

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

JEE (MAIN) 2020 QUESTIONS WITH SOLUTIONS B.ARCH (6TH JAN -MORING)

Question

1. The set of all positive real values of k, for which the equation $x^3-9x^2+24x-k=0$ has three distinct real roots, is the interval :

A. (18, 21)

_		201
В. ((16	,20)

C. (14,18)

D. 12, 16)

Answer: B

- **2.** In a certain town $25\,\%$ families own a phone and $15\,\%$ own a car, $65\,\%$ families own neither a phone nor a car, 2000 families own both a car and a phone . How many families live in the town ?
 - A. Both (S_1) and (S_2) are false.
 - B. Both (S_1) and (S_2) are true.
 - C. (S_1) is true and (S_2) is false.

D. (S_1) is false and (S_2) is true.

Answer: B

Watch Video Solution

3. Let $I=\int \frac{(2\sin\theta-)\cos\theta}{5-\cos^2\theta-\sin\theta}d\theta$ then I is equal to : (where C is a constant of integration)

A.
$$3\log_e(2-\cos heta)+rac{2}{2-\sin heta}+C$$

B.
$$2\log_e(2-\sin\theta)+rac{3}{2-\sin heta}+C$$

$$\mathsf{C.}\,2\log_e(2+\cos heta)+rac{2}{2-\cos heta}+C$$

D.
$$2\log_e(2+\sin\theta)+rac{3}{2-\cos heta}+C$$

Answer: B

4. $\sim (p \vee q) \vee (\sim p \wedge q)$ is logically equivalent to

A. p

B. ~p

C. q

D. ~q

Answer: B

Watch Video Solution

5. Let X be a random variable which takes values k with the probability kp. where k = 1, 2, 3, 4 and p \in (0,1) . Then the standard deviation of X is :

A. $\sqrt{7}$

B.
$$\sqrt{10}$$

Answer: D

6. If
$$f(x)=egin{array}{cccc} \sin x & \cos x & an x \ x^3 & x^2 & x \ 2x & 1 & 1 \ \end{array}$$
 , then $\lim_{x o 0}rac{f(x)}{x^2}$, is

- A. 0
- B. 3
- C. 1
- D. 2

Answer: C

Watch Video Solution

7. For non-zero numbers, I, m, n and a, let $f(x)=lx^3+mx+n$ and f(a)=f(4a) . Then the value $x\in [a,4a]$, at which the tangent to the curve y = f(x) is parallel to the x- axis is

A.
$$\sqrt{5}a$$

D.
$$\sqrt{7}a$$

Answer: D

8. Let C be the circle concentric with the circle ,
$$2x^2+2y^2-6x-10y=183$$
 and having area $\left(\frac{1}{10}\right)^{th}$ of the area of this circle. Then a tangent to C, parallel to the line, $3x+y=0$ makes an intercept on the y-axis , which is equal to :

A.
$$-10$$

$$B.-4$$

Answer: A

9. Let $S=3+55+333+5555+33333+\,$ upto 22 terms. If 9s

+ 88 =
$$A \left(10^{22} - 1 \right)$$
 , then A is equal to :

A.
$$\frac{450}{99}$$

B.
$$\frac{530}{99}$$

c.
$$\frac{630}{88}$$

$\mathsf{D.} \; \frac{350}{88}$

Answer: B

Watch Video Solution

10. If $x=e^t\sin t$ and $y=e^t\cos t$, t is a parameter , then the value of $\frac{d^2x}{dv^2}+\frac{d^2y}{dx^2}$ at t = 0 , is :

$$\mathsf{A.}-2$$

- B.1/2
- C. 2
- D. 0

Answer: D

Watch Video Solution

11. If a ellipse has centre at (0,0), a focus at (-3,0) and the corresponding directrix is 3x + 25 = 0, then it passes through the point:

A.
$$(-5, -4)$$

$$\mathsf{B.}\left(\frac{5}{2},4\right)$$

C.
$$(-5, -4/\sqrt{2})$$

D.
$$\left(5/\sqrt{2},4/\sqrt{2}\right)$$

Answer: D

Watch Video Solution

12. If the roots α and β of the equation , $x^2-\sqrt{2}x+c=0$ are complex for some real number $c\neq 1$ and $\left|\frac{\alpha-\beta}{1-\alpha\beta}\right|$ = 1, then a value of c is :

A.
$$-2+\sqrt{6}$$

B.
$$4 - \sqrt{6}$$

$$C. -1 + \sqrt{2}$$

D.
$$-1 + \sqrt{6}$$

Answer: C

13. If the probability of a shooter A not hitting a target is 0.5 and that for the shooter B is 0.7, then the probability that either A or B fails to hit the target is :

- A. 0. 20
- B. 0. 35
- C. 0. 25
- D. 0. 85

Answer: D

Watch Video Solution

14. If heta is the between the line $r=(i+2j-k)+\lambda(i-j+2k), \lambda\in R$ and the plane r. (2i - j

+ k) = 4. then a value of $\cos \theta$ is :

A.
$$\frac{\sqrt{11}}{6}$$
B. $\frac{\sqrt{35}}{6}$

B.
$$\frac{\sqrt{6}}{6}$$

C.
$$\frac{\sqrt{13}}{6}$$
D. $\frac{\sqrt{7}}{3}$

Answer: A

Watch Video Solution

15. The area of the figure formed by the
$$ax+by+c=0,\,ax-by+c=0,\,ax+by-c=0$$

lines

and

$$ax - by - c = 0$$
 is

A.
$$\frac{2b^2}{ac}$$

B.
$$\frac{2a^2}{bc}$$

C.
$$\frac{2c^2}{ab}$$

D.
$$\frac{4c^2}{ab}$$

Answer: C

Watch Video Solution

16. Find the Value of $\frac{\cot \pi}{24}$

A.
$$1+\sqrt{2}+\sqrt{3}+\sqrt{6}$$

$$\mathrm{B.}\,1-\sqrt{2}+\sqrt{3}+\sqrt{6}$$

C.
$$2+\sqrt{2}+\sqrt{3}-\sqrt{6}$$

D.
$$2+\sqrt{2}+\sqrt{3}+\sqrt{6}$$

Answer: D

17. Let P be the point of intersection of two lines

17. Let P be the point of intersection of two line
$$x + 10$$
 $y - 21$ $z + 11$ x

 $L_1 : \frac{x+10}{1} = \frac{y-21}{7} = \frac{z+11}{5} \ \ ext{and} \ \ L_2 : \frac{x-1}{5} = \frac{y-46}{9} = \frac{z}{3}$

B. 5

C. $5\sqrt{3}$

D. $5\sqrt{2}$

Answer: C

18. The area (in sq. units) of the region, $R = \{(x,y): y \in A(x,y): y \in A(x$ $\leq x^{2}, y \leq 2x + 3, x \leq 1 \,\, ext{and} \,\, y + 1 \geq \, \big\}$ is :

A.
$$\frac{11}{3}$$

B.
$$\frac{13}{3}$$

c.
$$\frac{10}{3}$$
 D. $\frac{8}{3}$

Answer: A

19. If
$$\alpha$$
 and β are the coefficients of x^8 and x^{-24} respectively, in the expansion of $\left(x^4+2+\frac{1}{x^4}\right)$ in powers of x, then $\frac{\alpha}{\beta}$ is equal to :

c.
$$\frac{32}{3}$$

$$\frac{13}{2}$$

Answer: B

View Text Solution

20. Let A be a 2 imes 2 matrix such that $3A^2+6A-l_2=O_2$. Then a value of det (A+I) is:

$$A. -7/\sqrt{3}$$

$$\mathsf{B.}-7/3$$

C.
$$\sqrt{7/3}$$

$$\mathsf{D.}\,3/7$$

Answer: B

21. IF y = y (x) is the solution of the differential equation, $x\frac{dy}{dx}=y(\log_e y-\log_e x+1) \text{, when y(1) = 2, then y(2) is equal}$

22. IF
$$S=\left\{z\in C\colon ar{z}=iz^2
ight\}$$
, then the maximum value of $\left|z-\sqrt{3}-i
ight|^2$ in S is _____

23.
$$\lim_{y\to 0} \frac{(y-2)+2\sqrt{1+y+y^2}}{2y}$$
 is equal to _____

24. Interior angle of polygon are in A.P.If the smallest angle is 120° and the common difference is 5° , find the number of sides of polygon.

Watch Video Solution

25. The largest value of $n \in N$ for which $rac{74}{^nP_n} > rac{^{n+3}P_3}{^{n+1}P_{n+1}}$ is

