©゙’ doubtnut

MATHS

BOOKS - MCGROW HILL EDUCATION

MATHS (HINGLISH)

JEE (Main) 2020 QUESTION PAPER (8TH

 JAN-AFTERNOON)Multiple Choice Questions

1. Let A and B two events such that the probgability that exactly one of them occurs is $\frac{2}{5}$ and the probability that A or B occurs is $\frac{1}{2}$, then probability of both of them occur together is:
A. 0.10
B. 0.20
C. 0.01
D. 0.02

- Watch Video Solution

2. Let S be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right|$
A. is a singleton
B. is an empty set
C. contains at least four elements
D. contains exactly two elements

Answer: A
3. The mean and variance of 20 observations are found to be 10 and 4 respectively. On rechecking, it was found that an observation 8 is incorrect. If the wrong observation is omitted, then the correct variance is
A. 4.01
B. 3.99
C. 3.98
D. 4.02

Answer: B

D Watch Video Solution

4. Let $a=i-2 j+k$ and $b=i-j+k$ be two vectors. If c
is a vector such that $\mathrm{b} \times \mathrm{c}=\mathrm{b} \times \mathrm{a}$ and $\mathrm{c} . \mathrm{a}=0$,
then $\mathrm{c} . \mathrm{b}$ is equal to:
A. $1 / 2$
B. $-3 / 2$
C. $-1 / 2$
D. -1

Answer: C

D Watch Video Solution

5. Let $f:(1,3) \rightarrow R$ be a function defined by $f(x)=\frac{x[x]}{1+x}$, where $[\mathrm{x}]$ denotes the greatest integer $\leq x$. Then the range of f is :
A. $\left(\frac{2}{5}, \frac{3}{5}\right] \cup\left(\frac{3}{4}, \frac{4}{5}\right)$
B. $\left(\frac{2}{5}, \frac{4}{5}\right]$
C. $\left(\frac{3}{5}, \frac{4}{5}\right)$
D. $\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right]$

D Watch Video Solution

6. If α and β be the coefficients of x^{4} and x^{2}
respectively in the expression of
$\left(x+\sqrt{x^{2}-1}\right)^{6}+\left(x-\sqrt{x^{2}-1}\right)^{6}$, then :
A. $\alpha+\beta=-30$
B. $\alpha-\beta=-132$
C. $\alpha+\beta=60$
D. $\alpha-\beta=60$

Answer: B

- View Text Solution

7. If a hyperbola passes through the point
$P(10,16)$ and it has vertices at $(\pm 6,0)$,then
the equation of the normal to it at P is
A. $3 x+4 y=94$
B. $x+2 y=42$
C. $2 x+5 y=100$
D. $x=3 y=58$

Answer: C

D Watch Video Solution

8. $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} t \sin (10 t) d t}{x}$ is equal to
A. 0
B. $\frac{1}{10}$
C. $-\frac{1}{10}$
D. $-\frac{1}{5}$

(D) Watch Video Solution

9. If $y=m x+c$ is a tangent to the circle $(x-3)^{2}+y^{2}=1$ and also the perpendicular to the tangent to the circle $x^{2}+y^{2}=1$ at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, then
A. $c^{2}+7 c+6=0$
B. $c^{2}-6 c+7=0$
C. $c^{2}-7 c+6=0$
D. $c^{2}+6 c+7=0$

Answer: D

- Watch Video Solution

10. Let $\alpha=\frac{-1+i \sqrt{3}}{2} \quad$ and
$a=(1+\alpha) \sum_{k=0}^{100} \alpha^{2 k}, b=\sum_{k=0}^{100} \alpha^{3 k}$. If a and b
are roots of quadratic equation then quadratic equation is

> А. $x^{2}+101 x+100=0$
> В. $x^{2}+102 x+101=0$
> С. $x^{2}-102 x+101=0$

$$
\text { D. } x^{2}-101 x+100=0
$$

Answer: C

D Watch Video Solution

11. The mirror image of the point $(1,2,3)$ in plane is $\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$. Which of the
following points lies on this plane?
A. $(1,-1,1)$
B. $(-1,-1,1)$
C. $(1,1,1)$
D. $(-1,-1,-1)$

Answer: A

D Watch Video Solution

12. The length of the perpendicular from the origin,on the normal to the curve, $x^{2}+2 x y-3 y^{2}=0$ at the point $(2,2)$ is
A. 2
B. $2 \sqrt{2}$
C. $4 \sqrt{2}$
D. $\sqrt{2}$

Answer: B

D Watch Video Solution

13. Which of the following statements is a tautology?

$$
\text { A. } \sim(p \wedge \sim q) \rightarrow p \vee q
$$

$$
\begin{aligned}
& \text { B. } \sim(p \vee \sim q) \rightarrow p \wedge q \\
& \text { C. } p \vee(\sim q) \rightarrow p \wedge q \\
& \text { D. } \sim(p \vee \sim q) \rightarrow p \vee q
\end{aligned}
$$

Answer: D

D Watch Video Solution

14. Let $I=\int_{1}^{2} \frac{d x}{\sqrt{2 x^{3}-9 x^{2}+12 x+4}}$ then
A. $\frac{1}{6}<I^{2}<\frac{1}{2}$
B. $\frac{1}{8}<I^{2}<\frac{1}{4}$

$$
\begin{aligned}
& \text { C. } \frac{1}{9}<I^{2}<\frac{1}{8} \\
& \text { D. } \frac{1}{16}<I^{2}<\frac{1}{9}
\end{aligned}
$$

Answer: C

- Watch Video Solution

15. If $A=\left(\begin{array}{ll}2 & 2 \\ 9 & 4\end{array}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then $10 A^{-1}$ is equal to :
A. 6I-A
B. A-6I

C. 4I-A

D. $\mathrm{A}-4 \mathrm{I}$

Answer: B

D View Text Solution

16. The area (in sq. units) of the region $\left\{(x, y) \in R^{2}: x^{2} \leq y \leq 3-2 x\right\}$, is :
A. $31 / 3$
B. $32 / 3$
C. $29 / 3$

$$
\text { D. } 34 / 3
$$

Answer: B

D Watch Video Solution

17. Let the set of all function $f:[0,1] \rightarrow R$, which are containous on $[0,1]$ and differentiable on $(0,1)$. Then for every f in S,
there exists a $c \in(0,1)$ depending on f, such that :

$$
\begin{aligned}
& \text { A. } \frac{f(1)-f(c)}{1-c}=f^{\prime}(c) \\
& \text { B. }|f(c)-f(1)|<\left|f^{\prime}(c)\right| \\
& \text { C. }|f(c)+f(1)|<(1+c)\left|f^{\prime}(c)\right| \\
& \text { D. }|f(c)-f(1)|<(1-c)\left|f^{\prime}(c)\right|
\end{aligned}
$$

Answer:

D Watch Video Solution

18. The differential equation of the family of curves, $x^{2}=4 b(y+b), b \in R$, is :
A. $x y^{\prime \prime}=y^{\prime}$
B. $x\left(y^{\prime}\right)^{2}=x+2 y y^{\prime}$
C. $x\left(y^{\prime}\right)^{2}=x-2 y y^{\prime}$
D. $x\left(y^{\prime}\right)^{2}=2 y y^{\prime}-x$

Answer: B

D Watch Video Solution

19. The system of linear equations
$\lambda x+2 y+2 z=5$
$2 \lambda x+3 y+5 z=8$
$4 x+\lambda y+6 z=10$ has :
A. no solution when $\lambda=2$
B. infinitely many solutions when $\lambda=2$
C. no solution when $\lambda=8$
D. infinite solution when $\lambda=-8$

Answer: A

- Watch Video Solution

20. It the $10^{\text {th }}$ term of an A. P. is $\frac{1}{20}$ and its $20^{t h}$
term is $\frac{1}{10}$, then the sum of its first 200 terms is :
A. $50 \frac{1}{4}$
B. 100
C. 50
D. $100 \frac{1}{2}$

Answer: d

21. Let a line $y=m x(m>0)$ intersect the parabola, $y^{2}=4 x$ at a point P , other than the origin. Let the tangent to it at P meet the x-axis at the point Q . If area $(\triangle O P Q)=8$ sq. units, then m is equal to

D Watch Video Solution

22. Let $f(x)$ be a polynomial of degree 3 such
that $f(-1)=10, f(1)=-6, f(x)$ has a critical point at
$x=-1$ and $f^{\prime}(x)$ has a critical point at $x=1$. Then
$f(x)$ has a local minima at $x=$

(D) Watch Video Solution

23.

$I f \frac{\sqrt{\sin \alpha}}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ and $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}$
$\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$ then $\tan (\alpha+2 \beta)$ is equal to

D Watch Video Solution
24. The number of 4 letter words (with or without meaning) that can be formed from the
letter of the work EXAMINATION is

- Watch Video Solution

25. $\sum_{n=1}^{7} \frac{n(n+1)(2 n+1)}{4}$ is equal to
