©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS
 (7 TH JAN-MORNING)

Questions

1. The area that is enclosed in the circle $x^{2}+y^{2}=2$ which is not common enclosed by $y=x \& y^{2}-x$ is
A. $\frac{1}{3}(12 \pi-1)$
B. $\frac{1}{6}(12 \pi-1)$
C. $\frac{1}{3}(6 \pi-1)$
D. $\frac{1}{6}(24 \pi-1)$

Answer: B

- Watch Video Solution

2. Total number of 6-digit numbers in which only and all the five digit 1,2,5,7 and 9 appear, is :
A. 56
B. 6!
C. $\frac{1}{2}(6!)$
D. $\frac{5}{2}(6!)$

Answer: D

D Watch Video Solution

3. An unbaised coin is thrown 5 times. Let X be a random variable and k be the value of assigned to X for $k=3,4,5$ times Head occurs consecutively and
otherwise the value of X is assigned -1 . What is value of expection.
A. $\frac{1}{8}$
B. $\frac{3}{16}$
C. $-\frac{1}{8}$
D. $-\frac{3}{16}$

Answer: A

- Watch Video Solution

4. If $\operatorname{Re}\left(\frac{x-1}{2 z+i}\right)=1$, where $z=x+i y$, then the point (x, y) lies on a :
A. circle whose centre is at ($-1 / 2,-3 / 2$).
B. straight line whose slope is $3 / 2$.
C. circle whose diameter is $\sqrt{5} / 2$
D. straight line whose slope is $-2 / 3$.

Answer: C

D View Text Solution

5. If $f(a+b+1-x)=f(x)$, for all x where a and b are fixed positive real numbers, the $\frac{1}{a+b} \int_{a}^{b} x(f(x)+f(x+1) \mathrm{dx}$ is equal to :
A. $\int_{a-1}^{b-1} f(x) d x$
B. $\int_{a+1}^{b+1} f(x+1) d x$
C. $\int_{a-1}^{b-1} f(x+1) d x$
D. $\int_{a+1}^{b+1} f(x) d x$

Answer: D

D Watch Video Solution

6. If distance between the foci of an ellipse is 6 and distance between its directionces is 12 , then length of its latus rectum is
A. $2 \sqrt{3}$
B. $\sqrt{3}$
C. $3 / \sqrt{2}$
D. $3 \sqrt{2}$

Answer: D

- Watch Video Solution

7. The logical statement $(p \rightarrow q) \vee(q \rightarrow \sim p)$ is:
A. $\sim p$
B. p
C. q
D. $\sim q$

Answer: A

8. Find the greatest value of k for which $49^{k}+1$ is a factor of $1+49+49^{2} \ldots(49)^{125}$
A. 32
B. 60
C. 65
D. 63

Answer: D

- Watch Video Solution

9. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\vec{b}=\hat{\mathrm{i}}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values of α and β ?

$$
\begin{equation*}
\alpha=2, \beta=2 \text { (2) } \alpha=1, \beta=2 \text { (3) } \alpha=2, \beta=1 \text { (4) } \alpha=1, \beta=1 \tag{1}
\end{equation*}
$$

A. $a \cdot i+3=0$
B. $a \cdot k+4=0$
C. $a \cdot i+1=0$
D. $a \cdot k+2=0$

Answer: D

- Watch Video Solution

10.

If $y=\sqrt{\frac{2(\tan \alpha+\cot \alpha)}{1+\tan ^{2} \alpha}+\frac{1}{\sin ^{2} \alpha}}$ when $\alpha \in\left(\frac{3 \pi}{4}, \pi\right)$ then find $\frac{d y}{d \alpha}$
A. $-\frac{1}{4}$
B. $\frac{4}{3}$
C. 4
D. -4

Watch Video Solution

11. If $y=m x+4$ is a tangent to both the parabolas, $y^{2}=4 x$ and $x^{2}=2 b y$, then b is equal to :
A. -64
B. 128
C. -128
D. -32

Answer: C

- Watch Video Solution

12. Let α be a root of the equation $x^{2}+x+1=0$ and the matrix
$A=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha^{4}\end{array}\right]$
then the matrix A^{31} is equal to :
A. A
B. A^{2}
C. A^{3}
D. I_{3}

Answer: C

- Watch Video Solution

13. If $g(x)=x^{2}+x+x-1$ and $g(f(x))=4 x^{2}-10 x+5$ then find $f\left(\frac{5}{4}\right)$
A. $-\frac{3}{2}$
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. $\frac{3}{2}$

Watch Video Solution

14. If α and β are the roots of equation $(k+1)$ $\tan ^{2} x-\sqrt{2} \lambda, \tan =1-k$ and $\tan ^{2}(\alpha+\beta)=50$. Find the value of λ
A. $5 \sqrt{2}$
B. $10 \sqrt{2}$
C. 10
D. 5

Answer: C

- Watch Video Solution

15. Let P be a plane passing through the points $(2,1,0)(4,1,1)$ and $(5,0,1)$ and R be any point $(2,1,6)$. Then the image of R in the plane P is :
A. $(6,5,2)$
B. $(6,5,-2)$
C. $(4,3,2)$
D. $(3,4,-2)$

Answer: B

- Watch Video Solution

16. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is a solution of differential equation $e^{y}\left(\frac{d y}{d x}-1\right)=e^{x}$ and $f(0)=0$ then $f(1)$ is equal to
A. $1 / 3$
B. $3 / 2$
C. $2 / 3$
D. $4 / 3$

Answer: C

17. Let the function, $f:[-7,0] \rightarrow R$ be continuous on $[-7,0]$ and differentiable on $(-7,0)$. If $f(-7)=-3$ and $f^{\prime}(x) \leq 2$, for all $x \in(-7,0)$, then for all such functions $f, f(-1)+f(0)$ lies in the interval :
A. $[-6,20]$
B. $(-\infty, 20$]
C. $(-\infty, 11]$
D. $[-3,11]$

Answer: B

- View Text Solution

18. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is a solution of differential equation $e^{y}\left(\frac{d y}{d x}-1\right)=e^{x}$ and $f(0)=0$ then $f(1)$ is equal to
A. $\log _{e} 2$
B. $2 e$
C. $2+\log _{e} 2$
D. $1+\log _{e} 2$

Answer: D

- Watch Video Solution

19. Five numbers are in A.P., whose sum is 25 and product is 2520 . If one of these five numbers if $-\frac{1}{2}$, then the greatest number amongst them is :
A. 16
B. 27
C. 7
D. $21 / 2$
20. If the system of linear equations
$2 x+2 a y+a z=0$
$2 x+3 b y+b z=0$
$2 x+4 c y+c z=0$
where $a, b, c \in R$ are non - zero and distinct, has a non-zero solution, then :
A. $a+b+c=0$
B. a,b,c are in A.P.
C. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
D. a,b,c are in G.P.

Answer: C

21. $\lim _{x \rightarrow 2} \frac{3^{x}+3^{3-x}-12}{3^{-x / 2}-3^{1-x}}$ is equal to \qquad

- Watch Video Solution

22. If the variance of the first n natural numbers is 10 and the variance of the first m even natural numbers is 16 , then $m+n$ is equal to \qquad .

- Watch Video Solution

23. If sum of all the coefficient of even powers in $\left(1-x+x^{2}-x^{3} \ldots . x^{2 x}\right)\left(1+x+x^{3} \ldots .+x^{2 n}\right)$ is 61 then n is equal to

- Watch Video Solution

24. If $\mathrm{f}(\mathrm{x})=|2-|\mathrm{x}-3||$ is non differentiable in $X \in S$. Then value of $\sum_{x \in S}(f(f(x))$ is
25. Let $A(1,0), B(6,2)$ and $C\left(\frac{3}{2}, 6\right)$ be the vertices of a triangle ABC . If P is a point inside the triangle ABC such that the triangles APC, APB and $B P C$ have equal areas , then the length of the line segment $P Q$, where Q is the point $\left(-\frac{7}{6},-\frac{1}{3}\right)$, is \qquad .

- Watch Video Solution

