}}$

Answer: d

- Watch Video Solution

4. If A line with slope m touches the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{4}=1$ and the parablola $y^{2}=20 x$ then the value of $25 m^{4}-4 m^{2}$ is equal to
A. 29
B. 21
C. 25
D. 4

Answer: c
5. If length of the transverse axis of a hyperbola is 8 and its eccentricity is $\sqrt{5} / 2$ then the length of a latus rectum of the hyperbola is
A. 1
B. 2
C. $2 \sqrt{5}$
D. $8 / \sqrt{5}$

Answer: b

D Watch Video Solution

6. A tangent to the hyperbola at P and y-axis at
Q. Lines $P R$ and $Q R$ are drawn such that OPRQ
is a rectangle (where O is the origin), then R
lies on

$$
\begin{aligned}
& \text { A. } \frac{4}{x^{2}}+\frac{2}{y^{2}}=1 \\
& \text { B. } \frac{2}{x^{2}}+\frac{4}{y^{2}}=1 \\
& \text { C. } \frac{2}{x^{2}}+\frac{4}{y^{2}}=1
\end{aligned}
$$

$$
\text { D. } \frac{4}{x^{2}}-\frac{2}{y^{2}}=1
$$

Answer: d

D View Text Solution

7. If $P(3 \sec \theta, 2 \tan \theta)$ and $Q(3 \sec \phi, 2 \tan \phi)$
where $\theta+\pi=\frac{\phi}{2}$ be two distainct points on
the hyperbola then the ordinate of the point of intersection of the normals at p and Q is
A. $11 / 3$

B. $-11 / 3$

C. $13 / 2$
D. $-13 / 2$

Answer: d

D Watch Video Solution

8. A common tangent to $x^{2}-2 y^{2}=18$ and $x^{2}+y^{2}=9$ is

$$
\text { A. } y=2 x+3 \sqrt{5}
$$

$$
\begin{aligned}
& \text { B. } y=\sqrt{2} x+3 \sqrt{3} \\
& \text { C. } y=2 x+3 \sqrt{7} \\
& \text { D. } y=\sqrt{2} x+3 \sqrt{5}
\end{aligned}
$$

Answer: b

D Watch Video Solution

9. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola coincide then b^{2} equals
A. 5
B. 7
C. 9
D. 1

Answer: b

D View Text Solution

10. Tangents drawn from the point (c, d) to
the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ make angles α
and β with the x-axis. If $\tan \alpha \tan \beta=1$, then
$c^{2}-d^{2}=$
A. 73
B. 55
C. 64
D. 9

Answer: a

D Watch Video Solution

11. If the vertex of a hyperbola bisects the distance between its centre and the corresponding focus, then the ratio of the
square of its conjugate axis to the square of half the distance between the foci is
A. $4 / 3$
B. $4 / \sqrt{3}$
C. $2 / \sqrt{3}$
D. $3 / 4$

Answer: d
(Watch Video Solution
12. If the chords of contact of the tangents
from two points to the hyperbola
$4 x^{2}-5 y^{2}=a^{2}$ are at right angles then
$16 x_{1} x_{2}+25 y_{1} y_{2}$ is equal to
A. -1
B. 0
C. a^{2}
D. 1

Answer: b
13. If two perpendicular tangents are drawn
from a point (α, β) to the hyperbola
$x^{2}-y^{2}=16$, then the locus of (α, β) is
A. a pair of straight line
B. a circle
C. a parabola
D. an ellipse

Answer: a
14. If $\frac{x^{2}}{a+7}+\frac{y^{2}}{5-a}=1 \quad$ represent a hyperbola then
A. $a>5$
B. $a<-7$
C. $a<5$
D. $a<-7$ or $a>5$

Answer: d
15. If e_{1} is the eccentricity of the hyperbola $\frac{x^{2}}{36}-\frac{y^{2}}{49}=1$ and e_{2} is the eccentricity of the
hyperbola $\frac{x^{2}}{36}-\frac{y^{2}}{49}=-1$ then
A. $e_{1} e_{2}=1$
B. $\frac{e_{1}}{e_{2}}=1$
C. $\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}=1$
D. $e_{1}^{2}+e_{2}^{2}=1$

Exercise Level 1 Single Correct Answer Type

 Questions1. The line $4 \sqrt{2 x}-5 y=40$ touches the
hyperbola $\frac{x^{2}}{100}-\frac{y^{2}-}{64}=1$ at the point
A. $10,8 \sqrt{2}$
B. $10,8 \sqrt{2}$
C. $20,8 \sqrt{2}$
D. $(20) \sqrt{3}, \frac{8}{\sqrt{3}}$

Answer: b

D Watch Video Solution

2. The line $9 \sqrt{3 x}+12 y=234 \sqrt{3}$ is a normal to the hyperbola $\frac{x^{2}}{81}-\frac{y^{2}}{36}=1$ at the points
A. $18,6 \sqrt{3}$
B. $9 \sqrt{2}, 6$
C. $9 \sqrt{3}, 6$
D. $\frac{18}{\sqrt{3}}, \frac{6}{\sqrt{3}}$

Answer: a

- Watch Video Solution

3. If latus recturn of the ellipse
$x^{2} \tan ^{2} \alpha+y^{2} \sec ^{2} \alpha=1 \quad$ is $\quad \frac{1}{2} \quad$ then
$\alpha(0<\alpha<\pi)$ is equal to
A. $2 \sqrt{\cot } \alpha$
B. $2 \sqrt{\tan } \alpha$
C. $2 \sqrt{\tan \alpha}^{3 / 2}$
D. $2 \sqrt{\cot \alpha}^{3 / 2}$

Answer: c

- Watch Video Solution

4. The angle between the asymptotes of the
hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
A. $\frac{b}{a}$
B. $\frac{1}{e}$
C. $\frac{a}{b e}$
D. $\sqrt{1-\frac{1}{e^{2}}}$

Answer: d

- Watch Video Solution

5. Asymptotes of the hyperbola $x y=4 x+3 y$
are
A. $2,3 / 2$
B. 2,3
C. $3 / 2,2$
D. 0,0

Answer: c

D Watch Video Solution

6. The curve described parametrically by
$x=t^{2}+t+1 \quad, \quad$ and $\quad y=t^{2}-t+1$
represents. a pair of straight lines (b) an
ellipse a parabola (d) a hyperbola
A. a pari of straight lines
B. an ellipse
C. a parabola
D. a hyperbola

Answer: c

- Watch Video Solution

7. The point $\left(a t^{2}, 2 b t\right)$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ for
A. all real values of t
B. $t^{2}=2+\sqrt{5}$
C. $t^{2}=2-\sqrt{5}$

D. no real value of t

Answer: b

D Watch Video Solution

8. If the coordinates of four concyclic point on
the rectangular hyperbola $\mathrm{xy}=c^{2}$ are $\mathrm{i}=1,2,3,4$
then

$$
\begin{aligned}
& \text { A. } t_{1} t_{2} t_{3} t_{4}=-1 \\
& \text { B. } t_{1} t_{2} t_{3} t_{4}=1
\end{aligned}
$$

C. $t_{1} t_{3}=t_{2} t_{4}$
D. $t_{1} t_{2} t_{3} t_{4}=c^{2}$

Answer: b

D View Text Solution

9. The eccentricity of a rectangular hyperbola, is
A. 2
B. $\sqrt{2}$
C. $2+\sqrt{2}$
D. none of these

Answer: b

- Watch Video Solution

10. If eande' the eccentricities of a hyperbola and its conjugate, prove that $\frac{1}{e^{2}}+\frac{1}{e^{\prime 2}}=1$.
A. -1
B. 0
C. 1
D. none of these

Answer: c

D Watch Video Solution

11. Foci of the rectangular hyperbola are
(± 7) the equation of the hyperbola is

$$
\begin{aligned}
& \text { A. } x^{2}-y^{2}=49 \\
& \text { B. } x^{2}-y^{2}=98
\end{aligned}
$$

$$
\text { C. } 2 x^{2}-2 y^{2}=49
$$

D. none of these

Answer: c

D View Text Solution

12. The is a point P on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{6}=1$ such that its distance from the right directrix is the average of its distance from the two foci. Then the x-coordinate of P is
A. $4 \sqrt{2}, 3$
B. $4 \sqrt{3}, 3 \sqrt{2}$
C. $4 \sqrt{5}, 6$
D. none of these

Answer: a

D Watch Video Solution

13. The normal at a point P to the parabola $y^{2}=4 x$ is parallel to the tangent at $Q \sqrt{2,2}$ to the hyperbola nd meets the axis of the
parabola at If 5 is the focus of the parabola, area of the triangle PSR in sq. units is
A. $9 \sqrt{2}$
B. $10 \sqrt{2}$
C. $18 \sqrt{2}$
D. $20 \sqrt{2}$

Answer: c

D View Text Solution
14. The difference between the length $2 a$ of
the transverse axis of a hyperbola of eccentricity e and the length of its latus rectum is
A. $2 a\left|3-e^{2}\right|$
B. $2 a\left|2-e^{2}\right|$
C. $2 a\left|e^{2}-1\right|$
D. $a\left|2 e^{2}-1\right|$

Answer: c

15. The locus of the point of intersection of the

tangents to the hyperbol which are at right an gles i
A. $x^{2}+y^{2}=20$
B. $x^{2}-y^{2}=20$
C. $x^{2}+y^{2}=52$
D. none of these

Answer: d
16. If the asymptotes of the hyperbola perpendicular to the asymptotes of the hyperbola $\frac{x^{2}}{49}-\frac{y^{2}}{b^{2}}=1$ then
A. $7 a \pm 6 b=0$
B. $6 a+7 b=0$
C. $a^{2}-b^{2}=1$
D. $a-b=1$
17. P and Q are two points on the rectangular hyperbola $x y=C^{2}$ such that the abscissa of P and Q are the roots of the equations $x^{2}-6 x-16=0$. Equation of the chord joining P and Q is

$$
\begin{aligned}
& \text { A. } 16 x-c^{2} y=6 c^{2} \\
& \text { B. } c^{2} x-16 y=c^{2} \\
& \text { C. } c^{2} x-16 y=6 c^{2}
\end{aligned}
$$

$$
\text { D. } c^{2} x-16 y=6 c^{2}
$$

Answer: c

D Watch Video Solution

18. Normal at $(3,4)$ to the rectangular
hyperbola $x y-y-2 x-2=0$ meets the curve again at the points
A. 1,2
B. 2,3

C. $-1,0$

D. none of these

Answer: c

D View Text Solution

19. Find the locus of the-mid points of the chords of the circle $x^{2}+y^{2}=16$, which are tangent to the hyperbola $9 x^{2}-16 y^{2}=144$
A. $\left(x^{2}-y^{2}\right)^{2}=16 x^{2}-9 y^{2}$
B. $\left(x^{2}+y^{2}\right)^{2}=9 x^{2}-16 y^{2}$
C. $\left(x^{2}+y^{2}\right)^{2}=16 x^{2}+9 y^{2}$
D. $\left(x^{2}-y^{2}\right)^{2}=16 x^{2}+9 y^{2}$

Answer: c

D Watch Video Solution

20. If the eccentricity of the hyperbola is $\sqrt{5}$ and the distance between the foci is 12 then $b^{2}-a^{2}$ is equal to (3/5) k^{2} where k is equal to
A. 5
B. 3
C. 2
D. 6

Answer: d

D Watch Video Solution
21. If the extremities of the latus rectum of the hyperbola with positive coordinates lie on the parabola $x^{2}=3(y+3)$, then length of the
latus rectum of the hyperbola when its eccentricity is $\sqrt{3}$ is
A. 3
B. 6
C. 12
D. none of these

Answer: c
(Watch Video Solution
22. The locus of the point of intersection of
the
$\sqrt{3} x-y-4 \sqrt{3} t=0 \& \sqrt{3} t x+t y-4 \sqrt{3}=0$
(where t is a parameter) is a hyperbola whose eccentricity is:
A. 0
B. 7
C. 3
D. 4
23. The angle between the asymptotes of the
hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$, is
A. $4 x-3 y=0$
B. $3 x-4 y=0$
C. $3 x+4 y=0$
D. $4 x+3 y=0$

Answer: b
24. The parametric equation
$x=a(\sec \theta+\tan \theta), y=b(\sec \theta-\tan \theta)$
repersents
A. a parabola
B. an ellipse
C. a hyperbola
D. a rectangular hyperbola
25. If a normal to the hyperbola $x^{2}-4 y^{2}=4$ having equal positive intercepts on the axes is a tangent to the ellipse $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ then the distance between the foci of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
A. $\frac{10}{\sqrt{3}}$
B. $\frac{5}{\sqrt{3}}$
C. $10 \sqrt{3}$

D. $5 \sqrt{3}$

Answer: a

D View Text Solution

Exercise Level 2 Single Correct Answer Type Questions

1. Locus of the mid-point of the chord of the
hyperbola which is a tangent to the circle $x^{2}+y^{2}=c$ is
A. $\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)=c^{2}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}\right)$
B. $\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)=c^{2}\left(\frac{x^{2}}{a^{4}}-\frac{y^{2}}{b^{4}}\right)$
C. $\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)=c^{2}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{2}}\right)$
D. $\left(\frac{x^{2}}{a^{4}}-\frac{y^{2}}{b^{4}}\right)=c^{2}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}\right)$

Answer: a

D View Text Solution

2. $H_{1} \mathrm{xy}=C A^{2}$ and $H_{2}: \mathrm{xy}=k^{2}$ are two different hyperbolas. From a point on H_{1} tangents are drawn to H_{2}. Area of the triangle
formed by the chord of contact and the asymptote to H_{2} is
A. $\frac{k^{2}}{c^{2}}$
B. $\frac{k}{c^{2}}$
C. $\frac{2 k^{4}}{c^{2}}$
D. none of these

Answer: c

D View Text Solution
3. e_{1}, e_{2} are respectively the eccentricites of the hfyperbola $x^{2}-y^{2} \operatorname{cosec} 2=5$ and the ellipse $x^{2} \cos e c t^{2} \theta+y^{2}=5$ if $0<\theta<\pi / 2$ and $e_{1}=\sqrt{7}$ then θ is equal to

> A. $\frac{\pi}{4}$
> B. $\frac{\pi}{6}$
> C. $\frac{\pi}{3}$
D. none of these

Answer: c
4. If θ is an angle between the two asymptotes
of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ then $\frac{\cos (\theta)}{2}$ is equal to

$$
\begin{aligned}
& \text { A. } \frac{b}{\sqrt{a^{2}+b^{2}}} \\
& \text { B. } \frac{a b}{\sqrt{a^{2}+b^{2}}} \\
& \text { C. } \frac{a}{\sqrt{a^{2}+b^{2}}} \\
& \text { D. } \sqrt{\frac{a-b}{a+b}}
\end{aligned}
$$

5. A and B are two points on the hyperbola O is the centre. If $O A$ is perpendicular to $O B$ then
$\frac{1}{(O A)^{2}}+\frac{1}{(O B)^{2}}$ is equal to
A. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$
B. $\frac{1}{a^{2}}-\frac{1}{b^{2}}$
C. $\frac{1}{b^{2}}-\frac{1}{a^{2}}$
D. $a^{2}+b^{2}$
6. The coordinates of a point common to a directrix and an asymptote of the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ are
A. $\left(\frac{25}{\sqrt{41}}, \frac{20}{3}\right)$
B. $\left(\frac{20}{\sqrt{41}}, \frac{-25}{\sqrt{41}}\right)$
c. $\left(\frac{25}{3}, \frac{20}{3}\right)$
D. $\left(\frac{-25}{\sqrt{41}}, \frac{20}{41}\right)$

Answer: d

D Watch Video Solution

7. If the normals at P, Q, R on the rectangular
hyperbola $x y=c 2$ intersect at a point S on the
hyperbola, then centroid of the triangle $P Q R$ is
at
A. it meets the conjugate hyperbola in imaginary points
B. the conjugate diameter meets the given hyperbola in real points
C. the conjugate diameter meets the
conjugate hyperbola in imaginary points

D. none of these

Answer: b

- View Text Solution

8. If a diameter of a hyperbola meets the hyperbola in real points then

$$
\begin{aligned}
& \text { А. } 3 x^{2}+4 y^{2}-6 x-8 y+4=0 \\
& \text { B. } 3 x^{2}+4 y^{2}-2 x-8 y+4=0 \\
& \text { С. } 4 x^{2}+3 y^{2}-8 x-6 y+4=0 \\
& \text { D. } 4 x^{2}+3 y^{2}-8 x-2 y+4=0
\end{aligned}
$$

Answer: a

D View Text Solution

9. An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left(\frac{1}{2}, 1\right)$. Its one directrix is the comionand tangent nearer to the point the P to the hyperbolaof $x^{2}-y^{2}=1$ and the circle $x^{2}+y^{2}=1$.Find the equation of the ellipse.
A. $x=h, y=k$
B. $x=-h, y=-k$
C. $x=h, y=k$

$$
\text { D. } x=-k, y=-h
$$

Answer: b

Watch Video Solution

10. Find the equation of the asymptotes of the hyperbola $x y=h x+k y$.

D Watch Video Solution

11. A normal to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ has equal intercepts on the positive x - and y axis. If this normal touches the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $a^{2}+b^{2}$ is equal to 5 25 (c) 16 (d) none of these

D Watch Video Solution

12. A rectangular hyperbola of latus rectum 2 units passes through $(0,0)$ and has $S(I, 0)$ as one of its foci. The other focus lies on a circle of diameter

D View Text Solution
13. Let H be a hyperbola of eccentricity 3. A normal to the hyperbola meets the transverse axis and the conjugate axis at P and Q , respectively. If locus of midpoint of $P Q$ is a hyperbola of eccentricity elt then er is equal to

D View Text Solution

14. Tangent at point $\mathrm{P}(a \sec \theta, b \tan \theta)$ to the hyperbola meets the auxiliary circle of the
hyperbola at points whose ordinates are y_{1} and y_{2}, then $4 b \tan \theta \frac{y_{1}+y_{2}}{y_{1} y_{2}}$ is equal to

D Watch Video Solution

15. If two tangents drawn from the point (2, a)
to the hyperbola are at right angles, then a equal to

D View Text Solution
16. The locus of a point whose chord of contact with respect to the circle $x^{2}+y^{2}=4$ is a tangent to the hyperbola $x y=1$ is a/an ellipse (b) circle hyperbola (d) parabola

- Watch Video Solution

17. If eccentricity of the hyperbola 4 and $y=m x$
+c is a tangent to the hyperbola H , then least positive integral value of m is equal to
18. Asymptotes of a rectangular hyperbola are
$x=5$ and $y=4$. If the hyperbola passes through
$(6,8)$ and length of its latus rectum is I, then I
is equal to

D Watch Video Solution

Question From Previous Years Aieee Jee Main Papers

1. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide, then find the value
A. 5
B. 7
C. 9
D. 1

Answer: b

2. The locus a point $P(\alpha, \beta)$ moving under the

 condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is (A) a parabola (B) an ellipse (C) a hyperbola (D) a circleA. a parabola
B. a hyperbola
C. an ellipse
D. a circle

Answer: b

D Watch Video Solution

3. The normal to a curve at $P(x, y)$ meets the $x-$ axis at G . If the distance of G from the origin is
twice the abscissa of P, then the curve is a (1) ellipse (2) parabola (3) circle (4) hyperbola
A. ellipse
B. parabola
C. circle
D. hyperbola

Answer: a

D Watch Video Solution

4. For the hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$; (0
A. eccentricity
B. directrix
C. abscisae of vertices
D. abscissae of foci

Answer: d

D Watch Video Solution

5. The equation of the hyperbola whose foci
are $(-2,0)$ and $(2,0)$ and eccentricity is 2 is given by

$$
\text { A. } x^{2}-3 y^{2}=3
$$

B. $3 x^{2}-y^{2}=3$
C. $-x^{2}+3 y^{2}=3$
D. $-3 x^{2}+y^{2}=3$

Answer: b

D Watch Video Solution

6. A tangent to the hyperbola meets x-axis at P
and y-axis at Q. Lines $P R$ and $Q R$ are drawn
such that OPRQ is a rectangle (where O is the origin) then R lies on

$$
\begin{aligned}
& \text { A. } \frac{4}{x^{2}}+\frac{2}{y^{2}}=1 \\
& \text { B. } \frac{2}{x^{2}}-\frac{4}{y^{2}}=1 \\
& \text { C. } \frac{2}{x^{2}}+\frac{4}{y^{2}}=1
\end{aligned}
$$

$$
\text { D. } \frac{4}{x^{2}}-\frac{2}{y^{2}}=1
$$

Answer: d

D View Text Solution

7. A common tangent to the conics

$$
x^{2}=6 y \text { and } 2 x^{2}-4 y^{2}=9 \text { is }
$$

A. $x-y=\frac{3}{2}$
B. $x+y=1$
C. $x+y=\frac{9}{2}$

$$
\text { D. } x-y=1
$$

Answer: a

D Watch Video Solution

8. If $P(3 \sec \theta, 2 \tan \theta)$ and $Q(3 \sec \phi, 2 \tan \phi)$
where $\theta+\pi=\frac{\phi}{2}$ be two distainct points on
the hyperbola then the ordinate of the point of intersection of the normals at p and Q is

$$
\text { A. } \frac{11}{3}
$$

B. $\frac{11}{3}$
C. $\frac{13}{2}$
D. $-\frac{13}{2}$

Answer: d

- Watch Video Solution

9. The tangent at an extremity (in the first quadrant) of latus rectum of the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ meets x-axis and y-axis at A
and B respectively. Then $(O A)^{2}-(O B)^{2}$, where O is the origin, equals:

$$
\begin{aligned}
& \text { A. }-\frac{20}{9} \\
& \text { B. } \frac{16}{9} \\
& \text { C. } 4 \\
& \text { D. }-\frac{4}{3}
\end{aligned}
$$

Answer: a

D Watch Video Solution

10. An ellipse passes through the foci of the hyperbola, $9 x^{2}-4 y^{2}=36$ and its major and minor axes lie along the transverse and conjugate axes of the hyperbola respectively. If the product of eccentricities of the two conics is $\frac{1}{2}$, then which of the following points does not lie on the ellipse?
A. $\sqrt{3}, 0$
B. $\frac{\sqrt{39}}{2}, \sqrt{3}$
C. $\frac{1}{2} \sqrt{13}, \frac{\sqrt{3}}{2}$

D. $\frac{\sqrt{13}}{2}, \sqrt{6}$

Answer: c

D Watch Video Solution

11. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is : (1) $\frac{4}{3}$ (2)

$$
\frac{4}{\sqrt{3}}(3) \frac{2}{\sqrt{3}}(4) \sqrt{3}
$$

$$
\text { A. } \frac{4}{3}
$$

B. $\frac{4}{\sqrt{3}}$
C. $\frac{2}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: c

D Watch Video Solution

12. A hyperbola whose transverse axis is along the major axis of the conic, $\frac{x^{2}}{3}+\frac{y^{2}}{4}=4$ and has vertices atthe foci of this conic. If the
eccentricity of the hyperbola is $\frac{3}{2}$, then which of the following points does NOT lie on it?
A. $\sqrt{5}, 2 \sqrt{2}$
B. 0,2
C. $5,2 \sqrt{3}$
D. $\sqrt{10}, 2 \sqrt{3}$

Answer: c
(Watch Video Solution
13. Let a and b respectively be the semitransverse and semi-conjugate axes of a hyperbola whose eccentricity satisfies the equation $9 e^{2}-18 e+5=0$. If $S(5,0)$ is a focus and $5 x=9$ is the corresponding directrix of this hyperbola, then $a^{2}-b^{2}$ is equal to
A. -7
B. -5
C. 5
D. 7

Answer: a

D Watch Video Solution

14. The locus of the point of intersection of thestraight
lines
$t x-2 y-3 t=0, x-2 t y+3=0(t \in R$, is
A. an ellipse with essentircity $2 / \sqrt{5}$
B. an ellipse with length of major axis 6

C. a hyperbola with eccentricity $\sqrt{5}$

D. a hyperbola with the length of conjugate

 axis 3
Answer: d

D Watch Video Solution

15. A hyperbola passes through the point
$P(\sqrt{2}, \sqrt{3})$ and has foci at $(\pm 2,0)$. Then the tangent to this hyperbola at P also passes
through the point $:(\sqrt{3}, \sqrt{2})$
$(-\sqrt{2},-\sqrt{3}) \quad$ (3) $\quad(3 \sqrt{2}, 2 \sqrt{3})$
$(2 \sqrt{2}, 3 \sqrt{3}$
A. $-\sqrt{2},-\sqrt{3}$
B. $3 \sqrt{2}, 2 \sqrt{3}$
C. $2 \sqrt{2}, 3 \sqrt{3}$
D. $\sqrt{3}, \sqrt{2}$

Answer: c

D Watch Video Solution
16. Tangents are drawn to the hyperbola
$4 x^{2}-y^{2}=36$ at the points P and Q . If these tangents intersect at the point $\mathrm{T}(0,3)$ then the area (in sq units) of $\triangle P T Q$ is
A. $54 \sqrt{3}$
B. $60 \sqrt{3}$
C. $36 \sqrt{3}$
D. $45 \sqrt{3}$

Answer: d
17. If the tangent drawn to the hyperbola
$4 y^{2}=x^{2}+1$ intersect the co-ordinate axes at
the distinct points A and B, then the locus of the mid-point of $A B$ is:

$$
\begin{aligned}
& \text { A. } 4 x^{2}-y^{2}-16 x^{2} y^{2}=0 \\
& \text { B. } 4 x^{2}-y^{2}+16 x^{2} y^{2}=0 \\
& \text { C. } 4 x^{2}-y^{2}+16 x^{2} y^{2}=0 \\
& \text { D. } 4 x^{2}-y^{2}-16 x^{2} y^{2}=0
\end{aligned}
$$

Answer: d

D Watch Video Solution

18. If a hyperbola has length of its conjugate
axis equal to 5 and the distance between its
foci is 13 , then the eccentricity of the hyperbola is
A. $13 / 12$
B. 2
C. $13 / 6$

D. $13 / 8$

Answer: a

D Watch Video Solution

19. Equation of a common tangent to the parabola $y^{2}=4 x$ and the hyperbola $\mathrm{xy}=2$ is
A. $x+y+1=0$
B. $x-2 y+4=0$
C. $x+2 y+4=0$

D. $4 x+2 y+1=0$

Answer: c

D Watch Video Solution

20. Let $0<\theta<\frac{\pi}{2}$. If the eccentricity of the
hyperbola $\frac{x^{2}}{\cos ^{2} \theta}-\frac{y^{2}}{\sin ^{2} \theta}=1$ is greater ten
2, then the length of its latus rectum lies in
the interval,
A. $3, \infty$

B. $3 / 2,2$

C. 2,3
D. $1,3 / 2$

Answer: a

D Watch Video Solution

21. The equation of tangent to hyperbola
$4 x^{2}-5 y^{2}=20$ which is parallel to $x-y=2$
is (a) $x-y+3=0$ (b) $x-y+1=0$ (c)

$$
x-y=0 \text { (d) } x-y-3=0
$$

A. $x-y+1=0$
B. $x-y+7=0$
C. $x-y+9=0$
D. $x-y-3=0$

Answer: a

D Watch Video Solution

22. A hyperbola has its centre at the origin, passes through the point $(4,2)$ and has
transverse axis of length 4 along the x-axis.

Then the eccentricity of the hyperbola is
A. $x-y+1=0$
B. $x-y+7=0$
C. $x-y+9=0$
D. $x-y-3=0$

Answer: d
(Watch Video Solution
23.
$S=\left\{(x, y) \in R^{2}: \frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1\right\}$,
where $r \neq \pm 1$. Then S represents:
A. a hyperbola whose eccentricity is
$\frac{2}{\sqrt{1-r}}$ when $0<r<1$
B. an ellispe whose eccentricity is $\frac{\sqrt{2}}{r+1}$
when $0<r<1$
C. a hypberbla whose eccentricity is $\frac{\sqrt{2}}{r+1}$
when $0<r<1$

D. an ellipse whose eccentricity is
 $\sqrt{r+1}$

 when $0<r<1$

 when $0<r<1$}

Answer: b

D Watch Video Solution

Question From Previous Years B Architecture Entrance Examination Papers

1. If $P Q$ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $O P Q$ is an
equilateral triangle, O being the center of the hyperbola, then find the range of the eccentricity e of the hyperbola.

$$
\begin{aligned}
& \text { A. } e=\frac{2}{\sqrt{3}} \\
& \text { B. } e=\frac{\sqrt{3}}{2} \\
& \text { C. } e>\frac{2}{\sqrt{3}} \\
& \text { D. } 1<e<\frac{2}{\sqrt{3}}
\end{aligned}
$$

Answer: c

D Watch Video Solution
2. If the tangent and the normal to a rectangular hyperbola $x y=c^{2}$, at a point, cuts off intercepts a_{1} and a_{2} on the x- axis and $b_{1} b_{2}$ on the y - axis, then $a_{1} a_{2}+b_{1} b_{2}$ is equal to
A. -1
B. 0
C. 4
D. 1
3. A common tangent to $x^{2}-2 y^{2}=18$ and $x^{2}+y^{2}=9$ is
A. $y=2 x+3 \sqrt{5}$
B. $y=\sqrt{2 x}+3 \sqrt{3}$
C. $y=2 x+3 \sqrt{7}$

$$
\text { D. } y=\sqrt{2 x}+3 \sqrt{5}
$$

Answer: b

4. If the point R divides the line segment joining the point $(2,3)$ and $(2 \tan \theta, 3 \sec \theta), 0<\theta<\frac{\pi}{2}$ internally in the ratio $2: 3$, then the locus of R is
A. an ellipse length of whose major axis is 12.
B. an ellipse length of whose major axis is 8.
C. a hyperbola length of whose transverse axis is 12.
D. a hyperbola length of whose transverse axis is 8

Answer: c

D Watch Video Solution

5. The foci of a hyperbola coincide with the
foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$. If the
eccentricity of the hyperbola is 2 , then the equation of the tangent of this hyperbola passing through the point $(4,6)$ is
A. $3 x-2 y=0$
B. $2 x-3 y+10=0$
C. $x-2 y+8=0$
D. $2 x-y-2=0$

Answer: d

D Watch Video Solution
6. Which one of the following points does not
lie on the normal to the hyperbol $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ drawn at the point $(8,3 \sqrt{3})$

> A. $10, \frac{1}{\sqrt{3}}$
> B. $13, \frac{1}{\sqrt{3}}$
> C. $12, \frac{1}{\sqrt{3}}$
> D. $11, \sqrt{3}$

Answer: a

7. Let $\theta \in(0, \pi / 2)$. If the eccentricity of the hyperbola $x^{2} \cos ^{2} \theta-y^{2}=6 \cos ^{2} \theta$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^{2}+y^{2} \cos ^{2} \theta=3 \theta \cos ^{2} \theta$ then θ is equal to
A. $\pi / 6$
B. $\pi / 4$
C. $\cos ^{-1}(1 / \sqrt{3})$
D. $\pi / 3$

Answer: b
8. If any tangent to the parabola $x^{2}=4 y$ intersects the hyperbola $\mathrm{xy}=2$ at two points P and Q, then the mid point of line segment $P Q$ lies on a parabola with axis along:
A. x-axis and focus on positive x-axis
B. y-axis and focus on positive y-axis
C. x-axis and focus on negative x-axis
D. y-axis and focus on negative y-axis

Answer: c

- Watch Video Solution

