

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

JEE (MAIN) 2020 QUESTIONS (9TH JAN-AFTERNOON)

Jee Main 2020 Questions With Solutions Mathematics 9th Jan Afternoon

1. If

 $A = \{x \in R \colon |x| < 2\} \ \text{and} \ B = \{x \in R \colon |x - 2| \ge 3\},$

then

A.
$$A - B = [-1, 2)$$

B.
$$B - A = R - (-2, 5)$$

$$\mathsf{C.}\,A\cup B=R-(2,5)$$

D.
$$A\cap B=(\,-\,2,\,-\,1)$$

Answer: B

Watch Video Solution

2. If 10 different balls are to be placed in 4 distinct boxes at random, then the parobability that two of these boxes contain exactly 2 and 3 balls is:

A.
$$\frac{965}{2^{10}}$$

B.
$$\frac{945}{2^{10}}$$

C.
$$\frac{945}{2^{11}}$$
D. $\frac{965}{2^{11}}$

Answer: B

3. If
$$x=2\sin\theta-\sin2\theta$$
 and $y=2\cos\theta-\cos2\theta$, $heta\in[0,2\pi],$ then $\dfrac{d^2y}{dx^2}$ at $heta=\pi$ is

$$\mathsf{A.}-\frac{3}{8}$$

$$\mathsf{B.}\;\frac{3}{4}$$

$$\mathsf{C.}\;\frac{3}{2}$$

D.
$$-\frac{3}{4}$$

Answer:

- 4. Let f and g be differentiable functions on R such that fog is the identity function. If for some $a,b\in R, g^{\,\prime}(a)=5$ and g(a)=b, then $f^{\,\prime}(b)$ is equal to :
 - - A. $\frac{2}{5}$ B. $\frac{1}{5}$
 - C. 1
 - D. 5

Answer: D

View Text Solution

- **5.** In the expansion of $\left(\frac{x}{\cos\theta}+\frac{1}{x\sin\theta}\right)$, if l_1 is the least value of the term independent of x when $\frac{\pi}{8}\leq\theta\leq\frac{\pi}{4}$ and l_2 is the least value of the term independent of x when $\frac{\pi}{16}\leq\theta\leq\frac{\pi}{8}$, then the value of $\frac{l_2}{l_1}$ is
 - A. 16:1
 - B. 8:1
 - C. 1: 8
 - D. 1:16

Answer: A

Watch Video Solution

- **6.** Let both root of equation $ax^2-2bx+5=0$ are α and root of equation $x^2-2bx-10=0$ are α and β . Find the value of $\alpha^2+\beta^2$
 - A. 24
 - B. 25
 - C. 26
 - D. 28

Answer: B

7. Let a function $f\colon [0,5] o R$ be continuous, f(1)=3 and F be defined as :

$$F(x) = \int_1^x t^2 g(t) dt$$
, where $g(t) = \int_1^t f(u) \mathrm{du}$.

Then for the function F, the point x=1 is :

A. a point of inflection.

B. a point of local maxima.

C. a point of local minima.

D. not a critical point.

Answer: C

View Text Solution

8. Let [t] denote the greatest integer $\leq t$ and

$$\lim_{x o 0} x \left \lceil rac{4}{x}
ight
ceil = A.$$
 Then the function,

 $f(x) = ig[x^2] \sin(\pi x)$ is discontinuous, when x is equal to :

A.
$$\sqrt{A+1}$$

B.
$$\sqrt{A}$$

C.
$$\sqrt{A+5}$$

D.
$$\sqrt{A+21}$$

Answer: A

View Text Solution

9. If
$$f(x)=egin{array}{c|cccc} x+a & x+2 & x+1 \ x+b & x+3 & x+2 \ x+c & x+4 & x+3 \ \end{array}$$
 and $a-2b+c=1$

then

A.
$$f(-50) = 501$$

B.
$$f(-50) = -1$$

$$\mathsf{C}.\,f(50)=1$$

D.
$$f(50) = -501$$

Answer: C

10. Given :
$$f(x) egin{cases} x, & 0 \leq x < rac{1}{2} \ rac{1}{2}, & x = rac{1}{2} \ 1-x, & rac{1}{2} < x \leq 1 \end{cases}$$
 and

 $g(x)=\Big(x-rac{1}{2}\Big)^2, x\in \emph{R}.$ Then the area (in sq. units) of the region bounded by the curves, y=f(x)y=g(x) between the lines, 2x=1 and $2x=\sqrt{3}$, is :

$$A. \frac{\sqrt{3}}{4} - \frac{1}{3}$$

B.
$$\frac{1}{3} + \frac{\sqrt{3}}{4}$$

$$\mathsf{C.}\,\frac{1}{2}+\frac{\sqrt{3}}{4}$$

D.
$$\frac{1}{2} - \frac{\sqrt{3}}{4}$$

Answer: A

View Text Solution

7x + 6y - 2z = 0, 3x + 4y + 2z = 0, x - 2y - 6z = 0

then which option is correct

A. infinitely many solutions, (x,y,z) satisfying y = 2z.

B. infinitely many solutions, (x,y,z) satisfying x = 2z.

C. no solution

D. only the trivial solution.

Answer: B

Answer: D

Watch Video Solution

13. The length of the minor axis (along the y-axis) of an ellipse in the standard form is $\frac{4}{\sqrt{3}}$ If this ellipse touches the line, x+6y=8, then its eccentricity is :

$$A. \ \frac{1}{2} \sqrt{\frac{5}{3}}$$

$$B. \frac{1}{2} \sqrt{\frac{11}{3}}$$

D.
$$\frac{1}{3}\sqrt{\frac{11}{3}}$$

Answer: B

14.

Watch Video Solution

14. z is a complex number such
$$|Re(z)| + |Im(z)| = 4$$
 then $|z|$ can't be

that

$$|te(z)| + |Im(z)| = 4$$
 then $|z|$ canti

A.
$$\sqrt{7}$$

D.
$$\sqrt{8}$$

Answer: A

Watch Video Solution

15. If
$$x\sum_{n=0}^{\infty}(-1)^n$$
 tan 2n and $y=\sum_{n=0}^{\infty}\cos^{-2n}\theta$ for $0<\theta<\frac{\pi}{4}$, then :

A.
$$y(1+x) = 1$$

B.
$$x(1-y) = 1$$

C.
$$y(1-x) = 1$$

D.
$$x(1 + y) = 1$$

Answer: C

16. If
$$\displaystyle \frac{dx}{dy} = \displaystyle \frac{xy}{x^2 + y^2}, \, y(1) = 1$$
 and $\displaystyle y(x) = e$ then $\displaystyle x = e$

A.
$$\sqrt{3e}$$

B.
$$\sqrt{2e}$$

C.
$$\frac{e}{\sqrt{2}}$$
 D. $\frac{1}{2}\sqrt{3}e$

D.
$$\frac{1}{2}\sqrt{3}e$$

Answer: A

17. Let one end of focal chord of parabola $y^2=8x$ is (1/2, -2)`, then equation of tangent at other end of this focal chord is

A.
$$x + 2y + 8 = 0$$

B.
$$2x - y - 24 = 0$$

C.
$$x - 2y + 9 = 0$$

D.
$$2x + y - 24 = 0$$

Answer: C

18. Let a_n is a positive term of a GP and

Answer: D

A. 7/12

B. 23/36

C.1/36

D. 1/6

Answer: B

20.

Watch Video Solution

19. Let probability distribution is

 $\left(rac{d(heta)}{(\cos^2 heta)(\sec(2 heta)+ an(2 heta))}
ight) = \lambda an heta + 2\log f(x) + c$

, then ordered pair $(\lambda,f(x))$ is

A.
$$(-1, 1 - \tan \theta)$$

$$\mathsf{B.}\,(\,-1,1+\tan\theta)$$

$$\mathsf{C}.\left(1,1+ an heta
ight)$$

D.
$$(1, 1 - \tan \theta)$$

Answer: B

21. Let
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} be three vectors such that $\left|\overrightarrow{a}\right| = \sqrt{3}$, $\left|\overrightarrow{b}\right| = 5$, \overrightarrow{b} . $\overrightarrow{c} = 10$ and the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$, if \overrightarrow{a} is perpendicular to the vector $\overrightarrow{b} \times \overrightarrow{c}$, then |veca xx (vecaxxvecc)|` is equal to _____.

22. If
$$C_r={}^{25}C_r$$
 and

$$C_0 + 5 \cdot C_1 + 9 \cdot C_2 + \ldots + (101) \cdot C_{25} = 225 \cdot k$$
,

then k is equal to _____.

23. If the curves $x^2-6x+y^2+8=0$ and $x^2-8y+y^2+16-k=0, (k>0)$ touch each other at a point , then the largest value of k is _____.

24. Find the number of terms common to the two AP's 3,7,11,15.... 407 and 2, 9,16......709.

Watch Video Solution

25. If the distance between the plane 23,-10y-2z+48 =0 and the plane containing the lines

$$rac{x+1}{2}=rac{y-3}{4}=rac{z+1}{3}$$
 and $rac{x+3}{2}=rac{y+2}{6}=rac{z-1}{\lambda}(\lambda\in R)$ is equal to $rac{k}{\sqrt{633}}$,

then k is equal to _____.

