©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

MATRICES

Solved Examples

1. The number of 2×2 matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ for which $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{1}{a} & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{d}\end{array}\right],(a, b, c, d \in R)$ is
A. 0
B. 1
C. 2
D. infinite

- Watch Video Solution

2. Let $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], a, b, c, d \in R$

If $A^{5}=A^{3}+I$ then A is
A. a symmetric matrix
B. a skew symmetric matrix
C. an invertible matrix
D. none of these

Answer: C

D Watch Video Solution

3. Let A and B be two 3×3 invertible matrices. If $A+B=A B$ then
A. $A^{-1}+B^{-1}=O$
B. $A^{-1}+B^{-1}=B^{-1} A^{-1}$
C. $I-A^{-1}$ is invertible
D. $B^{-1}+I$ is invertible

Answer: c

- Watch Video Solution

4. Let A be a 3×3 matrix and $S=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right) x, y, z, \in R\right\}$

Define $f: S \rightarrow S$ by
$f\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
Suppose $f\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Rightarrow x=y=z=0$ Then
A. f is one - to - one
B. f cannot be onto
C. A is not invertible
D. $\mathrm{A}=\mathrm{O}$

Answer: A

- Watch Video Solution

5. Let $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}$.

If $|a|,|b|,|c|,|d| \leq$ where $k>0$ then
A. $\operatorname{det}(A) \geq 2 \hat{k}$
B. $\operatorname{det}(\mathrm{A}) \geq k^{2}$
C. $\operatorname{det}(\mathrm{A}) \leq 2 k^{2}$
D. $\operatorname{det}(\mathrm{A}) \leq k$

Answer: C

6. Let $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}$. Then
A. $\operatorname{det}(\mathrm{A}) \leq \sqrt{a^{2}+b^{3}} \sqrt{c^{3}+d^{2}}$
B. $\operatorname{det}(\mathrm{A}) \leq(a+b)(c+d)$
C. $\operatorname{det}(\mathrm{A})<=a c+b d$
D. $\operatorname{det}(\mathrm{A}) \leq(|a|-|b|)(|c|-|d|)$

Answer: A

- View Text Solution

7. Let A be a $3 x 3$ matrix such that $|A|=-2$, then $\operatorname{det}\left(-2 A^{-1}\right)=$ -4 (b) 4 (c) 8 (d) none of these
A. 4
B. -4
C. 8
D. -2

Answer: A

D Watch Video Solution

8. For $1 \leq i, j \leq 3$ let
$a_{i j}=\int_{-\pi / 2}^{\pi / 2} \cos (i x) \cos (j x) d x$ and let $A=\left(a_{i j}\right)_{3 \times 3}$. Then
A. A is a singular matrix
$B . A X=B$ has a unique solution for every 3×3 matrix B
C. A is a skew symmetric matrix
D. $A^{2}=I$

Answer: B

- View Text Solution

9. The number of values of λ for which there exist a non -zero 3×3 matrix A such that $A=\lambda A$ is
A. 0
B. 1
C. 2
D. infinite

Answer: C

- Watch Video Solution

10. Let $A=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$ where $a>0$. Sum of the series $S=$ trace $(A)+$ trace $\left(\frac{1}{2} A\right)+\operatorname{trace}\left(\frac{1}{2^{2}} A^{2}\right)+\operatorname{trace}\left(\frac{1}{2^{3}} A^{3}\right)+\cdots$ is
A. 3
B. 4
C. 6
D. 8

Solved Examples Level 1 Single Correct Answer Type Questions

1. If $\left[\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right]=\left[\begin{array}{cc}x & y^{2} \\ z & 0\end{array}\right] y<0$ then $x-y+z$ is equal to
A. 5
B. 2
C. 1
D. -3

Answer: A

- Watch Video Solution

2. If $A=[1,-2,3] B=\left[\begin{array}{c}2 \\ -3 \\ -1\end{array}\right]$ then $A B$ is equal to
A. $\left[\begin{array}{c}2 \\ -3 \\ -1\end{array}\right]$
B. $\left[\begin{array}{c}2 \\ 6 \\ -3\end{array}\right]$
C. [2,6-3]
D. none of these

Answer: D

- Watch Video Solution

3. If $\mathrm{A}=\left[\begin{array}{cc}-i & 0 \\ 0 & i\end{array}\right]$ then $\mathrm{A}^{\prime} \mathrm{A}$ is equal to
A. I
B. $-i \mathrm{~A}$
C. $-I$
D. $i A$
4. If $A(\alpha)=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ then $A(\alpha) A(\beta)$
A. $A_{\alpha+\beta}$
B. $A_{\alpha \beta}$
C. $A_{\alpha-\beta}$
D. none of these

Answer: A

- Watch Video Solution

5. Let $A a n d B$ be two 2×2 matrices. Consider the statements $A B=O A+O$ or $B=O \quad A B=I_{2} A=B^{-1}$ $(A+B)^{2}=A^{2}+2 A B+B^{2}$ (i) and (ii) are false, (iii) is true (ii) and (iii) are false, (i) is true (i) is false (ii) and, (iii) are true (i) and (iii) are false, (ii) is true
A. (i) is false (ii) and (iii) are true
B. (i) and (iii) are fase (ii) is true
C. (i) and (ii) are false (iii) is true
D. (ii) and (iii) are fase (i) is true

Answer: B

- Watch Video Solution

6. If $A-2 B=[1537]$ and $2 A-3 B=[-2507]$ the matrix $B=$ $[-4-5-6-7]$ (b) $[06-37][2-132]$ (d) none of these
A. $\left[\begin{array}{ll}-4 & -5 \\ -6 & -7\end{array}\right]$
B. $\left[\begin{array}{cc}0 & 6 \\ -3 & 7\end{array}\right]$
C. $\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]$
D. $\left[\begin{array}{cc}6 & -1 \\ 0 & 1\end{array}\right]$

Answer: A

7. If A and B two are 3×3 matrices then which one of the following is not true:
A. $(A+B)=A+B$
B. $(A B)=A^{\prime} B^{\prime}$
C. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
D. $\mathrm{A}(\operatorname{adj} \mathrm{A})=|A| I_{3}$

Answer: B

- Watch Video Solution

8. If $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ then
A. A is an orthogonal matrix
B. A is a symmetric matrix
C. A is a skew -symmetric matrix
D. none of these

Answer: A

- Watch Video Solution

9. If $A=\left[\begin{array}{lll}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ then the product AB is equal to
A. 0
B. A
C. B
D. 1

Answer: A

10. If A is an invertible matrix and B is an orthogonal matrix of the order same as that of A then $C=A^{-1} B A$ is
A. an orthogonal matrix
B. symmetric matrix
C. skew symmetric matrix
D. none of these

Answer: D

- Watch Video Solution

11. Prove that the product of the matrices $\left[\begin{array}{cc}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]$ and $\left[\begin{array}{cc}\cos ^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin ^{\beta}\end{array}\right]$ is the null matrix when α and β differ by an odd multiple of $\frac{\pi}{2}$.
A. null matrix
B. unit matrix
C. diagonal matrix
D. orthogonal matrix

Answer: A

- Watch Video Solution

12. If $\left[\begin{array}{cc}2 & 1 \\ 7 & 4\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then matrix A equals
A. $\left[\begin{array}{cc}7 & 5 \\ -11 & -8\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$
C. $\left[\begin{array}{cc}7 & 1 \\ 34 & 5\end{array}\right]$
D. $\left[\begin{array}{cc}5 & 3 \\ 13 & 8\end{array}\right]$

Answer: A

- Watch Video Solution

13. The matrix A satisfying $A\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ 6 & 0\end{array}\right]$ is
A. $\left[\begin{array}{cc}3 & 2 \\ 6 & -3\end{array}\right]$
B. $\left[\begin{array}{ll}3 & -16 \\ 6 & -30\end{array}\right]$
C. $\left[\begin{array}{cc}3 & -16 \\ 6 & 30\end{array}\right]$
D. $\left[\begin{array}{cc}3 & -3 \\ 6 & 2\end{array}\right]$

Answer: B

- Watch Video Solution

14. If product of matrix A with $\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]$ is $\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$ then A^{-1} is given by
A. $\left[\begin{array}{ll}0 & -1 \\ 2 & -4\end{array}\right]$
B. $\left[\begin{array}{cc}0 & -1 \\ -2 & -4\end{array}\right]$
C. $\left[\begin{array}{cc}0 & 1 \\ 2 & -4\end{array}\right]$
D. none of these

Answer: C

D Watch Video Solution

15. If A and B are two skew symmetric matrices of order n then
A. $A B$ is a skew symmetric matrix
B. $A B$ is a symmetric matrix
C. $A B$ is a symetric matrix if A and B commute
D. none of these

Answer: C

- Watch Video Solution

16. Which of the following statements is false :
A. If $|A|=0$ then $|\operatorname{adj} A|=0$
B. Adjoint of a diagonal matrix of order 3×3 is a diagonal matrix
C. Product of two upper triangular matrices is a upper triangular matrix
D. $\operatorname{adj}(A B)=\operatorname{adj}(A) \operatorname{adj}(B)$

Answer: D

- View Text Solution

17. If A and B are symmetric matrices then $A B-B A$ is a Symmetric Matrix (b) Skew- symmetric matrix Diagonal matrix (d) Null matrix
A. symmetric matrix
B. skew - symmetric matix
C. diagonal matrix
D. null matrix
18. Let A and B be two 3×3 matrices such that $A+B=2 B^{\prime}$ and $3 A+2 B=I$ then
A. $A-B=O$
B. $A+B=I$
C. $A-B=I$
D. $A+2 B=O$

Answer: A

- Watch Video Solution

19. If A and B are two nonzero square matrices of the same order such that the product $A B=O$, then
A. Both A and B are non-singular
B. Exactly one of A, B is singular
C. Both A and B are singular
D. Both $A+B$ and $A B$ are singular

Answer: C

- Watch Video Solution

20. If A is skew-symmetric and $B=(I-A)^{-1}(I+A)$, then B is
A. B is orthogonal
B. B is skew symmetric
C. $B^{2}=O$
D. B is a diagonal matrix

Answer: A

21. Let $a_{n}=3^{n}+5^{n}, n \in \mathrm{~N}$ and let
$A=\left(\begin{array}{ccc}a_{n} & a_{n+1} & a_{n+2} \\ a_{n+1} & a_{n+2} & a_{n+3} \\ a_{n+2} & a_{n+3} & a_{n+4}\end{array}\right)$ Then
A. 0 is a root of the equation $\operatorname{det}(A-x l)=0$
B. $\operatorname{det}(\mathrm{A})=a_{n} a_{n+2} a_{n+4}$
C. $\operatorname{det}(\mathrm{A})<0$
D. $\operatorname{det}(\mathrm{A})=a_{n}+a_{n+2}+a_{n+4}$

Answer: A

- View Text Solution

22. First row of a matrix A is $[1,3,2]$. If
$\operatorname{adj} A=\left[\begin{array}{ccc}-2 & 4 & \alpha \\ -1 & 2 & 1 \\ 3 \alpha & -5 & -2\end{array}\right]$, then $\operatorname{det}(\mathrm{A})$ is
A. 1
B. 2
C. -1
D. -2

Answer: A

- Watch Video Solution

23. Suppose $A B C$ is a triangle with sides a, b, c and semiperimeter s. Then matric
$A\left[\begin{array}{cc}s & s-c \\ s(s-b)^{2} & (s-a)^{2}(s-c) \\ s(s-c) & (s-a)^{2}\end{array}\right]_{3 \times 2}\left[\begin{array}{l}s-a \\ s-b\end{array}\right]_{2 \times 1}$
$-\left[\begin{array}{c}b c \\ c a(s-a)(s-b) \\ a b(s-a)\end{array}\right]_{3 \times 1}$
A. $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
B. $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
C. $\left[\begin{array}{l}s \\ s \\ s\end{array}\right]$
D. $\left[\begin{array}{l}s-a \\ s-b \\ s-c\end{array}\right]$

Answer: B

24. The number of matrices
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ (where $\left.\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}\right)$ such that $A^{-1}=-\mathrm{A}$ is :
A. 0
B. 1
C. 2
D. infinite

Answer: D

25. Let A be a 3×3 matrix with entries from the set of numbers, If the system of equations $A^{2} X=0$ has a non - trivial solution then
A. $\mathrm{AX}=0$ has a non trivial solution
B. $\mathrm{AX}=0$ does not have a non-trivial solution.
C. A is a non -singular matrix
D. none of these

Answer: A

- View Text Solution

26. $A=\left[\begin{array}{ll}a & b \\ b & -a\end{array}\right]$ and $M A=A^{2 m}, m \in N$ for some matrix M, then which one of the following is correct ?
A. $\left(a^{2}+b^{2}\right)^{m} I$
B. $\left(a^{2}+b^{2}\right)^{m-1} A$
C. $-\left(a^{2}+b^{2}\right)^{m-1} A$
D. $\left(a^{2}+b^{2}\right)^{m} \mathrm{~A}$

Answer: B

- Watch Video Solution

27. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 matrix, where a, b, c, d take value 0 to 1 only. The number of such matrices which have inverses is
A. 5
B. 6
C. 7
D. 8

Answer: B

28. Find the inverse of each of the matrices given below :

Let $D=\operatorname{diag}\left[d_{1}, d_{2}, d_{3}\right]$ where none of d_{1}, d_{2}, d_{3} is), prove that $D^{-1}=\operatorname{diag}\left[d_{1}^{-1}, d_{2}^{-1}, d_{3}^{-1}\right]$.
A. D
B. 2D
C. $\operatorname{diag}\left(d_{1}^{-1}, d_{2}^{-1}, \ldots d_{n}^{-1}\right)$
D. Adj D

Answer: C

- Watch Video Solution

29. The inverse of a symmetric matrix (if it exists) is
A. a symmetric matrix
B. a skew -symmetric matrix
C. a diagonal matrix
D. none of these

Answer: A

- View Text Solution

30. Prove that inverse of a skew-symmetric matrix (if it exists) is skewsymmetric.
A. a symmetric matrix
B. a skew -symmetric matrix
C. a diagonal matrix
D. none of these

Answer: B

31. The inverse of a skew symmetric matrix of odd order is a symmetric matrix a skew symmetric matrix a diagonal matrix does not exist
A. a symmetric matrix
B. a skew symmetric matrix
C. diagonal matrix
D. does not exist

Answer: D

- Watch Video Solution

32. If A is an orthogonal matrix, then
A. 1
B. -1
C. ± 1
D. 0

Answer: C

- Watch Video Solution

33. If $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 2 \\ 5 & 1 & x \\ 1 & 1 & 1\end{array}\right]$ is a singular matrix then x is equal to
A. 3
B. 5
C. 9
D. 11

Answer: C

- Watch Video Solution

34. Find the value of x for which the matrix $A=\left[\begin{array}{ccc}2 / x & -1 & 2 \\ 1 & x & 2 x^{2} \\ 1 & 1 / x & 2\end{array}\right]$ is singular.
A. ± 1
B. ± 2
C. ± 3
D. none of these

Answer: A

- Watch Video Solution

35. If a matrix A is such that $3 A^{3}+2 A^{2}+5 A+I=0$, then A^{-1} is equal to
A. $3 A^{2}+2 A+5 I$
B. $-\left(3 A^{2}+2 A+5 I\right)$
C. $3 A^{2}-2 A-5 I$
D. none of these

- Watch Video Solution

36. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then which one of the following holds for all $n \geq 1$ by the principle of mathematica induction?
$A^{n}=2^{n-1} A+(n-1) I$
(B) $\quad A^{n}=n A+(n-1) I$
$A^{n}=2^{n-1} A-(n-1) I$ (D) $A^{n}=n A-(n-1) A I$
A. $A^{\wedge}(n)=n A+(n-1) \Gamma^{\prime}$
B. $A^{n}=2^{n-1} A+(n-1) I$
C. $A^{n}=n A-(n-1) I$
D. $A^{n}=2^{n-1} A-(n-1) I$.

Answer: C

- Watch Video Solution

37. If A, B, and C are three square matrices of the same order, then
$A B=A C \Rightarrow B=C$. Then
A. singular
B. non-singular
C. symmetric
D. skew symmetric

Answer: B

- Watch Video Solution

38. If the product of the matrix $B=\left[\begin{array}{ccc}2 & 6 & 4 \\ 1 & 0 & 1 \\ -1 & 1 & -1\end{array}\right]$ with a matrix A has inverse $C=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2\end{array}\right]$ then $A^{-1}=$
А. $\left[\begin{array}{ccc}-3 & -5 & 5 \\ 0 & 9 & 14 \\ 2 & 2 & 16\end{array}\right]$
B. $\left[\begin{array}{ccc}-3 & 5 & 5 \\ 0 & 0 & 9 \\ 2 & 14 & 16\end{array}\right]$
C. $\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 0 & 2 \\ 2 & 14 & 6\end{array}\right]$
D. $\left[\begin{array}{ccc}-3 & -3 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6\end{array}\right]$

Answer: C

- Watch Video Solution

39. If ω is a complex cube root of unity then the matrix
$A=\left[\begin{array}{ccc}1 & \omega^{2} & \omega \\ \omega^{2} & \omega & 1 \\ \omega & 1 & \omega^{2}\end{array}\right]$ is a
A. singular matrix
B. non-singular matrix
C. skew symmetric matrix
D. none of these

Answer: A

40. $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right],=A^{-1}=\left[\begin{array}{lll}1 / 2 & -1 / 2 & 1 / 2 \\ -4 & 3 & c \\ 5 / 2 & -3 / 2 & 1 / 2\end{array}\right]$ then find vales of a\&c.
A. $x=1, y=-1$
B. $x=-1, y=1$
C. $x=2, y=-1 / 2$
D. $x=1 / 2, y=1 / 2$

Answer: A

Watch Video Solution

41. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 real matrix. If $A-\alpha I$ is invertible for every real number α, then
A. $b c>0$
B. $b c=0$
C. $b c>\min \left(0, \frac{1}{2} a d\right)$
D. $a=0$

Answer: C

- Watch Video Solution

42. If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ then $A^{2}-5 A$ equals
A. 0
B. 1
C. 21
D. none of these

Answer: C

Watch Video Solution

43. Solve system of linear equations, using matrix method,
$x y+2 z=7 \quad 3 x+4 y 5 z=5$
$2 x y+3 z=12$
A. $-4,2$
B. $-3,3$
C. $-4,1$
D. $-3,1$

Answer: C

- Watch Video Solution

44. If $A^{2}-A+I=0$, then the inverse of A is: (A) $A+I$ (B) A (C) $A-I$
(D) $I-A$
A. I-A
B. $\mathrm{A}-\mathrm{I}$
C. $A+I$
D. A

Answer: B

- Watch Video Solution

45. Let $A=[1-1121-3111]$ and $10 B=[-422-50 \alpha 123]$. If B is the inverse of matrix A, then $\alpha=2$ (b) -2 (c) 5 (d) -2
A. 2
B. -1
C. -2
D. 5

Answer: D

46. If $A=\left[(a, b),(b, a 0]\right.$ and $A^{2}=[(\alpha, \beta 0,(\beta, \alpha)]$ then
$\alpha=a^{2}+b^{2}, \beta=a b$
$\alpha=a^{2}+b^{2}, \beta=2 a b$
$\alpha=a^{2}+b^{2}, \beta=a^{2}-b^{2}$ (D) $\alpha=2 a b, \beta=a^{2}+b^{2}$
A. $\alpha=a^{2}+b^{2} \beta=2 a b$
B. $\alpha=a^{2}+b^{2}, \beta=a^{2-b^{2}}$
C. $\alpha=2 a b, \beta=a^{2}+b^{2}$
D. $\alpha=a^{2}+b^{2}, \beta=-2 a b$

Answer: A

- Watch Video Solution

47. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular matrices of the form $\left[1 a b \omega 1 c \omega^{2} \theta 1\right]$, where each of a, b, andc is either ω or ω^{2}. Then the number of distinct matrices in the set S is a. 2 b. 6 c. 4 d. 8
B. 6
C. 4
D. 8

Answer: A

- Watch Video Solution

48. If a matrix A is both symmetric and skew-symmetric, then A is a diagonal matrix (b) A is a zero matrix (c) A is a scalar matrix (d) A is a square matrix
A. A is a diagonal matrix
B. A is a scalar matrix
C. A is zero matix
D. none of these

Answer: C

49. Let $\mathrm{A}=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}5 & 2 \\ 7 & 4\end{array}\right], C=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$.

Let D be a matrix such that $C D=A B$ then D equals
A. I
B. O
C. $-A$
D. none of these

Answer: D

- View Text Solution

50. If $A^{2}=A$, then $(I+A)^{4}$ is equal to
A. $I+15$ A
B. $I+7 A$
C. $1+8 \mathrm{~A}$
D. $1+11 \mathrm{~A}$

Answer: A

- Watch Video Solution

51. The matrix $\mathrm{A}=\left[\begin{array}{ccc}0 & 0 & -7 \\ 0 & -7 & 0 \\ -7 & 0 & 0\end{array}\right]$ is a

- Watch Video Solution

52. If $A=[35], B=[73]$, then find a non-zero matrix C such that $\mathrm{AC}=\mathrm{BC}$.
A. 0
B. 1
C. infinitely many
D. none of these

- Watch Video Solution

53. Find the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ if the matrix $A=[02 y z x y-z x-y z]$ satisfy the equation $A^{\prime} A=I$.
A. $x= \pm 1 / \sqrt{6}, y= \pm 1 / \sqrt{6}, z= \pm 1 / \sqrt{3}$
B. $x= \pm 1 / \sqrt{2}, y= \pm 1 / \sqrt{6}, z= \pm 1 / \sqrt{3}$
C. $x= \pm 1 / \sqrt{2}, y= \pm 1 / \sqrt{6}, z= \pm 1 / \sqrt{3}$
D. $x= \pm 1 / \sqrt{2}, y= \pm 1 / 3, z= \pm 1 / \sqrt{2}$

Answer: B

- Watch Video Solution

54. Suppose A is square matrix such that $A^{3}=I$ then $(A+I)^{3}+(A-I)^{3}-6 A$ equals
A. I
B. 21
C. A
D. 3A

Answer: B

- Watch Video Solution

55. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system of equations $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$ has exactly five distinct solution is
A. 0
B. 511
C. 1024
D. 5

D View Text Solution

56. The number of 33 non-singular matrices, with four entries as 1 and all other entries as 0 , is (1) $5(2) 6$ (3) at least 7 (4) less than 4
A. 6
B. at least 7
C. less than 4
D. 5

Answer: B

- Watch Video Solution

57. Consider the system of linear equations:
$x_{1}+2 x_{2}+x_{3}=3$
$2 x_{1}+3 x_{2}+x_{3}=3$
$3 x_{1}+5 x_{2}+2 x_{3}=1$
The system has
A. a unique solution
B. non solution
C. infinite number of solutions
D. exactly 3 solutions

Answer: B

- Watch Video Solution

58. Let a, b, and c be three real numbers satistying $[a, b, c]\left[\begin{array}{ccc}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ If the point $P(a, b, c)$ with reference to (E), lies on the plane $2 x+y+z=1$, the the value of $7 a+b+c$ is (A) 0 (B)

12 (C) 7 (D) 6
A. 0
B. 12
C. 7
D. 6

Answer: D

- Watch Video Solution

59. Let P and Q be 3×3 matrices with $P \neq Q$. If $P^{3}=Q^{3} a n d P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to (1) $2(2) 1(3) 0(4) 1$
A. 1
B. 0
C. -1
D. -2

- Watch Video Solution

60. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$. If u_{1} and u_{2} are column matrices such that
$A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_{1}+u_{2}$ is equal to :
A. $\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
B. $\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$
C. $\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$
D. $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$

Answer: C

61. If P is a 3×3 matrix such that $P^{T}=2 P+I$, where P^{T} is the transpose of P and I is the 3×3 identity matrix, then there exists a column matrix, $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ such that
A. $\mathrm{PX}=\mathrm{O}$
B. $P X=X$
C. $\mathrm{PX}=2 \mathrm{X}$
D. $P \mathrm{XX}=-\mathrm{X}$

Answer: D

- Watch Video Solution

62. $A=\left[\begin{array}{ll}4 & 3 \\ 2 & 5\end{array}\right]$ find x and y such that $A^{2}-x A+y I=0$
A. $(-9,-14)$
B. $(9,-14)$
C. $(-9,14)$
D. $(9,14)$

Answer: C

- Watch Video Solution

63. The system of equations

$$
\left(\begin{array}{ccc}
3 & -2 & 1 \\
5 & -8 & 9 \\
2 & 1 & a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
b \\
3 \\
-1
\end{array}\right)
$$

has no solution if a and b are
A. $a=-3, b \neq 1 / 3$
B. $a=2 / 3, b \neq 1 / 3$
C. $a \neq 1 / 4, b=1 / 3$
D. $a \neq-3, b \neq 1 / 3$

Answer: A

64. Suppose $l+A$ is non-singular. Let $B=(I+A)^{-1}$ and $C=I-A$, then(where I, A, O are identity square and null matrices of order n respectively)
A. $B C=C B$
B. $B C=O$
C. $B C=1$
D. none of these

Answer: A

Watch Video Solution
65. Let $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be such that $A^{3}=O$ but $A \neq O$ then
A. $A^{2}=O$
B. $A^{2}=A$
C. $A^{2}=I-A$
D. none of these

Answer: A

- Watch Video Solution

Solved Examples Level 2 Straight Objective Type Questions

1. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right], a, b \in N$ Then,
A. Then there exists infinitely many B ' s such that $A B=B A$
B. there cannot exist B such that $A B=B A$
C. there exist more than one but finite number of B 's such that $\mathrm{AB}=\mathrm{BA}$
D. there exists exactly one B such that $A B=B A$

Answer: A
2. Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$. If $\left|A^{2}\right|=25$, then $|\alpha|$ is equal to :
A. 5^{2}
B. 1
C. $1 / 5$
D. 5

Answer: C

- Watch Video Solution

3. $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ and $A+A^{T}=I$, find the value of α.
A. $2 n \pi \pm \frac{2 \pi}{2}, n \pi I$
B. $2 n \pi \pm \frac{\pi}{3}, n \in I$
C. $2 n \pi \pm \frac{2 \pi}{3}, n \in I$
D. $2 n \pi \pm \frac{4 \pi}{3}, n \in I$

Answer: B

- Watch Video Solution

4. If $A=\left[\begin{array}{cc}0 & -\tan (\alpha / 2) \\ \tan (\alpha / 2) & 0\end{array}\right]$ and I is a 2×2 unit matrix, prove that
$l+A(l-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
A. $\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
B. $\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
C. $\left[\begin{array}{cc}\tan \alpha & 0 \\ 0 & \tan \alpha\end{array}\right]$
D. $\left[\begin{array}{cc}\tan \alpha & 0 \\ 0 & -\tan \alpha\end{array}\right]$

Answer: A

- Watch Video Solution

5.

$P=\left[\left(\frac{\sqrt{3}}{2}, \frac{1}{20},\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right.$ and $Q=P A P^{T}$, then P^{2}
is: (A) $\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}1 & 2005 \\ 2005 & 1\end{array}\right]$ (C) $\left[\begin{array}{cc}1 & 0 \\ 2005 & 1\end{array}\right]$ (D) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
A. $\left[\begin{array}{cc}1 & -2015 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}2015 & 1 \\ 0 & 2015\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 2015 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}2015 & 2015 \\ 0 & 2015\end{array}\right]$

Answer: C

- Watch Video Solution

6. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], 6 A^{-1}=A^{2}+c A+d I$, then $(c, d)=$
A. $(-6,11)$
B. $(-11,6)$
C. $(11,6)$
D. $(6,11)$

Answer: A

- Watch Video Solution

7. If a,b,c are non -zero then number of solutions of solutions of
$\frac{2 x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$
$-\frac{x^{2}}{a^{2}}+\frac{2 y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$
$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{2 z^{2}}{c^{2}}=0$ is
A. 6
B. 8
C. 9
D. infinite

Answer: D

8. If A and B are two matrices such that $\mathrm{AB}=\mathrm{B}$ and $\mathrm{BA}=\mathrm{A}$, then $A^{2}+B^{2}=$
A. 2 AB
B. 2BA
C. $A+B$
D. $A B$

Answer: C

- Watch Video Solution

9. If $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ -1 & -1 & 0\end{array}\right]$ and $f(x)=x^{2}-5 x+6$ is any polynomial , then $\mathrm{f}(\mathrm{A})=$
A. $\left[\begin{array}{ccc}1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4\end{array}\right]$
B. $\left[\begin{array}{ccc}1 & 1 & -5 \\ -1 & -1 & 4 \\ -3 & -10 & 4\end{array}\right]$
C. 0
D. I

Answer: A

- Watch Video Solution

10. The inverse of the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]$ is (A) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ b & c & 1\end{array}\right]$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ a c & b & 1\end{array}\right]$ (C) $\left[\begin{array}{ccc}1 & -a & a c-b \\ -0 & 1 & -c \\ 0 & 0 & 1\end{array}\right]$ (D) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ a c-b & -c & 1\end{array}\right]$
A. $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ a c-b & -c & 1\end{array}\right]$
B. $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 0 & 0 \\ b & -c & 1\end{array}\right]$
C. $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 0 & 0 \\ a c & b & 1\end{array}\right]$
D. none of these
11. If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then $A^{-1}=$
A. A
B. A^{2}
C. A^{3}
D. A^{4}

Answer: C

- Watch Video Solution

Solved Examples Level 2 Numercial Answer Type Questions

1. Let $\mathrm{A}=\left[\begin{array}{ll}7 & 5 \\ 4 & 8\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]$ and $C=\left[\begin{array}{cc}5 & -3 \\ -3 & 2\end{array}\right]$ then $\sum_{k=0}^{\infty} \frac{1}{3^{k}} \operatorname{tr}\left\{A(B C)^{k}\right\}=$ \qquad

- Watch Video Solution

2. If $\mathrm{x}=\alpha, y=\beta, z=\gamma$ is a solution of the system of equations $x+y+z=4$ $2 x-y+3 z=9$

- View Text Solution

3. Suppose $p, q, r \in R$ and and $p q r=2.5$. Let
$\mathrm{A}=\left[\begin{array}{lll}p & q & r \\ r & p & q \\ q & r & p\end{array}\right]$
If $\mathrm{AA}=I_{3}$ then maximum possible value of $p^{3}+q^{3}+r^{3}$ is

- Watch Video Solution

4. Suppose A and B are two 3×3 non singular matrices such that $\operatorname{tr}(A B)$ $=7.57$ then $\operatorname{tr}\left(B A+I_{3}\right)=$ \qquad

- Watch Video Solution

5. Suppose k is a root of $x^{2}-6.1 x+5.1=0$ such that $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & k\end{array}\right]$ is non -singular then $\operatorname{tr}(\operatorname{adj}(A))=$

- Watch Video Solution

6. Let $\mathrm{A}=\left(\begin{array}{lll}2.1 & 2.7 & 1.3 \\ 3.1 & 3.2 & 1.7 \\ 2.1 & 2.5 & 2.9\end{array}\right)$. The sum of values of x for which $\mathrm{A}-\mathrm{x} I_{3}$ is singular is \qquad

- View Text Solution

7. If the system of linear equations
$a x+(a+1) y+(a-1) z=0$
$(a-1) x+(a+2) y+a z=0$
$(a+1) x+a y+(a+2) z=0$
has a nontrivial solution then sum of possible values of $|a|$ is \qquad

- View Text Solution

8. Let $\mathrm{A}=\left[\begin{array}{cc}3 & -1 \\ 0 & 2\end{array}\right]$. Suppose A satisfies the equation $x^{2}+a x+b=0$ for some real numbers a and b . Let α, β be the roots of $t^{2}+a t+\mathrm{b}=0$ then
$\frac{1}{\alpha^{2}-3 \alpha+4}+\frac{1}{\beta^{2}-3 \alpha+4}=$

- Watch Video Solution

9. Let $\mathrm{A}=\left[\begin{array}{ccc}5.1 & -3.1 & 0 \\ -3.1 & 5.1 & 0 \\ 0 & 0 & 2.2\end{array}\right] \mathrm{X}$ be a non zero 3×1 matrix and λ is a real number . If $A^{2} X=\lambda A X$ then sum of possible values of λ is

- View Text Solution

10. A solution set of the equations $x+2 y+z=1, x+3 y+4 z=k$, $x+5 y+10 z=k^{2}$ is

- Watch Video Solution

11. Let $\alpha=\frac{2 k \pi}{2025}, \beta=\frac{2 m \pi}{2026}$ and $\gamma=\frac{2 k \pi}{2027}$ where k,m,n $\in \mathrm{Z}$.
$A=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$,
$B=\left(\begin{array}{cc}\cos \beta & -\sin \beta \\ \sin \beta & \cos \gamma\end{array}\right)$
$C=\left(\begin{array}{cc}\sin \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma\end{array}\right)$
then $\operatorname{det}\left(A^{2025}+B^{2026}+C^{2027}\right)$ is equal to

- View Text Solution

12. Let $\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0 \\ 3 & 2 & 1\end{array}\right)$ and $A^{n}=\left(\begin{array}{ccc}a_{n} & b_{n} & c_{n} \\ 0 & 0 & 0 \\ c_{n} & b_{n} & a_{n}\end{array}\right) \forall n \in N$,

If $a=\lim _{n \rightarrow \infty} \frac{1}{2^{n-2}}\left(a_{n}+b_{n}+c_{n}\right)$ then $|\mathrm{a}+3 \mathrm{i}|=$ \qquad

D View Text Solution

13. Let A and B be two 3×3 real matrices such that
$A B \neq B A$
$A B-B^{2} A^{2}=I_{3}$
$A^{3}+B^{3}=O_{3}$.
then $\operatorname{det}\left(B A-A^{2} B^{2}\right)$. Then $|12 \mathrm{a}+5 \mathrm{i}|=$ \qquad

- View Text Solution

14. Let A and B be two 3×3 matrices with integer entries. If $6 A B+2 A+3 B=$ O_{3} then $\left|\operatorname{det}\left(3 \mathrm{~B}+I_{3}\right)\right|$ is equal to \qquad .
15. Let $\mathrm{A}=\left(\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right)$ and let n be the smallest value of $\mathrm{n} \in \mathrm{N}$ such that $A^{n}=O_{3}$ then $\operatorname{det}\left(I_{3}+A+A^{2}+\cdots+A^{n-1}\right)$ is equal to
\qquad .

- Watch Video Solution

16. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c} \in R-\{0\}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ Let
$\alpha=\frac{1}{5}\left(a^{5}+b^{5}+c^{5}\right), \beta=\frac{1}{3}\left(a^{3}+b^{3}+c^{3}\right)$ and $\gamma=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)$.
Suppose $A=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & 1\end{array}\right]$ and $\mathrm{a}=\operatorname{det}$ (A)
If $|a+i b|=4.1$ then $b^{2}=$ \qquad .

- View Text Solution

17. Let $m=$ the number of values of a for which the system of equations $x+2 y+z=a$
$3 x+4 y+2 z=a-3$
$4 x+2 y+z=4$
has a solution . Let $\omega \neq 1$ be cube root of unity then $|m+\omega|=$ \qquad .

- View Text Solution

18. If $\mathrm{A}=\left[\begin{array}{ccc}2 & 52 & 152 \\ 4 & 106 & 358 \\ 6 & 162 & 620\end{array}\right]$ then $\operatorname{det}\left(\operatorname{adj}\left(\frac{1}{2} A\right)\right)$ is equal to ____.

- View Text Solution

Exercise Concept Based Single Correct Answer Type Questions

1. Let A be a 2×2 invertible matrix. For which of the following functions $\operatorname{det}(f(A))=f(\operatorname{det}(A))$ is not true ?
A. $\mathrm{f}(\mathrm{x})=x^{3}$
B. $\mathrm{f}(\mathrm{x})=x^{-1}, x \neq 0$
C. $f(x)=1+x$
D. $\mathrm{f}(\mathrm{x})=x^{-3}, x \neq 0$

Answer: C

- View Text Solution

2. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in C$ and let $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then which one of the following is not true ?
A. $|\operatorname{det}(A)| \leq+|a|+|b|+|c|+|d|$
B. $|\operatorname{det}(A)| \leq(|a|+|b|)(|c|+|d|)$
C. $|\operatorname{det}(A)| \leq(|a|+|c|)(|b|+|d|)$
D. $|\operatorname{det}(A)| \leq \sqrt{|a|^{2}+|b|^{2}} \sqrt{|c|^{2}+|d|^{2}}$

Answer: A

3. Let A, B be two 3×3 matrices with entries from real number. Which one of the follwing is true ?
A. $(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}$
B. $(A B)^{2}=O \Rightarrow A B=O$
C. $(A+B)(A-B)=A^{2}-B^{2}$
D. $(A+B) A=B A+A^{2}$

Answer: D

- View Text Solution

4. Suppose A and B are two 3×3 matrices with entries from complex numbers such that $A B A=I$. Which one the following is not true ?
A. B is invertible
B. $B^{-1}=A^{2}$
C. A is not invertible
D. $A^{4} B^{2}=I$

Answer: C

- Watch Video Solution

5. Let A be a 3×3 matrix with entries from the set of real numbers.

Suppose the equation $A X=B$ has a solution for every 3×1 matrix B with entries from the set of real numbers. Then
A. $A^{\prime} Y=B$ has no soluton
B. $A^{\prime} Y=O \Rightarrow Y=O$
C. $A X=O$ has a non - trivial solution
D. A is a singular matrix

Answer: B

- View Text Solution

6. Suppose $\mathrm{A}=\left[\begin{array}{cc}\cos \theta & I \sin \theta \\ I \sin \theta & \cos \theta\end{array}\right]$ for some $\theta \in$ R. Let $\mathrm{B}, \mathrm{C}, \mathrm{D}$ be three 2×2 matrices such that $A B=B C-A D$ then

> A. C' = B' -D'
B. $C+D=B$
C. $C^{\prime}=B+D$
D. none of these

Answer: C

- View Text Solution

7. Suppose A, B are two 3×3 matrices such that A^{-1} exists. Then $(A-B) A^{-1}(A+B)$ is equal to
A. $(A+B)\left(A^{-1}\right)(A-B)$
B. $A^{-1} B+B^{2}$
C. $\left(I-B A B^{-1}\right)(A-B)$
D. $\left(I+B A B^{-1}\right)(A+B)$

Answer: A

- Watch Video Solution

8. Let A be 3×3 matrix such that A is orthogonal idempotent then
A. A must be symmetric
B. $\operatorname{det}(A)=-1$
C. $\mathrm{A}+A^{-1}=1$
D. none of these

Answer: A

- Watch Video Solution

9. If A and B are two orthogonal matrices of order n and $\operatorname{det}(A)+\operatorname{det}(B)=0$; then which of the following must be correct ?
A. $A+B=-1$
B. $A+B=1$
C. $\operatorname{det}(A+B)=0$
D. $A+B=O$

Answer: C

- Watch Video Solution

10. Let $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R} \cdot \mathrm{Ad} \neq \mathrm{O}$ If $(\mathrm{a}+\mathrm{d}) A-A^{2}=A$ then
A. $a=d$
B. $a=d=1$
C. $a+d=0$
D. $a+d=1$

Answer: B

- View Text Solution

Exercise Level 1 Single Correct Answer Type Questions

1. Let $\quad S_{k}=\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right), k \in N$. Then $\left(S_{2}\right)^{n}\left(S_{x}\right)^{-1}$ (where n in N) isequal to: $\left(S_{k}\right)^{-1}$ denotes the inverse of matrix S_{k}
A. $S_{2 n+k}$
B. $S_{2 n-k}$
C. $S_{2^{n}+k-1}$
D. $S_{2^{n}-k}$

Answer: B

2. Let S be the set of all 2×2 real matrices $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $\mathrm{a}+\mathrm{d}=3$ and $\mathrm{A}=A^{2}-3 A$. Then
A. S contains infinite number of elements
B. $S=Q$
C. S contains exactly two elements
D. S contains exactly 2^{4} elements

Answer: B

- View Text Solution

3. Let $\mathrm{A}=\left(a_{i j-}(3 \times 2)\right.$ be a 3×2 matrix with real entries and $\mathrm{B}=\mathrm{AA}$. Then
A. B^{-1} is a 3×3 matrix
B. B^{-1} is a 2×2 matrix
C. B^{-1} does not exist
D. B^{-1} exists if and only if exactly one row of A consists of zeros

Answer: C

- Watch Video Solution

4. Let $\mathrm{A}=\left(a_{i j}-(3 \times 3)\right.$ be a matrix with $a_{i j} \in C$. Let B be a matrix obtained by inerchanging two columns of A. Then $\operatorname{det}(A+B)$ is equal to
A. $\operatorname{det}(A)+\operatorname{det}(B)$
B. 0
C. $2 \operatorname{det}(\mathrm{~A})$
D. $\operatorname{det}(A)-\operatorname{det}(B)$

Answer: B

- View Text Solution

5. If $I=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right), J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ then B equals
A. $(\cos \theta) I+(\sin \theta) J$
B. $(\sin \theta) I+(\cos \theta) J$
C. $(\cos \theta) I-(\sin \theta) J$
D. $-(\cos \theta) I+(\sin \theta) J$

Answer: A

- View Text Solution

6. If A is both diagonal and skew - symmetric then
A. A is a symmetric matrix
B. A is a null matrix
C. A is a unit matrix
D. none of these matrix

Answer: B

- View Text Solution

7. If $A^{2}-3 A+2 I=0$ then A^{-1} equals
A. $\frac{1}{2}(A-3 I)$
B. $\frac{1}{2}(3 I-A)$
C. $(A+3 I)$
D. none of these

Answer: B

- View Text Solution

8. If A is a square matrix of order 3 such that $A^{2}=2 \mathrm{~A}$ then $|A|^{2}$ is equal to
A. $2|A|$
B. $8|A|$
C. $16|A|$
D. 0

Answer: B

- View Text Solution

9. If A is a squyare matrix then which one of the following is not a symmetric matrix
A. $A+A^{\prime}$
B. $A A^{\prime}$
C. $A^{\prime} A$
D. $A-A^{\prime}$

Answer: D

10. If $\mathrm{A}=\left(a_{i j}\right)_{3 \times 3}$ where $a_{i j}=\cos (\mathrm{i}+\mathrm{j})$ then
A. A is symmetric
B. A is skew symmetric
C. A is a triangular matrix
D. A is a singular matrix

Answer: A

11. If $\mathrm{A}=\left(a_{i j}\right)_{3 \times}$ is a matrix satrisfying the equation $x^{3}-3 x+1=0$ then
A. A is a unit matrix
B. A is singular matrix
C. A is non -singular matrix
D. none of these

Answer: C

- Watch Video Solution

12. Let A and B be square matrices of the same order. Does $(A+B)^{2}=A^{2}+2 A B+B^{2}$ hold? If not, why?
A. $A B=B A$
B. $A B+B A=O$
C. $|A B| \neq 0$
D. $|A B|=0$

Answer: A

- Watch Video Solution

13. If $\left[\begin{array}{cc}I & 0 \\ 3 & -i\end{array}\right]+X=\left[\begin{array}{cc}I & 2 \\ 3 & 4+i\end{array}\right]-\mathrm{X}$ then X is equal to
A. $\left[\begin{array}{cc}0 & -1 \\ 3 & i\end{array}\right]$
B. $\left[\begin{array}{cc}0 & 1 \\ 0 & 2+i\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 0 \\ 0 & 2-i\end{array}\right]$
D. $\left[\begin{array}{cc}I & 2 \\ 0 & 2+i\end{array}\right]$

Answer: B

- Watch Video Solution

14. If $\mathrm{A}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right] B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ then $\mathrm{A} B+\mathrm{BA}$ is
A. null matrix
B. unit matrix
C. invertible matrix
D. none of these

- Watch Video Solution

15. $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3\end{array}\right]$ then A is a nilpotent matrix of index
A. 2
B. 3
C. 4
D. 5

Answer: A

Watch Video Solution
16. If A is a 2×2 unitary matrix then $|A|$ is equal to
A. 1
B. -1
C. ± 1
D. none of these

Answer: C

- Watch Video Solution

17. If $A=\frac{1}{2}\left(\begin{array}{cc}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{array}\right)$ then $A^{-1}-A^{2}$ is equal to a
A. null matrix
B. invertible matrix
C. unit matrix
D. none of these

Answer: A

18. If C is a 3×3 matrix satisfying the relation $C^{2}+C=I$ then C^{-2} is given by
A. 2 C
B. 3 C-1
C. C
D. $21+\mathrm{C}$

Answer: D

- Watch Video Solution

19. If A, B and C are three square matrices of the same size such that $B=$ $C A C^{-1}$ then $C A^{3} C^{-1}$ is equal to
A. B
B. B^{2}
C. B^{3}
D. B^{9}

Answer: C

- Watch Video Solution

20. If X is a 2×3 matrix such that $\left|X^{\prime} X\right| \neq 0$ and $A=I_{2}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$, then A^{2} is equal to
A. A
B. I
C. A^{-1}
D. none of these

Answer: A

- Watch Video Solution

21. The matrix $\mathrm{A}=\left(\begin{array}{cc}p & -q \\ q & p\end{array}\right)$ is orthogonal if and only if
A. $p^{2}+q^{2}=1$
B. $p^{2}=q^{2}$
C. $p^{2}=q^{2}+1$
D. none of these

Answer: A

- View Text Solution

22. The values of λ for which the matrix $A=\left(\begin{array}{ccc}\lambda & 0 & \lambda \\ \lambda & 0 & -\lambda \\ 0 & 1 & 0\end{array}\right)$ is orthogonal is
A. ± 1
B. $\pm 1 / \sqrt{2}$
C. $\pm 1 / 2$
D. $\pm 1 / \sqrt{2}$

Answer: D

- View Text Solution

23. The values of a for which the matrix
$A=\left(\begin{array}{ccc}a & a^{2}-1 & -3 \\ a+1 & 2 & a^{2}+4 \\ -3 & 4 a & -1\end{array}\right)$ is symmetric are
A. -1
B. -2
C. 3
D. 2

Answer: D
24. Let $A_{t}=\left(\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & t \\ 4 & 7-t & -6\end{array}\right)$ then the values (s) of t for which inverse of A_{t} does not exist.
A. $-2,1$
B. 3,2
C. 2,-3
D. 3,-1

Answer: C

- Watch Video Solution

25. If $A=\left[\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]$ and $a^{2}+b^{2}+c^{2}+d^{2}=1$, then A^{-1} is equal to
A. $\left[\begin{array}{cc}a-i b & -c+i d \\ c+i d & a+i b\end{array}\right]$
B. $\left[\begin{array}{cc}a-i b & c-i d \\ -c-i d & a+i b\end{array}\right]$
C. $\left[\begin{array}{cc}a-i b & -c-i d \\ c-i d & a+i b\end{array}\right]$
D. none of these

Answer: C

- Watch Video Solution

26. If $A=\left[\begin{array}{cc}\frac{1}{2}\left(e^{i x}+e^{-i x}\right) & \frac{1}{2}\left(e^{i x}-e^{-i x}\right) \\ \frac{1}{2}\left(e^{i x}-e^{-i x}\right) & \frac{1}{2}\left(e^{i x}+e^{-i x}\right)\end{array}\right]$ then A^{-1} exists
A. for all real x
B. for positive real x only
C. for negative real x only
D. none of these

Answer: A

- View Text Solution

27. If $\mathrm{A}=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$ then A^{2} is equal
A. 0
B. 1
C. $-I$
D. none of these

Answer: A

- View Text Solution

28. If A is 2×2 matrix such that $A^{2}=\mathrm{O}$ then $\operatorname{tr}(\mathrm{A})$ is
A. 1
B. -1
C. 0
D. none of these

Answer: C

- View Text Solution

29. If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that A satisfies the relation $A^{2}-(a+d) A=O$ then inverse of A is
A. I
B. A
C. $(a+d) A$
D. none of these

Answer: D

- View Text Solution

30. If $\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$ then A^{-3} is
A. $\frac{1}{27}\left[\begin{array}{ll}1 & -26 \\ 0 & -27\end{array}\right]$
B. $\frac{1}{27}\left[\begin{array}{cc}-1 & -26 \\ 0 & -27\end{array}\right]$
C. $\frac{1}{27}\left[\begin{array}{cc}1 & -26 \\ 0 & 27\end{array}\right]$
D. $\frac{1}{27}\left[\begin{array}{cc}-1 & 26 \\ 0 & -27\end{array}\right]$

Answer: C

- View Text Solution

31. If A is a skew Hermitian matrix then the main diagonal elements of A are all
A. purely real
B. positive
C. negative
D. purely imaginary
32. If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$ and $A A^{\prime}=\mathrm{I}$, then $\mathrm{x}+\mathrm{y}$ is equal to
A. 0
B. I
C. A
D. A^{2}

Answer: A

- View Text Solution

33. If $3 \mathrm{~A}=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y\end{array}\right]$ and $\mathrm{A}^{\prime} \mathrm{A}=1$ then $\mathrm{x}+\mathrm{y}$ is equal to
A. -3
B. -2
C. -1
D. 0

Answer: A

- View Text Solution

34. If the system of equations $a x+y=3, x+2 y=3,3 x+4 y=7$ is consistent then value of a is given by
A. 2
B. 1
C. -1
D. 0

Answer: A

35. If the system
$x+2 y-3 z=1,(P+2) z=3,(2 P+1) y+z=2$ is inconsistent then
the value of P is
A. -2
B. $-1 / 2$
C. 0
D. 2

Answer: A

- Watch Video Solution

36. The system of linear equations
$x+y+z=2$
$2 x+y-z=3$
$3 x+2 y+k z=4$ has a unique solution if
A. $k \neq 0$
B. $-1<k<1$
C. $-2<k<2$
D. $\mathrm{k}=0$

Answer: A

- Watch Video Solution

37. If $A=\left[\begin{array}{ll}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]$ is a symmetric matrix, then $x=$?
A. -1
B. 2
C. 3
D. none of these

Answer: D
38. If A and B are two square matrices of the same order then which of the following is true.
A. $(A B)^{\prime}=A^{\prime} B^{\prime}$
B. (AB) '=B'A'
C. $|\mathrm{AB}|=0 \Rightarrow|A|=0$ and $|\mathrm{B}|=0$
D. none of these

Answer: B

- View Text Solution

39. Value of ' α ' for which system of equations $x+y+z=1, x+2 y+4 z=\alpha$ and $x+4 y+10 z=\alpha^{2}$ is consistent, are 1 (b) 3 (c) 2 (d) 0

$$
\text { A. } 1,-2
$$

B. $-1,2$
C. 1,2
D. none of these

Answer: C

- Watch Video Solution

40. The system of homogenous equations
$t x+(t+1) y+(t-1) z=0$, $(t+1) x+t y+(t+2) z=0$,
$(t-1) x+(t+2) y+t z=0$ has a non trivial solution for
A. three values of t
B. two values of t
C. one value of t
D. infinite number of values of t

Answer: C

41. If A and B are 3×3 matrices and $|A| \neq 0$, which of the following are true?
A. $|\mathrm{AB}|=0 \Rightarrow|\mathrm{~B}|=0$
B. $|\mathrm{AB}| \neq 0 \Rightarrow|B| \neq 0$
C. $\left|A^{-1}\right|=|A|^{-1}$
D. $|A+A|=2|A|$

Answer: D

- Watch Video Solution

42. If $A=\left(\begin{array}{cc}i & -i \\ -i & i\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ then A^{8} equals
A. 128 B
B. 32 B
C. 16 B
D. 64 B

Answer: A

- View Text Solution

43. If $\mathrm{A}=\left(\begin{array}{ccc}2 & 3-i & -i \\ 3+i & \pi & 7+i \\ i & 7-i & e\end{array}\right)$ then A is
A. symmetric
B. Hermitian
C. skew Hermitian
D. none of these

Answer: B

Watch Video Solution

1. If $\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, then
A. $a=b=1$
B. $a=\cos 2 \theta, b=\sin 2 \theta$
C. $a=\sin 2 \theta, b=\cos 2 \theta$
D. $a=1, b=\sin 2 \theta$

Answer: B

D Watch Video Solution

2. If $a, b, c \neq 0$ and $a+b+c=0$ then the matrix
$\left[\begin{array}{ccc}1+\frac{1}{a} & 1 & 1 \\ 1 & 1+\frac{1}{b} & 1 \\ 1 & 1 & 1+\frac{1}{c}\end{array}\right]$ is
A. singular
B. non-singular
C. skew-symmetric
D. orthogonal

Answer: B

- Watch Video Solution

3. Suppose matrix A satisfies the equation $A^{2}-5 A+7 I=O$. If $A^{8}=a A+b I$ then value of a is
A. 1265
B. 2599
C. -2599
D. 0

Answer: A

4. If α, β, γ are three real numbers and $A=\left[\begin{array}{ccc}1 & \cos (\alpha-\beta) & \cos (\alpha-\gamma) \\ \cos (\beta-\alpha) & 1 & \cos (\beta-\gamma) \\ \cos (\gamma-\alpha) & \cos (\gamma-\beta) & 1\end{array}\right]$
then whichof following is/are true?
A. A is singular
B. A is non-singular
C. A is orthogonal
D. noone of these

Answer: A

- Watch Video Solution

5. Let $\mathrm{A}(\theta)=\left(\begin{array}{cc}\sin \theta & i \cos \theta \\ i \cos \theta & \sin \theta\end{array}\right)$, then
A. $A(\theta)^{-1}=A(-\theta)$
B. $A(\theta)^{-1}=A(\pi-\theta)$
C. $A(\theta)^{-1}$ does not exist
D. $A(\theta)^{2}=A(2 \theta)$

Answer: B

- Watch Video Solution

6. Let A and B are two matrices such that $A B=B A$, then for every $n \in N$
A. $A^{n} B=B A^{n}$
B. $(A B)^{n}=A^{n} B^{n}$
C. $A^{n} B=B^{n} A$
D. $A^{n} B^{n}=B^{n} A^{n}$

Answer: C

7. Let $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & 1 & 1\end{array}\right]$. Find the sum of all the value of λ for which there exists a column vertor $X \neq 0$ such that $A X=\lambda X$.
A. 0
B. 1
C. 2
D. 3

Answer: D

D Watch Video Solution

8. Let $a, b, c \in R$ be such that $a+b+c>0$ and $a b c=2$. Let
$A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$
If $A^{2}=I$ then value of $a^{3}+b^{3}+c^{3}$ is
A. 7
B. 2
C. 0
D. -1

Answer: A

- Watch Video Solution

9. If A is a 3×3 skew -symmetric matrix with real entries and trace of A^{2} equals zero then
A. $A=O$
B. $2 A=1$
C. A is orthogonal
D. none of these

Answer: A

10. Suppose A and B are two 3×3 non -singular matrices such that $(A B)^{k}=A^{k} B^{k}$
for $k=2015,2016,2017$ then
A. $A B=0$
B. $B A=O$
C. $A B=B A$
D. $A B+B A=O$

Answer: C

- View Text Solution

11. Let A be a square matrix of order 3 such that $|\operatorname{Adj} A|=100$ then $|\mathrm{A}|$ equals
A. ± 10
B. -100
C. 100
D. 25

Answer: A

- Watch Video Solution

diagonal entries of M is
A. 0
B. -3
C. 6
D. 9
13. If A, B and $A+B$ are non -singular matrices then

$$
\left(A^{-1}+B^{-1}\right)\left[\left(A-A(A+B)^{-1} A\right]\right. \text { equals }
$$

A. 0
B. 1
C. A
D. B

Answer: B

- View Text Solution

14. If $A+B$ is a non -singular matrix then

A-B $-A(A+B)^{-1} A+B(A+B)^{-1} B$ equals
A. O
B. I
C. A
D. B

Answer: A

- View Text Solution

15. If A and B are two matrices such that $A+B=A B$, then
A. $A=1$
B. $B=I$
C. $A B=B A$
D. $A B=1$

Answer: C

16. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $A^{3}=0$, then $a+d$ equals
A. ad
B. bc
C. 1
D. 0

Answer: D

- Watch Video Solution

17. Let $\mathrm{A}=\left(\begin{array}{ccc}0 & x & 0 \\ y & 0 & -x \\ 0 & y & 0\end{array}\right)$ then A^{3} equals
A. 0
B. $x^{2} I$
C. $\left(x^{2}+y^{2}\right) I$
D. none of these

D View Text Solution

Exercise Numerical Answer Type Questions

1.

$A=\left(\begin{array}{ccc}2.1 & 2.5 & 3.7 \\ -2.1 & 5.9 & 3.8 \\ 0 & -2.9 & -3\end{array}\right), B=\left(\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & -1\end{array}\right), C=\left(\begin{array}{c}\cos \alpha \\ -\sin \alpha \\ 0\end{array}\right.$
then $\sum_{k=0}^{\infty} \frac{1}{3^{k}} \operatorname{tr}\left(A(B C)^{k}\right)=$ \qquad

- View Text Solution

2. Sum of the values of $t \in C$ for which the matrix $\left(\begin{array}{ccc}1+t & 3 & 2 \\ 2 & 5 & t \\ 4 & 7-t & -6\end{array}\right)$ has no inverse is ___.

(Watch Video Solution

3. If the system of linear equations given by
$x+y+z=3$
$2 x+y-z=3$
$x+y-z=1$
is consistent and if (α, β, γ) is a solution then $2 \alpha+2 \beta+\gamma=$ \qquad

- Watch Video Solution

4. Suppose A and B are two 3×3 matrices then $\operatorname{det}[(A-A)+(B-B)]=$

- View Text Solution

5. If the system of linear equations
$x+2 k y+3 z=0$
$3 x+2 k y-2 z=0$
$2 \mathrm{x}+4 \mathrm{y}-3 \mathrm{z}=0$ has a non -zero solution ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) then $\left|\frac{y z}{2 x^{2}}\right|=$
6. Suppose (α, β, γ) lie on the plane $2 x+y+z=1$ and
$[\alpha, \beta, \gamma]\left[\begin{array}{lll}1 & 9 & 1 \\ 7 & 2 & 1 \\ 8 & 3 & 1\end{array}\right]=[0,0,0]$ then $\alpha+\beta^{2}+\gamma^{2}=\ldots$

(Watch Video Solution

7. Let $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & 0 \\ 3 & 1 & 5 \\ -1 & 2 & -1\end{array}\right]$ then $\operatorname{det}\left(\frac{1}{10} \operatorname{adj}(\operatorname{adj} A)\right)=$

- View Text Solution

8. Suppose $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{R}$ pqr $\neq \mathrm{O}$. Let $\mathrm{A}=\left(\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right)$ If $\mathrm{AA}=4.41 I_{3}$ then $r^{2}=$
9. Suppose a $\in \mathrm{R}$ and $a \neq 0$. Let
$P=\left[\begin{array}{ccc}1 & 0 & 0 \\ a & 1 & 0 \\ a^{2} & a & 1\end{array}\right]$ and $Q=\left(a_{i j}\right)$
be 3×3 matrices such that $Q-P^{5}=I_{3}$. If $\frac{q_{21}+q_{31}}{q_{32}}=12.1$ then $\mathrm{a}=$

- View Text Solution

10. Suppose
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdots\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 91 \\ 0 & 1\end{array}\right]$ then $n=$

- View Text Solution

11. Let A be a 2×2 matrix such that $\operatorname{det}\left(A^{2}+4 I_{2}\right)=0$ then
$\operatorname{det}(\mathrm{A})+\operatorname{tr}(\mathrm{A})=$ \qquad

- View Text Solution

12. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c} \geq 0$ and

$$
\begin{aligned}
& \frac{(a+1)(b+1)}{(a+2)(b+2)}+\frac{(b+1)(c+1)}{(b+2)(c+2)}+\frac{(c+1)(a+1)}{(c+2)(a+2)}=\frac{3}{4} \quad \text { then } \quad \operatorname{det} \\
& {\left[\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)\left(\begin{array}{ll}
b & c \\
a & b
\end{array}\right)\left(\begin{array}{ll}
c & a \\
b & c
\end{array}\right)\right]=}
\end{aligned}
$$

- View Text Solution

13. Let $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}, \mathrm{a}+\mathrm{d} \neq 4$. If A satisfies $A^{2}-4 A+3 I_{2}=O_{2}$ then bc is equal to \qquad .

- View Text Solution

14. Suppose $\sum_{n=1}^{\infty} \frac{1}{(n+2) \sqrt{n}+n \sqrt{n+2}}=\frac{\sqrt{b}+\sqrt{c}}{\sqrt{a}}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ and $\mathrm{A}=\left(\begin{array}{cc}\sqrt{a} & b \\ c & \sqrt{a}\end{array}\right)$ then $\frac{\operatorname{det}(A)}{b c}$ is equal to

- Watch Video Solution

15. Suppose $\mathrm{A}=\left(a_{i j}\right)_{3 \times 3}$ be a symmetric matrix. If $S=\left\{a_{i j} 1 \leq I, j \leq 3\right\}$ then S can contain at most distinct number of elements .

- View Text Solution

16. Let $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \quad \in \mathrm{R}$. Suppose there exists $x_{1}, x_{2} \in C x_{1}, x_{2} \neq 0$ such that $\left(A-3.1 i l_{2}\right)\binom{x_{1}}{x_{2}}=O_{2}$ then $\operatorname{det}(\mathrm{A})$ is equal to \qquad .

D View Text Solution

17. Let A be an upper triangular 3×3 real matrices such that $\operatorname{det}(A)=0$ $\operatorname{det}\left(\mathrm{A}+2.1 I_{3}\right)=0$ and $\operatorname{det}\left(A-3.2 I_{3}\right)=0$ then $\operatorname{tr}(\mathrm{A})$ is equal to \qquad .

- View Text Solution

18. Let A and B be two 3×3 real matrices such that $A B=B A$ and get $\left(A^{2}+A B+B^{2}\right)=0$. If $\omega \neq 1$ is a cube root of unity then tet $\left(A-\omega^{2} B\right)$ is equal to \qquad .

- View Text Solution

19. Let $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}, \mathrm{a}+\mathrm{d} \neq 7$.

If n is the number of matrices A satisfying the equation $A^{2}-7 A+12 I_{2}=O_{2}$ then $6.31+\mathrm{n}$ is equal to \qquad .

- View Text Solution

20. Let A be a 3×3 matrix such that $\left(A-2.2 I_{3}\right)\left(A-3.8 I_{3}\right)=O_{3 \times 3}$ then trace of $A+8.36 A^{-1}$ is \qquad
21. If $A=\left[(a, b),(b, a 0]\right.$ and $A^{2}=[(\alpha, \beta 0,(\beta, \alpha)]$ then
$\alpha=a^{2}+b^{2}, \beta=a b$
(B) $\quad \alpha=a^{2}+b^{2}, \beta=2 a b$

$$
\begin{equation*}
\alpha=a^{2}+b^{2}, \beta=a^{2}-b^{2} \text { (D) } \alpha=2 a b, \beta=a^{2}+b^{2} \tag{C}
\end{equation*}
$$

A. $\alpha=a^{2}+b^{2} \beta=2 a b$
B. $\alpha=a^{2}+b^{2}, \beta=a^{2-b^{2}}$
C. $\alpha=2 a b, \beta=a^{2}+b^{2}$
D. $\alpha=a^{2}+b^{2}, \beta=-2 a b$

Answer: A

- Watch Video Solution

2. Let $A=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$. The only correct statement aboul the matrix A is
A. A^{-1} does not exist
B. $A=(-1)$ I where I is a unit matrix
C. A is a zero matrix
D. $A^{2}=I$

Answer: D

- Watch Video Solution

3. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$. If B is the inverse of A , then α is:
A. 2
B. -1
C. -2
D. 5

Answer: D

4. Let A be a square matrix such that $A^{2}-A+I=O$, then write A^{-1} in terms of A.
A. A-I
B. I-A
C. A+I
D. A

Answer: B

Watch Video Solution

5. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then which one of the following holds for all $n \geq 1$ by the principle of mathematica induction? (A)
$A^{n}=2^{n-1} A+(n-1) I$
(B) $\quad A^{n}=n A+(n-1) I$
$A^{n}=2^{n-1} A-(n-1) I$ (D) $A^{n}=n A-(n-1) A I$
A. $A^{n}=n A+(n-1) I$
B. $A^{n}=n A-(n-I) I$
C. $A^{n}=n A-(n-1) I$
D. $A^{n}=(2 n-1) A-(n-1) I$

Answer: C

- Watch Video Solution

6. If A and B are square matrices of size $n \times n$ such that $A^{2}-B^{2}=(A-B)(A+B)$, then which of the following will be always true
A. either A or B is an identity matrix
B. $A=B$
C. $A B=B A$
D. either A or B is a zero matrix

Answer: C

- Watch Video Solution

7. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, where $a, b \in N$, then
A. there exist infinitely many $\mathrm{B}^{\prime} \mathrm{s}$ such that $\mathrm{AB}=\mathrm{BA}$
B. there cannot exist B such that $A B=B A$
C. there exist more than one but finite number of B 's such that $A B=B A$
D. there exists exactly one B such that $A B=B A$

Answer: A

- Watch Video Solution

8. Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$.If $\left|A^{2}\right|=25$, then $|\alpha|$ is equal to :
A. 5^{2}
B. 1
C. $1 / 5$
D. 5

Answer: C

- Watch Video Solution

9. Let A be a 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denote by $\operatorname{tr}(A)$, the sum of diagonal entries of A. Assume that $A^{2}=I$. Statement 1: If $A \neq I$ and $A \neq-I$, then $\operatorname{det} A=-1$. Statement 2: If $A \neq I$ and $A \neq-I$, then $\operatorname{tr}(A) \neq 0$.(1) Statement 1 is false, Statement $(2)(3)-2(4)$ is true (6) Statement 1 is true, Statement $(7)(8)-2(9)(10)$ is true, Statement $(11)(12)-2(13)$ is a correct explanation for Statement 1 (15) Statement 1 is true, Statement $(16)(17)-2(18)(19)$ is true; Statement $(20)(21)-2(22)$ is not a correct explanation for Statement 1. (24) Statement 1 is true, Statement $(25)(26)-2(27)$ is false.
10. Let A be a 2×2 matrix

Statement -1 $\operatorname{adj}(\operatorname{adj} A)=A$
Statement-2 \mid adj $A|=|A|$

- Watch Video Solution

11. Let A be a 2×2 matrix with non-zero entries and let $A^{2}=I$, where I is 2×2 identity matrix. Define $\operatorname{Tr}(A)=$ sum of diagonal elements of A and $|\mathrm{A}|=$ determinant of matrix A. Statement-1: $\operatorname{Tr}(A)=0$ Statement-2:
$|A|=1$ (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1
12. The number of 33 non-singular matrices, with four entries as 1 and all other entries as 0 , is (1) 5 (2) 6 (3) at least 7 (4) less than 4
A. 6
B. at least 7
C. less than 4
D. 5

Answer: B

Watch Video Solution

13. Consider the system of linear equations:
$x_{1}+2 x_{2}+x_{3}=3$
$2 x_{1}+3 x_{2}+x_{3}=3$
$3 x_{1}+5 x_{2}+2 x_{3}=1$
The system has

> A. a unique solution
B. no solution
C. infinite number of solutions
D. exactly 3 solutions

Answer: B

- Watch Video Solution

14. The number of values of k for which the linear equations $4 x+k y+2 z=0 k x+4 y+z=02 x+2 y+z=0$ posses a non-zero solution is : (1) 3 (2) 2 (3) 1 (4) zero
A. 0
B. 3
C. 2
D. 1

Answer: C

15. If $\omega=1$ is the complex cube root of unity and matrix $H=\left|\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right|$, then H^{70} is equal to:
A. 0
B. $-H$
C. H^{2}
D. H

Answer: D

- Watch Video Solution

16. If the trivial solution is the only solution of the system of equations $x-k y+z=0, k x+3 y-k z=0,3 x+y-z=0$ Then the set of all values of k is:
A. $R-\{2,-3)$
B. $R-\{2\}$
C. $R-\{-3\}$
D. $\{2,-3\}$

Answer: A

D Watch Video Solution

17. Let A and B two symmetric matrices of order 3 .

Statement $1: A(B A)$ and $(A B) A$ are symmetric matrices.
Statement 2 : $A B$ is symmetric matrix if matrix multiplication of A with B is commutative.

- Watch Video Solution

18. Let P and Q be 3×3 matrices with $P \neq Q$. If $P^{3}=Q^{3}$ and $P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to
(1) $2(2) 1(3) 0(4) 1$
A. 1
B. 0
C. -1
D. -2

Answer: B

- Watch Video Solution

19. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$. If u_{1} and u_{2} are column matrices such that $A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_{1}+u_{2}$ is equal to :
A. $\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
B. $\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$
C. $\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$
D. $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$

Answer: C

20. If $P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of 3×3 matrix A and $|A|=4$, then $\alpha=$
A. 11
B. 5
C. 0
D. 4

Answer: A
21. The number of values of k, for which the system of equations
$(k+1) x+8 y=4 k k x+(k+3) y=3 k-1$ has no solution, is (1) 1 (2)
2 (3) 3 (4) infinite
A. 1
B. 2
C. 3
D. infinite

Answer: A

- Watch Video Solution

22.

If
the
system
of
linear
equations
$x_{1}+2 x_{2}+3 x_{3}=6, x_{1}+3 x_{2}+5 x_{3}=9,2 x_{1}+5 x_{2}+a x_{3}=b \quad, \quad$ is consistent and has infinite number of solutions, then :-
A. $a=8, b$ can be any real number
B. $b=15$ a can be any real number
C. $a=\in R-\{8\}$ and $b \in R-\{15\}$
D. $a=8, b=15$

Answer: D

- Watch Video Solution

23. If p, q, r are 3 real number satisfying the matrix equation,
$[p q r]\left[\begin{array}{lll}3 & 4 & 1 \\ 3 & 2 & 3 \\ 2 & 0 & 2\end{array}\right]=[3,0,1]$ then $2 p+q-r$ equals
A. -3
B. -1
C. 4
D. 2

D Watch Video Solution

24. Consider the system of equations : $x+a y=0, y+a z=0$ and $z+a x=0$. Then the set of all real values of 'a' for which the system has a unique solution is :
A. $R-\{1\}$
B. $R-\{-1\}$
C. $\{1,-1\}$
D. $\{1,0,-1\}$

Answer: B

25. let $\mathrm{A}=\left\{\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right): a_{i j}\{0,1,2\}\right.$ and $\left.a_{11}=a_{22}\right\}$
then the number of singular matrices in set A is
A. 27
B. 24
C. 10
D. 20

Answer: D

- Watch Video Solution

26. The matrix $A^{2}+4 A-5 I$, where I is identity matrix and $A=\left[\begin{array}{l}1 \\ 4\end{array}\right.$
$32\left[\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right]$
A. $4\left[\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right]$
B. $4\left[\begin{array}{cc}0 & -1 \\ 2 & 2\end{array}\right]$
C. $32\left[\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right]$
D. $32\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

Answer: A

- Watch Video Solution

27. Let A be a 2×2 matrix with non-zero entries and let $A^{2}=I$, where I is 2×2 identity matrix. Define $\operatorname{Tr}(A)=$ sum of diagonal elements of A and $|\mathrm{A}|=$ determinant of matrix A. Statement-1: $\operatorname{Tr}(A)=0$ Statement-2: $|A|=1$ (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1
28. If A is an 3×3 non-singular matrix such that $A A^{T}=A^{T} A$ and $B=A^{-1} A^{T}$, then $B B^{T}$ equals
A. I
B. B^{-1}
C. $\left(B^{-1}\right)$
D. I+B

Answer: A

- Watch Video Solution

29. If B is a 3×3 matrics such that $B^{2}=0$ then $\operatorname{det}\left[(1+B)^{50}-50 B\right]=0$
A. 1
B. 2
C. 3
D. 50

Answer: A

- Watch Video Solution

30. Let a be a 3×3 matric such that
$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$, then find A^{-1}.
A. $\left[\begin{array}{lll}3 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 1\end{array}\right]$
B. $\left[\begin{array}{lll}3 & 2 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & 0\end{array}\right]$
C. $\left[\begin{array}{lll}0 & 1 & 3 \\ 0 & 2 & 3 \\ 1 & 1 & 1\end{array}\right]$
D. $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 3\end{array}\right]$

Answer: A

31. If $A=\left[\begin{array}{ccc}1 & 2 & x \\ 3 & -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{l}y \\ x \\ 1\end{array}\right]$ be such that $A B=\left[\begin{array}{l}6 \\ 8\end{array}\right]$, then
A. $y=2 x$
B. $y=-2 x$
C. $y=x$
D. $y=-x$

Answer: A

- Watch Video Solution

32. Let A and B be any two 3×3 matrices. If A is symmetric and B is skew -symmetric then the matrix $A B-B A$ is :
A. skew-symmetric
B. symmetric
C. neither symmetric nor skew -symmetric
D. I or -1 where -1 is an identity matrix .

Answer: B

D Watch Video Solution

33. If $A=[12221-2 a 2 b]$ is a matrix satisfying the equation $\forall^{T}=9 I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to :
(1) $(2,-1)$
(2) $(-2,1)$
$(3)(2,1)(4)(-2,-1)$
A. $(2,-1)$
B. $(-2,1)$
C. $(2,1)$
D. $(-2,-1)$

Answer: D

34. If A is a 3×3 such that $|5 . \operatorname{adj}(A)|=5$ then $|A|$ is equal to
A. $\pm \frac{1}{5}$
B. ± 5
C. ± 1
D. $\pm \frac{1}{25}$

Answer: A

- Watch Video Solution

35. If $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ then which one of the following statement is not correct ?
A. $A^{4}-I=A^{2}+I$
B. $A^{3}-I=A(A-I)$
C. $A^{2}+I=A\left(A^{2}-I\right)$
D. $A^{3}+I=A\left(A^{3}-I\right)$

Answer: C

- Watch Video Solution

36. If $A=[5 a-b 32]$ and A adj $A=\forall^{T}$, then $5 a+b$ is equal to: (1) -1
(2) $5(3) 4(4) 13$
A. -1
B. 5
C. 4
D. 13

Answer: B

37. If $P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $Q=P A P^{T}$, then $P^{T} Q^{2015} P$ is
A. $\left[\begin{array}{cc}0 & 2015 \\ 0 & 0\end{array}\right]$
B. $\left[\begin{array}{cc}2015 & 0 \\ 1 & 2015\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 2015 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}2015 & 1 \\ 0 & 2015\end{array}\right]$

Answer: C

- Watch Video Solution

38. If $A=\left[\begin{array}{cc}-4 & -1 \\ 3 & 1\end{array}\right]$, then the determint of the matrix $\left(A^{2016}-2 A^{2015}-A^{2014}\right)$, is
A. -175
B. 2014
C. 2016
D. -25

Answer: D

- Watch Video Solution

39. Let A be a 3×3 matrix such that $A^{2}-5 A+7 I=0$ then which of the statements is true
A. Both the statements are true
B. Both the statements are false
C. Statement -1 is true but Statement -2 is false .
D. Statement -1 is false ,but Statement -2 is true.

Answer: A

40. If S is the set of distinct values of ' b for which the following system of linear equations $x+y+z=1 x+a y+z=1 a x+b y+z=0$ has no solution, then S is: a finite set containing two or more elements (2) a singleton an empty set (4) an infinite set
A. a singleton set
B. an empty set
C. an infinite set
D. a finite set containing two or more elements

Answer: A

- Watch Video Solution

41. If $A=\left|\begin{array}{ll}2 & -3 \\ -4 & 1\end{array}\right|$ then $\operatorname{adj}\left(3 A^{2}+12 A\right)$ is equal to
A. $\left(\begin{array}{cc}72 & -63 \\ -84 & 51\end{array}\right)$
B. $\left(\begin{array}{cc}72 & -84 \\ -63 & 51\end{array}\right)$
C. $\left(\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right)$
D. $\left(\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right)$

Answer: C

- Watch Video Solution

42. The number of real values of λ for which the system of linear equations $2 x+4 y-\lambda z=0,4 x+\lambda y+2 z=0, \lambda x+2 y+2 z=0$ has infinitely many solutions, is: (A) 0 (B) 1 (C) 2 (D) 3
A. 0
B. 1
C. 2
D. 3

Answer: B

43. Let A be any 3×3 invertible matrix. Thenwhich one of the following is not always true?
A. $\operatorname{adj}(\mathrm{A})=(\operatorname{det}(\mathrm{A})) A^{-1}$
B. $\operatorname{adj}(\operatorname{adj}(A))=(\operatorname{det}(A)) A$
C. $\operatorname{adj}\left(\operatorname{adj}(\mathrm{A})=(\operatorname{det}(A))^{2}(\operatorname{adj}(A))^{-1}\right.$
D. $\operatorname{adj}(\operatorname{adj}(\mathrm{A}))=\operatorname{det}(\mathrm{A})(\operatorname{adj}(A))^{-1}$

Answer: D

- Watch Video Solution

44. For two 3×3 matrices A and B , let $A+B=2 B^{\prime}$ and $3 A+2 B=I_{3}$ where B^{\prime} is the transpose of B and I_{3} is 3×3 identity matrix, Then:
A. $5 \mathrm{~A} 10 \mathrm{~B}=2 I_{3}$
B. $10 A+5 B=3 I_{3}$
C. $B+2 A=I_{3}$
D. $3 A+6 B=2 I_{3}$

Answer: B

- Watch Video Solution

45. If $x=a, y=b, z=c$ is a solution of the system of linear equations
$x+8 y+7 z=0,9 x+2 y+3 z=0, x+y+z=0$ such that point (a, b, c) lies on the plane $x+2 y+z=6$, then $2 a+b+c$ equals
A. -1
B. 0
C. 1
D. 2

Answer: C
46. If the system of linear equations $x+k y+3 z=0 \quad 3 x+k y-2 z=0 \quad 2 x+4 y-3 z=0$ has
a non-zero solution $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ then $\frac{x z}{y^{2}}$ is equal to
A. 10
B. -30
C. 30
D. -10

Answer: A

Watch Video Solution

47. Let A be a matrix such that $A^{*}\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ is a scalar matrix and $|3 \mathrm{~A}|=108$.Then A^{2} equals
A. $\left(\begin{array}{cc}36 & -32 \\ 0 & 4\end{array}\right)$
B. $\left(\begin{array}{cc}4 & 0 \\ -32 & 0\end{array}\right)$
C. $\left(\begin{array}{cc}4 & -32 \\ 0 & 36\end{array}\right)$
D. $\left(\begin{array}{cc}36 & 0 \\ -32 & 4\end{array}\right)$

Answer: A

- Watch Video Solution

48. If the system
of
linear
equations
$x+a y+z=3$ and $x+2 y+2 z=6$ and $x+5 y+3 z=b$ has no solution, then (a) $a=-1, b=9(2) a=-1, b \neq 9$ (3) $a \neq-1, b=9$
(4) $a=1, b \neq 9$
A. $a=-1, b=9$
B. a $\neq-1, b=9$
C. $a=1, b \neq 9$
D. $a=-1, b \neq 9$
49. The number of values of k for which the system of linear equations, $(k+2) x+10 y=k ; k x+(k+3) y=k-1$ has no solution, is
A. infinitely many
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

50. The system of linear equations
$x+y+z=2$,
$2 x+3 y+2 z=5$
$2 \mathrm{x}+3 \mathrm{y}+\left(a^{2}-1\right) z=a+1$
A. has infinitely many solution for $\mathrm{a}=4$
B. is inconsisten when $|a|=\sqrt{3}$
C. is inconsistent when $\mathrm{a}=4$
D. has unique solution for $|a|=\sqrt{3}$

Answer: B

- Watch Video Solution

51. If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then the matrix A^{-50} when $\theta=\frac{\pi}{12}$, is equal to :
A. $\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right)$
B. $\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$
C. $\left(\begin{array}{cc}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$
D. $\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right)$

- Watch Video Solution

52. $A=\left[\begin{array}{lll}e^{t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t\end{array}\right]$ then A is
A. invertible only if $t=\pi / 2$
B. not invertible for any $t \in R$
C. invertible for all $\mathrm{t} \in R$
D. invertible only if $t=\pi$

Answer: C

D Watch Video Solution

53. If the system of linear equations $x-4 y+7 z=g, 3 y-5 z=h$, $-2 x+5 y-9 z=k$ is consistent, then (a) $g+2 h+k=0$
$g+h+2 k=0$ (c) $2 g+h+k=0$ (d) $g+h+k=0$
A. $g+h+k=0$
B. $2 \mathrm{~g}+\mathrm{h}+\mathrm{k}=0$
C. $g+h+2 k=0$
D. $g+2 h+k=0$

Answer: B

- Watch Video Solution

54. If the system fo equations
$x+y+z=5$
$x+2 y+3 z=9$
$x+3 y+\alpha z=\beta$
has infinitely many solution, then $\beta-\alpha$ equals
A. 5
B. 18
C. 21
D. 8

Answer: D

- Watch Video Solution

55. The number of possible value of θ lies in $(0, \pi)$, such that system of equation

$$
x+3 y+7 z=0,
$$

$$
-x+4 y+7 z=0
$$

$x \sin 3 \theta+y \cos 2 \theta+2 z=0$ has non trivial solution is/are equal to (a) 2
(b) 3 (c) 5 (d) 4
A. One
B. Three
C. Four
D. Two

Answer: D

56. Let $A=\left|\begin{array}{lll}0 & 21 & r \\ p & q & -r \\ p & -q & r\end{array}\right|=A A^{T}=I_{3}$ then $|\mathrm{p}|$ is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{\sqrt{5}}$
C. $\frac{1}{\sqrt{6}}$
D. $\frac{1}{\sqrt{3}}$

Answer: A

- Watch Video Solution

57. If the system of linear equations
$2 x+2 y+3 z=a$
$3 x-y+5 z=b$
$x-3 y+2 z=c$
where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-zero real numbers, has more than one solution, then
A. $b-c-a=0$
B. $a+b+c=0$
C. $b+c-a=0$
D. $b-c+a=0$

Answer: A

- Watch Video Solution

58. Let A and B be two invertible matrices of order 3×3. If $\operatorname{det}\left(A B A^{T}\right)=8$ and $\operatorname{det}\left(A B^{-1}\right)=8, \quad$ then $\operatorname{det}\left(B A^{-1} B^{T}\right)$ is equal to
A. 16
B. $\frac{1}{16}$
C. $\frac{1}{4}$
D. 1

Answer: B

- Watch Video Solution

59. An ordered pair (α, β) for which the system of linear equations
$(1+\alpha) x+\beta y+z=2$
$\alpha x+(1+\beta) y+z=3$
$\alpha x+\beta y+2 z=2$
has a unique solution, is
A. $(1,-3)$
B. $(-3,1)$
C. $(2,4)$
D. $(-4,2)$

Answer: C

60. Let $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1\end{array}\right] Q=\left[q_{i j}\right]$ and $Q=P^{5}+I_{3}$ then $\frac{q_{21}+q_{31}}{q_{32}}$ is equal to (A) 12 (B) 8 (C) 10 (D) 20
A. 15
B. 9
C. 135
D. 10

Answer: D

- Watch Video Solution

61. The set of all values of λ for which the system of linear equations

$$
x-2 y-2 z=\lambda x
$$

$x+2 y+z=\lambda y$
$-x-y=\lambda z$
has a non-trivial solution
A. contains more than two elements
B. is a singleton
C. is an empty set
D. contains exactly two elements

Answer: B

- Watch Video Solution

62. The greatest value of $c \in R$ for which the system of linear equations
$x-c y-c z=0, c x-y+c z=0, c x+c y-z=0$ has a non-trivial solution, is
A. -1
B. $1 / 2$
C. 2
D. 0

Answer: B

63. Let $A=\left[\begin{array}{ll}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right],(\alpha \in R)$ such that $A^{32}=\left[\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right]$. Then, a value of α is
A. $\frac{\pi}{32}$
B. 0
C. $\frac{\pi}{64}$
D. $\frac{\pi}{16}$

Answer: C

(Watch Video Solution

64. If the system of linear equations
$x-2 y+k z=1,2 x+y+z=2,3 x-y-k z=3$ has a solution $(x, y, z), z \neq 0$, then $(x$,
y) lies on the straight line whose equation is
A. $3 x-4 y-1=0$
B. $4 x-3 y-4=0$
C. $4 x-3 y-1=0$
D. $3 x-4 y-4=0$

Answer: B

- Watch Video Solution

65. If $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdots\left[\begin{array}{ll}1 & n-1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 78 \\ 0 & 1\end{array}\right]$, then the inverse of $\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$ is
A. $\left[\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & -13 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & -12 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}1 & 0 \\ 13 & 1\end{array}\right]$

66. The total number of matrices
 $A=\left[\begin{array}{lll}0 & 2 y & 1 \\ 2 x & y & -1 \\ 2 x & -y\end{array}\right](x, y \in R, x \neq y)$
 f or which $A^{T} A=3 I_{3}$ is

A. 2
B. 3
C. 6
D. 4

Answer: D

- Watch Video Solution

67.

If

the
system
of
equations,
$2 x+3 y-z=0, x+k y-2 z=0$ and $2 x-y+z=0$ has a non-
trivial solution $(\mathrm{x}, \mathrm{y}, \mathrm{z})$, then $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+k$ is equal to
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $-\frac{1}{4}$
D. -4

Answer: B

- Watch Video Solution

68. If the system of linear equations
$x+y+z=5$
$x+2 y+2 z=6$
$x+3 y+\lambda z=\mu,(\lambda, \mu \in R)$ has infinitely many solutions, then the
value of $\lambda+\mu$ is :
A. 12
B. 9
C. 7
D. 10

Answer: D

- Watch Video Solution

69. Let λ be a real number for which the system of linear equations
$\mathrm{x}+\mathrm{y}+\mathrm{z}=6,4 \mathrm{x}+\lambda y-\lambda z=\lambda-2$ and $3 \mathrm{x}+2 \mathrm{y}-4 \mathrm{z}=-5$
has infinitely many solutions. Then λ is a root of the quadratic equation
A. $\lambda^{2}+3 \lambda-4=0$
B. $\lambda^{2}-3 \lambda-4=0$
C. $\lambda^{2}+\lambda-6=0$
D. $\lambda^{2}-\lambda-6=0$

Answer: D

70. If A is a symmetric matrix and B is a skew-symmetric matrix such that $A+B=\left[\begin{array}{ll}2 & 3 \\ 5 & -1\end{array}\right]$, then AB is equal to
A. $\left[\begin{array}{cc}-4 & -2 \\ -1 & 4\end{array}\right]$
B. $\left[\begin{array}{cc}4 & -2 \\ -1 & -4\end{array}\right]$
C. $\left[\begin{array}{ll}4 & -2 \\ 1 & -4\end{array}\right]$
D. $\left[\begin{array}{cc}-4 & 2 \\ 1 & 4\end{array}\right]$

Answer: B

- Watch Video Solution

71. If $B=\left[\begin{array}{lll}5 & 2 \alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1\end{array}\right]$ is the inverse of a 3×3 matrix A , then the sum of all values of α for which $\operatorname{det}(A)+1=0$ is:
A. 0
B. -1
C. 1
D. 2

Answer: C

- Watch Video Solution

Questions From Previous Years B Architecture Entrance Examination Papers

1. If A and B are square matrics of the same order then which one of the following is always true ?
A. $(A+B)^{-1}=A^{-1}+B^{-1}$
B. $\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$

C . A and B are non -zero and $|A B|=0 \Leftrightarrow|A|=0$ and $|\mathrm{B}|=\mathrm{O}$
D. $(A B)^{-1}=A^{-1}=A^{-1} B^{-1}$
2. Let $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and let I denote the 3×3 identity matrix . Then
$2 A^{2}-A^{3}=$
A. $A+I$
B. A-I
C. I-A
D. A

Answer: D

Watch Video Solution
3. Let A and B be 2×2 matrices with real entries. Let I be the 2×2 indentity matrix. Denote by $\operatorname{tr}(A)$ the sum of diagonal entries of A.

Statement -1: AB -BA $\neq 1$
Statement $-2: \operatorname{tr}(\mathrm{A}+\mathrm{B})=\operatorname{tr}(\mathrm{A})+\operatorname{tr}(\mathrm{B})$ and $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})$

- View Text Solution

4. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 real matrix. If $A-\alpha I$ is invertible for every real number α, then
A. $b c>0$
B. $b c=0$
C. $b c<\min \left(0, \frac{1}{2} a d\right)$
D. $a=0$

Answer: C

- Watch Video Solution

5. Let A be a 2×2 matrix

Statement $-1 \operatorname{adj}(\operatorname{adj} A)=A$
Statement-2 $|a d j A|=|A|$

- Watch Video Solution

6. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 matrix, where a, b, c, d take value 0 to 1 only. The number of such matrices which have inverses is
A. 8
B. 7
C. 6
D. 5

Answer: C

D Watch Video Solution

7. Let S be the set of all real matrices $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $\mathrm{a}+\mathrm{d}=2$ and A^{\prime} $=A^{2}-2 A$. Then $\mathrm{S}:$
A. is an empty set
B. has exactly one element
C. has exactly two elements
D. has exactly four elements

Answer: A

- View Text Solution

8. If $S(n)$ denotes the sum of first n natural numbers.the $\left[S_{-}(1)+S_{-}(2) x+S_{-}(3) x^{\wedge}(2)+\ldots+S_{-}(n)^{*} x^{\wedge}(n-1)+..\right],["$, then n is
A. $S_{2^{n}-k}$
B. $S_{2^{n}+k-1}$
C. $S_{2^{n}-k}$
D. $S_{2 n-k}$

Answer: D

- Watch Video Solution

9. Let $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right]$. If $10 A^{10}+\operatorname{Adj}\left(A^{10}\right)=\mathrm{B}$ then $b_{1}+b_{2}+b_{3}+b_{4}$ is equal to :
A. 91
B. 92
C. 111
D. 112

Answer: D

10. If for a matrix $\mathrm{A},|A|=6$ and $\operatorname{adj} A=\{:[(1,-2,4),(4,1,1),(-1, \mathrm{k}, 0)]:\}$, then k is equal to
A. 0
B. 1
C. 2
D. -1

Answer: C

- Watch Video Solution

11. Let S be the set of all real values of a for which the following system of linear equations:
$a x+2 y+5 z=1$
$2 x+y+3 z=1$
$3 y+7 z=1$
is consistent. Then the set S is
A. an empty set
B. equal to R
C. equal to $R-\{1\}$
D. equal to $\{1\}$

Answer: B

- View Text Solution

12. If $A=\left(\begin{array}{ccc}2 & 52 & 152 \\ 4 & 1-6 & 358 \\ 6 & 162 & 620\end{array}\right)$ then the determinant of $\operatorname{adj}(2 A)$ is equal to
A. 64
B. 256
C. 2048
D. 4096

Answer: D

13. Let S be the set of all real values of λ for which the system of liner equations
$\lambda x+y+z=60$
$2 \lambda x+2 y-z=1$
$3 y+z=9$
has infinitely many solutions. Then S:
A. equals R
B. is a singleton
C. contains exactly two elements
D. an empty set

Answer: D

14. Ifthe equations $a(y+z)=x, b(z+x)=y, c(x+y)=z$ have nontrivial solutions, then $\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=$
A. $\frac{3}{2}$
B. 3
C. $\frac{1}{2}$
D. 2

Answer: D

- Watch Video Solution

15. If $\mathrm{B}=\left[\begin{array}{cc}-2 & -2 \\ -1 & 0\end{array}\right]$ and A is a matrix such that $A^{-1} B=B^{-1}$ and $k A^{-1}=2 B^{-1}+I_{2}$ where k is some scalar then value of k is
A. -1
B. -2
C. 1
D. 2

Answer: D

- View Text Solution

16. Let $\left[\begin{array}{ccc}3 a & b & c \\ b & 3 c & a \\ c & a & 3 b\end{array}\right]$ be a 3×3 matrix where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$. If $\mathrm{abc}=1 \mathrm{AA}=$
$4 I_{3}$ and $\operatorname{det}(\mathrm{A})>0$ then $\left(a^{3}+b^{3}+c^{3}\right)$ is:
A. 21
B. 11
C. 9
D. 7

Answer: D
17. The value of a for which the system linear of equations
$x+a y+z=1$
$a x+y+z=1$
$x+y+a z=3$
has no solution is:
A. 1
B. -1
C. 2
D. -2

Answer: D

- View Text Solution

18. Suppose A is a 2×2 matrix for which $A^{2}+A+I_{2}=O_{2}$ then det $\left(\operatorname{adj}\left(I_{2}-A\right)^{6}\right)$ is equal to :
A. 3^{3}
B. 3^{4}
C. 3^{6}
D. 3^{9}

Answer: C

- View Text Solution

19. If the system of linear equations:
$x+4 y-3 z=2$
$2 x+7 y+4 z=\alpha$
$-x-5 y+5 z=\beta$
has infinitely many solutoins than the ordered pair (α, β) cannot take value :
A. $(4,-2)$
B. $(2,-4)$
C. $(3,-3)$
D. $(-3,3)$

Answer: D

- View Text Solution

20. Let (a, b) be the solution of the system
$\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 5 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 1\end{array}\right]$
If α and β are roots of $a x^{2}+2 b x-(a+b)=0$ then the equation whose are $\alpha \beta$ and $\frac{1}{\alpha}+\frac{1}{\beta}$ is :
A. $12 x^{2}+17 x-40=0$
B. $12 x^{2}-53 x+56=0$
C. $12 x^{2}-53 x+56=0$
D. $9 x^{2}+54 x+80=0$

Answer: A

21. If $A^{20}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ then $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ is equal to
A. 2^{19}
B. 2^{20}
C. 2^{21}
D. 2^{22}

Answer: C

- Watch Video Solution

22. The number of solutions of the equations
$3 x-y-z=0$
$-3 x+2 y+z=0$
$-3 x+z=0$
such that $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are non -negative integers and $x^{2}+y^{2}+z^{2} \leq 81$ is:
A. 3
B. 7
C. 1
D. 2

Answer: A

D View Text Solution

