

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

LIMITS AND CONTINUITY

Illustration

1. Evaluate
$$\lim_{x\to 2} \frac{x^2+x+2}{x^3+1}$$

Watch Video Solution

2. Evaluate
$$\lim_{x \to 2} \frac{3 + \sin x}{\cos x}$$

- **3.** Evaluate $\lim_{x o 1} \, rac{x^3-1}{x^2-1}$
 - Watch Video Solution

- **4.** Evaluate $\lim_{x \to a} \frac{\sqrt{4a+3x}-\sqrt{x+6a}}{\sqrt{2a+5x}-\sqrt{3a+4x}}$
 - Watch Video Solution

- 5. Evaluate $\lim_{x \to 0} \frac{a^{\sin x} 1}{x \cos x}$
 - Watch Video Solution

- **6.** To find $\lim_{x o 0} \left(1 + \left(x^2 + 3x\right)\right)^{1/\sin x}$
 - Watch Video Solution

7. What is wrong with the following application of L'Hopital's rule?

$$\lim_{x
ightarrow 1} \, rac{x^3+3x-}{2x^2+x-}$$

8. What is wrong with the following application of L'Hopital's rule?

9. What is wrong with the following application of L'Hopital's rule?

$$\lim_{x\, o\,0\,+}\,\left(\sin x
ight)^x$$

4/r

$$\lim_{x o 0} \left(1 - 3x
ight)^{4/x}$$

10. What is wrong with the following application of L'Hopital's rule?

lim	$\left(1+x\right)^{1/x}-$	e
$x \rightarrow 0$	\overline{x}	

11.
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
, $\lim_{n \to \infty} \frac{1}{n^2}$

- **12.** To show that $\lim_{x \to 1} \sin \frac{1}{x-1}$ does not exist.
 - Watch Video Solution

- 13. To show $\lim_{x \to 0} x \sin \frac{1}{x} = 0$.
 - Watch Video Solution

- 14. Find $\lim_{x\to 0+} \frac{|\mathbf{x}|}{x}$
 - Watch Video Solution

15. Examine the continuity at origin $f(x) = \left\{egin{array}{cc} rac{|{
m x}|}{x} & ,x
eq 0 \ 1 & ,x = 0 \end{array}
ight.$

Watch Video Solution

Solved Examples Single Correct Answer

1. Let
$$f(x) = \left\{egin{array}{ll} ext{x-}| ext{x}| & ,x
eq 0 \ 1 & ,x = 0 \end{array}
ight.$$
 then

A.
$$\lim_{x o 0+} f(x) = 1$$

B.
$$\lim_{x \to 0-} f(x) = 0$$

C.
$$\lim_{x \to 0+} f(x) \neq \lim_{x \to 0-} f(x)$$

D.
$$\lim_{x \to 0+} f(x)$$
 does not exist

Answer: C

2. Let
$$f(x)=\left[\frac{\sin x}{x}\right], x \neq 0$$
 , where [.] denotes the greatest integer function then $\lim_{x \to 0} f(x)$

A. does not exist

B. is equal to 1

C. is equal to 0

D. $\lim_{x\to 0+} f(x)=1$

Answer: C

Watch Video Solution

3.
$$(\lim)_{x\stackrel{\longrightarrow}{\infty}} rac{{(x+1)}^{10}+{(x+2)}^{10}+{+(x+100)}^{10}}{x^{10}+10^{10}} isequa < o$$
 (b) 1 (c) 10 (d) 100

A. 100

B. 0

C. 1

D. 10

Answer: A

Watch Video Solution

- **4.** $\lim_{x o 1} \left(rac{1}{1-x} rac{3}{1-x^3}
 ight)$ is equal
 - A. 1
 - B. 1
 - C. 2
 - D. $-\frac{1}{2}$

Answer: B

5.
$$\lim_{x \to \pi} \frac{\sin 3x}{\sin 2x}$$
 is equal to

$$\mathsf{A.}\;\frac{3}{2}$$

$$\mathrm{D.}-\frac{3}{2}$$

Answer: D

Watch Video Solution

6. If
$$f(x) = egin{cases} mx^2 + x + n & ,x < 0 \ nx + m & ,0 \leq x \leq 1 \ 2nx^3 + x^2 - 2x + m & ,x > 1 \end{cases}$$

and $\lim_{x o 0} f(x)$ and $\lim_{x o 1}$ f(x) exist then

A. m=2,n=1

Answer: D

Watch Video Solution

7. Let
$$f(x) = \begin{cases} -2\sin x &, & ext{if} x \leq -\frac{\pi}{2} \\ A\sin x + B &, & ext{if} -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \cos x &, & ext{if} x \geq \frac{\pi}{2} \end{cases}$$

Then

Answer: B

8. The function $f(x) = \frac{x^2-1}{x^3-1}$ is not defined for x=1. The value of f(1) so

A.
$$\frac{2}{3}$$

B.
$$\frac{1}{3}$$

D. 0

Answer: A

9. Let
$$y=-rac{2^{rac{1}{x}}-1}{2^{rac{1}{x}}\perp 1}$$
 , then

A.
$$\lim_{x o 0}\,y=\,-\,1$$

B.
$$\lim_{x \to 0} y = 1$$

C.
$$\lim_{x \to 0+} y = -1$$

D.
$$\lim_{x o 0+} y = \lim_{x o 0-} y$$

Answer: C

Watch Video Solution

- **10.** The value of $\lim_{x\to\infty} \frac{x^6}{6^x}$ is
 - A. 1
 - B. 0
 - C. -1
 - D. not a finite number

Answer: B

View Text Solution

Solved Examples Level 1 Single Correct Answer

1.
$$\lim_{x o \infty} \ \left(rac{x+1}{x+2}
ight)^{2x+1}$$
 is

B. $e^{\,-\,2}$

A. e

C. e^{-1}

D. 1

Answer: B

Watch Video Solution

A. 1/6

B. - 1/12

D.1/3

C.2/3

Answer: B

3.
$$\lim_{x \to 1} \frac{1 + \log x - x}{1 - 2x - x^2}$$
 equals

A. 1

В. О

 $\mathsf{C.}-1$

D. -1/2

Answer: B

Watch Video Solution

4. $\lim_{x \to 0} \frac{\tan x - x}{x^2 \tan x}$ equals

A. 1/3

 $\mathsf{B.}\,2/3$

 $\mathsf{C.}\,1/2$

Answer: A

Watch Video Solution

- **5.** The value of $\lim_{n o\infty} \left(rac{1}{1-n^4}+rac{8}{1-n^4}+...+rac{n^3}{1-n^4}
 ight)$ is
 - A. 1/4
 - B.1/8
 - $\mathsf{C.}\,1/2$
 - D. none of these

Answer: D

Watch Video Solution

6. $\lim_{x \to \pi/3} \frac{2\sin(x - \pi/3)}{1 - 2\cos x}$ is

A.
$$11/4$$
B. $3/4$
C. $1/2$

7. $\lim_{x \top i/4} \frac{1-\cot^3 x}{2-\cot x-\cot^3 x}$, is

A. $1/\sqrt{2}$

 $\mathrm{B.}\,2/\sqrt{3}$

C.2/3

D.1/3

Answer: B

D. none of these

Answer: B

8.
$$\lim_{x \to 1}$$

8.
$$\lim_{x \to 1} \left[\left(\frac{4}{x^2 - x^{-1}} - \frac{1 - 3x + x^2}{1 - x^3} \right)^{-1} + 3 \frac{x^4 - 1}{x^3 - x^{-1}} \right]$$

A. 3

B. 2

C. 4

D.28/3

Answer: A

Watch Video Solution

9.
$$\lim_{x \to 3} \frac{\sqrt{1 - \cos 2(x - 3)}}{x - 3}$$

A.
$$=\sqrt{2}$$

B. does not exist

$$C. = 1$$

D.
$$= -\sqrt{2}$$

Answer: B

Watch Video Solution

10.

 $f{:}\,R o [0,\infty)$ be such that $\lim_{x o 5}\,f(x)$ exists and $\lim_{x o 5}\,rac{\left[f(x)
ight]^2-9}{\sqrt{|x-5|}}$.

is equal to:

A. 0

B. 1

C. 2

D. 3

Answer: D

Watch Video Solution

Let

11. If
$$f(x)=\left\{egin{array}{c} rac{\sin{(1+\lfloor x \rfloor\,)}}{\lfloor x \rfloor} ext{for}[x]
eq 0 \ ext{for} \ \lceil x
ceil -0 \end{array}
ight.$$
 where $[x]$ denotes the greatest

integer not exceeding x, then
$$\lim_{x \to 0^-} f(x) =$$

$$C. -1$$

Answer: B

12. Let
$$f(x)=egin{cases} x\sin\left(rac{1}{x}
ight)+\sin\left(rac{1}{x^2}
ight) &; x
eq 0 \\ 0 &; x=0 \end{cases}$$
 then $\lim_{x o\infty}\,f(x)$ is equal to

$$B. -1/2$$

C. 1

D. none of these

Answer: C

Watch Video Solution

13. which of the following limits equal to $\frac{1}{2}$: (A)

$$\lim_{n o \infty} \ \left(rac{1}{1.3} + rac{1}{3.5} + ... + rac{1}{(2n-1)(2n+1)}
ight)$$

A. 1/4

B.1/2

C. 1

D. none of these

Answer: B

14. If $\lim_{x o 0} \left(1 + ax
ight)^{b/x} = e^4$, where a and b are natural numbers then

B. a=8,b=4

C. a=16,b=8

D. none of these

Answer: D

Watch Video Solution

15. $\lim_{x o 0} \, rac{a^x - 1}{\sqrt{a + x} - \sqrt{a}}$ is

A. $2\sqrt{a}\log a$

B. $\sqrt{a}\log a$

C. log a

D. none of these

Answer: A

Watch Video Solution

16. $f(x)=3x^{10}-7x^8+5x^6-21x^3+3x^2-7$, then is the value of $\lim_{h o 0}rac{f(1-h)-f(1)}{h^3+3h}$ is

- A. 50/3
- B. 22/3
- C. 13
- D. none of these

Answer: D

Watch Video Solution

17. $\lim_{x o 0}rac{e^{x^2}-\cos x}{x^2}isequal o$ " (a) 3/2 (b) 1/2, (c) 2/3, (d) none of these

A.
$$1/2$$

B.3/2

C.2/3D. 2

Answer: B

Watch Video Solution

18. Let $f(x) = \langle x \rangle^*$, where $\langle x \rangle^*$ is the distance from x to the integer nearest to x then $\lim_{x \to 2} f(x)$ is

A. 2

B. 1

C. 0

D. none of these

Answer: C

19.
$$\lim_{x \to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$$
 is equal to

A.
$$1/2$$

$$D. -1/4$$

Answer: C

20.
$$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$$
 is equal to

$$A. - \pi$$

$$\mathsf{B.}\,\pi$$

 $\mathsf{C}.\,\pi/2$

D. 1

Answer: B

Watch Video Solution

- **21.** Let f(x)=sgn (sgn (sgn x)). Then $\lim_{x\to 0}$ f(x) is
 - A. 1
 - B. 2
 - C. 0
 - D. none of these

Answer: D

22.
$$\lim (x \to a_-) \left\{ \frac{|x|^3}{a} - \left[\frac{x}{a}\right]^3 \right\}, (a < 0), \text{ where } [x] \text{ denotes the }$$

greatest integer less than or equal to \boldsymbol{x} is equal to:

A.
$$a^2 - 3$$

B.
$$a^2 - 1$$

$$\mathsf{C}.\,a^2$$

D. none of these

Answer: C

Watch Video Solution

23. $\lim_{x\to 0} \left\{ \frac{1+\tan x}{1+\sin x} \right\}^{\operatorname{cosec} x}$ is equal to

A. e

B. e^{-1}

C. 1

D. none of these

Answer: C

Watch Video Solution

- **24.** $\lim_{n o \infty} \ (6^n + 5^n)^{\frac{1}{n}}$ is equal to -
 - A. 6
 - B. 5
 - C.5/6
 - D. e

Answer: A

Watch Video Solution

25. If $f(x)=\left(rac{x^2+5x+3}{x^2+x+2}
ight)^x$ then $\lim_{x o\infty}\ f(x)$ is equal to

Answer: D

A. $e^{\,-4}$

B. e^3

 $\mathsf{C}.\,e^2$

 $D.e^4$

Watch Video Solution

- **26.** $\lim_{x o \infty} \left[\sqrt{x + \sqrt{x + \sqrt{x}}} \sqrt{x} \right]$ is equal to
 - A. 0
 - B.1/2

C. log 2

- D. none of these
- **Answer: B**

27. If
$$\left(\ \lim \ \right)_{x \, \rightarrow \, -a} \frac{x^9 \, + a^9}{x + a} 9, \,$$
 find the real value of a .

A.
$$-7$$

C. 7

$$B.-1$$

Answer: B

Watch Video Solution

than or equal to x . Then, for any integer m

28. Let f(x) = [x] + [-x], where [x] denotes the greastest integer less

A. f is continuous at x=m

B. $\lim_{x \to m+}$ f(x) exists and is equal to f(m)

C. $\lim_{x \to m} f(x)$ exists but is not equal to f(m)

D. f is differentiable at x=m

Answer: C

Watch Video Solution

29. Let f(x) be a continuous function defined for $1 \le x \le 3$. If f(x) takes rational values for all x and f(2) = 10 then the value of f(1.5) is :

A. 8

$$\mathsf{B.}\; \frac{f(1)+f(3)}{3}$$

C. 20

D. none of these

Answer: D

30. Let f(x)=
$$\left\{ egin{array}{ll} |x|\cos(1/x)+9x^2 & x
eq 0 \ k & x=0 \end{array}
ight.$$

then f is continuous if the value k is

D. none of these

Answer: C

Watch Video Solution

that f is continuous at $x=\pi/4$ is

31. If f(x)=tan $(\pi/4-x)/\cot 2x$ for $x
eq \pi/4$. The value of $f(\pi/4)$ so

- A. 1/3
 - B.1/2
 - C.1/4

Answer: B

Watch Video Solution

- **32.** Let a function f be defined by $f(x) = \frac{x |x|}{x}$ for $x \neq 0$ and f(0) = 2. Then f is
 - A. continuous nowhere
 - B. continuous everywhere
 - C. continuous for all x except x = 1
 - D. continuous for all x except x=0

Answer: D

View Text Solution

33. If f(x) is a continuous function satisfying f(x)f(1/x) = f(x) + f(1/x) and f(1)

34. The function $f(x)=(x-1)^{rac{1}{(2-x)}}$ is not defined at x = 2. The value of

> 0 then $\lim_{x o 1}$ f(x) is equal to

A. 2

B. 1

C. 3

D. none of these

Answer: A

Watch Video Solution

f(2) so that f is continuous at x = 2 is

A. 1

B. e

 $\mathsf{C}.\,1/e$

Answer: C

Watch Video Solution

35. Let $f(x)=\frac{x+x^2+\ldots\ldots+x^n-n}{x-1}, x\neq 1$, then value of f(1) so that f is continuous is (A) n (B) $\frac{n(n-1)}{2}$ (C) $\frac{n(n+1)}{2}$ (D) $\frac{n+1}{2}$

A. n

B. $\frac{n+1}{2}$

 $\mathsf{C.}\,\frac{n(n+1)}{2}$

D. $\frac{n(n-1)}{2}$

Answer: C

36. If f(u) $=\frac{1}{u^2+u-2}$, where $u=\frac{1}{x-1}$, then the points of discontinuity of f are x =

B. 1,-2

C. 1,1/2,2

D. none of these

Answer: C

37.

Watch Video Solution

 $f(x) = [x] ext{ and } \phi(x) = \left\{0, x \in I ext{ and } x^2, x \in R - I[.\] = ext{ G.I.F}
ight.$

f(x) and $\phi(x)$ be defined

by

A. g is continuous at x=1

Let

B. f is continuous at x=2

C. g o f is a continuous function

D. f o g is a continuous function

Answer: C

Watch Video Solution

38. If a,b are chosen from $\{1,2,3,4,5,6,7\}$ randomly with replacement.

The probability that $\lim_{x o 0} \left(rac{a^x + b^x}{2}
ight)^{2/x} = 7$ is

A.
$$1/7$$

 $\mathsf{B.}\,2\,/\,49$

 $\mathsf{C.}\,4/7$

D. 4/49

Answer: B

39. The value of $\lim_{x o \pi/2} rac{\cot x - \cos x}{\left(\pi - 2x
ight)^3}$ is

A.
$$\frac{1}{16}$$

$$\mathsf{B.}\;\frac{1}{8}$$

$$\mathsf{C.}\ \frac{1}{4}$$

D. $\frac{\pi}{2}$

Answer: A

Watch Video Solution

40. If $\lim_{x\to 0} \frac{\{(a-n)nx-\tan x\}\sin nx}{x^2}=0$, where n is non-zero real number, then a is equal to

$$\operatorname{B.}\frac{n}{n+1}$$

$$\mathsf{C}.\,n$$

Answer: D

Watch Video Solution

41. Find derivative of $\tan 3x$ by first principle

Watch Video Solution

42. The value of
$$\lim_{x o 0} rac{e^{nx} - \left(1 + nx + rac{n^2}{2}x^2
ight)}{x^3} (n > 0)$$
 is

A.
$$\frac{n^2}{6}$$

$$\frac{6}{6}$$

C.
$$\frac{n^3}{6}$$

D.
$$1/6$$

Answer: C

43. Let
$$f(x)=rac{\left(e^x-1
ight)^{2n}}{\sin^n(x/a)\left(\log(1+(x/a))
ight)^n}$$
 for $x
eq 0$. If $f(0)=16^n$

and f is a continuous function, then the value of a is

Answer: D

44. Let
$$f(x)=egin{cases} x+a & ,x<0 \ |x-1| & ,x\geq 0 \end{cases}$$
 and $g(x)=egin{cases} x+1 & , ext{ if } \ x<0 \ |x-1|^2+b & ,x>0 \end{cases}$ If gof is continuous $(a>0)$ then

Answer: C

Watch Video Solution

45. If f:R \to R is function defined by f(x) = $[x]^3 \cos\left(\frac{2x-1}{2}\right)\pi$, where [x] denotes the greatest integer function, then f is :

A. discontinuous only at x=0

B. discontinuous only at non-zero integral value of x

C. continuous only at x=0

D. continuous for every real x.

Answer: D

46. If
$$\lim_{x\to 0}\left[1+x\log(1+b^2)\right]^{\frac{1}{x}}=2b\sin^2\theta, b>0$$
 and $\theta\in(-\pi,\pi]$, then the value of θ is

A.
$$\pm \frac{\pi}{4}$$

B.
$$\pm \frac{\pi}{3}$$
C. $\pm \frac{\pi}{6}$

D.
$$\pm \frac{\pi}{2}$$

Answer: D

Watch Video Solution

47. Let $f \colon R o [0,\infty)$ be such that $\lim_{x\, o\,3}\,\mathsf{f}(\mathsf{x})$ exists and $\lim_{x o 3} rac{\left(f(x)
ight)^2 - 4}{\sqrt{|x-3|}} = 0$. Then $\lim_{x o 3} f(x)$ equals

A. 0

B. 1

C. 2

D. 3

Answer: C

Watch Video Solution

48. The value of $\lim_{x\to 0}\left(\left[\frac{11\mathrm{x}}{\mathrm{sinx}}\right]+\left[\frac{21\mathrm{\,sinx}}{x}\right]\right)$, where [x] is the greatest integer less than or equal to x is

A. 32

B. 31

C. 11

D. 21

Answer: B

49. If $\lim_{x o 0} \frac{x^n - \sin^n x}{x - \sin^n x}$ is nonzero and finite , then n in equal to

A. 1

B. 4

C. 2

D. 3

Answer: A

Watch Video Solution

50. Value of $\lim_{n o \infty} \sum_{r=1}^n an^{-1} \left(rac{1}{2r^2}
ight)$ is

A. $\pi/8$

B. $\pi/2$

 $C. \pi/4$

Answer: C

Watch Video Solution

51. If f is a continuous function and $x^3-\left(\sqrt{5}+1\right)x^2+\left(\sqrt{5}-2+f(x)\right)x+2\sqrt{5}-\sqrt{5}f(x)=0$ satisfies for $x\in R$ then $f\left(\sqrt{5}\right)$ is equal to

A.
$$2-\sqrt{5}$$

$$B.5+\sqrt{5}$$

$$\mathsf{C.}\,3-\sqrt{5}$$

D. can not be determined

Answer: D

52. If x =u is a point of discontinuity of f(x)= $\lim_{n\to\infty}\cos^{2n}x$, then the value of cos u is

A. 0

٦. ر

 $\mathsf{B.}\,1/2$

C. $(-1)^n$

D. 1

Answer: C

Solved Examples Level 2 Single Correct Answer

1. The value of $\lim_{x o \beta} rac{1-\cos(ax^2+bx+c)}{{(x-eta)}^2}$ where lpha,etaare the distinct roots of $ax^2+bx+c=0$ is

A.
$$\left(a-b\right)^2$$

B. $\frac{\left(\alpha-\beta\right)^2}{2}$

C. $\frac{1}{2}a^2(\alpha-\beta)^2$

D. none of these

Answer: C

D. 4

Answer: C

Watch Video Solution

2. The integer '
$$n$$
' for which $(\lim_{x \to 0})_{x \to 0} \frac{(\cos x - 1)(\cos x - e^x)}{x^n}$ is a finite

A. 1

3.
$$f(x) = \lim_{x \to \infty} \frac{x^{2n} - 1}{x^{2n} + 1}$$

A. f(x)=1 for |x|=1

$$\mathtt{B.}\, f(x) = \left\{ \begin{aligned} 1 & \text{ for } |x| > 1 \\ -1 & \text{ for } |x| < 1 \end{aligned} \right.$$

$$(1 \quad for |m| < 1$$

C.
$$f(x) = \left\{egin{array}{ll} 1 & \operatorname{for} |x| > 1 \ -1 & \operatorname{for} |x| \geq 1 \end{array}
ight.$$

D. f is not defined for any value of x

Answer: B

Watch Video Solution

- **4.** If $(\lim)_{x \to a} \frac{a^x x^a}{x^x a^a} = -1$ and a > 0, then find the value of a.
 - **A.** 1
 - B. O
 - C. e

D. none of these

Answer: A

Watch Video Solution

5. The value of $\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2} \Big)^{\frac{1}{x^2}}$ equals

A.
$$e^{1/2}$$

B.
$$e^{1/4}$$

C.
$$e^{1/3}$$

D.
$$e^{1/12}$$

Answer: D

Watch Video Solution

6. If $\lim_{x o \infty} \left\{ rac{x^2+1}{x+1} - (ax+b)
ight\} = 0$, then find the values of a and b.

B. a=1,b=-1

C. a=-1,b=1

D. a=2,b=-2

Answer: B

Watch Video Solution

7. Let $f(x)=g(x)rac{e^{1/x}-e^{-1/x}}{e^{1/x}+e^{-1/x}}$, where g is a continuous function then

 $\lim_{x \to 0} f(x)$ exist if

A. g(x)=x+2

B. $q(x) = x^2 + 4$

C. g(x) = xh(x), h(x) is a polynomial

D. g(x) is a constant function

Answer: C

8. The value of f(0), so that the function

$$f(x) = rac{\sqrt{a^2 - ax + x^3} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$

become continuous for all x, is given by

- A. $a\sqrt{a}$
- B. \sqrt{a}
- $\mathsf{C.}-\sqrt{a}$
- D. $-a\sqrt{a}$

Answer: C

Watch Video Solution

9. If $f(x)=rac{2-\left(256-7x
ight)^{1/8}}{\left(5x+32
ight)^{1/5}-2}(x
eq0)$, then for f to be continuous on

[-1,1], f(0) is equal to

A. -1

B. 1

 $C. 2^{6}$

D. none of these

Answer: D

Watch Video Solution

10. Let $f(x)=rac{x(1+a\cos x)-b\sin x}{x^3}, x eq 0 \,\, ext{and}\,\,\, f(0)=1.$ The value of a and b so that f(x) is a continuous function are.

A. 5/2, 3/2

B. 5/2, -3/2

C. -5/2, -3/2

D. none of these

Answer: C

11.
$$f(x)=\left\{egin{array}{ll} ig(3/x^2ig)\sin2x^2 & ext{if} x<0 \ rac{x^2+2x+c}{1-3x^2} & ext{if} x\geq0 \end{array}
ight.$$
 then in order that f be continuous

at x=0, the value of c is

A. 2

B. 4

C. 6

D. 8

Answer: C

Watch Video Solution

12. The function $f(x)=(\sin 2x)^{\tan^2 2x}$ is not defined at $x=\frac{\pi}{4}.$ The value of $f(\pi/4)$, so that f is continuous at $x=\pi/4$, is

A.
$$\sqrt{e}$$

B. 1

C. 2

D. none of these

Answer: D

Watch Video Solution

13. Let $f(x)=rac{\log \left(1+x+x^2
ight)+\log \left(1-x+x^2
ight)}{\sec x-\cos x}, x
eq 0$.Then the value of f(0) so that f is continuous at x=0 is

A. 1

B. 0

C. 2

D. none of these

Answer: A

14. The value of k(k>0) for which the function $f(x)=rac{(e^x-1)^4}{\sin(x^2/k^2)\log\{1+(x^2/2)\}},\,x
eq 0$, f(0) =8 may be continuous function is

- A. 1
- B. 4
- C. 2
- D. 3

Answer: C

Watch Video Solution

- **15.** The function $f(x) = rac{\log(1+ax) \log(1-bx)}{x}$ is not defined at x =
- 0. The value which should be assigned to f at x = 0 so that it is continuous
 - A. a-b

at x = 0, is

B. a+b

C. log a + log b

D. none of these

Answer: B

Watch Video Solution

16. Let $f(x)=rac{\log \left(1+x^2 ight)}{x^4-26x^2+25}$ Then 1) f is continuous on ([6,10](2) f is continuous on [-2,2](3) f is continous on [-6,6]4) f is continuous on [1,])

A. f is continuous at on [6,10]

B. f is continuous on [-2,2]

C. f is continuous on [-6,6]

D. f is continuous on [1,7]

Answer: A

17. Let $f(x)=rac{\sin\left(\pi\cos^2x
ight)}{x^2}, \, x
eq 0$. The value of f(0) so that f is a continuous function is

A.
$$-\pi$$

B.
$$\pi$$

$$\mathsf{C}.\,\pi/2$$

Answer: B

View Text Solution

18. Let $f(x)=egin{cases} rac{e^{lpha x}-e^x}{x^2} & x
eq 0 \ 3/2 & x=0 \end{cases}$ The value of lpha so that f is a continuous

function is

C. 4

D. 2

Answer: D

Watch Video Solution

19. Let f be a continuous function on R such that

$$f(1/2^n)=(\sin e^n)e^{-n^2}+rac{2n^2}{n^2+1}$$
 .Then the value of f(0) is

A. 1

B.1/2

C. 2

D. none of these

Answer: C

20. Let $f(x) = \lim_{n o \infty} \ rac{\sin x}{1 + \left(2 \sin x
ight)^{2n}}$ then f is discontinuous at

A.
$$\pi$$

B.
$$\pi/3$$

C.
$$\pi/4$$

D. $\pi/6$

Answer: D

- 21. Let f be a non-zero continuous function satisfying f(x+y)=f(x)f(y) for all,
- $x,y \in R$. If f(2)=9 then f(3) is
 - A. 1
 - B. 27
 - C. 9
 - D. none of these

Answer: B

Watch Video Solution

- **22.** Let ${\sf f}$ be a function on [0,1] defined by $f(x)=(1/2)^n, (1/2)^{n+1} \le x < (1/2)^n, {\sf n=0,1,2,...}$ Then
 - A. f is a continuous function
 - B. f is continuous except x=1/2
 - C. f is continuous except for finitely many points
 - D. The sets of points where f is not continuous is infinite.

Answer: D

View Text Solution

If
$$f(x)$$
 is

23. If
$$f(x)$$
 is continuous at $x=0$, where

$$f(x)=\left\{egin{array}{l} rac{\sin{(\,a+1\,)\,x+\sin{x}}}{x},\,{
m for}\;\;x<0 \ c,\,{
m for}\;\;x=0 \ rac{\sqrt{x+bx^2}-\sqrt{x}}{b\sqrt{x}},\,{
m for}\;\;x>0 \end{array}
ight.$$
 , then

C. a=-3/2 , b
$$\varepsilon$$
 R , c=-1/2

D. none of these

Answer: C

- **24.** Let $f(x) = \left\{ \frac{72^x 9^x 8^x + 1}{\sqrt{2} \sqrt{1 + \cos x}}; x \neq 0 \text{ and } k \log 2 \log 3; x = 0 \text{ .If f} \right\}$
- is continuous function at x=0 , then k=

A.
$$\sqrt{2}$$

B. 24

C. $18\sqrt{3}$

D. $24\sqrt{2}$

Answer: D

Watch Video Solution

25. Let f be a function defined on R by $f(x) = [x] + \sqrt{x - [x]}$ then

A. f is not continuous at every $x \in I$

B. f is not continuous at every $x \in R ext{-} I$

C. f is a continuous function

D. none of these

Answer: B

26. The function $f\colon R ext{-}\{0\} o R$ given by $f(x)=rac{ an x-x}{x-\sin x}$ can be made continuous at x=0 by defining f(0) as

- **A.** 1
- В. О
- C. 2
- D. 4

Answer: C

- **27.** For $x \neq 1$, f is defined by $f(x) = \frac{1}{\log x} \frac{1}{x-1}$ The value of f(1), so that f is a continous function is
 - A. 1
 - $\mathsf{B.}\;\frac{1}{2}$
 - C. 0

Answer: B

View Text Solution

- **28.** The number of points where $f(x)=\left\{egin{array}{ll} [\cos\pi x] & ,0\leq x\leq 1 \\ |2x-3|[x-2] & ,1< x\leq 2 \end{array}
 ight.$
- ([x] is the greatest integer less than or equal to x) is discontinuous is
 - A. 2
 - B. 4
 - C. 3
 - D. 1

Answer: B

29. If
$$f(x)=\left\{egin{array}{ll} x^2+Ax+5 & x\in Q \ 1+x & x\in R extcolor{}{\scriptstyle \sim} Q \end{array}
ight.$$

is continuous at exactly two points, then the possible values of A are in

A.
$$(1, \infty)$$

B. (
$$-3,\infty)$$

$$\mathsf{C}.\left(5,\infty
ight)\cup\left(\,-\infty,\;-3
ight)$$

D.
$$(-\infty, \infty)$$

Answer: C

View Text Solution

30.
$$\lim_{x \to 1} \frac{nx^{n+1} - nx^n + 1}{(e^x - e^2)\sin \pi x}$$

A.
$$rac{n(n+1)}{e^2-e}$$

B.
$$\frac{n}{(e^2-e)\pi}$$

C.
$$rac{n}{(e-e^2)\pi}$$

D.
$$\dfrac{n^2(n+1)}{(e^2-e)\pi}$$

Answer:

Watch Video Solution

Solved Examples Numberical Answer

1. Let
$$f(x)=\dfrac{1-\cos x\sqrt{\cos 2x}}{x^2}, x
eq 0$$
 The value of f(0) so that f is a continuous function is

2. Let
$$f(x)=rac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\tan x}, x
eq 0$$
 Then $\lim_{x o 0}f(x)$ is equal to

3. If $\lim_{x o 0} rac{\sin 2x + a \sin x}{x^3} = b$ then the value of b-2a is equal to

4. Let $f(x)=rac{\sqrt{2}-(\cos x+\sin x)}{1-\sin 2x}, \, x
eq \pi/4$. The value $f(\pi/4)$ so that f is continuous is $\left(\sqrt{2}=1.41\right)$

5. The number of discontinuities of the greatest integer function f(x)=[x-1], $x\in\left(-\frac{11}{2},105\right)$ is equal to

6. If $\lim_{x o 0} rac{axe^x - b\log(1+x)}{x^2} = rac{5}{2}$ then the value of 2a+b is

- 7. $\lim_{x \to 1} \frac{nx^{n+1} nx^n + 1}{(e^x e^2)\sin \pi x}$
 - Watch Video Solution

- **8.** If $\lim_{x o 2^-}rac{ae^{rac{1}{|x+2|}}-1}{2-e^{rac{1}{|x+2|}}}=\lim_{x o 2^+}\sinigg(rac{x^4-16}{x^5+32}igg)$, then a is
 - Watch Video Solution

- **9.** Let f be a continuous function on R satisfying f(x+y) = f(x)f(y) for all x, y
 - $\in R$ and f(1)=4 then f(3) is equal to
 - View Text Solution

- **10.** $\lim_{x \to 0} \tan \left(\frac{\pi}{4} + x \right)^{\frac{1}{x}} =$
 - Watch Video Solution

for x, y > 0, then k is equal to

12. Let
$$0\leq \beta_r\leq 1$$
 and $\sum_{r=1}^k\cos^{-1}\beta_r=rac{k\pi}{2}$ for any $k\geq 1$ and $A=\sum_{r=1}^k(\beta_r)^r$, then $\lim_{x o A}rac{\left(1+x^2
ight)^{1/3}-\left(1-2x
ight)^{1/4}}{x+x^2}$ is equal to

11. Let $f(x) = \lim_{n \to \infty} n^2 \left(x^{1/n^2} - 1\right), x > 0$. If f satisfies f(xy)=4kf(x)+f(y)

13. The value
$$\lim_{x o an^{-1}3}rac{ an^6x-2 an^5x-3 an^4x}{ an^2x-4 an x+3}$$

14. The value of
$$e \left[\lim_{x o 0} \left(\frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x}} + \lim_{x o 1} x^{\frac{1}{1 - x}} \right]$$

15. If
$$\lim_{x\to 1} \left(1+\alpha x+\beta^2 x\right)^{(\gamma/(x-1))=e^3}$$
 then the value of $2\beta\gamma+\alpha\gamma$ is equal to

16. Let $f(x)=rac{\sqrt{3x^2+2}+\sqrt[3]{x^3+3}}{\sqrt[4]{x^4+5}-\sqrt[5]{x^4+6}}$ then $\lim\limits_{x o\infty}$ f(x) is equal to

Exercise Single Correct Answer

1.
$$\lim_{n \to \infty} \frac{1}{n^2}$$
 (1+2+...+n) is equal to

- A. 0
- Α. (
- B. 1
- $\mathsf{C.}\;\frac{1}{2}$
- D. $\frac{1}{4}$

Answer: C

Watch Video Solution

- **2.** $\lim_{n \to \infty} \left[\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} \right] =$
 - A. 0
 - B. $\frac{1}{2}$
 - c. $\frac{1}{3}$
 - D. 1

Answer: D

- 3. $\lim_{x\to 1} \frac{x^m-1}{x^n-1}$ is equal to

B. 1

C. 0

D. $\frac{m-1}{n-1}$

Answer: A

Watch Video Solution

4. $\lim_{lpha
ightarrow 0} rac{\sin(lpha^n)}{\left(\sinlpha
ight)^m} ig(m,n \in I^+ig)$ is equal to

A. 1 if m > n

B. 0 if n > m

C. 1 if > m

D. 1 if m=n

Answer: B

View Text Solution

5.
$$\lim_{x o \infty} \left(1 + \frac{k}{x}\right)^{mx}$$
 is equal to

A.
$$m^k$$

B.
$$e^m$$

C.
$$e^{mk}$$

D.
$$e^{m/k}$$

Answer: C

6.
$$f(x)=\left\{rac{a|x^2-x-2|}{2+x-x^2},x<2 ext{ and } b,x=2 ext{ and } rac{x-[x]}{x-2},x>2 ext{ is}
ight.$$
 continuous at $x=2$ and $[]$ is GLF. then valueof a and b are

Answer: A

Watch Video Solution

7. Test the following functions for continuity

$$2x^5 - 8x^2 + 11$$

(1)
$$\dfrac{2x^5-8x^2+11}{x^4+4x^2+8x^2+8x+4}$$
 (2) $f(x)=\dfrac{3\sin^3x+\cos^2x+1}{4\cos x-2}$

A. R

B. R~{0}

C. R $\sim \{-1\}$

D. R~{-1,-2}

Answer: A

8. Let
$$f(x)=egin{cases} ax-b & ,x\leq 1 \ 3x & ,1< x< 2 \ ext{If f is continuous function then} \ bx^2-a & ,x\geq 2 \end{cases}$$

B. (1,3)

Answer: D

9. If
$$f(x)=egin{cases} \cos^{-1}(\cot x) &, x<rac{\pi}{2} \\ a(x[x]-1) &, x\geqrac{\pi}{2} \end{cases}$$
 The value of a for f to be continuous at $x=rac{\pi}{2}$ is

A.
$$\frac{\pi}{2(\pi-1)}$$

B.
$$\pi-1$$

C.
$$\frac{\pi}{\pi+1}$$

D.
$$\frac{\pi}{\pi-1}$$

Answer: A

View Text Solution

10. Let $f(x)=\left\{egin{array}{l} rac{\sin 4x}{\log{(1+3x)}} & ,x
eq 0 \\ A+1 & ,x=0 \end{array}
ight.$ The value of A for f to be continuous

at x=0 is

A.
$$\frac{2}{3}$$

B.
$$\frac{1}{3}$$

D.
$$\frac{3}{4}$$

Answer: B

Exercise Level 1 Single Correct Answer

1. The value of
$$\lim_{x \to \infty} \ x \left[\tan^{-1} \left(\frac{x+1}{x+2} \right) - \tan^{-1} \left(\frac{x}{x+2} \right) \right]$$
 is

- A. 1
- B. 0
- C.1/2
- D. 1/4

Answer: C

Watch Video Solution

2. Evaluate $\lim_{x o 0} \left(1 + an^2 \sqrt{x}
ight)^{rac{1}{2x}}$

- - A. e
 - B. $e^{1/2}$
 - $\mathsf{C}.\,e^{1/4}$

Answer: B

Watch Video Solution

3. If f(x) is continuous at x=0, where $f(x)=rac{\sin(a+x)-\sin(a-x)}{\tan(a+x)-\tan(a-x)}, x
eq 0$, then f(0)=

A. cos a

B. $\frac{1}{2}\cos a$

 $\mathsf{C.}\cos^2 a$

D. none of these

Answer: D

4.
$$\lim_{x o \pi/6} \frac{\sin(x-\pi/6)}{\sqrt{3}/2-\cos x}$$
 is equal to

D.
$$\sqrt{3}/2$$

Answer: A

Watch Video Solution

5. $\lim_{x \to \pi/2} \frac{\cos x}{\sqrt[3]{(1-\sin x)}}$ is equal to

- A. 1
- B. 2
- C.21/3
- D. none of these

Answer: D

View Text Solution

6. If $x^2+2x^3 \leq x+f(x) \leq x^3-2x^3$ for value of x near 0 then $\lim_{x o 0} \, rac{f(x)}{x}$ is

A.
$$-1$$

B. 0

C. 1

D. none of these

Answer: A

- 7. If $f(x)=rac{\sin^{-1}([x]+x)}{[\mathrm{x}]},[x]
 eq 0$
- =0, [x] = 0 where [x] denotes the greatest integer less than or equal to x,

then $\lim_{x\to 0} f(x)$ is

A. 1

B. - 1

C. 0

D. none of these

Answer: D

View Text Solution

- **8.** The function $f(x) = [x] \cos \left(\frac{2x-1}{2} \right) \pi$ where [] denotes the greatest integer function, is discontinuous
 - A. all x
 - B. all integer points
 - C. no x
 - D. x which is not integer

Answer: C

Watch Video Solution

9. Let $f(y)=\sin\frac{y-a}{2}\tan\frac{\pi y}{2a}, y\neq a$. The value of f(a) so that f is a continuous function is

A.
$$\pi/a$$

$$B.-a/\pi$$

$$\mathsf{C}.\,\pi\,/\,2a$$

D. none of these

Answer: B

View Text Solution

10. Let $f(x) = (1+\sin x)^{\operatorname{cosec} x}$, the value of f(0) so that f is a continuous function is

B.
$$e^{1/2}$$

$$\mathsf{C.}\,e^2$$

Answer: A

Watch Video Solution

11. Let $f(x)=\left\{egin{array}{ll} x+1 & ,x\leq 1 \ 3-ax^2 & ,x>1 \end{array}
ight.$ The value of a so that f is continuous

is

A. 1/2

B. 1

C. 2

D. 3

Answer: B

12. Let
$$f(x) = \left[x^2 + 1\right], (\left[x\right]$$
 is the greatest integer less than or equal to x)`. Ther

A. on [1,3]

B. for all x in [1,3] except four points

C. for all x in [1,3] except seven points

D. for all x in [1,3] except eight points

Answer: D

13. The function
$$y=\sqrt{rac{1}{2}-\cos^2 x}$$
 is not continuous at

A.
$$x=\pi/4$$

B.
$$x=3\pi/4$$

C.
$$x=5\pi/4$$

D. none of these

Answer: D

View Text Solution

- **14.** The number of points at which the function $f(x)=\frac{1}{x-[x]}([.\,])$ denotes, the greatest integer function) is not continuous is
 - A. 1
 - B. 2
 - C. 3
 - D. none of these

Answer: D

15. Let $f(x)=x, x \in Q$, f(x)=1-x, $x \in R \sim Q$ then f is continuous only at x=

A. 1/2

B. 1

C. 0

D. 2

Answer: A

View Text Solution

16. $\lim_{x\to 0} \frac{x\tan 2x - 2x\tan x}{\left(1-\cos 2x\right)^2}$ equal

A. 2

B.-2

 $\mathsf{C.}\,1/2$

 $\mathsf{D.}-1/2$

Answer: C

Watch Video Solution

17. Let $f(x)=rac{\sqrt{1-\cos(x-2)}}{x-2}, x
eq 2$. The $\lim_{x o 2}$ f(x)

A. exists and is equal to $\sqrt{2}$

B. does not exist because $\lim\limits_{x\, o\,2\,+}\,f(x)$ doesn't exist

C. equal to 1

D. doesn't exist because $\lim\limits_{x\, o\,2\,+}\,f(x)\,
eq\,\lim\limits_{x\, o\,2\,-}\,f(x)$

Answer: D

View Text Solution

18. The value of f(0) so that the function

$$f(x) = rac{\sqrt{1+x} - (1+x)^{rac{1}{3}}}{x}$$

becomes continuous is equal to

 $\mathsf{C.}\,1/3$

A. 1/6

B.1/4

Answer: A

D. 3

19. The set of all points of continuous of fofof, where f(x) = sgn(x) is

A. R~{0}

B. R ~ {1,0,1}

C. R \sim {-1,1}

Answer: A

D. none of these

20. The set of all points of discontinuity of f(x)=
$$\frac{x-1}{x^3+6x^2+11x+6}$$

A. ϕ

B. {-1}

C. {-1,-2,-3}

D. {1,2,3}

Answer: C

- **21.** The number of continuous functions on R which satisfy $(f(x))^2=x^2$ for $x\in R$ is
 - A. 2
 - B. 4
 - C. 1

D. infinitely many

Answer: B

View Text Solution

- **22.** The value of $\lim_{x o 0} rac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}$ is
 - A. 3
 - B. 4
 - C. 1
 - D. 2

Answer: B

Watch Video Solution

23. $\lim_{x o a^-} rac{\sqrt{x-b} - \sqrt{a-b}}{(x^2-a^2)}, (a>b)$ is

B. 1

Answer: C

Watch Video Solution

A. - 1

24. The value of $\lim_{x o \infty} \left(\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right)$ is

Answer: D

C. $\frac{1}{2a\sqrt{a-b}}$ D. $\frac{1}{4a\sqrt{a-b}}$

A. $\frac{1}{4a}$

 $\mathsf{B.}\; \frac{1}{a\sqrt{a-b}}$

25.
$$\lim_{x \to \infty} \ x^{\frac{3}{2}} \Big(\sqrt{x^3 + 1} - \sqrt{x^3 - 1} \Big)$$

A. 1

B.-1

C. 0

D. none of these

Answer: A

Watch Video Solution

26. The value of f(1) so that f(x)= $\left(e^{x}-e\right)/\left(x-1\right)$ is continuous at x =1 is

A. e^{-1}

 ${\rm B.}\,e^2$

C. $e^{1/2}$

Answer: D

Watch Video Solution

27. The function f(x)=a[x+1]+b[x-1] , $(a\neq 0,b\neq 0)$ where [x] is the greatest integer function, then the condition for which f(x) is continuous at x=1 is

- A. a=2b
- B. a=b
- C. a+b=0
- D. a+2b=0

Answer: C

28. Let $f(x) = [2x^3 - 6]$, where [x] is the greatest integer less than or equal to x. Then the number of points in (1,2) where f is discontinuous is

B. 7

C. 13

D. 12

Answer: C

Watch Video Solution

- - A. f is continuous on [0,2]
 - B. f is continuous on R~ $\{2n, n \in I\}$
 - C. f is continuous on R ~ $\{(2n+1), n \in I\}$

29. Discuss the continuity of f(x), where $f(x) = \lim_{n \to \infty} \left(\sin \frac{\pi x}{2} \right)^{2n}$

D. $\lim_{x o 0+} f(x) = 1$

Answer: C

Watch Video Solution

- **30.** If $f(x)=rac{1}{2}x-1$, then on the interval $[0,\pi]$
 - A. tan f(x) and $\frac{1}{f(x)}$ are both continuous
 - B. tan f(x) and $\frac{1}{f(x)}$ are both discontinuous
 - C. tan f(x) and $f^{-1}(x)$ are both continuous
 - D. tan (f(x)) is continuous but $\frac{1}{f(x)}$ is not

Answer: D

- **31.** If $\lim_{x o 0} \left[\cot(\pi/4 + x)
 ight]^{1/x} = Ae^2$ then the value of A is
 - A. e^2

B. e^{-4}

 $\mathsf{C}.\,e$

D. e^3

Answer: B

View Text Solution

A. f is not continuous at x=0

greatest integer less than or equal to x) then

B. f is a continuous function on [-1/2,1/2]

32. Let $f(x)=rac{[1/2+x]-[1/2]}{x}$, $-1\leq x\leq 2$ and f(0) =O([x] is

C. f is continuous on [-1,0]

D. f is continuous on [0,2]

Answer: B

View Text Solution

- 33. Let f and g functions such that f+g is a continuous function then
 - A. f and g are continuous function
 - B. f or g is a continuous function
 - C. f may be discontinuous but g is continuous
 - D. both f and g may be discontinuous

Answer: D

View Text Solution

- **34.** $\lim_{x \to 0} \frac{\left(1 + x^2\right)^{1/3} \left(1 2x\right)^{1/4}}{x + x^2}$ is
 - A. 2
 - B.1/2
 - C.3/2

D. cannot be determined

Answer: B

View Text Solution

- **35.** The set of all points for which $f(x)=|x||x-1|+\dfrac{1}{-[-x+1-]}$ ([x] is the greatest integer function) is continuous is
 - A. R
 - B. R \sim I
 - C. $R au(I\cup [\,-1,0))$
 - D. none of these

Answer: C

36. Let
$$f(x)=egin{cases} ig(ig(e^{[{
m x}]}-e^{\{{
m x}\}}ig)e^{-x}+Aig) &,x<0 \ rac{2\sin{\{{
m x}\}}}{\tan{\{{
m x}\}}} &,x>0 & {
m The \ value \ of \ A \ so \ that} \ 2 &,x=0 \end{cases}$$

f is continous at x=0 is ([x] is greatest integer function and {x} is the fractional part of x) is

A.
$$e^{-1}$$

B.
$$3-e^{-1}$$

$$\mathsf{C.}\,2-e^{-1}$$

Answer: B

View Text Solution

37. If
$$\lim_{x o 0} \left(rac{\sin 2x}{x^3} + a + rac{b}{x^2}
ight) = 0$$
 then then value of 3a +b is

$$B.-2$$

C. -1

D. 0

Answer: A

View Text Solution

38. For continuous functions f and g on R, let f(a)=4, f'(a)=6, g(a)=2, g'(a)=1.

Then the value of $\lim_{x o a}rac{\sqrt{f(x)g(a)}-\sqrt{g(x)f(a)}}{(x-a)\Big(\sqrt{f(x)g(a)}+\sqrt{g(x)f(a)}\Big)}$

A. 0

B. 3

C.1/4

D.2/3

Answer: C

View Text Solution

39. Let
$$f(x)=\left\{egin{array}{ll} rac{\sqrt{1+ax}-\sqrt{1-ax}}{x} & ,-1\leq x<0 \ rac{2x+1}{x-2} & ,0\leq x\leq 1 \end{array}
ight.$$
 The value of a so f is

A.
$$1/2$$

$$\mathsf{B.}-1/2$$

continuous on [-1,1] is

$$D. - 1$$

Answer: B

Watch Video Solution

Exercise Level 2 Single Correct Answer

1. If
$$lpha$$
 and eta are the roots of the quadratic equation $ax^2+bx+c=0$, then evaluate $\lim_{x o rac{1}{lpha}}\sqrt{rac{1-\cos(cx^2+bx+a)}{2(1-lpha x)^2}}$

$$\mathsf{B.} \; \frac{c}{2\alpha} \bigg(\frac{1}{\alpha} - \frac{1}{\beta} \bigg)$$

$$\mathsf{C.}\,\frac{1}{\beta}\bigg(\frac{1}{\alpha}-\frac{1}{\beta}\bigg)$$

$$\operatorname{D.}\left|\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)\frac{c}{2\alpha}\right|$$

Answer: D

- **2.** Let f be a continuous function satisfying f(x) f(y)=f(x)+f(y)+f(xy)-2 for all
- x,y \in R and f(2)=5 then $\lim_{x o 4} f(x)$ is
 - View Text Solution
- 3. The value of $\lim_{x o \infty} \ \frac{e^{1/x} e^{-1/x}}{e^{1/x} + e^{-1/x}} \tan$ (1/x) is
 - A. 1
 - B. 0

C.	_	1
٠.		_

D. none of these

Answer: B

View Text Solution

- **4.** Let f be a continuous function satisfying f(x+y)=f(x)+f(y) for all x,y $\in \mathbb{R}$ and f(1)=5 then $\lim_{x\to 4} f(x)$ is equal to
 - A. 4

B. 80

C. 0

D. none of these

Answer: D

View Text Solution

5. Let $f(x) = e^x sgn(x+[x])$, where sgn is the signum function and [x]

is the greatest integer function . Then

A.
$$\lim_{x o 0+} f(x) = 0$$

B.
$$\lim_{x \to 0+} f(x) = -1$$

C.
$$\lim_{x o 0+} f(x) = 1$$

D.
$$\lim_{x \to 0-} f(x) = 1$$

Answer: C

View Text Solution

6. The value of $\lim_{x o -4} rac{ an \pi x}{x+4} + \lim_{x o \infty} \left(1 + rac{1}{x^2}
ight)^x$ is

A. greater than 3

B. less than 2

C. equal to 0

D. equal to 1

Answer: A

Watch Video Solution

- **7.** The value of $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{\sin x}{x \sin x}}$ is
 - A. e
 - B. 1
 - $\mathsf{C}.\,e^2$
 - D. 1/e

Answer: D

- **8.** The value of $\lim_{x o 0} rac{(\sin x \tan x)^2 (1 \cos 2x)^4 + x^5}{7(an^{-1} x)^7 + (\sin^{-1} x)^6 + 3\sin^5 x}$ equal to :
 - A. 0

B. 1

C.1/3

D. 2

Answer: C

Watch Video Solution

- **9.** Let f(x)=x-1 and $g(x)=rac{1}{x}.$ Then the set of points where gofogis continuous is
 - A. R~{0}
 - B. R~{1}
 - C. $(-\infty, \infty)$
 - D. $(-\infty, \infty) \sim \{0, 1\}$

Answer: D

10. Let
$$f(x) = \lim_{n \to \infty} \frac{\left[x^2\right] + \left[(2x)^2\right] + ... + \left[(nx)^2\right]}{n^3}$$
 then the set of all points of continuity of f([x] denotes the greatest integer function)

A.
$$(-\infty,\infty)$$
~ $\{0\}$

B.
$$(-\infty,\infty)$$
~ I

$$\mathsf{C}.\,(\,-\infty,\infty)$$

D.
$$(-\infty, \infty) \sim \{0, 1\}$$

Answer: C

View Text Solution

11. If
$$: f(x) = 1, \qquad ... ext{ x is rational} \ = 0, \qquad ... ext{ x is irrational} \ ext{then} : \lim_{x o 0} f(x) =$$

A. f is discontinuous for every real x

B. f is continuous on R

- C. f is continuous at the points where x is rational
- D. f is continuous at the points where x is irrational.

Answer: A

Watch Video Solution

12. Let f(x) be given that $f(x) = \left\{ egin{array}{ll} x & ext{if x is rational} \ 1-x & ext{if x is irrational} \end{array}
ight.$

The number of points at which f(x) is continuous, is

- A. discontinuous at x=1/2
- B. continuous at x=1/2
- C. continuous everywhere
- D. discontinuous everywhere

Answer: B

13. Let $f\!:\!R o R$ be any function. Defining $g\!:\!R o R$ by

$$g(x) = |f(x)| \; ext{ for } \; x o R$$
. Then g, is

A. one-one if f is one-one

B. discontinuous if f is discontinuous

C. continuous if f is continuous

D. onto if f is onto

Answer: C

14. Let f be a function defined on R by

$$f(x) = \lim_{n o \infty} \ rac{\log(3+x) - x^{2n} \sin x}{1 + x^{2n}}$$
 then

A. f is continuous on R

B. f is continuous on R \sim {-1,1}

C. f is continuous on R ~{0}

D. none of these

Answer: B

View Text Solution

- **15.** If $f(x)=\left(rac{x^2+5x+3}{x^2+x+2}
 ight)^x$ then $\lim_{x o\infty}\,f(x)$ is equal to
 - A. e^4
 - ${\rm B.}\,e^3$
 - $\operatorname{C.} e^2$
 - $D. 2^4$

Answer: A

16. Let f(x) be defined for all $\,>x0$ and be continuous. Let ${\sf f}({\sf x})$ satisfies

$$figg(rac{x}{y}igg)=f(x)-f(y)$$
 for all $x,yandf(e)=1$. Then $f(x)$ is bounded (b) $figg(rac{1}{x}igg)\overrightarrow{0}asx\overrightarrow{0}f(x)$ is bounded (d) $f(x)=(\log)_e x$

A. f is bounded

B.
$$f(1/x) \rightarrow 0$$
 as $x \rightarrow 0$

C. xf (x)
$$\rightarrow$$
 1 as x \rightarrow 0

D. f(x) = log x

Answer: D

Watch Video Solution

17. Given the function $f(x)=\dfrac{1}{1-x}$, the numbers of discontinuities of $f^{3n}=fof...of$ (3n times) is

A. 1

B. 2

C. 3

D. infinite

Answer: B

Watch Video Solution

18. If $f(x)=rac{1+\sin x-\cos x}{1-\sin x-\cos x}, x
eq 0$. The value of f(0) so that f is a continuous function is

A. 1

B.-2

C. -1

D. 2

Answer: C

19. If
$$f(x)=egin{cases} ax+1, & x\leq rac{\pi}{2} \ \sin x+b, & x>rac{\pi}{2} \end{cases}$$
 is continuous, then

$$\mathtt{B.}\,a=b\frac{\pi}{2}+1$$

$$\operatorname{C.} b = a \frac{\pi}{2}$$

Answer: C

Watch Video Solution

20. If $f(x)=\left\{egin{array}{ll} rac{x^3+x^2-16x+20}{\left(x-2\right)^2},& x
eq 2 \ k,& x=2 \end{array}
ight.$ is continuous at x = 2, then the

value of k is

Answer: B

Watch Video Solution

21.
$$f(x) = \left\{ egin{array}{ll} rac{2^{x+2}-16}{4^x-16} & ext{ if } & x
eq 2 \ k & ext{ if } & x=2 \end{array}
ight.$$

A.
$$1/2$$

Answer: A

22. If the function
$$f(x)=rac{\cos^2 x-\sin^2 x-1}{\sqrt{x^2+1}-1}, x
eq 0$$
, is continuous at x

$$\mathsf{A.}-2$$

$$\mathsf{B.}-1$$

$$D. - 4$$

Answer: D

Watch Video Solution

23. If a and b are positive integers then

A.
$$\lim_{x o 0+} rac{x}{a} iggl[rac{b}{x} iggr] = rac{a}{b}$$

B.
$$\lim_{x \to 0+} \frac{x}{a} \left[\frac{b}{x} \right] = ab$$

C.
$$\lim_{x \to 0+} \frac{a}{x} \left[\frac{x}{b} \right] = \frac{b}{a}$$

D.
$$\lim_{x o 0+} \ rac{x}{a} igg[rac{b}{x}igg] = rac{b}{a}$$

Answer: D

Watch Video Solution

- **24.** Let $f(x)=rac{ anigl[e^2]x^2- anigl[-e^2]x^2}{\sin^2x}, x
 eq 0$ then the value of f(0)so that f is a continuous function is
 - A. 15
 - B. 0

C. 7

D. 8

Answer: A

25. The value of f(0) so that the function f(x)= $\dfrac{\cos ax - \cos bx}{x^2}, \, x \neq 0$ is

continuous is given by

A. a-b

B. $a^2 - b^2$

c. $\frac{b^2 - a^2}{2}$

D. $\dfrac{a^2+b^2}{2}$

Answer: C

Watch Video Solution

Exercise Numerical Answer

- **1.** Find the value of $\lim_{x o 1} \left(1 + \sin \pi x
 ight)^{\cos \pi x}$
 - **Watch Video Solution**

2. $(\lim)_{x oo} \left(\frac{x^2+2x-1}{2x^2-3x-2} \right)^{\frac{2x+1}{2x-1}} isequa < o\ 0$ (b) ∞ (c) $\frac{1}{2}$ (d) none of these

- **3.** Find the value of $\lim_{x o\infty}\ \left(rac{\pi}{4}- an^{-1}rac{x+1}{x+2}
 ight)$.
 - Watch Video Solution

- **4.** Find the value of $\frac{\lim\limits_{x\to 1}\frac{x^{-\frac{1}{x}\log x}}{\lim\limits_{x\to 0}\frac{\log\left(1-3x\right)}{x}}$
 - Watch Video Solution

- **5.** If $\lim_{x o 2} rac{A \sin(x-2) + B \cos(x-2) + 5}{x^2 4}$ =1 , then |A-B| is equal to
 - View Text Solution

6. If
$$\dfrac{5x-2}{x} < f(x) < \dfrac{5x^2-4x}{x^2}$$
 and $\dfrac{\sin x^2}{x} < g(x) < \dfrac{\log \left(1+x^2\right)}{x}$ then $\Big|\lim_{x \to \infty} f(x) - \lim_{x \to \infty} g(x)\Big|$ is equal to

Watch Video Solution

7. If $\lim_{x\to 0} \left[1+x+\frac{f(x)}{x}\right]^{1/x}=e^3$, then the value $\ln \left(\begin{array}{c} \lim\limits_{x o 0} \ \left[1 + rac{f(x)}{x}
ight]^{{\scriptscriptstyle 1}\,/\,x}
ight)$ is _____.

- **8.** If $\lim_{x\to 2} \left(\frac{-ax+\sin(x-2)+2a}{x+\sin(x-2)-2}\right)^{\frac{2}{\sqrt{2}-\sqrt{x}}} = \frac{1}{4\sqrt{2}}$ then least $1+a^2$ is
 - View Text Solution

9. Let m and n be two integers greater than 1. $\lim_{lpha o 0}\,\left(rac{e^{\cos{(lpha^n)}}\,-e}{lpha^m}
ight)=\,-\left(rac{e}{2}
ight)$ then the value of $rac{n}{m}$ is

10. Let
$$f(x) = \lim_{n o \infty} \, rac{x^{2n-1} + ax^2 + bx}{x^{2n} + 1}$$
 . If f is continuous for $\mathsf{x} \, \in \, \mathsf{R}$,

then the value of a+8b is

11. Find the value of f(0) so that the function
$$f(x)=rac{1}{24}rac{(4^x-1)^3}{\sin\left(rac{x}{4}
ight)\log\left(1+rac{x^2}{3}
ight)(\log 2)^3}, \, x
eq 0$$
 is continuous in R is .

- **12.** Find the value of f(0) so that the function $f(x)=rac{[\log(1+x/12)-\log(1-x/8)]}{x}, x
 eq 0$ is continuous on [0,8].
 - Watch Video Solution

13. Find the value of f(0) so that the function
$$f(x) = \frac{1}{8} \frac{1 - \cos^2 x + \sin^2 x}{\sqrt{x^2 + 1}}, x \neq 0 \text{ is continuous }.$$

 $f(x)=rac{\left(\sqrt[3]{x}^2-\left(2x^{1/3}-1
ight)
ight)}{4{\left(x-1
ight)}^2}, x
eq 1$ is continuous at x=1.

14. Find the value of f(1) so that the function

Watch Video Solution

- **15.** Let $f(x)=x^2$ if x is rational and $f(x)=1-x^2$ if x is irrational then the number of points of continuity of f is
 - Watch Video Solution

16. Let $f(x)=rac{\cos x-\sin x}{\cos 2x}+\sin^2 x, x
eq rac{\pi}{4}$. The value of $f(\pi/4)$ so that f is continuous on $(0,\pi/2)$ is $\left(\sqrt{2}=1.41\right)$

Questions For Previous Years Aieee Jee Main Papers

- 1. f is defined on [-5,5] as $f(x) = \begin{cases} x \text{ if } x \text{ is rational} \\ -x \text{ if } x \text{ is irrational} \end{cases}$
 - A. f(x) is continuous at every x, except x =0
 - B. f(x) is discontinuous at every x, except x=0
 - C. f(x) is continuous everywhere
 - D. f(x) is discontinuous everywhere

Answer: B

- $2. \lim_{x \to 0} \frac{\sqrt{1 \cos 2x}}{\sqrt{2}x}$
 - **A.** 1

B. - 1

C. 0

D. does not exist

Answer: D

View Text Solution

3. $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^x$

A. e^4

B. e^2

 $\mathsf{C}.\,e^3$

D.e

Answer: A

View Text Solution

4. If
$$\lim_{x o 0} rac{\log(3+x) - \log(3-x)}{x} = k$$
, the value of k is

A.
$$-\frac{1}{3}$$

$$\mathsf{B.}\;\frac{2}{3}$$

$$\mathsf{C.}-rac{2}{3}$$

D. 0

Answer: B

View Text Solution

5.
$$\lim_{x o\pi/2} rac{\Big(1- anrac{x}{2}\Big)(1-\sin x)}{\Big(1+ anrac{x}{2}\Big)(\pi-2x)^3}$$
 का मान है :

B. $\frac{1}{32}$

$$\mathsf{C}.\,\infty$$

D.
$$\frac{1}{8}$$

Answer: B

Watch Video Solution

6. If $\lim_{x o\infty}\ \left(1+rac{a}{x}+rac{b}{x^2}
ight)^{2x}=e^2$, then the values of a and b are

A.
$$a\in R, b=2$$

B.
$$a=1,b\in R$$

C.
$$a \in R, b = \in R$$

Answer: B

View Text Solution

7. Let $f(x)=\frac{1-\tan x}{4x-\pi}, x\neq \frac{\pi}{4}, x\in \left[0,\frac{\pi}{2}\right]$. If f(x) is continuous in $\left[0,\frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is

$$\mathsf{D}.-1$$

A. $-\frac{1}{2}$

B. $\frac{1}{2}$

C. 1

Watch Video Solution

A. $-\frac{a^2}{2}(\alpha-\beta)^2$

B. $\frac{1}{2}(\alpha-\beta)^2$

C. $\frac{a^2}{2}(\alpha-\beta)^2$

 $\lim_{x o 0} \, rac{1 - \cosig(ax^2 + bx + cig)}{ig(x - lphaig)^2}$ is equal to

8. Let lpha and eta be the distinct root of $ax^2+bx+c=0$ then

D. 0

9. The function
$$f\colon R-\{0\}\to R$$
 given by $f(x)=rac{1}{x}-rac{2}{e^2x-1}$ can be made continuous at x=0 by defining f(0) as

$$B. - 1$$

Answer: D

10. Let
$$f\colon R o R$$
 be a positive increasing function with $\lim_{x o\infty}\,rac{f(3x)}{f(x)}=$ 1.Then $\lim_{x o\infty}\,rac{f(2x)}{f(x)}$ is

D.
$$2/3$$

Answer: C

Watch Video Solution

11. The value of p and q for which the function

$$f(x) = \left\{ egin{array}{ll} rac{\sin{(\,p+1\,)\,x} + \sin{x}}{x} &, & x < 0 \ q &, & x = 0 \ rac{\sqrt{x + x^2} - \sqrt{x}}{x^{1/2}} &, & x > 0 \end{array}
ight.$$

is continuous for all x in R, are

A.
$$p=rac{1}{2}, q=rac{3}{2}$$

$${\rm B.}\, p = \frac{1}{2}, q = \, -\, \frac{3}{2}$$

$$\mathsf{C.}\,p=\frac{5}{2},q=\frac{1}{2}$$

D.
$$p=-rac{3}{2},q=rac{1}{2}$$

Answer: D

Watch Video Solution

12.

Let

12. Let
$$f\colon R o [0,\infty)$$
 be such that $\lim_{x o 5}f(x)$ exists and $\lim_{x o 5}rac{\left[f(x)
ight]^2-9}{\sqrt{|x-5|}}$

D. 3

Answer: D

13. Deine F(x) as the product of two real functions $f_1(x)=x, x\in R$,

and
$$f_2(x)=igg\{\sin\Bigl(rac{1}{x}\Bigr)$$
, if $x
eq 0,0$ if $x=0$ follows :

 $F(x)=\{f_1(x).\ f_2(x)\ ext{if}\ x
eq 0, 0, ext{if}\ ext{x}=0.$ Statement-1 : F(x) is continuous on R. Statement-2 : $f_1(x)$ and $f_2(x)$ are continuous on R.

14. The value of
$$\lim_{x o 2} rac{\sqrt{1-\cos 2(x-2)}}{x-2}$$
 , is

A. equals
$$\frac{1}{\sqrt{2}}$$

B. does not exist

C. equals $\sqrt{2}$

D. equals $-\sqrt{2}$

Answer: B

15. If $f\!:\!R\stackrel{\longrightarrow}{R}$ is a function defined by $f(x)=[x]\!\cos\!\left(rac{2x-1}{2}
ight)\!\pi$ where [x] denotes the greatest integer function, then f is (1) continuous for every real x (2) discontinuous only at x=0 (3) discontinuous only at non-zero integral values of x (4) continuous only at x=0

A. discontinuous only at x=0

B. discontinuous only at non-zero integral value of x

C. continuous only at x=0

D. continuous for every real x.

Answer: D

- **16.** $\lim_{x \to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to
 - A. 1/2
 - B. 1

C. 2

D. -1/4

Answer: C

Watch Video Solution

17. If the function $f(x)=\left\{egin{array}{ll} rac{\sqrt{2+\cos x}-1}{\left(\pi-x
ight)^2} & ;x
eq\pi \ k & ;x=\pi \end{array}
ight.$ is continuous at

 $x=1, \ {\sf then} \ {\sf k}$ equals:

A. 2

B.1/4

C.1/2

D. 0

Answer: B

18.
$$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$$
 is equal to

A.
$$\pi/2$$

$$\mathsf{C}.-\pi$$

D.
$$\pi$$

Answer: D

19. If f(x) is continuous and
$$figg(rac{9}{2}igg)=rac{2}{9}$$
 , then : $\lim_{x o 0}figg(rac{1-\cos 3x}{x^2}igg)$ =

$$\text{A.}\ \frac{9}{2}$$

B.
$$\frac{2}{9}$$

D.
$$\frac{8}{9}$$

Answer: B

Watch Video Solution

- **20.** If $Lt_{x
 ightarrow2}rac{ an(x-2)ig[x^2+(k-2)x-2kig]}{x^2-4x+4}=5.$ then K is equal to
 - A. 0
 - B. 1
 - C. 2
 - D. 3

Answer: D

- **21.** if $\lim_{x o \infty} \, rac{e^{x^2} \cos x}{\sin^2 x}$ is
 - A. 3

D. 2

Answer: B

Watch Video Solution

22. $\lim_{x o 0} \frac{(1-\cos 2x)(3+\cos x)}{x \tan 4x}$ is equal to

A. 4

B. 3

C. 2

 $\mathsf{D.}\;\frac{1}{2}$

Answer: C

23. Let k be a non-zero real number . If

$$f(x)= egin{cases} rac{\left(e^x-1
ight)^2}{\sin\left(xrac{\pi}{k}
ight)\log\left(1+rac{x}{4}
ight)} & ,x
eq 0 \ 12 & ,x=0 \end{cases}$$
 is a continuous function, then the

value of k is

- A. 1 pi
- B. 2 pi
- C. 3 pi
- D. 4 pi

Answer: C

Watch Video Solution

24. Let $p=\lim_{x
ightarrow 0^+}\left(1+ an^2\sqrt{x}
ight)^{rac{1}{2x}}$ then log p is equal to`

- A. 2
- B. 1

$$\mathsf{C.}\,\frac{1}{2}$$

D. $\frac{1}{4}$

Answer: C

Watch Video Solution

25. If $\lim_{x o\infty}\ \left(1+rac{a}{x}-rac{4}{x^2} ight)^{2x}=e^3$, the a is equal to

- A. 2
- $\mathsf{B.}\;\frac{3}{2}$
- $\mathsf{C.}\,\frac{1}{2}$
- D. $\frac{2}{3}$

Answer: A

26. Let $a,b\in R,$ $(a\in 0).$ If the funtion f defined as

$$f(x)= \left\{egin{array}{ll} rac{2x^2}{a} & 0 \leq x < 1 \ a & 1 \leq x < \sqrt{2} \ rac{2b^2-4b}{x^3} & \sqrt{2} < x < \infty \end{array}
ight.$$
 is a continous in $[0,\infty)$. Then, (a,b)=

A.
$$\left(-\sqrt{2},1-\sqrt{3}\right)$$

B.
$$\left(\sqrt{2},\;-1+\sqrt{3}\right)$$

C.
$$(\sqrt{2}, 1+\sqrt{3})$$

D.
$$(-\sqrt{2},1+\sqrt{3})$$

Answer: C

27.
$$\lim_{x \to 0} \frac{(1 - \cos 2x)^2}{2x \tan x - x \tan 2x}$$
 is

$$\mathsf{B.}-\frac{1}{2}$$

$$\mathsf{C}.-2$$

$$D. \frac{1}{2}$$

Answer: A

Watch Video Solution

28. Let $p=\lim_{x ightarrow 0^+}\left(1+ an^2\sqrt{x} ight)^{rac{1}{2x}}$ then log p is equal to`

- A. 2
- B. 1
- $\mathsf{C.}\,\frac{1}{2}$
- D. $\frac{1}{4}$

Answer: C

29. If
$$\lim_{x o \infty} \left(1 + rac{a}{x} - rac{4}{x^2}
ight)^{2x} = e^3$$
 , the a is equal to

B.
$$\frac{3}{2}$$

c.
$$\frac{1}{2}$$

D.
$$\frac{2}{3}$$

Answer: B

Watch Video Solution

30.
$$\lim_{x\to 3} \frac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}$$
 is equal to

A. $\sqrt{3}$

B.
$$1/\sqrt{2}$$

$$/\sqrt{2}$$

D.
$$\frac{1}{2\sqrt{2}}$$

 $\mathsf{C.}\,\frac{\sqrt{3}}{2}$

$$2\sqrt{2}$$

Answer: B

Watch Video Solution

31.

Find

a.

for

which

$$\lim_{n \to \infty} \frac{1^a + 2^a + 3^a + \dots + n^a}{(n+1)^{a-1}[(na+1) + (na+2) + \dots + (na+n)]} = \frac{1}{60}$$

A. 7

B. 8

 $\mathsf{C.}\ \frac{15}{2}$

D. $\frac{17}{2}$

Answer: A

Watch Video Solution

32. The value of $\lim_{x o \pi/2} \frac{\cot x - \cos x}{\left(\pi - 2x\right)^3}$ is

A.
$$1/4$$

$$\mathsf{B.}\,1/24$$

Answer: C

Watch Video Solution

33. For each $t \in R$ let [t] be the greatest integer less than or equal to t

then $\lim_{x \to 0^+} x \left(\left[\frac{1}{t} \right] + \left[\frac{2}{t} \right] + ... + \left[\frac{15}{t} \right] \right)$ (1) is equal to 0 (2) is equal

to 15 (3) is equal to 120 (4) does not exist (in R)

A. is equal to 0

B. is equal to 15

C. is equal to 120

D. does not exist (in R)

Answer: B

Watch Video Solution

- **34.** $\lim_{x \to 0} \frac{x \tan 2x 2x \tan x}{\left(1 \cos 2x\right)^2}$ equal
 - A. 1/2
 - B.1/4
 - C.1/2
 - D. 1

Answer: C

- **35.** $\lim_{x \to 0} \frac{(27+x)^{\frac{1}{3}}-3}{9-(27+x)^{\frac{2}{3}}}$

$$\mathsf{C.} - \frac{1}{6}$$

$$\mathsf{D.} \ \frac{1}{3}$$

B. $\frac{1}{6}$

Answer: C

Watch Video Solution

36. If the function f defined as $f(x)=rac{1}{x}-rac{k-1}{e^{2x}-1}, x
eq 0,$ continuous at $x=0,\,$ then the ordered pair (k,f(0)) is equal to :

- A. (2,1)
- B.(3,1)
- C.(3,2)
- D.(1/3,2)

Answer: B

37.
$$\lim_{u\to\infty}$$

$$\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}$$

37.
$$\lim_{y \to \infty} \frac{\sqrt{1 + \sqrt{1 + y^4} - \sqrt{2}}}{y^4} =$$
 (a) $\frac{1}{4\sqrt{2}}$ (b) $\frac{1}{2\sqrt{2}}$ (c)

$$\dfrac{1}{2\sqrt{2}\Big(1+\sqrt{2}\Big)}$$
 (d) does not exist

A. exists and equals
$$\frac{1}{4\sqrt{2}}$$

B. does not exist

C. exists and equals
$$\frac{1}{2\sqrt{2}}$$

D. exists and equals
$$\dfrac{1}{2\sqrt{2}\Big(\sqrt{2}+1\Big)}$$

Answer: A

Watch Video Solution

38. For each $x \in R$, let [x] be the greatest integer less than or equal to x,

Then,

 $\lim_{x o 0^-} rac{x([x] + |x|) \mathrm{sin}[x]}{[x]}$ is equal to

$$A. - \sin 1$$

B. 0

C. 1

D. sin 1

Answer: A

Watch Video Solution

39. For each $t \in \mathbb{R}$, let [t] be the greatest integer less than or equal to t.

Then,
$$\lim_{x o 1+}rac{(1-|x|+\sin|1-x|)\mathrm{sin}ig(rac{\pi}{2}[1-x]ig)}{|1-x|[1-x]}$$

A. equals -1

B. equals 1

C. does not exist

D. equals 0

Answer: D

40. Let [x] denote the greatest integer less than or equal to Then:

$$\lim_{x o 0} \ rac{ anig(\pi\sin^2xig)+ig(|x|-\sin(x[x])ig)^2}{x^2}$$
 :

- A. equals π
- B. equals 0
- C. equals $\pi+1$
- D. does not exist

Answer: C

Watch Video Solution

41. $\lim_{x \to 0} \frac{x \cot(4x)}{\sin^2 x \cot^2(2x)}$ is equal to

A. 2

B. 0

C. 4

D. 1

Answer: D

Watch Video Solution

42. $\lim_{x \to \frac{\pi}{4}} \frac{\cot^3 x - \tan x}{\cos\left(x + \frac{\pi}{4}\right)}$ is

A. 4

B. $8\sqrt{2}$

C. 8

D. $4\sqrt{2}$

Answer: D

43.
$$\lim_{x \to 1-} \frac{\sqrt{\pi} - \sqrt{2\sin^{-1}x}}{\sqrt{1-x}}$$
 is equal to

A.
$$\frac{1}{\sqrt{2\pi}}$$

B.
$$\sqrt{\frac{\pi}{2}}$$

C.
$$\sqrt{\frac{2}{\pi}}$$

D.
$$\sqrt{\pi}$$

Answer: C

Watch Video Solution

44. Let $f:R \to R$ be a function defined as f(x)= $\begin{cases} 5 & \text{if } x \leq 1 \\ a+bx & \text{if } 1 < x < 3 \\ b+5x & \text{if } 3 \leq x < 5 \\ 30 & \text{if } x \geq 5 \end{cases}$ then f is

A. continuous at a=5 and b=5

B. contiuous at a=-5 and b=10

C. continuous at a=0 and b=5

D. not continuous for any values of a and b

Answer: A

Watch Video Solution

Previous Years B Architecture Entrance Examination Paper

1. If
$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right)$$
 exists, then

A. $\lim_{x \to c} f(x)$ exist

B. neither $\lim_{x \to c} f(x)$ nor $\lim_{x \to c} g(x)$ may exist

C. $\lim_{x \to c} g(x)$ exist

D. both $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ must exist

Answer: B

2. Let $f\!:\!(\,-\infty,\infty) o(\,-\infty,\infty)$ be such that f(.) is continuous at 0

and let
$$figg(rac{x+y}{2}igg) = rac{f(x)+f(y)}{2}$$
 for `x` , `y` $\,\in\,$ ($-\infty,\infty$)

Statement-1: f(.) is continuous at every point on $(-\infty,\infty)$

Statement-2: f(x+h)+f(0)=2f(x)+f(2h) for $x,h\in (-\infty,\infty)$.

View Text Solution

3. Statement-1: $\lim_{x\to 1} \sin\frac{\pi}{4} \left(\frac{x|x|-1}{|x|-1}\right)$ exists

Statement-2: $\lim_{x\to 1} \tan \frac{\pi}{4} \left(\frac{x|x|-1}{|x|-1} \right)$ exists

Watch Video Solution

4. Let $f\colon R o\left(rac{-1}{2},rac{1}{2}
ight)$ be an odd function such that $\lim\limits_{x o 0}$ f(x) exists.

Then, $\lim_{x\to 0} \frac{1}{2f(x)-1}$ equals

A. 0

D. -1

B. $\frac{1}{2}$

Answer: D

View Text Solution

are

A.
$$lpha=\,-\,1,eta=rac{3}{4}$$

B.
$$lpha=1,eta=-rac{1}{4}$$

$$\mathrm{C.}\,\alpha=\,-\,1,\beta=\frac{5}{4}$$

5. The values of lpha and eta such that $\lim_{x o\infty}\left[rac{x^2+1}{x-1}-lpha x-2eta
ight]=rac{3}{2}$

D.
$$lpha=1, eta=rac{-3}{4}$$

Answer: B

View Text Solution

- **6.** Let f(x)=|x|+[x-1], where [.] is greatest integer function , then f(x) is
 - A. continuous at x=0 as well as at x=1
 - B. continuous at x=0 but not at x=1
 - C. continuous at x=1 but not at x=0
 - D. neither continuous at x=0 or nor at x=1

Answer: D

- **7.** If for some real number $a, Lt_{x o 0} rac{\sin 2x + a \sin x}{x^3}$ exists, then the
- limits is equal to
 - $\mathsf{A.}-2$
 - $\mathsf{B.}-1$
 - C. 1

Answer: B

Watch Video Solution

8. If
$$f(x)=egin{array}{c|cccc} \sin x & \cos x & \tan x \ x^3 & x^2 & x \ 2x & 1 & 1 \end{array}$$
 then $\lim_{x o 0}rac{f(x)}{x^2}$ is

$$B. - 1$$

Answer: A

9. Let f(x)=[x] where [x] be the greatest integer less than or equal to x.

$$g(x)=\left\{egin{array}{ll} 0 & ,x\in Z \ x^2 & .x\in R-Z \end{array}
ight.$$
 z is the set of integers , $\phi(x)=fog(x)$ and

arPsi(x) = gof(x). Then on the set R-Z .

A. both ϕ and Φ are continuous

B. neither ϕ nor Φ is continuous

C. ϕ is continuous and Φ is not continuous

D. Φ is continuous and ϕ is not continuous

Answer: A

View Text Solution

10. $\lim_{x o 1} \left(1 - x + [x-1] + [1-x] \right) = ext{ where [.] denotes the greatest}$

integer function

A. is equal to 0

B. is equal to 1

C. does not exist

D. is equal to -1

Answer: C

Watch Video Solution

- 11. $\lim_{x\to 0} \frac{\log(\sin 7x + \cos 7x)}{\sin 3x}$ equals.
 - A. $\frac{1}{3}\log 7$
 - $\mathsf{B.}\,\frac{7}{3}$
 - c. $\frac{14}{3}$
 - $\operatorname{D.}\frac{1}{3}$

Answer: B

12. Let $f(\mathbf{x})$ = $x\left\lceil rac{1}{x}
ight
ceil$ for all $x(
eq 0) \in R$, where for each $t \in R, [t]$ denotes

the greatest integer less than or equal to t. Then

A.
$$\lim_{x o 1/3+} f(x) = 1$$

B.
$$\lim_{x o 1/2-} f(x) = 1$$

C.
$$\lim_{x o 2-} f(x) = 1$$

D.
$$\lim_{x \to 0+} f(x) = 0$$

Answer: B

View Text Solution