

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

JEE (MAIN) 2020 QUESTION PAPER (7TH JAN - AFTERNOON)

Multiple Choice Question

A. $2\sqrt{5}$

B. $2\sqrt{7}$

$\mathsf{C.}\,2\sqrt{2}$

D. 4

Answer: B

Watch Video Solution

2. Let A, B, C and D be four non-empty sets. The contrapositive statement of "If $A \subseteq B$ and $B \subseteq D$, then $A \subseteq C$ " is :

3. The coefficient of x^7 in the expression $(+x)^{10} + x(1+x)^9 + x^2(1+x)^8 + \ldots + x^{10}$

A. 420

B. 330

C. 210

D. 120

Answer: B

4. In a workshop, there are five machines. The probability of any one of them to be out of service on a day is $\frac{1}{4}$. If the probability that at

most two machines will be out of service on

the same day is
$$\left(rac{3}{4}
ight)^3 k$$
 ,then k is equal to

A.
$$\frac{17}{2}$$

C.
$$\frac{17}{4}$$

D. $\frac{17}{8}$

Watch Video Solution

5. The locus of the mid-points of the perpendiculars drawn from points on the line x = 2y to the line x = y is:

A.
$$2x-3y=0$$

$$\mathsf{B.}\,3x-2y=0$$

C.
$$5x-7y=0$$

D.
$$7x-5y=0$$

Answer: C

6. Let
$$4lpha \int_{-1}^{2} e^{-lpha \, |x|} dx = 5$$
, then $lpha$ =

- A. $\log_e 2$
- $\mathrm{B.}\log_e\sqrt{2}$
- $\mathsf{C.}\log_e(4/3)$
- $\operatorname{D.log}_e(3/2)$

Answer: A

7. If the sum of the first 40 terms of the series, $3 + 4 + 8 + 9 + 13 + 14 + 18 + 19 + \ldots$ is (102)m, then m is equal to :

A. 10

B.25

C. 5

D. 20

Answer: D

8. If
$$z = \frac{3 + i \sin \theta}{4 - i \cos \theta}$$
 is purely real and
 $\theta \in \left(\frac{\pi}{2}, \pi\right)$, then $\arg(\sin \theta + i \cos \theta)$ is -
A. $\pi - \tan^{-1}\left(\frac{4}{3}\right)$
B. $-\tan^{-1}\left(\frac{3}{4}\right)$
C. $\pi - \tan^{-1}\left(\frac{3}{4}\right)$
D. $\tan^{-1}\left(\frac{4}{3}\right)$

Answer: A

O Watch Video Solution

9. Let $A = ig[a_{ij}ig]$ and $B = ig[b_{ij}ig]$ be two 3 imes 3such matrices real that $b_{ij} = (3)(i+j-2)a_{ji}$, where i, j = 1,2,3. If the determinant of B is 81, then the determinant of A is : A. 1/9**B**. 1/81 C. 1/3

D. 3

Answer: A

10. Let f(x) is a five degree polynomial which

has critical points $x=\pm 1$ and $\lim_{x o 2}\,\left(2+rac{f(x)}{x^3}
ight)=4$ then which one is incorrect.

A.
$$f(1) - 4f(-1) = 4$$

B. x=1 is a point of maxima and

x = -1 is a point of miniumu of f.

C. f is an odd function.

D. x = 1 is a point of minima and x = -1is a point of maxima of f. Answer: D Watch Video Solution

11. The number of ordered pairs (r, k) for which

$$6ig({}^{35}C_rig)=ig(k^2-3ig)ig({}^{36}C_{r+1}ig),$$
 where k is an integer, is:

B. 6

C. 2

D. 3

Answer: A

Watch Video Solution

12. Let
$$a_1,a_2,a_3,...$$
 be a G P such that $a_1<0,a_1+a_2=4$ and $a_3+a_4=16.$ If $\sum_{i=1}^9 a_i=4\lambda,$ then λ is equal to "

A. 171

B. 511/3

C. - 171

D. - 513

Answer: D

Watch Video Solution

13. Let a, b and c be three unit vectors such that a+b+c=0. If $\lambda=a\cdot b+b\cdot c+c\cdot a$

and d = a imes b + b imes c + c imes a, then the

ordered pair, (λ, d) is equal to :

$$egin{aligned} \mathsf{A}.\left(rac{3}{2},3a imes c
ight) \ \mathsf{B}.\left(-rac{3}{2},3c imes b
ight) \ \mathsf{C}.\left(-rac{3}{2},3a imes b
ight) \ \mathsf{D}.\left(rac{3}{2},3b imes c
ight) \end{aligned}$$

Answer: C

Watch Video Solution

14. Let y = y(x) be the solution curve of the differential equation $(y^2 - x) \frac{dy}{dx} = 1$ satisfying y(0) = 1. This curve intersects the x -axis at a point whose abscissa is A. 2 + eB. 2 C.2 - e

D. −*e*

Answer: C

15. If θ_1 and θ_2 be respectively the smallest and the largest values of θ in $(0, 2\pi) - (\pi)$ which satisfy the equation, $2\cot^2\theta - \frac{5}{\sin\theta} + 4 = 0$, θ_2 then $\int \cos^2 3 heta d heta$ is equal to : θ_1 A. $\frac{2\pi}{3}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{3} + \frac{2}{6}$ D. $\frac{\pi}{9}$

Answer: B

Watch Video Solution

16. Let α and β be the roots of the equation $x^2 - x - 1 = 0$.If $p_k = (\alpha)^k + (\beta)^k, k \ge 1$ then which one of the following statements is not true?

A.
$$(p_1+p_2+p_3+p_4+p_5)=26$$

B. $p_5 = 11$

 $\mathsf{C}.\, p_5 = p_2 \cdot p_3$

 $\mathsf{D}.\, p_2 = p_5 - p_4$

Answer: C

Watch Video Solution

17. The area (in sq. units) of the region $ig\{(x,y)\in R^2l4x^2\leq y\leq 8x+12ig\}$ is :

A.
$$\frac{125}{3}$$

B. $\frac{128}{3}$
C. $\frac{124}{3}$

D. $\frac{127}{3}$

Answer: B

View Text Solution

18. The value of c in the Lagrange's mean value theorem for the function $f(x)=x^3-4x^2+8x+11,$ when $x\in[0,1]$ is :

A.
$$rac{4-\sqrt{7}}{3}$$

B.
$$\frac{2}{3}$$

C. $\frac{\sqrt{7}-2}{3}$
D. $\frac{4-\sqrt{5}}{3}$

Answer: A

O Watch Video Solution

19. if
$$y\sqrt{1-x^2} = k - x\sqrt{1-y^2}$$
 and $y\left(\frac{1}{2}\right) = -\frac{1}{4}$, then $\frac{dy}{dx}atx = \frac{1}{2}$
A. $-\frac{\sqrt{5}}{2}$

Answer: A

20. Let the tangents drawn from the origin to the circle, $x^2 + y^2 - 8x - 4y + 16 = 0$ touch it at the points A and B. Then $(AB)^2$ is equal

A.
$$\frac{3}{25}$$

B. $\frac{64}{5}$
C. $\frac{52}{5}$
D. $\frac{56}{5}$

Answer: B

View Text Solution

21. If system of equation

x + y + z = 6

x + 2y + 3z = 10

 $3x + 2y + \lambda z = \mu$ has more than two solutions.

Find $\left(\mu - \lambda^{\Box}\right)$

Watch Video Solution

22. If
$$Q\left(\frac{5}{3}, \frac{7}{3}, 17, 3\right)$$
 is foot of perpendicular drawn from $P(1, 0, 3)$ on a line L and if line L is passing through $(\alpha, 7, 1)$, then value of α is

Watch Video Solution

Watch Video Solution

24. If the mean and variance of eight numbers

3, 7, 9, 12, 13, 20, x and y be 10 and 25

respectively, then x.y is equal to _____.

Watch Video Solution

25. Let X = {x : 1 le x le 50, x in N} A = {x: x is multiple of 2} B = {x: x is multiple of 7} Then find number of elements in the smallest subset of X which contain elements of both A and B

