

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

JEE (MAIN) 2020 QUESTION PAPER MATHEMATICS (8TH JAN - MORNING)

- 1. The system of equation
- $3x + 4y + 5z = \mu$
- x + 2y + 3z = 1

 $4x+4y+4z=\delta$ is inconsistent, then (δ,μ) can be

A. (4,6)

B. (3,4)

C. (1,0)

D. (4,3)

Answer: D

Watch Video Solution

2. Let y = y(x) be a solution the diFIGUREFIGUREerential

equation,

$$\sqrt{1-x^2}rac{dy}{dx}+\sqrt{1-y^2}=0, |x|<1.$$
 IFIGURE $yigg(rac{1}{2}igg)=rac{\sqrt{3}}{2}, ext{ then } yigg(rac{-1}{\sqrt{2}}igg)$ is equal to:

A. $-1/\sqrt{2}$

 $\mathsf{B.}-\sqrt{3}/2$

C. $1/\sqrt{2}$

D. $\sqrt{3}/2$

Answer: B

Watch Video Solution

3. If a, b and c are the gretaest values of C(19, p), C(20, q) and

C(21, r) respectively then

A.
$$\frac{a}{11} = \frac{b}{22} = \frac{c}{42}$$

B. $\frac{a}{10} = \frac{b}{11} = \frac{c}{42}$
C. $\frac{a}{11} = \frac{b}{22} = \frac{c}{21}$
D. $\frac{a}{10} = \frac{b}{11} = \frac{c}{21}$

Answer: A

4. Which of the following is a tautology ?

A.
$$(P \land (P
ightarrow Q))
ightarrow Q$$

 $\texttt{B}.\, P \wedge (P \lor Q)$

$$\mathsf{C}.\,Q \to (P \land (P \to Q))$$

D. $P \lor (P \land Q)$

Answer: A

> Watch Video Solution

5. Let $FIGURE: R \to R$ be such that FIGUREor all $x \in R$ $(2^{1+x} + 2^{1-x}), FIGURE(x)$ and $(3^x + 3^{-x})$ are in A.P., then the minimum value oFIGURE FIGURE(x) is:

A. (

B. 4

C. 3

D. 2

Answer: C

Watch Video Solution

6. The locus of a point which divides the line segment joining the point (0, -1) and a point on the parabola, $x^2 = 4y$ internally in the ratio 1: 2, is:

A.
$$9x^2 - 12y = 8$$

 $\mathsf{B.}\,4x^2-3y=8$

 $\mathsf{C}.\,x^2-3y=2$

D.
$$9x^2 - 3y = 2$$

Answer: A

Watch Video Solution

7. For a > 0, let the curves $C_1: y^2 = ax$ and $C_2: x^2 = ay$ intersect at origin O and a point P. Let the line x = b(0 < b < a) intersect the chord OP and the x-axis at points Q and R, respectively. If the line x = b bisects the area bounded by the curves, C_1 and C_2 , and the area of $\triangle OQR = 1/2$, then 'a' satisfies the equation:

A.
$$x^6 - 12x^3 + 4 = 0$$

B. $x^6 - 12x^3 - 4 = 0$

$$\mathsf{C}.\,x^6 + 6x^3 - 4 = 0$$

D.
$$x^6 - 6x^2 + 4 = 0$$

Answer: A

View Text Solution

8.
$$f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}$$
 find the inverse of the function

A.
$$\frac{1}{4} \left(\log_{g} e \right) \log_{e} \left(\frac{1-x}{1+x} \right)$$

B.
$$\frac{1}{4} \left(\log_{g} e \right) \log_{e} \left(\frac{1+x}{1-x} \right)$$

C.
$$\frac{1}{4} \log_{e} \left(\frac{1-x}{1+x} \right)$$

D.
$$\frac{1}{4} \log_{e} \left(\frac{1-x}{1+x} \right)$$

Answer: B

9.
$$\lim_{x o 0} \left(rac{3x^2+2}{7x^2+2}
ight)^{rac{1}{x^2}}$$
 is equal to

A. e

 $\mathsf{B.}\,1/e^2$

 $\mathsf{C.1}/e$

D. e^2

Answer: B

Watch Video Solution

10. Let
$$f(x) = \left\{ \left(\sin(\tan^{-1}x) + \sin(\cot^{-1}x) \right\}^2 - 1, \text{ where} |x| > 1 \text{ and } \frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} \left(\sin^{-1}f(x) \right). \text{ If } y(\sqrt{3}) = \frac{\pi}{6} \text{ then} y(-\sqrt{3})$$

A. $\pi/3$

B. $2\pi/3$

 $C. - \pi / 6$

D. $5\pi/6$

Answer: C

Watch Video Solution

11. Roots of the equation $x^2 + bx + 45 = 0, b \in R$ lie on the curve `|z + 1| = 2sqrt(10) , where z is a complex number then

A.
$$b^2 + b = 12$$

B. $b^2 - b = 42$
C. $b^2 - b = 30$

D. $b^2+b=72$

Answer: C

Watch Video Solution

12. Mean and standard deviations of 10 observations are 20 and 2 respectively. If p $(p \neq 0)$ is multiplied to each observation and then q $(q \neq 0)$ is subtracted then new mean and standard deviation becomes half of original value . Then find q

A.
$$-20$$

 $\mathsf{B.}-5$

C. 10

 $\mathsf{D.}-10$

Answer: A

13. Let
$$\int \frac{\cos x dx}{\left(\sin^3 x \left(1 + \sin^6 x\right)\right)^{\frac{2}{3}}} = f(x), \left(1 + \sin^6 x\right)^{\frac{1}{\lambda}} + C$$

then find the value of $\lambda f\left(\frac{\pi}{3}\right)$

A. -9/8

B. 9/8

C. 2

 $\mathsf{D.}-2$

Answer: D

14. Let A and B be two independent events such that P(A) = 1/3 and P(B) = 1/6. Then, which of the following is TRUE?

A.
$$P(A)(A \cup B) = rac{1}{4}$$

B. $P(A \mid B') = rac{1}{3}$
C. $P(A \mid B) = rac{2}{3}$
D. $P(A' \mid B') = rac{1}{3}$

Answer: B

Watch Video Solution

15. Let the volume of a parallelopiped whose coterminus edges are given by $u = I + j + \lambda k$, v = I + j + 3k and w = 2i + j + k be 1 cu. unit. If θ be the angle between the edges u and w, then cos θ can be:

A.
$$\frac{7}{6\sqrt{6}}$$

B.
$$\frac{5}{7}$$

C.
$$\frac{7}{6\sqrt{3}}$$

D.
$$\frac{5}{3\sqrt{3}}$$

Answer: C

Watch Video Solution

16. Let two points be A(1, -1) and B(0, 2). If a point P(x', y') be such that the area of $\Delta PAB = 5$ sq. units and it lies on the line, $3x + y - 4\lambda = 0$, then a value of λ is:

A. 4

B. 1

C. -3

D. 3

Answer: D

17. If the shortest distance between the lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} \text{ and } \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}is\lambda\sqrt{30}$$
up it then the value of) is

unit, then the value of λ is

A.
$$2\sqrt{30}$$

$$\mathsf{B.}\,\frac{7}{2}\sqrt{30}$$

C. 3

D. $3\sqrt{30}$

Answer: D

Watch Video Solution

18. Let the line y = mx and the ellipse $2x^2 + y^2 = 1$ intersect at a point P in the first quadrant. If the normal to this ellipse at P meets the co - ordinate axes at $\left(-\frac{1}{3\sqrt{2}}, 0\right)$ and $(0, \beta)$, then β is equal to

A.
$$\frac{2}{\sqrt{3}}$$

B. $\frac{2}{3}$
C. $\frac{2\sqrt{2}}{3}$
D. $\frac{\sqrt{2}}{3}$

Answer: D

19. If c is a point at which Roll's theorem holds for the function,

 $f(x)=\log_eigg(rac{x^2+lpha}{7x}igg)$ in the interval [3,4], where $lpha\in R$ then $f^{''}(c)$ is equal to:

A.
$$-\frac{1}{24}$$

B. $-\frac{1}{12}$
C. $\frac{\sqrt{3}}{7}$
D. $\frac{1}{12}$

Answer: D

20. Let
$$f(x)=x\cos^{-1}(\sin-|x|)$$
 , $x\in \Big(-rac{\pi}{2},rac{\pi}{2}\Big)$

A.
$$f'(0) = -\frac{\pi}{2}$$

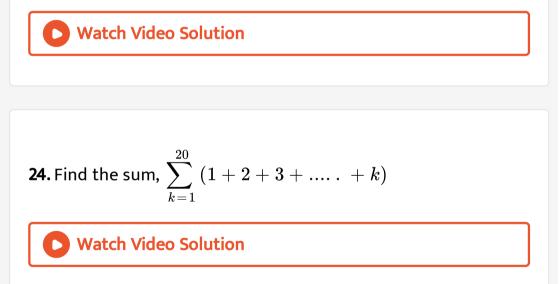
B.
$$f'$$
 is decreasing in $\Big(-rac{\pi}{2},0\Big)$ and increasing in $\Big(0,rac{\pi}{2}\Big)$

C. f si not differentiable at x=0

D. f' is increasing in $\left(-\frac{\pi}{2},0
ight)$ and decreasing in $\left(0,\frac{\pi}{2}
ight)$

Answer: B

21. An urn contains 5 read marbels,4 black marbels and 3 white marbles. Then the number oFIGURE wayes in which 4 marbles can be drawn so that most three them are red is _____



22. If normal at P on the curve $y^2 - 3x^2 + y + 10 = 0$ passes through the point $\left(0, \frac{3}{2}\right)$,then slope of tangent at P is n. The

23. The equation
$$2x^2 + (a-10)x + \frac{33}{2} = 2a$$
 has real roots.

Find least possible value of a.

25. The number of 3×3 matrices with entries from the set $\{-1, 0, 1\}$ such that the matrices symmetric nor skew symmetric is

