©゙doubtnut

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

PROGRESSIONS

SOLVED EXAMPLES CONCEPT -BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS)

1. Suppose $a_{1}, a_{2} \ldots$ are in A.P. If $a_{8}: a_{5}=3: 2$, then $a_{17}: a_{23}$ is :
A. 1:2
B. 3:4
C. $4: 11$
D. 8: 11
2. If 7th term of an A.P. is 9 and 9 th term of the A.P. is 7, then 20 th term of the A.P. is
A. -2
B. -3
C. -4
D. -6

Answer: C

- Watch Video Solution

3. Suppose mth term of an A.P. is $1 / \mathrm{n}$ and n th term of the A.P. is $1 / \mathrm{m}$. If rth term of the A.P. is 1 , then r is equal to
A. $m n$
B. $m+n$
C. m-n
D. $m+n-1$

Answer: A

D Watch Video Solution

4. The number of terms of the A.P. $1,4,7, \ldots$ that must be taken to obtain a sum of 715 is
A. 24
B. 23
C. 22
D. 21

Answer: C

5. If sum of first 20 terms of an A.P. is equal to sum of first 30 terms of the A.P. then sum of the first 50 terms of the A.P. is
A. -1
B. 0
C. 10
D. 25

Answer: B

- Watch Video Solution

6. If for every $n \in N$, sum to n terms of an A.P. is $5 n^{2}+7 n$ then is 10 th term is
A. $7 / 2$
B. 570
C. 102
D. 52

Answer: C

- Watch Video Solution

7. If the sum of three numbers in A.P., is 24 and their product is 440 , find the numbers.
A. 3
B. 2
C. 5
D. -5

Answer: A

8. The digits of a three digit number N are in A.P. If sum of the digit is 15 and the number obtained by re-versing the digits of the number is 594 less than the original number, then $\frac{1000}{N-252}$ is equal to
A. $5 / 6$
B. $5 / 3$
C. 0.06
D. 0.03

Answer: B

- Watch Video Solution

9. If sum of four numbers in A.P. is 28 and product of two middle terms is 45 , then product of the first and last terms is
A. 11
B. 13
C. 15
D. 17

Answer: B

- Watch Video Solution

10. There are n A.M.s between 3 and 17. The ratio of the last mean to the first mean is $3: 1$. Find the value of n.
A. 4
B. 5
C. 6
D. 8

Answer: C

11.

Suppose $\quad a, b, c>0$ and $p \in R$.
$\left(a^{2}+b^{2}\right) p^{2}-2(a b+b c) p+\left(b^{2}+c^{2}\right)=0$ then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
A. A.P
B. G.P
C. H.P
D. A.G.P

Answer: B

- Watch Video Solution

12. Suppose $(m+n)$ th term of a G.P. is p and ($m-n$)th term is q, then its nth is
A. $\sqrt{p q}$
B. $p\left(\frac{q}{p}\right)^{m / n}$
C. $p\left(\frac{q}{p}\right)^{m / 2 n}$
D. $\sqrt{\frac{p}{q}}$

Answer: C

- Watch Video Solution

13. How many terms of the GP $3, \frac{3}{2}, \frac{3}{4}, \ldots \ldots$ are needed to give sum $\frac{3069}{512}$?
A. 9
B. 10
C. 11
D. 12

Answer: B

14. Sum to 25 terms of the series $0.5+0.55+0.555+$...is :
A. $\frac{5}{81}\left(224-10^{-25}\right)$
B. $\frac{5}{9}\left(224-10^{-25}\right)$
C. $\frac{5}{81}\left(224-10^{-24}\right)$
D. none of these

Answer: A

- Watch Video Solution

15. The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1 we obtain three consecutive terms of a G.P. Find the numbers.
A. 2
B. 3
C. 4

D. 7

Answer: A

- Watch Video Solution

SOLVED EXAMPLES LEVEL -1 (SINGLE CORRECT ANSWER TYPE QUESTIONS)

1. If one geometric mean G and two arithmetic means $A_{1} a n d A_{2}$ be inserted between two given quantities, prove that $G^{2}=\left(2 A_{1}-A_{2}\right)\left(2 A_{2}-A_{1}\right)$.
A. 0
B. 1
C. -1.5
D. -2.5

Answer: B

2. If sum of the infinite G.P. $p+1+\frac{1}{p}+\frac{1}{p^{2}}+\ldots(p>2)$ is $49 / 6$, then sum of the 3 rd term and the 4 th term of the G.P. is
A. $\frac{8}{49}$
B. $\frac{1}{7}$
C. $\frac{6}{7}$
D. $\frac{23}{49}$

Answer: A

Watch Video Solution
3. It $a_{1}, a_{2}, a_{3} \ldots \ldots$. terms of this A.P., such that $a_{4}-a_{7}+a_{10}$, then the sum of first 13 terms of this A.P is
A. 10 m
B. 12 m
C. 13 m
D. 15 m

Answer: C

- Watch Video Solution

4. If $(20)^{19}+2(21)(20)^{18}+3(21)^{2}(20)^{17}+\ldots . .+20(21)^{19}=k(20)^{19}$ then k is equal to
A. 400
B. 100
C. 441
D. 420

Answer: A

5. Three positive numbers form an increasing GP. If the middle term in this GP is doubled, then new numbers are in AP. Then, the common ratio of the GP is
A. $3+2 \sqrt{2}$
B. $2 \sqrt{2}-\sqrt{3}$
C. $2+2 \sqrt{3}$
D. $2 \sqrt{2}+\sqrt{3}$

Answer: A

- Watch Video Solution

6. Suppose m arithmeti means are inserted between 1 and 31 . If the ratio of the second mean to the m th mean is $1: 4$, then m is equal to
A. 7
B. 9
C. 11
D. 15

Answer: B

- Watch Video Solution

7. In a geometric progression the ratio of the sum of the first 5 terms to the sum of their reciprocals is 49 and sum of the first and the third term is 35 . The fifth term of the G.P. is
A. 7
B. $7 / 2$
C. $7 / 4$
D. $7 / 8$

Answer: C

8. If the $r^{\text {th }}$ term of a series is $1+x+x^{2}+\ldots \ldots .+x^{r-1}$, then the sum of the first n terms is
A. $\frac{n+(n+1) x-x^{n+1}}{(1-x)^{2}}$
B. $\frac{n-(n+1) x+x^{n+1}}{(1-x)^{2}}$
C. $\frac{(x+1) x-x^{n+1}-n}{(1-x)^{2}}$
D. $\frac{n-(n+1) x-x^{n+1}}{(1-x)^{2}}$

Answer: B

- Watch Video Solution

9. Let m be a positive integer, then $S=\sum_{k=1}^{m} k\left(\frac{1}{k}+\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{m}\right)$ is equal to:
A. $\frac{1}{4} m(m+2)$
B. $\frac{1}{4} m(m+3)$
C. $\frac{1}{4} m(m+4)$
D. $\frac{1}{4} m(m+6)$

Answer: B

- View Text Solution

10. Let $f(n)=\left[\frac{1}{5}+\frac{3 n}{100}\right] n$, where $[\mathrm{x}]$ denotes the greatest integer less thena or equal to x . Then $\sum_{n=1}^{61} f(n)$
A. 2013
B. 1869
C. 1947
D. 1661

Answer: D

11. Find the sum of the series: $1^{2}-2^{2}+3^{2}-4^{2}+\ldots . .-2008^{2}+2009^{2}$

A. 2019045
B. 1005004
C. 2000506
D. none of these

Answer: A

- Watch Video Solution

12. The odd value of n for which $704+\frac{1}{2}(704)+\ldots$ upto n terms $=$ $1984-\frac{1}{2}(1984)+\frac{1}{4}(1984)-\ldots$ up to n terms is :
A. 5
B. 3
C. 4
D. 10

Answer: A

- Watch Video Solution

13. The positive integer n for which
$2 \times 2^{2} \times+3 \times 2^{3}+4 \times 2^{4}++n \times 2^{n}=2^{n+10}$ is 510 b. 511 c. 512 d .

513
A. 510
B. 511
C. 512
D. 513

Answer: D
14.
$S=1+\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+\frac{1}{4}(1+2+3+4)+\ldots \ldots \ldots .$. upto 20 terms is
A. 110
B. 111
C. 115
D. 116

Answer: C

- Watch Video Solution

15.

$1^{2}+2^{2}+3^{2}+\ldots+2009^{2}=(2009)(4019)(335)$ and $(1)(2009)+(2)(200\}$ then x equals
A. 2011
B. 2009
C. 2008
D. 2007

Answer: A

- View Text Solution

$$
\begin{array}{ccccc}
\text { 16. } & \text { If } & \text { x } & \text { a, } & \text { and } \\
\log _{2}+\log _{2}(\sqrt{x})+\log _{2}(4 \sqrt{x})+\log _{2}(8 \sqrt{x})+\log _{2}(16 \sqrt{x})+\ldots . & =4
\end{array}
$$ then $\mathrm{x}=$

A. 2
B. 3
C. 4
D. 5
17. If $(1+3+5++p)+(1+3+5++q)=(1+3+5++r)$ where each set of parentheses contains the sum of consecutive odd integers as shown, the smallest possible value of $p+q+r($ wherep $>6)$ is 12 b .21 c .45 d .54
A. 12
B. 21
C. 45
D. 54

Answer: B

- Watch Video Solution

18. Let a_{1}, a_{2}, a_{10} be in A.P. and h_{1}, h_{2}, h_{10} be in H.P. If $a_{1}=h_{1}=2 a n d a_{10}=h_{10}=3$, thena $_{4} h_{7}$ is 2 b. 3 c. 5 d. 6
A. 2
B. 3
C. 5
D. 6

Answer: D

- Watch Video Solution

19. If a, b, c are in A.P.and a^{2}, b^{2}, c^{2} are in G.P.such that $a<b<c$ and $a+b+c=\frac{3}{2}$ then $a=$
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{2 \sqrt{3}}$
C. $\frac{1}{2}-\frac{1}{\sqrt{3}}$
D. $\frac{1}{2}-\frac{1}{\sqrt{2}}$
20. Let S_{1}, S_{2}, be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a side of $S_{1} i s 10 \mathrm{~cm}$, then for which of the following value of n is the area of S_{n} less than 1 sq. cm? a. 5 b. 7 c. 9 d. 10
A. 7
B. 8
C. 9
D. 10

Answer: B

- Watch Video Solution

21. Let T_{r} be the rth term of an AP, for $\mathrm{r}=1,2, .$. . If for some positive integers m and n , we have $T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, the T_{m+n} equals
A. $\frac{1}{m n}$
B. $\frac{1}{m}+\frac{1}{n}$
C. $\frac{1}{m}$
D. 0

Answer: B

- Watch Video Solution

22. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is $3 / 4$, then $a=\frac{4}{7}, r=\frac{3}{7} \mathrm{~b}$. $a=2, r=\frac{3}{8}$ c. $a=\frac{3}{2}, r=\frac{1}{2}$ d. $a=3, r=\frac{1}{4}$
A. $a=4 / 7, r=3 / 7$
B. $a=2, r=3 / 8$
C. $a=3 / 2, r=1 / 2$
D. $a=3, r=1 / 4$

Answer: D

- Watch Video Solution

23. If the sum of the first 2 n terms of the $A . P .2,5,8, \ldots$, is equal to the sum of the first n terms of the $A . P .57,59,61, \ldots$, then n equals
A. 10
B. 12
C. 11
D. 13

Answer: C

- Watch Video Solution

24. For a positive integer n let $a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{\left(2^{n}\right)-1}$. Then $a(100) \leq 100$ b. $a(100)>100$ c. $a(200) \leq 100$ d. $a(200) \leq 100$
A. $a(100)<100$
B. $a(100)>100$
C. $a(200)<100$
D. none of these

Answer: A

- Watch Video Solution

$$
\begin{aligned}
& \text { 25. 17. If } x>1, y>1, z>1 \quad \text { are in G.P, then } \\
& \frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z} \text { are in }
\end{aligned}
$$

A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

26. Let x be the arithmetic mean and y, z be tow geometric means between any two positive numbers. Then, prove that $\frac{y^{3}+z^{3}}{x y z}=2$.
A. 2
B. 3
C. $\frac{1}{2}$
D. $\frac{3}{2}$

Answer: A

- Watch Video Solution

27. If $\frac{1}{1^{3}}+\frac{1+2}{1^{3}+2^{3}}+\frac{1+2+3}{1^{3}+2^{3}+3^{3}}+$
n terms then $\lim _{n \rightarrow \infty}\left[S_{n}\right]$
A. $\frac{n}{n+1}$
B. $\frac{n}{2(n+1)}$
C. $\frac{2 n}{n+1}$
D. $\frac{2}{n(n+1)}$

Answer: C

- Watch Video Solution

28. Let $\sum_{r=1}^{n} r^{4}=f(n)$, then $\sum_{r=1}^{n}(2 r-1)^{4}$ is equal to
A. $f(2 n)-16 f(n)$
B. $f(2 n)-7 f(n)$
C. $f(2 n-1)-8 f(n)$
D. none of these

Answer: A

- Watch Video Solution

29. The sum of n terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots$. is $\frac{n(n+1)^{2}}{2}$ when n is even. when n is odd, the sum is
A. $n^{2}(3 n+1) / 4$
B. $n^{2}(n+1) / 2$
C. $n^{3}(n-1) / 2$
D. none of these

Answer: B

- Watch Video Solution

30. If the first and $(2 n+1)$ th terms of an A.P. , G.P. and H.P. are equal and their $(n+1)$ th terms are a, b and c respectively, then
A. $a>b>c$
B. $a c=b^{2}$
C. $a+b=c$
D. none of these

Answer: B

- Watch Video Solution

31. If $a_{n+1}=\frac{1}{1-a_{n}}$ for $n \geq 1$ and $a_{3}=a_{1}$, then $\left(a_{2022}\right)^{2022}$ equals
A. -1
B. 1
C. 0
D. none of these

Answer: B

Watch Video Solution

32. If $f(x+y)=f(x y) \forall x, y \varepsilon R$, and $f(2013)=2013$, then $\mathrm{f}(-2013)$ equals
A. 2013
B. 0
C. -2013
D. none of these

Answer: A

- Watch Video Solution

33. If $\sum_{r=1}^{n} T_{r}=\frac{n(n+1)(n+2)(n+3)}{12}$ where T_{r} denotes the rth term of the series. Find $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{T_{r}}$.
A. $\frac{2 n}{n+1}$
B. $\frac{n-1}{(n+1)!}$
C. $\frac{4 n}{n+1}$
D. $\frac{3 n}{n+2}$

Answer: C

- Watch Video Solution

34. The sum to n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots$. isgivenby
A. $\frac{n}{2^{n}}$
B. $\frac{n+1}{2^{n+1}}$
C. $n+1-\frac{1}{2^{n}}$
D. $n-1+\frac{1}{2^{n}}$

Answer: D

- Watch Video Solution

35. let $\quad 0<\phi<\frac{\pi}{2}, \quad x=\sum_{n=0}^{\infty} \cos ^{2 n} \phi, \quad y=\sum_{n=0}^{\infty} \sin ^{2 n} \phi \quad$ and
$z=\sum_{n=0}^{\infty} \cos ^{2 n} \phi \sin ^{2 n} \phi$
A. $x y z=x z+y$
B. $x y z=x z+z$
C. $x y z=x+y+z$
D. $x y z=y z+z$

Answer: C

- Watch Video Solution

36. The sum to n terms of the series

$$
\frac{1}{\sqrt{7}+\sqrt{10}}+\frac{1}{\sqrt{10}+\sqrt{13}}+\frac{1}{\sqrt{13}+\sqrt{16}}+\ldots \text { is }
$$

A. $\frac{1}{3}(\sqrt{7+3 n}-\sqrt{7})$
B. $\frac{\sqrt{4+3 n}-2}{3}$
C. $\frac{1}{3}(\sqrt{10+3 n}-\sqrt{10})$
D. none of these

Answer: A

- Watch Video Solution

37. If $S_{n}=\Sigma_{r=1}^{n} t_{r}=\frac{1}{6} n\left(2 n^{2}+9 n+13\right)$, then $\Sigma_{r=1}^{n} \sqrt{t_{r}}$ is equal to
A. $\frac{1}{2} n(n+1)$
B. $\frac{1}{2} n(n+2)$
C. $\frac{1}{2} n(n+3)$
D. $\frac{1}{2} n(n+5)$

Answer: C

38. The interior angles of a convex polygon are in A.P. If the smallest angle is 100° and the common difference is 4°, then the number of sides is
A. 5
B. 7
C. 36
D. 44

Answer: A

- Watch Video Solution

39. If the terms of the A.P. $\sqrt{a-x}, \sqrt{x}, \sqrt{a+x}$ are all in integers, wherea, $x>0$, then find the least composite value of a.
A. 5
B. 7
C. 11
D. none of these

Answer: A

- Watch Video Solution

40. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\rightarrow \infty=\frac{\pi^{2}}{6}$, then $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$ equals $\pi^{2} / 8$ b. $\pi^{2} / 12$ c. $\pi^{2} / 3$ d. $\pi^{2} / 2$
A. $\frac{\pi^{2}}{4}$
B. $\frac{\pi^{2}}{6}$
C. $\frac{\pi^{2}}{8}$
D. $\frac{\pi^{2}}{12}$

Answer: C

41. If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are $\frac{3}{5}, \frac{4}{5}$ b. $\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}$ c. $\frac{1}{2}, \frac{\sqrt{3}}{2}$ d. none of these
A. $3 / 5,4 / 5$
B. $\sqrt{2 / 3}, \sqrt{1 / 3}$
C. $\sqrt{\frac{\sqrt{5}-1}{2}}, \sqrt{\frac{\sqrt{5}+1}{2}}$
D. $\sqrt{\frac{\sqrt{3}-1}{2}}, \sqrt{\frac{\sqrt{3}+1}{2}}$

Answer: A

- Watch Video Solution

42. If $\exp \left(\sin ^{2} x+\sin ^{4} x+\sin ^{6} x\right.$........ upto $\left.\infty\right) \log _{e} 2$ satisfies the equation $x^{2}-17 x+16=0$ then the value of
$\frac{2 \cos x}{\sin x+2 \cos x},\left(0<x<\frac{\pi}{2}\right)$ is
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. none of these

Answer: A

- Watch Video Solution

43. Let $f x$) be a polynomial function of second degree. If $f(1)=f(-1)$ and a, b, c are in A.P, the $f^{\prime}(a), f^{\prime}(b)$ and $f^{\prime}(c)$ are in
A. G.P
B. H.P
C. A.G.P
D. A.P

Answer: D

- Watch Video Solution

44. If exp $\left\{\left(\tan ^{2} x-\tan ^{4} x+\tan ^{8} x-\tan ^{6} x \ldots ..\right) \log _{e} 16\right\}, \quad 0$ $<x<\pi / 4$, satisfies the quadratic equation $x^{2}-3 x+2=0$, then value of $\cos ^{2} x+\cos ^{4} x$ is
A. $4 / 5$
B. $21 / 16$
C. $17 / 11$
D. $19 / 31$

Answer: B

- Watch Video Solution

45. If $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+=\frac{\pi}{4} \quad$, then value of $\frac{1}{1 \times 3}+\frac{1}{5 \times 7}+\frac{1}{9 \times 11}+$ is $\pi / 8$ b. $\pi / 6$ c. $\pi / 4$ d. $\pi / 36$
A. $\frac{\pi}{8}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{34}$

Answer: A

- Watch Video Solution

46. For eR let $[\mathrm{x}]$ denote the greatest integer $\leq x$. Largest natural number n for which
$E=\left[\frac{\pi}{2}\right]+\left[\frac{1}{100}+\frac{\pi}{2}\right]+\left[\frac{2}{100}+\frac{\pi}{2}\right]+\left[\frac{n}{100}+\frac{\pi}{2}\right]<43$, is
A. 41
B. 42
C. 43
D. 97

Answer: A

47. If the ratio of sum to n terms of two A.P's is $(5 n+7):(3 n+2)$, then the ratio of their 17th terms is
A. $172: 99$
B. $172: 101$
C. 175:99
D. 175: 101

Answer: B

- Watch Video Solution

48. If $H_{1} . H_{2} \ldots, H_{n}$ are n harmonic means between a and $\mathrm{b}(\neq a)$, then the value of $\frac{H_{1}+a}{H_{1}-a}+\frac{H_{n}+b}{H_{n}-b}=$
A. $\mathrm{n}+1$
B. $\mathrm{n}-1$
C. 2 n
D. $2 n+3$

Answer: C

- Watch Video Solution

49. If three positive real numbers $, b, c$ are in A.P. sich that $a b c=4$, then the minimum value of b is $2^{1 / 3}$ b. $2^{2 / 3}$ c. $2^{1 / 2}$ d. $2^{3 / 23}$
A. $2^{3 / 2}$
B. $2^{2 / 3}$
C. $2^{1 / 3}$
D. $2^{5 / 2}$

Answer: B

50. For $0<x<\pi$ the values of x which satisfy then relation $9^{1+|\cos x|+\left|\cos ^{2} x\right|+\left|\cos ^{3} x\right|+\ldots}$ upto $\infty=3^{4}$ are given by
A. $\frac{\pi}{3}, \frac{2 \pi}{3}$
B. $\frac{\pi}{3}, \frac{3 \pi}{4}$
C. $\frac{\pi}{4}, \frac{3 \pi}{4}$
D. $(\pi),(3), \frac{\pi}{4}$

Answer: A

- Watch Video Solution

51. The sum upto $(2 n+1)$ terms of the series $a^{2}-(a+d)^{2}+(a+2 d)^{2}-(a+3 d)^{2}+\ldots$ is
A. $a^{2}+3 n d^{2}$
B. $a^{2}+2 n a d+n(n-1) d^{2}$
C. $a^{2}+3 n a d+n(n-1) d^{2}$
D. $(a+n d)^{2}+n(n+1) d^{2}$

Answer: D

- View Text Solution

52. Value of $(0.36)^{\log _{0.25}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \cdot \infty\right)}=$
A. 0.9
B. 0.8
C. 0.6
D. 0.25

Answer: C

- Watch Video Solution

53. The sum of the series $1+2\left(1+\frac{1}{n}\right)+3\left(1+\frac{1}{n}\right)^{2}+\ldots \infty$ is given by
A. n^{2}
B. $(n+1)^{2}$
C. $n(n+1)$
D. none of these

Answer: A

- Watch Video Solution

54. If a, b, c are distinct real numbers such that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. and a^{2}, b^{2}, c^{2} are in H. P, then
A. $a=b=c$
B. $2 b=3 a+c$
C. $b^{2}=\sqrt{a c / 8}$
D. none of these

Answer: A

- Watch Video Solution

55. If $0<\theta, \phi<\frac{\pi}{2} \quad$ and $\quad x=\sum_{n=0}^{\infty} \sin ^{2 n} \theta, y=\sum_{n=0}^{\infty} \cos ^{2 n} \phi \quad$ and
$z=\sum_{n=0}^{\infty} \cos ^{n}(\theta+\phi) \cos ^{n}(\theta-\phi)$, then
A. $x y z+1=y z-z x$
B. $x y z-1=y z+z x$
C. $x y z-x y=y z-z x$
D. $x y z+1=y z+z x$

Answer: C

56. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P. then $a-\frac{b}{2}, \frac{b}{2}, c-\frac{b}{2}$ are in
A. A.P
B. G.P
C. A.G.P
D. H.P

Answer: B

- Watch Video Solution

57. Sum to n terms of the $\begin{aligned} & \text { series } \\ & \frac{1}{(1+x)(1+2 x)}+\frac{1}{(1+2 x)(1+3 x)}+\frac{1}{(1+3 x)(1+4 x)}+\ldots \ldots . .\end{aligned}$.
A. $\frac{n x}{(1+x)(1+n x)}$
B. $\frac{n}{(1+x)[1+(1+n 1) x]}$
C. $\frac{x}{(1+x)(1+(n-1) x)}$
D. none of these

Answer: B

- Watch Video Solution

58. If $a_{1}, a_{2}, \ldots a_{n}$ are in H.P then the expression $a_{1} a_{2}+a_{2} a_{3}+\ldots+a_{n-1} a_{n}$ is equal to
A. $(n-1) a_{1} a_{n}$
B. $n\left(a_{1}-a_{n}\right)$
C. $(n-1)\left(a_{1}-a_{n}\right)$
D. $n a_{1} a_{n}$

Answer: A

59. if the sum of the series $2+\frac{5}{x}+\frac{25}{x^{2}}+\frac{125}{x^{3}}+\ldots \ldots \ldots$. Is finite then
A. $|x|>5$
B. $-5<x<5$
C. $|x|<5 / 2$
D. $|x|>5 / 2$

Answer: A

- Watch Video Solution

60. in a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of this progression equals-
A. $\frac{1}{2}(1-\sqrt{5})$
B. $\frac{1}{2} \sqrt{5}$
C. $\sqrt{5}$
D. $\frac{1}{2}(\sqrt{5}-1)$

Answer: D

- Watch Video Solution

61. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$ where a, b, c are in A.P and $|a|<1,|b<1,|c|<1$, then x, y, z are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

- Watch Video Solution

62. If $\log _{3} 2, \log _{3}\left(2^{x}-5\right)$ and $\log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in A. P, determine the value of x.
A. 7
B. 3
C. 4,5
D. 8

Answer: B

- Watch Video Solution

63. Sum of the series $\sum_{r=1}^{n} r \log \left(\frac{r+1}{r}\right)$ is
A. $\log \frac{(n+1)^{n}}{n!}$
B. $\frac{\log (n+1)}{n!}$
C. $n!\log (n+1)$
D. none of these

Answer: A

- Watch Video Solution

64. Let a, b be positive real numbers. If $a A_{1}, A_{2}, b$ be are in arithmetic progression a, G_{1}, G_{2}, b are in geometric progression, and a, H_{1}, H_{2}, b are in harmonic progression, show that $\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}=\frac{(2 a+b)(a+2 b)}{9 a b}$
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. 1
D. 2

Answer: C

65.

$S_{n}=(n)(n)+(n-1)(n+1)+(n-2)(n+2)+\ldots+1(2 n-1)$ is
A. $\frac{1}{6} n(n+1)(n+2)$
B. $\frac{1}{3} n^{3}-n^{2}$
C. n^{3}
D. none of these

Answer: D

- Watch Video Solution

66.

$n \in N, 1^{4}+2^{4}+3^{4}+\ldots+n^{4}=a n^{5}+b n^{4}+c n^{3}+d n^{2}+e n+f$, then value of b is
A. $1 / 5$
B. $1 / 2$
C. $1 / 3$
D. 1

Answer: B

- View Text Solution

67.

Value
of
$S=2012+\frac{1}{3}\left(2011+\frac{1}{3}\left(2010+\frac{1}{3}\left(2009+\frac{1}{3}\left(2+\frac{1}{3}(1)\right) \ldots.\right)\right.\right.$ is
A. 3018
B. 3017.5
C. $3017.5-\frac{1}{4}\left(\frac{1}{3}\right)^{2011}$
D. $3018-\frac{1}{4}\left(\frac{1}{3}\right)^{2011}$

Answer: C

68. Suppose a, b, c are positive real numbers satisfying the system of equations

$$
\left(a^{2}+a b+b^{2}\right)\left(b^{2}+b c+c^{2}\right)\left(c^{2}+c a+a^{2}\right)=a b c \text { and }\left(a^{4}+a^{2} b^{2}+b^{4}\right)(b
$$

then
A. $a=b=c=1 / 3$
B. $a b c=1$
C. $\frac{1}{3}(a+b+c)=(a b c)^{1 / 2}$
D. a,b,c are in G.P.

Answer: A

- View Text Solution

69. Suppose a,b,c are distinct positive real numbers such that $a, 2 b, 3 c$ are in A.P. and a,b,c are in G.P. The common ratio of G.P. is
A. 2
B. $1 / 2$
C. $1 / 3$
D. 3

Answer: C

- Watch Video Solution

70. Let S_{n} denote the sum of the cubes of the first n natural numbers and s_{n} denote the sum of the first n natural numbers. Then $\sum_{r=1}^{n} \frac{S_{r}}{s_{r}}$ is equal to
A. $\frac{1}{2} n(n+1)$
B. $\frac{1}{2}(n+1)(n+2)$
C. $\frac{1}{6} n(n+1)(n+2)$
D. $\frac{1}{4} n^{2}(n+1)^{2}$
71. $1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{14}{3^{4}}+$
A. 4
B. 6
C. 2
D. 3

Answer: D

Watch Video Solution
72.

Simplify
$P=\frac{1}{2 \sqrt{1}+\sqrt{2}}+\frac{1}{3 \sqrt{2}+2 \sqrt{3}}+\ldots .+\frac{1}{100 \sqrt{99}+99 \sqrt{100}}$
A. $1 / 10$
B. $3 / 10$
C. $9 / 10$
D. $1 / 2$

Answer: C

- Watch Video Solution

73. $\sqrt{2 \sqrt{2 \sqrt{2 \sqrt{2 \ldots \cdot}}}}=$
A. 0
B. 1
C. 2
D. none of these

Answer: A

74. Let $[x]$ denote the greatest integer less than or equal to x, what is the value of $[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+\ldots \ldots \ldots \ldots+[\sqrt{2004}]$
A. 59000
B. 58750
C. 59730
D. 65138

Answer: C

- Watch Video Solution

75. A person is to cout 4500 currency notes. Let a_{n} denotes the number of notes he counts in the nth minute. If $a_{1}=a_{2}=\ldots \ldots . .=a_{10}=150$ and $a_{10}, a_{11}, \ldots \ldots, \quad$ are in AP with common difference -2 , then the time taken by him to count all notes is
A. 125 minutes
B. 135 minutes
C. 24 minutes
D. 34 minutes

Answer: D

- Watch Video Solution

76. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of swrvice will be Rs. 11040 after
A. 21 months
B. 18 months
C. 19 months
D. 20 months

D Watch Video Solution

77. Let a_{n} be the $n^{\text {th }}$ term of an A.P. If $\sum_{r=1}^{100} a_{2 r}=\alpha \& \sum_{r=1}^{100} a_{2 r-1}=\beta$, then the common difference of the A.P. is $\alpha-\beta$ (b) $\beta-\alpha \frac{\alpha-\beta}{2}$ (d) None of these
A. $\alpha-\beta$
B. $\frac{1}{100}(\alpha-\beta)$
C. $\beta-\alpha$
D. $\frac{1}{200}(\alpha-\beta)$

Answer: B

78. If m times the $m t h$ term of an A.P. with non-zero common difference equals n times the nth term of the A.P., where $m \neq n$, then $(\mathrm{m}+\mathrm{n})$ th term of this A.P. is
A. $(m+n)$ times $m t h$ term
B. zero
C. $m+n$
D. $-(m+n)$

Answer: B

- Watch Video Solution

79. If $a_{1}, a_{2}, a_{3}, \ldots \ldots$ be in harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<0$ is
A. 22
B. 23
C. 24
D. 25

Answer: D

- Watch Video Solution

80. A species has an initial population 4^{10}. At the end of first day, the population increases by 50%. At the end of second day, it decreases by the same percentage. Days for the population to reach 3^{10} is
A. 10
B. 20
C. 50
D. 100

Answer: B

81. The sum of the first three terms of an $A . P$. is 9 and the sum of their squares is 35 . The sum to first n terms of the series can be
A. $3 n^{2}$
B. $2 n^{2}$
C. $6 n-2 n^{2}$
D. n^{2}

Answer: D

- Watch Video Solution

82. The series of natural numbers is divided into groups $:(1) ;(2,3,4) ;(5,6,7,8,9) \ldots$ and so on. The sum of numbers in the $n^{\text {th }}$ group is

$$
\text { A. } 2\left(n^{2}-n+1\right)
$$

B. $n^{2}-2 n+2$
C. $n^{2}+n$
D. $n^{2}-n+2$

Answer: A

D Watch Video Solution

83. In a arithmetic progression of 16 distinct terms with $a_{1}=16$, the sum is equal to square of the last term. The common difference of the A.P. is
A. $8 / 15$
B. $-4 / 5$
C. $-8 / 5$
D. $-8 / 15$

Answer: C

1. If $(1-y)\left(1+2 x+4 x^{2}+8 x^{3}+16 x^{4}+32 x^{5}\right)=\left(1-y^{6}\right)$ then $\frac{y}{x}=$
A. $1 / 2$
B. 2
C. $1 / 4$
D. 4

Answer: B

- Watch Video Solution

2. If $\frac{22}{7}$ and π appear as two distinct terms of an A.P., then common difference of the A.P. must be
A. an integer
B. a rational number
C. an irrational number
D. 0

Answer: C

D View Text Solution

3. Let $a_{m}=\underbrace{111 \ldots 1}_{\mathrm{m} \text { times }}$, then which of the following is a prime number ?
A. a_{4}
B. a_{5}
C. a_{91}
D. a_{100}

Answer: B

4. Let $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$. Then $I_{2}+I_{4}, I_{3}+I_{5}, I_{4}+I_{6}, I_{5}+I_{7}, \ldots$ are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

- Watch Video Solution

5. If $a, b, a n d c$ are in A.P. $p, q, a n d r$ are in H.P., and $a p, b q, a n d c r$ are in G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to $\frac{a}{c}-\frac{c}{a}$ b. $\frac{a}{c}+\frac{c}{a}$ c. $\frac{b}{q}+\frac{q}{b}$ d. $\frac{b}{q}-\frac{q}{b}$
A. $\frac{a}{c}+\frac{c}{a}$
B. $\frac{a}{c}-\frac{c}{a}$
C. $\frac{b}{q}+\frac{q}{b}$
D. $\frac{b}{q}-\frac{a}{p}$

Answer: A

- Watch Video Solution

6. Sum to n terms of the series
$\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5}+\frac{1}{3 \cdot 4 \cdot 5 \cdot 6}+\ldots$ is
A. $\frac{1}{24}-\frac{1}{n}$
B. $\frac{1}{18}-\frac{1}{3(n+1)(n+2)(n+3)}$
C. $\frac{1}{2^{n}}-\frac{1}{n^{2}}$
D. $\frac{1}{18}-\frac{1}{3(n+3)(n+4)}$

Answer: B

7. Sum to n terms of the series $\frac{1}{5!}+\frac{1}{6!}+\frac{2!}{7!}+\frac{3!}{8!}+\ldots \ldots$. is
A. $\frac{2}{5!}-\frac{1}{(n+1)!}$
B. $\frac{1}{4}\left(\frac{1}{4!}-\frac{n!}{(n+4)!}\right)$
C. $\frac{1}{4}\left(\frac{1}{3!}-\frac{3!}{(n+2)!}\right)$
D. none of these

Answer: B

- Watch Video Solution

8. The $n^{\text {th }}$ term of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots$ will be
A. $\frac{n}{24}\left(n^{2}+9 n+13\right)$
B. $\frac{n}{24}\left(2 n^{2}+7 n+15\right)$
C. $\frac{n}{24}\left(2 n^{2}+9 n+13\right)$
D. $\frac{n}{24}\left(n^{2}+11 n+11\right)$

Answer: C

- Watch Video Solution

9. sum of the series $\sum_{r=1}^{n} \frac{r}{r+1!} i s$
A. $1-\frac{1}{n!}$
B. $1-\frac{1}{(n+1)!}$
C. $2-\frac{1}{(n+1)!}$
D. none of these

Answer: B

10. Sum to n terms of the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\frac{7}{4.5 .6}+\ldots$. is
A. $\frac{n(n+1)}{2(n+2)(n+3)}$
B. $\frac{n(3 n+1)}{4(n+1)(n+2)}$
C. $\frac{1}{6}-\frac{5}{(n+1)(n+4)}$
D. none of these

Answer: B

- View Text Solution

11. If $\frac{48}{2.3}+\frac{47}{3.4}+\frac{46}{4.5}+\ldots+\frac{2}{48.29}+\frac{1}{49.50}$
$=\frac{51}{2}+k\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{50}\right)$, then k equals
A. 2
B. -1
C. $-1 / 2$
D. 1

(D) Watch Video Solution

12. Suppose $k \in N$. In the Cartesian plane, suppose the line L_{k} whose equation is $y+x+k(k+1)$ meets the parabola $y=x^{2}$ at two points A_{k} and B_{k}, Let $L_{k}=$ length of the segment $A_{k} B_{k}$ and $T_{k}=$ area of $\Delta O A_{k} B_{k}$, then $\sum_{k=1}^{n} \frac{T_{k}}{L_{k}}$ is equal to
A. $\frac{1}{6 \sqrt{2}} n(n+1)^{2}$
B. $\frac{1}{6 \sqrt{2}} n^{2}(n+1)$
C. $\frac{1}{6 \sqrt{2}} n(n+1)(2 n+1)$
D. $\frac{1}{6 \sqrt{2}} n(n+1)(n+2)$

Answer: D

- View Text Solution

1. Refer to the statement of Example 110, and let S_{k} denote the area bounded by L_{k} and $y=x^{2}$, then $3 \sum_{k=1}^{\infty} /\left(T_{k}^{2}\right)$ is equal to

D View Text Solution

2. The number of terms common between the series $1+2+4+8$..... to 100 terms and $1+4+7+10+\ldots$ to 100 terms is

- Watch Video Solution

3.

$x>0$ and $\log _{3}(x)+\log _{3}\left(x^{1 / 3}\right)+\log _{3}\left(x^{1 / 9}\right)+\log _{3}\left(x^{1 / 27}\right)+\ldots=6$, then $\mathrm{x}=$

- Watch Video Solution

4. If $a_{1}, a_{2}, a_{3}, a_{4}$ are in $H P$, then $\frac{1}{a_{1} a_{4}} \sum_{r=1}^{3} a_{r} a_{r+1}$ is root of:

- Watch Video Solution

5. Let $s_{n}=1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots+\frac{1}{3^{n-1}}$. The least value of $n \in N$ such that $\frac{3}{2}-S_{n}<\frac{1}{400}$ is

- Watch Video Solution

6. Let a_{n} be the nth term of a G.P. of positive real numbers. If $\sum_{n=1}^{200} a_{2 n}=4$ and $\sum_{n=1}^{200} a_{2 n-1}=5$, then the common ratio of the G.P. is

- Watch Video Solution

7. Let $[\mathrm{x}]=$ greatest integer $\leq x$. Suppose roots of the quadratic equation $x^{2}+2(b-3) x+9=0$ lie between -6 and 1 . Suppose $\frac{1}{2}, \frac{1}{h_{1}}, \frac{1}{h_{2}}, \ldots, \frac{1}{h_{20}}, \frac{1}{[b]}$ are in A.P. and $2, a_{1}, a_{2}, \ldots, a_{20},[\mathrm{~b}]$ are also in A.P., then $a_{3} h_{18}=$
8. three number a, b, c are in $G P$ such that : (i) $a+b+c=70$ (ii) $4 a, 5 b, 4 c$ are in $A P$ if $G=\max \{a, b, c\}$ and $L=\min \{a, b, c\}$ than $\left[\frac{G}{L}\right]$ is equal is :

- Watch Video Solution

9. Suppose $a_{1}, a_{2}, \ldots a_{n}$ are positive real numbers which are in A.P. If

$$
\begin{align*}
& \frac{1}{a_{1} a_{n}}+\frac{1}{a_{2} a_{n-1}}+\ldots+\frac{1}{a_{n} a_{1}} \\
& =\frac{\lambda}{a_{1}+a_{n}}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \tag{1}
\end{align*}
$$

then $\lambda=$

- Watch Video Solution

10. Suppose α, γ are roots of the equation $a x^{2}-4 x+1=0$ and β, δ be the roots of the equation $b x^{2}-6 x+1=0$. If $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}, \frac{1}{\delta}$ are in A.P., then $a+b=$
11. Let a_{n} is a positive term of a GP and $\sum_{n=1}^{100} a_{2 n+1}=200, \sum_{n=1}^{100} a_{2 n}=200$, find ${ }^{\text {sum_ }}(\mathrm{n}=1)^{\wedge} 200 \mathrm{a}_{-}(2 \mathrm{n})=$?

- Watch Video Solution

12. Suppose a_{1}, a_{2}, \ldots are real numbers such that
$\sqrt{a_{1}}+\sqrt{a_{2}-1}+\sqrt{a_{3}-2}+\ldots+\sqrt{a_{n}-(n-1)}$
$=\frac{1}{2}\left(a_{1}+a_{2}+\ldots+a_{n}\right)-\frac{1}{4} n(n-3)$
$\forall n \in N$, then $a_{18}=$

D Watch Video Solution

13. Let $S=\sum_{n=1}^{\infty} \frac{5^{n} 7^{n}}{\left(7^{n}-5^{n}\right)\left(7^{n+1}-5^{n+1}\right)}$ then $\mathrm{S}=$

- View Text Solution

14. Let $S=\sum_{k=1}^{\infty} \frac{k(10)^{k}+2^{k+1} 5^{k}}{5^{k} 2^{2 k+1}(k+1)}$, then $\mathrm{S}=$

- View Text Solution

15. Consider an A.P. a_{1}, a_{2}, a_{n}, and the G.P. $b_{1}, b_{2},, b_{n}$, such that $a_{1}=b_{1}=1, a_{9}=b_{9}$ and $\sum_{r=1}^{9} a_{r}=369$, then $b_{6}=27 \quad$ (b) $b_{7}=27$ $b_{8}=81$ (d) $b_{9}=81$

- Watch Video Solution

16. Suppose $a_{1}, a_{2}, \ldots a_{201}>0$ and are in G.P. If
$a_{101}=36$ and $\sum_{n=1}^{201} a_{n}=216$ then $3 \sum_{n=1}^{201} \frac{1}{a_{n}}=$

- Watch Video Solution

17. Let P_{n} denote the product of first n terms of the G.P. $16,4,1,1 / 4, \ldots$, then $\sum_{n=1}^{\infty}\left(P_{n}\right)^{1 / n}=$
18.

Suppose
$x, y \in N$ and $\log _{5}(x)+\log _{5}\left(x^{1 / 2}\right)+\log _{5}\left(x^{1 / 4}\right)+\ldots .=y$
$\frac{1+3+5+\ldots+(2 y-1)}{4+7+10+\ldots+(3 y+1)}=\frac{20}{7 \log _{5}(x)}$
then $\log _{10}(y)+\log _{5}(x)=$

- Watch Video Solution

19. The coefficient of the quadratic equation $a x^{2}+(a+d) x+(a+2 d)=0$ are consecutive terms of a positively valued, increasing arithmetic sequence. Then the least integral value of d / a such that the equation has real solutions is \qquad .

- Watch Video Solution

20. Suppose $1<a<\sqrt{e}$ and $\log _{e} a^{2}+\left(\log _{e} a^{2}\right)^{2}+\left(\log _{e} a^{2}\right)^{3}+\ldots$.

$$
\begin{equation*}
=3\left[\log _{e} a+\left(\log _{e} a\right)^{2}+\left(\log _{e} a\right)^{3}+\ldots\right] \tag{1}
\end{equation*}
$$

then $\log _{e}\left(a^{3}\right)=$

- Watch Video Solution

21. For $\mathrm{k}=2,3, \ldots .$. , let S_{k} denote the sum of the infinite G.P. whose first term is $k^{2}+k-2$ and common ratio is $\frac{1}{k}$, then $\sum_{k=1}^{\infty} \frac{S_{k}}{2^{k}}=$

- View Text Solution

EXERCISES CONCEPT-BASED (Single Correct Answer Type Questions)

1. Let $a_{n}=\left[\log \left(\frac{7}{5}\right)\right]^{n}$ and $b_{n}=\log _{5}\left(a_{n}\right) \forall n \in N$. Then $b_{1}, b_{2}, b_{3}, \ldots$ are in
A. A.P
B. G.P
C. H.P
D. A.G.P

- Watch Video Solution

2. If a, b, c are three distinct real numbers in G.P. and $a+b+c=x b$, then prove that either $x\langle-1$ or $x\rangle 3$.
A. $x>3$
B. $x>4$
C. $x>\sqrt{5}$
D. $x>\sqrt{3}+\sqrt{5}$

Answer: A

- Watch Video Solution

3. If for each $n \in N, S_{n}=n A+\frac{1}{2} n(n+1) B$ is sum of the first n terms of an A.P., the common difference of the A.P. is
A. $A+B$
B. $A+2 B$
C. B
D. $B / 2$

Answer: C

- Watch Video Solution

4. An A.P. consists of 2 n terms. If two middle terms are $\alpha-\beta$ and $\alpha+\beta$, then sum of the $2 n$ terms of the A.P. is
A. $2 n \alpha$
B. $2 n \beta$
C. $2 n(\alpha+\beta)$
D. $2 n(\alpha-\beta)$
5. For what value of n, the nth terms of the arithmetic progressions 63 , $65,67, \ldots$ and $3,10,17, \ldots$ are equal?
A. 71
B. 37
C. 11
D. 13

Answer: D

- Watch Video Solution

6. Suppose $a, c \in Q$ and $b \in R-Q$, then which one of the following can be true?

$$
\text { A. } a, b+2, c \text { are in A.P }
$$

B. $a, b+1, c$ are in G.P.
C. a, b-3, c are in H.P.
D. $a, b-2, c$ are in A.P.

Answer: B

- View Text Solution

7. Suppose $a, b, c>0, x, y, z>1$ and a, b, c are in G.P. If $a^{\log x}=b^{\log y}=c^{\log z}$, then
A. x, y, z are in A.P.
B. x, y, z are in G.P.
C. x, y, z are in H.P.
D. none of these

Answer: D

8. The ratio of the sum of first three terms to the sum of first six terms is $125: 152$. Find the common ratio of G.P.
A. $\frac{2}{3}$
B. $\frac{3}{4}$
C. $\frac{3}{5}$
D. $\frac{2}{5}$

Answer: C

- Watch Video Solution

9. In a set of four numbers, the first three are in GP \& the last three are in AP, with common difference 6 . If the first number is the same as the fourth, find the four numbers.
A. 18
B. 21
C. 24
D. 27

Answer: B

- Watch Video Solution

10. Suppose A.M. of two positive numbers be 7 and G.M. between them be
11. The A.M. between their squares is
A. 57
B. 73
C. 78
D. 37

Answer: B

11. Sum of an infinite G.P. is 2 and sum of their cubes is 24 , then 5 th term of the G.P. is
A. $3 / 16$
B. $3 / 8$
C. $-3 / 8$
D. $-3 / 16$

Answer: A

- Watch Video Solution

12. Suppose a, b are two positive numbers. The product of three arithmetic means inserted between a, b is $15 / 2$ and product of three arithmetic means inserted between $1 / a$ and $1 / b$ is $5 / 18$. Then $a b$ is equal to:
A. 9
B. 6
C. 3
D. 1

Answer: C

D View Text Solution

13. if $\frac{a+b}{1-a b}, b, \frac{b+c}{1-b c}$ are in $A P$ then $a, \frac{1}{b}, c$ are in
A. A.P
B. G.P
C. H.P
D. A.G.P

Answer: A

14. The sum of the infinite series $\frac{5}{17}+\frac{55}{(17)^{2}}+\frac{555}{(17)^{3}}+\ldots$. is
A. $\frac{1}{17}$
B. $\frac{85}{112}$
C. $\frac{85}{324}$
D. $\frac{19}{289}$

Answer: B

- Watch Video Solution

15. Sum of the series $\sum_{r=1}^{2016}(-1)^{r}(a+r d)$ is
A. $a+2016 d$
B. 2015d
C. 0
D. 1008 d

Answer: D

- Watch Video Solution

EXERCISES LEVEL-1 (Single Correct Answer Type Questions)

1. If $5 a-b, 2 a+b, a+2 b$ are in A.P. and $(a-1)^{2},(a b+1),(b+1)^{2}$ are in G.P., $a \neq 0$, then a is equal to
A. $2,-1 / 4$
B. $-2,-1 / 4$
C. $-2,1 / 4$
D. $2,1 / 4$

Answer: C

2. $\frac{1}{a}+\frac{1}{c}+\frac{1}{a-b}+\frac{1}{c-b}=0$ and $b \neq a+c$, then a, b, c are in
A. A.P
B. G.P
C. H.P
D. A.G.P

Answer: C

- Watch Video Solution

3. In an A.P, the first term is 1 and sum of the first p terms is 0 , then sum of the first $(p+q)$ terms is
A. $\frac{q(p+q)}{1-p}$
B. $\frac{q}{1-p}$
C. $\frac{(p+q) p}{1-p}$
D. $\frac{2(p+q)}{1-p}$

- Watch Video Solution

4. If both the A.M. between m and n and G.M. between two distinct positive numbers a and b are equal to $\frac{m a+n b}{m+n}$, then n is equal to
A. $\frac{a \sqrt{b}}{\sqrt{a}+\sqrt{b}}$
B. $\frac{2 a \sqrt{b}}{\sqrt{a}+\sqrt{b}}$
C. $\frac{\sqrt{a b}}{\sqrt{a}+\sqrt{b}}$
D. $\frac{1}{\sqrt{a}+\sqrt{b}}$

Answer: B

Watch Video Solution

5. Product of two positive integers a and b is 192 . Let $8=$ hef (a, b) and $\mathrm{I}=$ lem (a, b). If the ratio of A.M. between g and I to the H.M. between g and I
is $\frac{169}{48}$, then smaller of a, b is
A. 8,24
B. 12,16
C. 4,12
D. 6,24

Answer: C

- View Text Solution

A. 4
B. 5
C. 6
D. 7

Answer: D

D Watch Video Solution

7. Let the positive numbers a, b, c, d be in AP. Then $a b c, a b d, a c d, b c d$ are (2001, 1M) not in AP/GP/HP (b) in AP in GP (d) in HP
A. Not in A.P/G.P/H.P.
B. in A.P.
C. in G.P.
D. in H.P.

Answer: D

- Watch Video Solution

8. Find the harmonic mean of the roots of the equation $(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+(8+2 \sqrt{5})=0$
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

9. If $\cos (x-y), \cos x$ and $\cos (x+y)$ are in H.P., then $\left|\cos x \frac{\sec (y)}{2}\right|$ equals
A. $\pm \sqrt{2}$
B. $\pm \sqrt{3}$
C. $\pm \sqrt{2}$
D. ± 1

Watch Video Solution

10. Let $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \ldots+\frac{1}{2^{n}-1}$. Then
A. $a(200)>100$
B. $a(100)>100$
C. $a(50)<25$
D. none of these

Answer: A

- Watch Video Solution

11. Let $\mathrm{S}=\frac{4}{19}+\frac{44}{(19)^{2}}+\frac{444}{(19)^{3}}+\ldots \infty$ then find the value of S
A. $38 / 81$
B. $4 / 19$
C. $36 / 171$
D. none of these

Answer: A

- Watch Video Solution

12. 29. If a, b, c are in G. P. and $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$ prove that x, y, z are in A. P.
A. H.P.
B. G.P.
C. A.P.
D. none of these

Answer: C

13. If a,b,c,d are in GP and $a^{x}=b^{x}=c^{z}=d^{u}$, then x, y, z, u are in
A. A.P
B. G.P.
C. H.P
D. none of these

Answer: C

- Watch Video Solution

14. If a, b, c, dandp are distinct real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$, then prove that a, b, c, d are in G.P.
A. A.P
B. G.P.
C. H.P
D. none of these

Answer: B

- Watch Video Solution

15. If a,b,c are in A.P., then $2^{a x+1}, 2^{b x+1}, 2^{c x+1}, x \in R$, are in
A. A.P
B. G.P. and when $x>0$
C. G.P. only when $x<0$
D. G.P. for all x

Answer: D

- Watch Video Solution

16. The rational number, which equals the number 2.357 with recurring decimal is:
A. $\frac{2355}{1001}$
B. $\frac{2370}{999}$
C. $\frac{2355}{999}$
D. $\frac{2359}{991}$

Answer: C

- Watch Video Solution

17. The sum to infinity of the series
$1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots$, is
A. $\frac{16}{35}$
B. $\frac{11}{8}$
C. $\frac{35}{16}$
D. $\frac{17}{6}$

Answer: C

- Watch Video Solution

18. If the sum of n terms of an A.P. is $3 n^{2}+5 n$ and its mth term is 164 , find the value of m.
A. 25
B. 26
C. 27
D. 28

Answer: C

19. If G_{1} and G_{2} are two geometric means and A is the arithmetic mean inserted two numbers, then the value of $\frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}$ is:
A. $A / 2$
B. A
C. 2A
D. none of these

Answer: C

- Watch Video Solution

20. If A_{1}, A_{2} be two A.M.'s and G_{1}, G_{2} be two G.M.,s between a and b, then $\frac{A_{1}+A_{2}}{G_{1} G_{2}}$ is equal to
A. $\frac{a b}{a+b}$
B. $\frac{2 a b}{a+b}$
C. $\frac{a+b}{2 a b}$
D. $\frac{a+b}{a b}$

Answer: D

- Watch Video Solution

21. The first and last term of an A.P. are a and I respectively. If S be the sum of all the terms of the A.P., them the common difference is
A. $\frac{l^{2}-a^{2}}{s-(l+a)}$
B. $\frac{l^{2}-a^{2}}{2 s-(1+a)}$
C. $\frac{l^{2}+a^{2}}{2 s-(1+a)}$
D. $\frac{l^{2}+a^{2}}{s-(l-a)}$

Answer: B

- Watch Video Solution

22. The value of $2^{\frac{1}{4}} \cdot 4^{\frac{1}{8}} \cdot 8^{\frac{1}{16}},,,,,,, \infty$ is equal to.
A. 2
B. $3 / 2$
C. 1
D. $1 / 2$

Answer: A

- Watch Video Solution

23. . The sum of an infinite number of terms of a G.P. is 20 , and the sum of their squares is 100 , then the first term of the G.P. is
A. 5
B. $8 / 5$
C. $3 / 5$
D. 8

Answer: D

- Watch Video Solution

24. The eighth term of a geometric progression is 128 and common ratio is 2 . The product of the first five terms is
A. 4^{6}
B. 4^{5}
C. 4^{3}
D. 4^{8}

Answer: B

25. I, m,n are the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ term of a G.P. all positive, then $\left|\begin{array}{lll}\log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1\end{array}\right|$ equals :
A. pqr
B. $p+q+r$
C. $p+q+r+p q r$
D. 0

Answer: D

- Watch Video Solution

26. If a_{1}, a_{2}, a_{3}, be terms of an A.P. if $\frac{a_{1}+a_{2}++a_{p}}{a_{1}+a_{2}++a_{q}}=\frac{p^{2}}{q^{2}}, p \neq q$, then $\frac{a_{6}}{a_{21}}$ equals $41 / 11$ b. $7 / 2$ c. 2/7 d. 11/41
A. $\frac{11}{41}$
B. $\frac{41}{11}$
C. $\frac{7}{2}$
D. $\frac{2}{7}$

Answer: A

- Watch Video Solution

27. The sum of 10 terms of the series $\sqrt{2}+\sqrt{6}+\sqrt{18}+\ldots$ is
A. $121(\sqrt{6}+\sqrt{2})$
B. $\frac{121}{2}(\sqrt{3}+1)$
C. $243(\sqrt{3}+1)$
D. $243(\sqrt{3}-1)$

Answer: A

28. If $1^{2}+2^{2}+3^{2}+n^{2}-1015$ then the value of n is equal to (A) 13 (B)

14 (C) 15 (D) none of these
A. 15
B. 14
C. 13
D. 16

Answer: B

- Watch Video Solution

29. Sum of series $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$ upto 22 terms is
A. 23276
B. 22736
C. 22738

D Watch Video Solution

30. If a, b, c are in A.P and a^{2}, b^{2}, c^{2} are in H.P then
A. $-\frac{a}{2}, b, c$ are in G.P.
B. $a+b=c$
C. $a=b+c$
D. a,b,c are in G.P.

Answer: A

- Watch Video Solution

31. The $m t h$ term of an $A . P$. is n and $n t h$ term is m. Then $r t h$ term of it is
A. $m+n-r$
B. $m+n+r$
C. $m-n+r$
D. $r-(m+n)$

Answer: A

- Watch Video Solution

32. If a, b, c are in G.P., then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have common root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in
A. A.P
B. G.P.
C. H.P
D. none of these

Answer: A

- Watch Video Solution

33. If $\log _{10} 2, \log _{10}\left(2^{x}-1\right)$ and $\log _{10}\left(2^{x}+3\right)$ are three consecutive terms of an A.P, then the value of x is
A. $x=0$
B. $x=1$
C. $x=\frac{1}{2} \log _{10} 2$
D. $x=\frac{1}{2} \log _{2} 5$

Answer: D

- Watch Video Solution

34. Suppose $\frac{1}{2} x, l x,+1 l, l x-1 l, 1 l$ are in A.P., then sum to 10 terms of the A.P. is
A. 54
B. 36
C. 28
D. none of these

Answer: D

- Watch Video Solution

35. Let the harmonic mean and geometric mean of two positive numbers be in the ratio 4:5. Then the two numbers are in ratio............ ($1992,2 \mathrm{M}$)
A. $4: 1$
B. 3:1
C. 2:1
D. 1:3

Answer: A

- Watch Video Solution

36. The sum of first 9 terms of the series
$\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots \ldots$. is
A. 445
B. 446
C. 447
D. 448

Answer: B

37. If $\log (a+c)+\log (a+c-2 b)=2 \log (a-c)$ then
A. a, b, c are in A.P.
B. a, b, c are in G.P.
C. a, b, c are in H.P
D. $b+c, c+a, a+b$ are in H.P

Answer: C

- Watch Video Solution

38. The sum of intergers from 1 to 100 that are divisible by 2 or 5 is -
A. 3050
B. 3150
C. 3250
D. 3350

- Watch Video Solution

39. The common difference d of the A.P. in which $T_{7}=9$ and $T_{1} T_{2} T_{7}$ is least is
A. $33 / 2$
B. $5 / 4$
C. $33 / 20$
D. $7 / 3$

Answer: C

- Watch Video Solution

40. The numbers $3^{2 \sin 2 \alpha-1}, 14$ and $3^{4-2 \sin 2 \alpha}$ form first three terms of A.P., its fifth term is
A. 25
B. 40
C. 53
D. -12

Answer: C

D Watch Video Solution

41. Sum of first ' n ' terms of the series $\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\ldots$
A. $n+1-2^{n}$
B. $1+2^{-n}$
C. $2^{n}-1$
D. $2^{n}-n+1$

Answer: A

42. The sum of n terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots$. is $\frac{n(n+1)^{2}}{2}$ when n is even. when n is odd, the sum is
A. $n(n-1)^{2} / 2$
B. $n^{2}(n+1) / 2$
C. $n(n+2) / 3$
D. $n(n+3) / 2$

Answer: B

- Watch Video Solution

43. Find
the
sum
series:
$\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)+\ldots \rightarrow \infty$
A. $\tan ^{-1}\left(\frac{n}{n+2}\right)$
B. $\tan ^{-1}\left(\frac{2 n-1}{2 n+1}\right)$
C. $\tan ^{-1}\left(\frac{1}{3 n}\right)$
D. $\tan ^{-1}\left(\frac{1}{2 n}\right)$

Answer: A

- Watch Video Solution

44. FInd the sum of infinite terms of the series
$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5} \ldots$.
. 116
A. $\frac{165}{465}$
B. $\frac{495}{1984}$
C. $\frac{435}{791}$
D. $\frac{485}{791}$

Answer: B

45. If $n!, 3 n$! and $(n-1)$! are in G.P then $n!, 5 n!$ and $(n+1)$! are in
A. A.P
B. G.P.
C. H.P
D. none of these

Answer: A

Watch Video Solution
46. If $S_{n}=81+54+36+24+\ldots$ upto n terms, then value of $x=\frac{S_{n}-4 S_{n-1}+6 S_{n-2}-4 S_{n-3}+S_{n-4}}{S_{n-1}-4 S_{n-2}+6 S_{n-3}-4 S_{n-4}+S_{n-5}}$ is equal
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. 2

Answer: A

- View Text Solution

47. The sum of first ' n ' terms of the series $1^{2}+(1)(2)+3^{2}+(3)(4)+5^{2}+(5)(6)+7^{2}+\ldots \ldots .$. when n is odd is
A. $\frac{1}{12}(n+1)\left(4 n^{2}-n+3\right)$
B. $\frac{1}{12} n\left(4 n^{2}+3 n-4\right)$
C. $\frac{1}{6}(n+1)\left(4 n^{2}-n+5\right)$
D. none of these

Answer: A

- Watch Video Solution

48.

$L=\lim _{n \rightarrow \infty}\left(1+3^{-1}\right)\left(1+3^{-2}\right)+\left(1+3^{-4}\right)+\left(1+3^{-8}\right) \ldots\left(1+3^{-2^{n}}\right)$
,then
A. $L=\frac{2}{3}$
B. $L=\frac{3}{2}$
C. $L=1$
D. $L=2$

Answer: B

- View Text Solution

49. If $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}$, are ' n ', distinct odd natural numbers, not divisible by any prime number greater than 5 , then
$\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\ldots \ldots+\frac{1}{a_{n}}$ is less than $(a) \frac{15}{8}(b) \frac{17}{8}(c) \frac{19}{8}(d) \frac{21}{8}$
A. 2
B. 1
C. $1 / 2$
D. none of these

Answer: A

- Watch Video Solution

50. Coefficient of x^{99} in the expansion of $(x-1)(x-3)(x-5) . .(x-1999)$ is
A. -100
B. -1000
C. -10000
D. -100000

Answer: C

51. Find the sum to n terms of the series $1+(1+2)+(1+2+3)+\ldots \ldots$
A. $\frac{1}{2} n(n+1)(n+2)$
B. $\frac{1}{3} n(n+1)(n+2)$
C. $\frac{1}{4} n(n+1)(2 n+1)$
D. $\frac{1}{6} n(n+1)(n+2)$

Answer: D

Watch Video Solution

52. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, 0<a<b<1$, and $z=\sum_{n=0}^{\infty}\left(\frac{a}{b}\right)^{n}$, then
A. $x+y z=x(y+z)$
B. $x y z=x+y+z$
C. $x y+z=y(y+z)$
D. none of these

D View Text Solution

53. If the sum of an infinite decreasing G.P. is 3 and sum of the cubes of its terms is $108 / 13$, then common ratio is given by
A. $\frac{1}{5}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: C

D View Text Solution

54. The sum of the series $S=\sum_{r=1}^{n} \log \left(\frac{a^{r+1}}{b^{r-1}}\right)$ is
A. $\frac{n}{2} \log \left(\frac{a^{n-1}}{b^{n}}\right)$
B. $\frac{n}{2} \log \left(\frac{a^{n+3}}{b^{n-1}}\right)$
C. $\frac{n}{2} \log \left(\frac{a^{n-+2}}{b^{n-1}}\right)$
D. none of these

Answer: B

- View Text Solution

55. If the fifth term of a G.P. is 2 , then write the product of its 9 terms.
A. 256
B. 512
C. 1024
D. 204

Answer: B

56. If s is the sum to infnity of a G.P, whose first term is a, then the sum of the first n terms of the G.P. is
A. $s\left[1-\left(1-\frac{a}{s}\right)^{n}\right]$
B. $s\left(1-\frac{a}{s}\right)^{n}$
C. $a\left[1-\left(1-\frac{a}{s}\right)^{n}\right]$
D. $\frac{a}{s}\left[1-\left(1-\frac{a}{s}\right)^{n}\right]$

Answer: A

57. For a sequence $<a_{n}>, a_{1}=5$ and $\frac{a_{r+1}}{a_{r}}=\frac{1}{2} \forall r$, then $\sum_{n=1}^{\infty} a_{2 n-1}$ is
A. $20 / 7$
B. $20 / 5$
C. $20 / 3$
D. 20

Answer: C

- View Text Solution

58. If the H.M.of two numbers is to their GM. is $12: 13$ then the numbers are in the ratio
A. 1:2
B. 2: 3
C. $3: 5$
D. $4: 9$

Answer: D

59. The H.M. between two numbers is $16 / 5$, their A.M. is A and G.M. is G. If $2 A+G^{2}=26$ then the numbers are
A. 6,8
B. 4,8
C. 2,8
D. 1,8

Answer: C

- View Text Solution

60. If $a_{r}=a+(r-1) d$ is rth term of an A.P., then $a_{n}^{2}-2 a_{n-1}^{2}+a_{n-2}^{2}$ is independent of
A. n
B. d
C. a
D. a and n both

Answer: D

- View Text Solution

61. If $A=1+r^{2}+r^{2 a}+\ldots \infty=a$ and $B=1+r^{b}+r^{2 b}+\ldots \infty=b$ then $\frac{a}{b}$ is equal to
A. $\frac{\log (1+A)}{\log (1+B)}$
B. $\frac{\log (A-1)}{\log (B-1)}$
C. $\log _{B} A$
D. none of these

Answer: D

- Watch Video Solution

62. Suppose $a_{1}=45, a_{2}=41$ and $a_{k}=2 a_{k-1}-a_{k-2} \forall k \geq 3$, then, value of
$S=\frac{1}{12}\left[a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots+a_{11}^{2}-a_{12}^{2}\right]$ is
A. 89
B. 90
C. 91
D. 92

Answer: D

- Watch Video Solution

63. Suppose $P(x)=1-x+x^{2}-x^{3}+\ldots+x^{2012}$ is expressed as a polynomial in y, as
$Q(y)=a_{0}+a_{1} y+\ldots+a_{2012} y^{2012}$ where $y=x-2$, then $\sum_{i=0}^{2012} a_{i}$ equals
A. $\frac{1}{4}\left(3^{2013}+1\right)$
B. $\frac{1}{3}\left(3^{2013}-1\right)$
C. 0
D. 1

Answer: A

- View Text Solution

64. The sum of first 26 terms of an A.P. $a_{1}, a_{2}, a_{3}, \ldots$ if $a_{2}+a_{6}+a_{9}+a_{18}+a_{21}+a_{25}=165$, is
A. 705
B. 715
C. 725
D. 735
65. In the sum of first n terms of an A.P. is $c n^{2}$, then the sum of squares of these n terms is
A. $\frac{n\left(4 n^{2}-1\right) c^{2}}{6}$
B. $\frac{n\left(4 n^{2}+1\right) c^{2}}{3}$
C. $\frac{n\left(4 n^{2}-1\right) c^{2}}{3}$
D. $\frac{n\left(4 n^{2}+1\right) c^{2}}{6}$

Answer: C

- Watch Video Solution

EXERCISES LEVEL-2 (Single Correct Answer Type Questions)

1. The rth term of the series $2\left(\frac{1}{2}\right)+1\left(\frac{7}{13}\right)+1\left(\frac{1}{9}\right)+\frac{20}{23}+\ldots$. is
A. $\frac{15}{5 n+3}$
B. $\frac{20}{5 n+4}$
C. $\frac{20}{5 n+3}$
D. $\frac{20}{5 n+2}$

Answer: C

D Watch Video Solution

2. H.M. between $\frac{1}{28}$ and $\frac{1}{10}$ is
A. $\frac{1}{19}$
B. $\frac{1}{18}$
C. $\frac{1}{17}$
D. $\frac{1}{16}$

Answer: A

3. If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in A.P. prove that a, b, c are in A.P.
A. a, b, c are in A.P.
B. a, b, c are in G.P.
C. a, b, c are in H.P.
D. none of these

Answer: A

- Watch Video Solution

4. If $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ are in A.P with common difference d then find the sum of the following series $\sin d\left(\cos e c a_{1} \cos e c a_{2}+\cos e c a_{2} \cos e c a_{3}+\ldots . \cos e c a_{n-1} \cos e c a_{n}\right)$

$$
\text { A. } \sec a_{1}-\sec a_{n}
$$

B. $\cos e c a_{1}-\cos e c a_{n}$
C. $\cot a_{1}-\cot a_{n}$
D. $\tan a_{1}-\tan a_{n}$

Answer: C

- Watch Video Solution

5. If $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots .+\frac{1}{n}$, then value of
$1+\frac{3}{2}+\frac{5}{3}+\ldots .+\frac{2 n-1}{n}$ is
A. $H_{n}+n$
B. $2 n-H_{n}$
C. $n-1+H_{n}$
D. $H_{n}+2 n$

Answer: B

6. If a, b, c are in H.P., then prove that $\frac{a}{b+c-a}, \frac{b}{a+b-c}, \frac{c}{a+b-c}$ are in H.P.
A. A.P
B. G.P.
C. H.P
D. A.G.P

Answer: C

- Watch Video Solution

7. Sum of all the terms in the nth row of the triangle
A. $\frac{1}{2} n^{2}(n+1)$
B. $\frac{1}{2} n\left(n^{2}+1\right)$
C. $n\left(n^{2}+1\right)$
D. $n^{2}(n+1)$

Answer: B

8. Let α and β be two positive real numbers. Suppose A_{1}, A_{2} are two arithmetic means; G_{1}, G_{2} are tow geometrie means and $H_{1} H_{2}$ are two harmonic means between α and β, then
A. $\frac{2\left(a^{2}+b^{2}\right)+5 a b}{9 b}$
B. $\frac{a^{2}+b^{2}}{9 a b}+5$
C. $\frac{a^{2}+b^{2}+5(a+b)}{9 a b}$
D. $\frac{a^{2}+b^{2}+7(a+b)}{3(a+b) a b}$

Answer: A

- Watch Video Solution

9.

$a(n)=1-\frac{1}{2}+\frac{1}{3}+\ldots+(-1)^{n-1} \frac{1}{n}$, then $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+$ is equal to
A. $a(2 n)$
B. $a(2 n)-a(n)$
C. $a(3 n)-a(2 n)$
D. none of these

Answer: A

- View Text Solution

10. In Fig. 8.3 each square is filled with the arithmetic mean of the numbers in the boxes sharing a side with it. If the first square is filled with 5 , then value of x is

A. 5
B. 0
C. -5
D. cannot be determined.

Answer: A

- View Text Solution

11. Let a, b, and c be three real numbers satistying $[a, b, c]\left[\begin{array}{ccc}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ Let $b=6$, with a and c satisfying (E). If alpha and beta are the roots of the quadratic equation $a x^{2}+b x+c=0$ then $\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{n}$ is (A) 6 (B) 7 (C) $\frac{6}{7}$ (D) oo
A. 6
B. 7
C. $6 / 7$
D. ∞

Answer: B

- Watch Video Solution

EXERCISES (Numerical Answer Type Questions)

1. Let $S=\sum_{r=1}^{\infty} \frac{r}{r^{4}+4}$, then $2 \mathrm{~S}=$

- View Text Solution

2. Let $A_{1}, A_{2}, \ldots, A_{75}$ be 75 arithmetic means inserted between two distinct numbers a and b, then $\frac{b+A_{75}}{b-A_{75}}+\frac{a+A_{1}}{a-A_{1}}=$

- View Text Solution

3. Suppose $\frac{1}{a_{1}}, \frac{1}{a_{2}}, \ldots, \frac{1}{a_{201}}$ is in A.P., then $\sum_{k=1}^{200}(-1)^{k}\left(\frac{a_{k}+a_{k+1}}{a_{k}-a_{k+1}}\right)=$

- View Text Solution

4. Let $S=(0.7)^{\log _{0.49}\left(\frac{1}{8}+\frac{1}{8^{2}}+\frac{1}{8^{3}}+\ldots\right)}$,

- Watch Video Solution

5. Suppose $a, b>0$. Let $a, A_{1}, A_{2}, \ldots, A_{25}$, b be in A.P., a $G_{1}, G_{2}, \ldots ., G_{25}$, b are in G.P. and $\frac{1}{a}, \frac{1}{H}, \frac{1}{b}$
$\left[1+2 H\left(\frac{A_{1}+A_{25}}{G_{1} G_{25}}+\frac{A_{2}+A_{24}}{G_{2} G_{24}}+\ldots+\frac{A_{12} A_{13}}{G_{12} G_{13}}\right)\right]^{1 / 2}=$

D View Text Solution

6. Suppose $\sum_{r=1}^{\infty} t_{r}=3^{n}-1 \forall n \in N$ then $\sum_{r=1}^{\infty} \frac{1}{t_{r}}=$
7. If the sum to n terms of the series $\frac{3}{\left(1^{2}\right)\left(2^{2}\right)}+\frac{5}{\left(2^{2}\right)\left(3^{2}\right)}+\frac{7}{\left(3^{2}\right)\left(4^{2}\right)}+\ldots$. is $\frac{288}{289}$, then $\mathrm{n}=$

- View Text Solution

8. Let $\mathrm{S}=$ Sum of the series $\frac{1}{4^{2}+2}+\frac{1}{5^{2}+3}+\frac{1}{6^{2}+4}+\frac{1}{7^{2}+5}+\ldots$ then $180 \mathrm{~S}=$

- View Text Solution

9.

$S=\frac{1}{1 \times 3 \times 5}+\frac{1}{3 \times 5 \times 7}+\frac{1}{5 \times 7 \times 9}+\frac{1}{7 \times 9 \times 11}+\ldots$ upto ∞ then $3 \mathrm{~S}=$

- View Text Solution

10. Let $a \quad$ coefficient of x^{20} in
$\left(1+x+2 x^{2}+3 x^{3}+\ldots+20 x^{20}\right)^{2}, \quad$ then $\frac{1}{137} a=$

- View Text Solution

11. Let $\sum_{r=1}^{n} \sum_{j=1}^{r} \sum_{k=1}^{j} 1=364$, then $\mathrm{n}=$

- View Text Solution

12. Sum of the series $2.5+\frac{1}{2}+\frac{1}{3}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots$ is

- View Text Solution

13. Suppose $a, b, c>0$. If $\frac{2}{a+b}, \frac{1}{b}, \frac{2}{b+c}$ are in A.P., then $\frac{b^{2}}{4 a c}=$

- View Text Solution

14. Suppose $a, b, c>1$ and $n \in N, n \geq 2$. If $\log _{a}(n), \log _{b}(n), \log _{c}(n)$ are in A.P., then $\log _{a} b+\log _{c} b=$

- Watch Video Solution

15. Given sum of first n terms of an A.P. is $2 n+3 n^{2}$. rel then Another A.P. is formed with the same first term and double the common difference. Let Sn) denote the 98 . sum to n terms of new A.P., then $\mathrm{S}(10)=$

- View Text Solution

16. Suppose $a, b, c \neq R$ and satisfy
(i) $2<a, b, c<18$ (ii) $a+b+c=25$
(iii) $2, \mathrm{a}, \mathrm{b}$ are in A.P. (iv) $\mathrm{b}, \mathrm{c}, 18$ are in G.P. then $\frac{1}{11}\left(c^{2}-a^{2}-b^{2}\right)=$

- View Text Solution

is $\frac{2}{3}$, then x is equal to

D View Text Solution

18. If sum of the series $\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left(\frac{1}{5^{j}}\right)\left(\frac{1}{5^{k}}\right)$ is S then $12 \mathrm{~S}=$

- View Text Solution

19. Suppose $k \neq N$ is fixed then sum of the series $\frac{1}{k^{2}} \sum_{\substack{n=1 \\ n \neq k}}^{\infty} \frac{1}{n^{2}-k^{2}}$ is

- View Text Solution

Questions from Previous Years. AIEEE/JEE Main Papers

1. If the fifth term of a G.P. is 2 , then write the product of its 9 terms.
A. 256
B. 512
C. 1024
D. 2048

Answer: B

D Watch Video Solution

2. The value of $2^{\frac{1}{4}} \cdot 4^{\frac{1}{8}} \cdot 8^{\frac{1}{16}},,,,,,, \infty$ is equal to.
A. 1
B. 2
C. $\frac{3}{2}$
D. 4

Answer: B

3. If $1, \log _{9}\left(3^{1-x}+2\right), \log _{3}\left(4 \cdot 3^{x}-1\right)$ are in A.P then x equals to
A. $\log _{3} 4$
B. $1-\log _{3} 4$
C. $1-\log _{4} 3$
D. $\log _{4} 3$

Answer: B

- Watch Video Solution

4. $1^{3}-2^{3}+3^{3}-4^{3}+\ldots \ldots . .+9^{3}$ is equal to
A. 425
B. -425
C. 475
D. -475

Answer: A

- Watch Video Solution

5. The sum of integers from 1 to 100 that are divisible by 2 or 5 is
A. 3000
B. 3050
C. 3600
D. 3250

Answer: B

- Watch Video Solution

6. The sum of infinite number of terms in G.P. is 20 and the sum of their squares is 100 . Then find the common ratio of G.P.
A. $\frac{1}{5}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{4}{5}$

Answer: C

- Watch Video Solution

7. Let $f x$) be a polynomial function of second degree. If $f(1)=f(-1)$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P, the $f^{\prime}(a), f^{\prime}(b)$ and $f^{\prime}(c)$ are in
A. G.P.
B. H.P.
C. A.G.P.

D. A.P.

Answer: D

- Watch Video Solution

8. Let T_{r} be the $r^{\text {th }}$ term of an A.P whose first term is a and common difference is $d \mathrm{IF}$ for some integer $\mathrm{m}, \mathrm{n}, T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$ then $a-d=$
A. $\frac{1}{m n}$
B. 1
C. 0
D. $\frac{1}{m}+\frac{1}{n}$

Answer: C

- Watch Video Solution

9.

$1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots$. is $\frac{n(n+1)^{2}}{2}$ when n is even. when n is odd, the sum is
A. $\frac{1}{4} n(n+1)^{2}$
B. $\frac{1}{2} n^{2}(n+1)$
C. $\frac{3}{2} n(n+1)$
D. $\frac{1}{4} n^{2}(n+1)^{2}$

Answer: B

(Watch Video Solution

10. If a, b, c are proper fractiion are in H.P. and $x \sum_{n=1}^{\infty} a^{n}, y=\sum_{n=1}^{\infty} b^{n}, z=\sum_{n=1}^{\infty} c^{n}$ then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in (A) A.P. (B) G.P. (C) H.P.
(D) none of these
A. A.P.
B. G.P.
C. H.P.
D. A.G.P.

Answer: C

- Watch Video Solution

11. If the expression in powers of x of th
$a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$ then a_{n} is
A. $\frac{b^{n+1}-a^{n+1}}{b-a}$
B. $\frac{b^{n}-a^{n}}{b-a}$
C. $\frac{a^{n}-b^{n}}{b-a}$
D. $\frac{a^{n+1}-b^{n+1}}{b-a}$

Answer: A

12. Let $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots$ be term os an A.P. if $\frac{a_{1}+a_{2}+\ldots .+a_{p}}{a_{1}+a_{2}+\ldots \ldots \ldots+a_{q}}=\frac{p^{2}}{q^{2}} p \neq$ qthena $a_{6} a_{21}$ euqals (A) $41 / 11$ 43283 (C) 43138 (D) 15281
A. $\frac{11}{41}$
B. $\frac{41}{11}$
C. $\frac{7}{2}$
D. $\frac{2}{7}$

Answer: A

Watch Video Solution

13. If $a_{1}, a_{2}, \ldots \ldots \ldots a_{n}$ are in H.P, then the expression $a_{1} a_{2}+a_{2}+a_{3}+\ldots+a_{n-1} a_{n}$ is equal to (A) $n\left(a_{1}-a_{n}\right)$
$(n-1)\left(a_{1}-a_{n}\right)$ (C) $n a_{1} a_{n}$ (D) $(n-1) a_{1} a_{n}$
A. $(n-1) a_{1} a_{n}$
B. $n\left(a_{1}-a_{n}\right)$
C. $(n-1)\left(a_{1}-a_{n}\right)$
D. $n a_{1} a_{n}$

Answer: A

- Watch Video Solution

14. In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of this progression equals (1) $\frac{1}{2}(1-\sqrt{5})$ (2) $\frac{1}{2} \sqrt{5}$ (3) $\sqrt{5}(4) \frac{1}{2}(\sqrt{5}-1)$
A. $\frac{1}{2}(1-\sqrt{5})$
B. $\frac{1}{2} \sqrt{5}$
C. $\sqrt{5}$
D. $\frac{1}{2}(\sqrt{5}+1)$

D Watch Video Solution

$15.1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{14}{3^{4}}+$
A. 4
B. 6
C. 2
D. 3

Answer: D

- Watch Video Solution

16. A person is to count 4500 currency notes. Let a_{n}, denote the number of notes he counts in the $n t h$ minute if $a_{1}=a_{2}=a_{3}=\ldots \ldots \ldots .=a_{10}=150$ and $a_{10}, a_{11}, \ldots \ldots$. are in an $A P$
with common difference -2 , then the time taken by him to count all notes is :- (1) 24 minutes 1011 (2) 34 minutes (3) 125 minutes (4) 135 minutes
A. 125 minutes
B. 135 minutes
C. 24 minutes
D. 34 minutes

Answer: D

- Watch Video Solution

17. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of swrvice will be Rs. 11040 after
B. 18 months
C. 19 months
D. 20 months

Answer: A

- Watch Video Solution

18. Let a_{n} be the nth term of an AP, if $\sum_{r=1}^{100} a_{2 r}=\alpha$ and $\sum_{r=1}^{100} a_{2 r-1}=\beta$, then the common difference of the AP is
A. $\alpha-\beta$
B. $\frac{1}{100}(\alpha-\beta)$
C. $\beta-\alpha$
D. $\frac{1}{200}(\alpha-\beta)$

Answer: B

19. If 100 times the 100 th term of an AP with non-zero common difference equals the 50 times its 50th term, then the 150th term of this AP is
A. 150 time its $50^{\text {th }}$ term
B. 150
C. zero
D. -150

Answer: C

- Watch Video Solution

20. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in A.P. and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$ are also in A.P. then
A. $2 x=3 y=6 z$
B. $6 x=3 y=2 z$
C. $6 x=4 y=3 z$
D. $x=y=z$

Answer: D

- Watch Video Solution

21. The sum of first 20 terms of the sequence $0.7,0.77,0.777$. is
A. $\frac{7}{9}\left(99-10^{-20}\right)$
B. $\frac{7}{81}\left(179+10^{-20}\right.$
C. $\frac{7}{9}\left(99+10^{-20}\right)$
D. $\frac{7}{81}\left(179-10^{-20}\right)$

Answer: B
(Watch Video Solution
22. Given sum of the first n terms of an A.P is $2 n+3 n^{2}$. Another A.P. is formed with the same first term and double of the common difference, the sum of n terms
A. $n+4 n^{2}$
B. $6 n^{2}-n$
C. $n^{2}+4 n$
D. $3 n+2 n^{2}$

Answer: B

- Watch Video Solution

23. the $\operatorname{sum} \frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots \ldots$. upto 11 terms
A. $\frac{7}{2}$
B. $\frac{11}{4}$
C. $\frac{11}{2}$
D. $\frac{60}{11}$

Answer: C

- Watch Video Solution

24. Given a sequence of 4 numbers, first three of which are in G.P. and the last three are in arcommon difference six. If first and last terms of this sequence are equal, then the last term is (A) 8(B) 16(C) 2 .(D) 4
A. 16
B. 8
C. 4
D. 2

Answer: B

- Watch Video Solution

25. The value of $1^{2}+3^{2}+5^{2}+\ldots+25^{2}$ is (A) 1728 (B) 1456 (C) 2925 (D) none
A. 2925
B. 1469
C. 1728
D. 1456

Answer: A

- Watch Video Solution

26. Let $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots$ be term os an A.P. if $\frac{a_{1}+a_{2}+\ldots .+a_{p}}{a_{1}+a_{2}+\ldots \ldots+a_{q}}=\frac{p^{2}}{q^{2}} p \neq q$ then $a_{6} a_{21} \quad$ euqals (A) $41 / 11 \quad$ (B) 43283 (C) 43138 (D) 15281
A. $\frac{41}{11}$
B. $\frac{121}{1681}$
C. $\frac{11}{41}$
D. $\frac{121}{1861}$

Answer: C

- Watch Video Solution

27. The sum of the series $(2)^{2}+2(4)^{2}+3(6)^{2}+\ldots$. upto 10 terms is
A. 11300
B. 11200
C. 12100
D. 12300

Answer: C

28.

$S=\tan ^{-1}\left(\frac{1}{n^{2}+n+1}\right)+\tan ^{-1}\left(\frac{1}{n^{2}+3 n+3}\right)+\ldots+\tan ^{-1}\left(\frac{}{1+(}\right.$
then $\tan \mathrm{S}$ is equal to $(A) 20 /(401+20 \mathrm{n})(B) \mathrm{n} /\left(\mathrm{n}^{\wedge} 2+20 \mathrm{n}+1\right)(C) \mathrm{n}(401+20 \mathrm{n})$
(D) $20 /\left(\mathrm{n}^{\wedge} 2+\mathrm{n}-1\right)^{\wedge}$
A. $\frac{20}{401+20 n}$
B. $\frac{n}{n^{2}+20 n+1}$
C. $\frac{20}{n^{2}+20 n+1}$
D. $\frac{n}{401+20 n}$

Answer: C

- Watch Video Solution

29. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n} \ldots$ are in A.P. such that $a_{4}-a_{7}+a_{10}=m$, then sum of the first 13 terms of the A.P.is
A. 10 m
B. 12 m
C. 13 m
D. 15 m

Answer: C

- Watch Video Solution

30. Three positive numbers form an increasing GP. If the middle term in this GP is doubled, then new numbers are in AP. Then, the common ratio of the GP is
A. $3+\sqrt{2}$
B. $2-\sqrt{3}$
C. $2+\sqrt{3}$
D. $\sqrt{2}+\sqrt{3}$

Answer: C

31. If $(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+. .+10(11)^{9}=k(10)^{9}$, then k is equal to (1) $\frac{121}{10}$ (2) $\frac{441}{100}$ (3) 100 (4) 110
A. $\frac{441}{100}$
B. 100
C. 110
D. $\frac{221}{10}$

Answer: B

Watch Video Solution

32. Given an $A . P$. whose terms are all positive integers. The sum of its first nine terms is greater than 200 and less than 220 . If the second term in it is 12 , then its $4^{t} h$ term is:
A. 8
B. 16
C. 20
D. 24

Answer: C

- Watch Video Solution

33. If the sum $\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots+$ upto 20 terms is equal to $\frac{k}{21}$, then k is equal to
A. 120
B. 180
C. 240
D. 60

Watch Video Solution

34. In a geometric progression, if the ratio of the sum of first 5 terms to the sum of their reciprocals is 49 , and the sum of the first and the third term is 35 . Then the first term of this geometric progression is
A. 7
B. 21
C. 28
D. 42

Answer: C

- Watch Video Solution

35. The sum of the first 20 terms common between the series 3 $+7+11+15+\ldots$ and $1+6+11+16+\ldots$ is A) 4020 B) 4220 C) 4200 D) 4000
A. 4000
B. 4020
C. 4200
D. 4220

Answer: B

- Watch Video Solution

36. Let G be the geometric mean of two positive numbers a and b, and M be the arithmetic mean of $\frac{1}{a}$ and $\frac{1}{b}$ if $\left(\frac{1}{M}\right): G$ is $4: 5$, then $a: b$ can be
A. 1:4
B. 1:2
C. 2:3
D. 3:4

(D) Watch Video Solution

37. The least positive integer n such that
$1-\frac{2}{3}-\frac{2}{3^{2}}-\ldots \ldots \ldots . .-\frac{2}{3^{n-1}}<\frac{1}{100}$ is
A. 4
B. 5
C. 6
D. 7

Answer: D

- Watch Video Solution

38. Number of terms of an AP is even. The sum of odd terms is 24 an that of even terms is 30 . The last term exceeds the first term by $10 \frac{1}{2}$. Find the number of terms.
A. 4
B. 8
C. 12
D. 16

Answer: B

- Watch Video Solution

39. where $\mathrm{f}(\mathrm{n})=\left[\frac{1}{3}+\frac{3 n}{100}\right] \mathrm{n}$, where $[\mathrm{n}$] denotes the greatest integer less than or equal to n . Then $\sum_{n=1}^{56} \int(n)$ is equal to :
A. 56
B. 689
C. 1287
D. 1399

Answer: D

Watch Video Solution

40. If m is the A.M. of two distinct real numbers l and $n(l, n>1)$ and G1, G2 and G3 are three geometric means between l and n, then $G 14+2 G 24+G 34$ equals, (1) $4 l^{2} \mathrm{mn}$ (2) $4 l^{m} \wedge 2 \mathrm{mn}$ (3) $4 l m n^{2}$ $4 l^{2} m^{2} n^{2}$
A. $4 l^{2} m n$
B. $4 l m^{2} n$
C. $4 l m n^{2}$
D. $4 l^{2} m^{2} n^{2}$

Answer: B

- Watch Video Solution

41. The sum of first 9 terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots \ldots$. is
A. 71
B. 96
C. 142
D. 192

Answer: B

- Watch Video Solution

42. The value of $\sum_{r=16}^{30}(r+2)(r-3)$ is equal to :
A. 7785
B. 7780
C. 7775
D. 7770

Answer: B

43. The sum of the 3 rd and the 4 th terms of a G.P. is 60 and the product of its first three terms is 1000 . If the first term of this G.P. is positive, then its 7th term is
A. 7290
B. 320
C. 640
D. 2430

Answer: B

- Watch Video Solution

44. If $\sum_{n=1}^{5} \frac{1}{n(n+1)(n+2)(n+3)}=\frac{k}{3}$, then k is equal to :-
A. $\frac{55}{336}$
B. $\frac{17}{105}$
C. $\frac{1}{6}$
D. $\frac{19}{112}$

Answer: A

- Watch Video Solution

45. If the $2^{\text {nd }}, 56^{\text {th }}$ and $9^{\text {th }}$ terms of a non-constant A. P. are in G.P, then the common ratio of this G. P. is
A. $\frac{8}{5}$
B. $\frac{4}{3}$
C. 1
D. $\frac{7}{4}$

Answer: B

46. If the sum of the first ten terms of the series $\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots \ldots$, is $\frac{16}{5} \mathrm{~m}$, then m is equal to: (1) 102 (2) 101 (3) 100 (4) 99
A. 102
B. 101
C. 100
D. 99

Answer: B

- Watch Video Solution

47. Let $a_{1}, a_{2}, a_{3}, \ldots . a_{n}, \ldots \ldots .$. .be in A.P. If $a_{3}+a_{7}+a_{11}+a_{15}=72$, then the sum of itsfirst 17 terms is equal to :
A. 306
B. 204
C. 153
D. 612

Answer: A

- Watch Video Solution

48. For any three positive real numbers a, b and c, $9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$ Then: (1) b, c and a are in G.P. (2) b, c and a are in A.P. (3) a, b and c are in A.P (4) a, b and c are in G.P
A. a,b,c are in G.P.
B. a,b,c are in A.P.
C. b,c,a are in A.P.
D. b,c,a are in G.P.

Answer: C

49. Let $a, b, c \in R$. If $f(x)=a x^{2}+b x+c$ be such that $a+b+c=3$ and $f(x+y)=f(x)+f(y)+x y, \forall x, y \in R$, then $\sum_{n=1}^{10}$ is equal to
A. 255
B. 330
C. 165
D. 190

Answer: B

- Watch Video Solution

50. If the arithmetic mean of two numbers a and $\mathrm{b}, a>b>0$, is five times their geometric mean, then $\frac{a+b}{a-b}$ is equal to:
A. $\frac{1}{2} \sqrt{6}$
B. $\frac{3}{4} \sqrt{2}$
C. $\frac{7}{12} \sqrt{3}$
D. $\frac{5}{12} \sqrt{6}$

Answer: D

- Watch Video Solution

51. If the sum of the first n terms of the series $\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+\ldots$. is $435 \sqrt{3}$, then n equals.
A. 18
B. 15
C. 13
D. 29
52.

$S_{n}=\frac{1}{1^{3}}+\frac{1+2}{1^{3}+2^{3}}+\frac{1+2+3}{1^{3}+2^{3}+3^{3}}+\ldots \ldots \ldots+\frac{1+2+\ldots .+n}{1^{3}+2^{3}+\ldots \ldots+n^{3}} \cdot 100$.
then n is equal to :
A. 199
B. 99
C. 200
D. 19

Answer: A

- Watch Video Solution

53. in three positive numbers a, b and c are in A.P. such that $\mathrm{abc}=8$, then the minimum possible value of b is
A. 2
B. $4^{1 / 3}$
C. $42^{/ 3}$
D. 4

Answer: A

- Watch Video Solution

54. Let $a_{1}, a_{2}, \ldots a_{49}$ be in A.P. Such that $\sum_{k=0}^{12} a_{4 k+1}=416$ and $a_{9}+a_{43}=66 . \quad$ if $a_{1}^{2}+a_{2}^{2}+\ldots+a_{17}^{2}=140 m$, then m is equal to
A. 68
B. 34
C. 66
D. 33

Answer: B

D View Text Solution

55. Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots$ If $B-2 A=100 \lambda$ then λ is equal to (1) 232 (2) 248 (3) 464 (4) 496
A. 248
B. 464
C. 496
D. 232

Answer: A

56. If $x_{1}, x_{2} \ldots \ldots x_{n} \& \frac{1}{h_{1}}, \frac{1}{h_{2}} \ldots . \frac{1}{h_{n}}$ are two such that $x_{3}=h_{2}=8$ \& $x_{8}=h_{7}=20$ then $x_{5} h_{10}$ is
A. 3200
B. 1600
C. 2650
D. 2560

Answer: D

- Watch Video Solution

57. If a, b, c are in A.P.and a^{2}, b^{2}, c^{2} are in G.P.such that $a<b<c$ and $a+b+c=\frac{3}{2}$ then $a=$
A. $\frac{1}{4}-\frac{1}{\sqrt{2}}$
B. $\frac{1}{4}-\frac{1}{3 \sqrt{2}}$
C. $\frac{1}{4}-\frac{1}{4 \sqrt{2}}$
D. $\frac{1}{4}-\frac{1}{2 \sqrt{2}}$

Answer: D

- Watch Video Solution

58. Let Let $\frac{1}{x_{1}}, \frac{1}{x_{2}} \ldots \frac{1}{x_{n}}\left(x_{i} \neq 0\right.$ for $\left.i=1,2, \ldots n\right)$ in A.P. Such that $x_{1}=3$ and $x_{21}=20$. If n is the least positive integer for which $x_{n}>50$ then $\sum_{i=1}^{n}\left(\frac{1}{x_{i}}\right)$ is equal to:
A. $1 / 8$
B. 3
C. $13 / 8$
D. $13 / 4$

Answer: D

59. The sum of the first 20 terms of the series $1+\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+\ldots$ is:
A. $38+\frac{1}{2^{19}}$
B. $38+\frac{1}{20^{20}}$
C. $39+\frac{1}{2^{20}}$
D. $39+\frac{1}{2^{19}}$

Answer: A

- Watch Video Solution

60. If b is the first term of an infinite G.P. Whose sum is five, then b lies in the interval:
A. $[10, \infty)$
B. $(-\infty,-10]$
C. $(-10,0)$
D. $(0,10)$

Answer: D

- Watch Video Solution

61.

Let
$A_{n}=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots .+(-1)^{n-1}\left(\frac{3}{4}\right)^{n}$ and $B_{n}=1-$
n_ 0 , so that B_ngtA_n Aangen_0 ${ }^{\circ}$
A. 11
B. 9
C. 7
D. 5

Answer: C

62. If the sum of the first 15 terms of the series $\left(\frac{3}{4}\right)^{3}+\left(1 \frac{1}{2}\right)^{3}+\left(2 \frac{1}{4}\right)^{3}+3^{3}+\left(3 \frac{3}{4}\right)^{3}+\ldots$ is equal to $225 k$, then k is equal to
A. 9
B. 27
C. 108
D. 54

Answer: B

- Watch Video Solution

63. If a, b and c be three distinct real number in G.P. and $a+b+c=x b$, then x cannot be
A. -2
B. -3
C. 4
D. 2

Answer: D

- Watch Video Solution

64. Let $a_{1}, a_{2}, \ldots, a_{30}$ be an AP, $S=\sum_{i=1}^{30} a_{i}$ and $T=\sum_{i=1}^{15} a_{2 i-1}$ If $a_{5}=27$ and $S-2 T=75$ then a_{10} is equal to (a) 57 (b) 42 (c) 52 (4) 47
A. 52
B. 57
C. 47
D. 42

Answer: A

65. The sum of series
$1+6+\frac{9\left(1^{2}+2^{2}+3^{2}\right)}{7}+\frac{12\left(1^{2}+2^{2}+3^{2}+4^{2}\right)}{9}+\frac{15\left(1^{2}+2^{2}+\ldots+5\right.}{11}$
up to 15 terms is
A. 7520
B. 7510
C. 7830
D. 7820

Answer: D

- Watch Video Solution

66. Let a, b and c be the 7th, 11th and 13th terms respectively of a nonconstant AP. If these are also the three consecutive terms of a GP, then $\frac{a}{c}$ is equal to
A. 2
B. $1 / 2$
C. $7 / 13$
D. 4

Answer: D

- Watch Video Solution

67. If $5,5 r$ and $5 r^{2}$ are the lengths of the sides of a triangle, then r cannot be equal to
A. $3 / 4$
B. $5 / 4$
C. $7 / 4$
D. $3 / 2$

Answer: C

68. The sum of all two digit positive numbers which when divided by 7 yield 2 or 5 as remainder is
A. 1256
B. 1465
C. 1365
D. 1356

Answer: D

- Watch Video Solution

69. The sum of an infinite geometric series with positive terms is 3 and the sums of the cubes of its terms is $\frac{27}{19}$. Then the common ratio of this series is
A. $4 / 9$
B. $2 / 9$
C. $2 / 3$
D. $1 / 3$

Answer: C

- Watch Video Solution

70. Let $a_{1}, a_{2}, \quad \ldots a_{10}$ be a G.P. If $\frac{a_{3}}{a_{1}}=25$, then $\frac{a_{9}}{a_{5}}$ equals
A. $2\left(5^{2}\right)$
B. $4\left(5^{2}\right)$
C. 5^{4}
D. 5^{3}

Answer: C

71. Let $S_{k}=\frac{1+2+3+\ldots+k}{k}$. If $S_{1}^{2}+s_{2}^{2}+\ldots+S_{10}^{2}=\frac{5}{12} A$, then A is equal to
A. 303
B. 156
C. 283
D. 301

Answer: A

- Watch Video Solution

72. The product of three consecutive terms of a G.P. is 512 . If 4 is added to each of the first and the second of these terms, the three terms now form an A.P. Then the sum of the original three terms of the given G.P. is
A. 36
B. 32
C. 28
D. 24

Answer: C

- Watch Video Solution

73. Let

$$
\begin{aligned}
& S_{n}=1+q+q^{2}+?+ \\
& \left.-\frac{1}{2}\right)^{2}+?+\left(\frac{q+1}{2}\right)^{n}
\end{aligned}
$$

and
$T_{n}=1+\left(\frac{q+1}{2}\right)+\left(\frac{q+1}{2}\right)^{2}+?+\left(\frac{q+1}{2}\right)^{n}$
$\alpha T_{100}={ }^{101} C_{1}+{ }^{101} C_{2} x S_{1}+{ }^{101} C_{101} x S_{100}$, then the value of α is equal
to (A) 2^{99}
(B) 2^{101}
(C) 2^{100}
(D) -2^{100}
A. 2^{99}
B. 2^{101}
C. 2^{100}
D. -2^{100}

Answer: C

74. If $19^{\text {th }}$ term of a non-zero A.P. is zero, then ($49^{\text {th }}$ term) : $\left(29^{t h}\right.$ term $)$ is
A. $4: 1$
B. 1:3
C. 3: 1
D. 2:1

Answer: C

Watch Video Solution
75. The sum of all natural numbers ' n ' such that $100<n<200$ and $\operatorname{HCF}(91, n)>1$ is
A. 3303
B. 3121
C. 3203
D. 3221

Answer: B

- Watch Video Solution

76. The sum $\sum_{k=1}^{20} k \frac{1}{2^{k}}$ is equal to
A. $2-\frac{11}{2^{19}}$
B. $1-\frac{11}{2^{20}}$
C. $2-\frac{3}{2^{17}}$
D. $2-\frac{21}{2^{20}}$

Answer: A
77. Let $\sum_{k=1}^{10} f(a+k)=16\left(2^{10}-1\right)$, where the function f satisfies $f(x+y)=f(x) f(y)$ for all natural numbers x, y and $\mathrm{f}(1)=2$. Then, the natural number 'a' is
A. 2
B. 3
C. 16
D. 4

Answer: B

- Watch Video Solution

78. Let the sum of the first n terms of a non-constant A.P., $a_{1}, a_{2}, a_{3}, \ldots$ be $50 n+\frac{n(n-7)}{2} A$, where A is a constant. If d is the common difference of this A.P., then the ordered pair $\left(d, a_{50}\right)$ is equal to
A. $(A, 50+46 A)$
B. $(A, 50+45 A)$
C. $(50,50+46 A)$
D. $(50,50+45 \mathrm{~A})$

Answer: A

D Watch Video Solution

79. Some identical balls are arranged in rows to form an equilateral triangle. The first row consists of one ball, the second row consists of row balls and so on. If 99 more identical balls are added to the total number of balls used in forming the equilateral triangle, then all these balls can be arranged in a square whose each side contains exactly 2 balls less than the number of balls each side of the triangle contains. Then, the number of balls used to form the equilateral triangle is
A. 157
B. 262
C. 225
D. 190

Answer: D

- Watch Video Solution

80. The sum of the the series $1+2 \times 3+3 \times 5+4 \times 7+\ldots$. Upto $11^{\text {th }}$ term is
A. 942
B. 892
C. 946
D. 960

Answer: C

81. If the sum and product of the first three terms in an AP are 33 and 1155, respectively, then a value of its 11th term is
A. -25
B. -35
C. -36
D. 25

Answer: A

- Watch Video Solution

82. Let $S=3+\frac{5\left(a^{3}+2^{3}\right)}{1^{2}+2^{2}}+\frac{7\left(1^{3}+2^{3}+3^{3}\right)}{1^{2}+2^{2}+3^{2}}+\ldots$ then the sum up to 10 terms is
A. 660
B. 680
C. 600
D. 620

Answer: A

- Watch Video Solution

83. Let $a_{1}, a_{2}, a_{3}, \ldots$ be in A.P. With $a_{6}=2$. Then the common difference of the A.P. Which maximises the product $a_{1} a_{4} a_{5}$ is:
A. $3 / 2$
B. $6 / 5$
C. $8 / 5$
D. $2 / 3$

Answer: C

84. Let a, b and c be in GP with common ratio, r where $a \neq 0$ and $0<r \leq \frac{1}{2}$. If 3a, 7b and 15 c are the first three terms of an AP, then the 4th term of this AP is
A. a
B. $\frac{7}{3} a$
C. $\frac{2}{3} a$
D. $5 a$

Answer: A

- Watch Video Solution

85.

value
of
$1+\frac{1^{3}+2^{3}}{1+2}+\frac{1^{3}+2^{3}+3^{3}}{1+2+3}+\ldots \ldots+\frac{1^{3}+2^{3}+\ldots .5^{3}}{1+2+\ldots+15}-\frac{1}{2}(1+2+$. is
B. 1240
C. 1880
D. 660

Answer: A

- Watch Video Solution

86. Let S_{n} denote the sum of the first n terms of an AP. If $S_{4}=16$ and $S_{6}=-48$, then S_{10} is equal to
A. -320
B. -380
C. -410
D. -260

Answer: A

87. If a_{1}, a_{2}, a_{3},... are in AP such that $a_{1}+a_{7}+a_{16}=40$, then the sum of the first 15 terms of this AP is
A. 120
B. 150
C. 280
D. 200

Answer: D

- Watch Video Solution

Questions from Previous Years. B-Architecture Entrance Examination Papers

1. If first three terms of the sequence $1 / 16, a, b, c 1 / 16$ are in geometric series and last three terms are in harmonic series, then find the values of $a a n d b$.
A. $\frac{1}{12}, \frac{4}{9}$
B. $\frac{4}{7}, \frac{3}{4}$
C. $\frac{1}{9}, \frac{1}{12}$
D. $-\frac{1}{4}, 1$

Answer: D

- Watch Video Solution

2. If $\mathrm{a}, \mathrm{x}, \mathrm{b}$ are in H.P. And $\mathrm{a}, \mathrm{y}, \mathrm{z}, \mathrm{b}$ are in G.P.,then the value of $\frac{y z}{x\left(y^{3}+z^{3}\right)}$ is
A. $a b$
B. $\frac{1}{2 a b}$
C. $\frac{1}{2} a b$
D. $2 a b$

Answer: B

3. Let $x=1+a+a^{2}+\ldots$ and $y=1+b+b^{2}+\ldots$, where $|a|<1$ and $|b|<1$. Prove that $1+a b+a^{2} b^{2}+\ldots=\frac{x y}{x+y-1}$
A. $\frac{x y}{x-y-1}$
B. $\frac{x y}{x-y+1}$
C. $\frac{x y}{x+y+1}$
D. $\frac{x y}{x+y-1}$

Answer: D

- Watch Video Solution

4. If three distinct positive numbers a, b, c are in A.P. Such that $a b c=4$,then value of b is always
A. greater than $(2)^{2 / 3}$
B. less than $(2)^{2 / 3}$
C. equal to $(2)^{2 / 3}$
D. equal to $(2)^{3 / 2}$

Answer: A

- View Text Solution

5. The value of the sum $\sum_{i=1}^{20} i\left(\frac{1}{i}+\frac{1}{i+1}+\frac{1}{i+2}+\ldots .+\frac{1}{2}\right)$ is
A. 100
B. 105
C. 110
D. 115

Answer: D

6. Find the sum of all numbers between 200 and 400 which are divisible by 7.
A. 8729
B. 7511
C. 6328
D. 5712

Answer: A

Watch Video Solution

7. Let a, b and c be distinct real numbers. If a, b, c are in geometric progression and $a+b+c=x b$, then x lies in the set
A. $(1,3)$
B. $(-1,0) \cup(1,2)$
C. $(-\infty,-1) \cup(3, \infty)$
D. $(0,1)$

Answer: C

- View Text Solution

8. If the sum of first n terms of two A.P.'s are in the ratio $3 n+8: 7 n+15$, then the ratio of 12th term is
A. 8:7
B. $7: 16$
C. 74: 169
D. 13: 47

Answer: B

9. A tree, in each year grows 5 cm less than it grew in the previous year. If it grew half a metre in the first year,then the height of the tree (in metres) when it ceases to grow,is
A. 3.00
B. 2.75
C. 2.50
D. 2.00

Answer: B

D View Text Solution

10. If $\frac{48}{2.3}+\frac{47}{3.4}+\frac{46}{4.5}+\ldots+\frac{2}{48.29}+\frac{1}{49.50}$
$=\frac{51}{2}+k\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{50}\right)$, then k equals
A. -1
B. $-\frac{1}{2}$
C. 1
D. 2

Answer: A

- Watch Video Solution

11. If $\log _{10} 2, \log _{10}\left(2^{x}-1\right)$ and $\log _{10}\left(2^{x}+3\right)$ are three consecutive terms of an A.P, then the value of x is
A. no real x
B. exactly one real x
C. exactly two real x
D. more than two real x

Answer: B

12. If a, b, c are in $H . P, b, c, d$ are in $G . P$, and c, d, e are in $A . P$, then $\frac{a b^{2}}{(2 a-b)^{2}}$ is equal to
A. C
B. $\sqrt{d} e$
C.e
D. d

Answer: C

- Watch Video Solution

13. If $\sum_{k=1}^{n} \phi(k)=\frac{2_{n}}{n+1}$, then $\sum_{k=1}^{10} \frac{1}{\phi(k)}$ is equal to
A. $\frac{11}{20}$
B. 220
C. $\frac{55}{18}$
D. 110

Answer: B

- View Text Solution

14. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and e be distinct positive numbers. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ both are in A.P. And b,c,d are in G.P.then
A. a,b,c are in G.P.
B. a,b,c are in A.P.
C. a,c,e are in A.P
D. a,c,e are in G.P.

Answer: D

- Watch Video Solution

15. If the sum of first 15 terms of the series $3+7+14+24+37+\ldots$.. Is $15 k$, then k is equle to
A. 126
B. 122
C. 81
D. 119

Answer: B

- Watch Video Solution

16. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ be a G.P. Of positive real numbers such that A.M. Of a_{2} and a_{4} is 117 and G.M. Of a_{2} and a_{4} is 108. Then A.M. Of a_{1} and a_{5} is
A. 145.5
B. 108
C. 117
D. 144.5

Answer: A

- View Text Solution

17. In an ordered set of four numbers, the first 3 are A.P. And the last three are in G.P. Whose common ratio is $7 / 4$. If the product of the first and fourth of these numbers is 49 , then the product of the second and third of these is:
A. 60
B. 112
C. 128
D. 144

Answer: B

18. If $e^{\left(\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots \text { upto } \infty\right) \operatorname{In} 2}$ satisfies the equation $y^{2}-5 y+4=0$, then $\frac{\sin x}{\cos x-\sin x}$ is equal to
A. $-(2+\sqrt{2})$
B. $-(\sqrt{2}+1)$
C. $\sqrt{2}-1$
D. $2+\sqrt{2}$

Answer: A

- View Text Solution

19. For distinct positive numbers a, b and c , if a^{2}, b^{2}, c^{2} are in A.P. Then which of the following triplets is also in A.P.

$$
\text { A. } \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}
$$

B. $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$
C. $\frac{1}{b-c}, \frac{1}{a-b}, \frac{1}{c-a}$
D. $\frac{1}{b-2 c}, \frac{1}{c-2 a}, \frac{1}{a+2 b}$

Answer: A

D Watch Video Solution

20. If three real numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ all greater than one, are in a geometrical progression such that $\frac{\log _{e} a}{x}=\frac{\log _{e} b}{2 y}=\frac{\log _{e} c}{3 z}$, where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are nonzero real number,then
A. $2 y=x+3 z$
B. $4 y=x+3 z$
C. $2 y=x+z$
D. $y=x+z$
21. The sum first 19 terms of the series
$1^{2}+2\left(2^{2}\right)+3^{2}+2\left(4^{2}\right)+5^{2}+\ldots$ is :
A. 4200
B. 4410
C. 3800
D. 3610

Answer: D

- Watch Video Solution

22. In an increasing geometric series, the sum of the first and the sixth term is 66 and the product of the second and fifth term is 128 . Then the sum of the first 6 terms of the series is:
A. 127
B. 129
C. 126
D. 128

Answer: C

- Watch Video Solution

$23.1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{14}{3^{4}}+$
A. 4
B. 5
C. 6
D. $9 / 2$

Answer: B

24. An A.P. Having odd number of terms has its first, second and middle terms as $-12,7$ and 38 respectively, then the sum of this A.P is
A. 896
B. 798
C. 756
D. 710

Answer: B

- Watch Video Solution

25. If $S_{n}=\sum_{r=1}^{n} T_{r}=n(n+1)(n+2)(n+3)$ then $\sum_{r=1}^{10} \frac{1}{T_{r}}$ is equal to
A. $\frac{75}{1056}$
B. $\frac{58}{528}$
C. $\frac{65}{528}$
D. $\frac{65}{1056}$

Answer: D

View Text Solution

