

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING)

Questions

1. The area that is enclosed in the circle $x^2+y^2=2$ which is not common enclosed by $y=x\&y^2-x$ is

A.
$$rac{1}{3}(12\pi-1)$$

B. $rac{1}{6}(12\pi-1)$
C. $rac{1}{3}(6\pi-1)$
D. $rac{1}{6}(24\pi-1)$

Answer: B Watch Video Solution 2. Total number of 6-digit numbers in which only and all the five digit 1,2,5,7 and 9 appear, is :

A. 56

B. 6!

C.
$$\frac{1}{2}(6!)$$

D. $\frac{5}{2}(6!)$

Answer: D

3. An unbaised coin is thrown 5 times. Let X be a random variable and k be

the value of assigned to X for k=3,4,5 times Head occurs consecutively and

otherwise the value of X is assigned -1. What is value of expection.

A.
$$\frac{1}{8}$$

B. $\frac{3}{16}$
C. $-\frac{1}{8}$
D. $-\frac{3}{16}$

Answer: A

Watch Video Solution

4. If Re
$$\left(rac{x-1}{2z+i}
ight)=1$$
, where $z=x+iy$, then the point (x,y) lies on a :

A. circle whose centre is at (-1/2, -3/2).

B. straight line whose slope is 3/2.

C. circle whose diameter is $\sqrt{5}\,/\,2$

D. straight line whose slope is -2/3.

Answer: C

5. If f(a+b+1-x)=f(x), for all x where a and b are fixed positive

real numbers, the $rac{1}{a+b} \int_a^b x(f(x)+f(x+1))\,\mathrm{d}x$ is equal to :

A.
$$\int_{a-1}^{b-1} f(x) dx$$

B. $\int_{a+1}^{b+1} f(x+1) dx$
C. $\int_{a-1}^{b-1} f(x+1) dx$
D. $\int_{a+1}^{b+1} f(x) dx$

Answer: D

6. If distance between the foci of an ellipse is 6 and distance between its

directionces is 12, then length of its latus rectum is

A. $2\sqrt{3}$

B. $\sqrt{3}$

C. $3/\sqrt{2}$

D. $3\sqrt{2}$

Answer: D

Watch Video Solution

7. The logical statement $(p
ightarrow q) \lor (q
ightarrow \ au p)$ is :

A. ~p

B.p

C. q

D. ~q

Answer: A

8. Find the greatest value of k for which $49^k + 1$ is a factor of $1 + 49 + 49^2 \dots (49)^{125}$

A. 32

B. 60

C. 65

D. 63

Answer: D

Watch Video Solution

9. The vector $\overrightarrow{a} = \alpha \hat{i} + 2\hat{j} + \beta \hat{k}$ lies in the plane of the vectors $\overrightarrow{b} = \hat{i} + \hat{j}$ and $\overrightarrow{c} = \hat{j} + \hat{k}$ and bisects the angle between \overrightarrow{b} and \overrightarrow{c} . Then which one of the following gives possible values of $\alpha \text{ and} \beta$? (1) $\alpha = 2, \beta = 2$ (2) $\alpha = 1, \beta = 2$ (3) $\alpha = 2, \beta = 1$ (4) $\alpha = 1, \beta = 1$

A.
$$a \cdot i + 3 = 0$$

B. $a \cdot k + 4 = 0$
C. $a \cdot i + 1 = 0$
D. $a \cdot k + 2 = 0$

Answer: D

Watch Video Solution

10.

If
$$y = \sqrt{\frac{2(\tan \alpha + \cot \alpha)}{1 + \tan^2 \alpha} + \frac{1}{\sin^2 \alpha}}$$
 when $\alpha \in \left(\frac{3\pi}{4}, \pi\right)$ then find $\frac{dy}{d\alpha}$
A. $-\frac{1}{4}$
B. $\frac{4}{3}$
C. 4
D. -4

Answer: C

11. If y = mx + 4 is a tangent to both the parabolas, $y^2 = 4x$ and $x^2 = 2by$, then b is equal to :

 $\mathsf{A.}-64$

B. 128

C. - 128

D. - 32

Answer: C

Watch Video Solution

12. Let lpha be a root of the equation $x^2+x+1=0$ and the matrix

$$A=rac{1}{\sqrt{3}}egin{bmatrix} 1&1&1\ 1&lpha&lpha^2\ 1&lpha^2&lpha^4 \end{bmatrix}$$

then the matrix A^{31} is equal to :

A. A

 $\mathsf{B}.\,A^2$

 $\mathsf{C}.\,A^3$

D. I_3

Answer: C

Watch Video Solution

13. If
$$g(x) = x^2 + x + x - 1$$
 and $g(f(x)) = 4x^2 - 10x + 5$ then find
 $f\left(\frac{5}{4}\right)$
A. $-\frac{3}{2}$
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. $\frac{3}{2}$

Answer: B

14. If α and β are the roots of equation (k+1) $\tan^2 x - \sqrt{2}\lambda$, $\tan = 1 - k$ and $\tan^2(\alpha + \beta) = 50$. Find the value of λ A. $5\sqrt{2}$ B. $10\sqrt{2}$ C. 10 D. 5

Answer: C

Watch Video Solution

15. Let P be a plane passing through the points (2,1,0) (4,1,1) and (5,0,1) and R be any point (2,1,6). Then the image of R in the plane P is :

A. (6,5,2)

B. (6,5,-2)

C. (4,3,2)

D. (3,4,-2)

Answer: B

Watch Video Solution

16. Let y=f(x) is a solution of differential equation $e^y \left(rac{dy}{dx} - 1
ight) = e^x$ and

f(0)=0 then f(1) is equal to

- A. 1/3
- B. 3/2
- C. 2/3
- D. 4/3

Answer: C

17. Let the function, $f: [-7, 0] \rightarrow R$ be continuous on [-7, 0] and differentiable on (-7, 0). If f(-7) = -3 and $f'(x) \leq 2$, for all $x \in (-7, 0)$, then for all such functions f, f(-1) + f(0) lies in the interval :

A. [-6, 20]

B. $(-\infty, 20]$

C. $(-\infty, 11]$

D. [-3, 11]

Answer: B

View Text Solution

18. Let y=f(x) is a solution of differential equation $e^y \left(\frac{dy}{dx} - 1
ight) = e^x$ and

f(0)=0 then f(1) is equal to

A. $\log_e 2$

 $\mathsf{B.}\,2e$

 $\mathsf{C.2} + \log_e 2$

 $\mathsf{D.1} + \log_e 2$

Answer: D

Watch Video Solution

19. Five numbers are in A.P., whose sum is 25 and product is 2520. If one of these five numbers if $-\frac{1}{2}$, then the greatest number amongst them is :

A. 16

B. 27

C. 7

D. 21/2

Answer: A

20. If the system of linear equations

2x + 2ay + az = 0

2x + 3by + bz = 0

2x + 4cy + cz = 0

where a,b,c $\ \in \ R$ are non - zero and distinct , has a non-zero solution,

then :

A. a + b + c = 0

B. a,b,c are in A.P.

C.
$$\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$$
 are in A.P.

D. a,b,c are in G.P.

Answer: C

21.
$$\lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{-x/2} - 3^{1-x}}$$
 is equal to ______
Watch Video Solution
22. If the variance of the first n natural numbers is 10 and the variance of the first m even natural numbers is 16, then $m + n$ is equal to ______.
Watch Video Solution
23. If sum of all the coefficient of even powers in $(1 - x + x^2 - x^3 \dots x^{2x})(1 + x + x^3 \dots + x^{2n})$ is 61 then n is equal to
Watch Video Solution
24. If $f(x)=|2-|x-3||$ is non differentiable in $X \in S$. Then value of $\sum_{x \in S} (f(f(x)))$ is

25. Let A(1, 0), B(6, 2) and $C\left(\frac{3}{2}, 6\right)$ be the vertices of a triangle ABC. If P is a point inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then the length of the line segment PQ, where Q is the point $\left(-\frac{7}{6}, -\frac{1}{3}\right)$, is _____.