©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

VECTOR ALGEBRA

Illustration

1. Find angle between the vectors $2 i+j+k$ and $i-j+k$.

- Watch Video Solution

2. Find $a \times b$ if $a=i-j+k$ and $b=i+j-3 k$.
3. Find the sine of the angle between the vectors a and b, if $a=i-j+k$ and $b=-i+j+2 k$.

- Watch Video Solution

4. Find vectors perpendicular to the plane of vectors $a=2 i-6 j+3 k$ and $b=4 i+3 j+k$.

- Watch Video Solution

5. Find the area of a parallelogram whose adjacent sides are the vectors $a=2 i-2 j+k$ and $b=i-3 j+3 k$.

- Watch Video Solution

6. Find the area of the triangle, the position vectors of whose vertices are $a=i-2 j+3 k, b=j-k$ and $c=2 i+j$
7. If $a=3 i+2 j+k, b=5 i-j+2 k$ and $c=i+j+k$, find [abc]

- Watch Video Solution

8. Find the volume of the tetrahedron having coterminus edges represented by vectors $a=j+k, b=i+k$ and $c=i+j$.

- Watch Video Solution

Solved Examples Concept Based Single Correct Answer Type Questions

1. In a triangle $O A C$, if B is the mid point of side $A C$ and $\overrightarrow{O A}=\vec{a}, \vec{O} B=\vec{b}$, then what is $\overrightarrow{O C}$?
A. $O C=\frac{1}{2}(a+b)$
B. $O C=2 b-2 a$
C. $O C=2 b-a$
D. $O C=3 b-2 a$

Answer: C

- Watch Video Solution

2. The angle between the vectors $i-j+k$ and $-i+j+2 k$ is
A. 45°
B. 60°
C. 90°
D. 135°

Answer: C

3. A unit vector c perpendicular to $a=i-j$ and coplanar with a and $b=i+k$ is
A. $\frac{1}{\sqrt{16}}(i+j+2 k)$
B. $\frac{1}{\sqrt{3}}(i-j+k)$
C. $\frac{1}{\sqrt{3}}(i+j-k)$
D. $\frac{1}{\sqrt{6}}(i-j+2 k)$

Answer: A

- Watch Video Solution

4. If \widehat{a} and \hat{b} are two unit vectors, then vector $(\widehat{a}+\hat{b}) \times(\widehat{a} \times \hat{b})$ is parallel to
A. a
B. $a-b$
C. $a+b$
D. b

Answer: B

- Watch Video Solution

5. If $a=i+j+k$ and $b=i-j+2 k$ then the projection of a on b is given by
A. $\frac{1}{2}(i-j+2 k)$
B. $\frac{1}{3}(i+j+k)$
C. $\frac{1}{3}(i-j-k)$
D. $\frac{1}{3}(i-j+2 k)$

Answer: D

- Watch Video Solution

6. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are unit vectors such that $a-b+c=0$ then $c \cdot a$ is equal to
A. $\frac{3}{2}$
B. $-\frac{1}{2}$
C. $\frac{1}{3}$
D. $-\frac{1}{3}$

Answer: B

- Watch Video Solution

7. The non-zero vectors a, b and c are related $a s b=5 a$ and $c=-2 b$. The angle between a and c is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. π
D. $\frac{\pi}{3}$

- Watch Video Solution

8. A vector b collinear with $a=2 \sqrt{2} i-j+4 k$ of length 10 is given by
A. $3(2 \sqrt{2} i-j+4 k)$
B. $2(2 \sqrt{2} i+j-4 k)$
C. $2(2 \sqrt{2} i+j+4 k)$
D. $2(2 \sqrt{2} i-j+4 k)$

Answer: D

- Watch Video Solution

9. The vector $p=(a \cdot c) b-(a \cdot b) c$ is be perpendicular to
A. c
B. b
C. a
D. $c+b$

Answer: A

- Watch Video Solution

10. The angle between $a+2 b$ and $a-3 b$ if $|a|=1,|b|=2$ and angle between a and b is 60° is
A. an acute angle
B. $\cos ^{-1} \frac{-24}{\sqrt{21} \sqrt{31}}$
C. $\cos ^{-1} \frac{24}{\sqrt{21} \sqrt{31}}$
D. $\cos ^{-1}-\frac{1}{3}$

Answer: B

Solved Examples Level 1 Single Correct Answer Type Questions

1.

$L_{1}: r=(i+5 j+5 k)+t(4 i-4 j+5 k)$ and $L_{2}: r=(2 i+4 j+5 k)+t($ be two lines then
A. L_{1} is parallel to L_{2}
B. L_{1} is parallel to L_{2}
C. L_{1} is not parallel to L_{2}
D. none of these

Answer: C

Watch Video Solution
2. The angle between a diagonal of a cube and one of its edges is
A. $\cos ^{-1}(1 / \sqrt{3})$
B. $\pi / 4$
C. $\pi / 6$
D. $\pi / 3$

Answer: A

- Watch Video Solution

3. Let $u=2 i-j+3 k$ and $a=4 i-j+2 k$. The vector component of u orthogonal to a is
A. $-\frac{1}{7}(6 i+2 j-11 k)$
B. $\frac{1}{7}(-6 i+2 j-11 k)$
C. $-\frac{1}{7}(6 i-2 j+11 k)$
D. $-\frac{1}{7}(-6 i+2 j+11 k)$
4. Volume of the tetrahedron with vertices $P(-1,2,0), Q(2,1,-3), R(1,0,1)$ and $S(3,-2,3)$ is
A. $1 / 3$
B. $2 / 3$
C. $1 / 4$
D. $3 / 4$

Answer: B

- View Text Solution

5. The distance between a point P whose position vector is $5 i+j+3 k$ and the line $r=(3 i+7 j+k)+t(j+k)$ is
B. 4
C. 5
D. 6

Answer: D

- Watch Video Solution

6. Let a, b, c be the three vectors such that $a .(b+c)=b .(c+a)=c .(a+b)=0 \quad$ and $|a|=1,|b|=4,|c|=8$, then $|a+b+c|=$
A. 13
B. 81
C. 9
D. 5
7. if $\vec{a}=2 i+2 j+3 k, \vec{b}=-i+2 j+k$ and $v c e c=3 i+j$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular \vec{c} then find the value of λ
A. 5
B. 4
C. 6
D. 2

Answer: A

Watch Video Solution
8. If $|a|=2,|b|=5$ and $|a \times b|=8$ then $|a \cdot b|$ is equal to
A. 4
B. 6
C. 5
D. none of these

Answer: B

- Watch Video Solution

9. If $a \cdot b=b \cdot c=c \cdot a=0$, then $[a b c]$ is equal to
A. 0
B. 1
C. -1
D. $|a||b||c|$

Answer: D

10. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p}, \vec{q} and \vec{r} the vectors defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. Then the value
of the expression $(\vec{a}+\vec{b}) \vec{p}+(\vec{b}+\vec{c}) \dot{q}+(\vec{c}+\vec{a}) \vec{r}$ is 0 b . 1 c. 2 d. 3
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

11. The volume of the parallelopiped whose sides are given by $\overrightarrow{O A}=2 \hat{i}-3 \hat{j}, \overrightarrow{O B}+\hat{i}+\hat{j}-\hat{k}$
$\overrightarrow{O C}=3 \hat{i}-\hat{k}$, is
A. $4 / 13$
B. 4
C. $2 / 7$
D. none of these

Answer: B

- Watch Video Solution

12. The points with position vectors $60 i+3 j, 40 i-8 j, a i-52 j$ are collinear if a. $a=-40$ b. $a=40$ c. $a=20 \mathrm{~d}$. none of these

$$
\text { A. } a=-40
$$

B. $\mathrm{a}=40$
C. $a=20$
D. none of these

- Watch Video Solution

13. If $|a|=2,|b|=3,|c|=4$ and $a+b+c=0$ then the value of $b \cdot c+c \cdot a+a \cdot b$ is equal to
A. $19 / 2$
B. $-19 / 2$
C. $29 / 2$
D. $-29 / 2$

Answer: D

- Watch Video Solution

14. A, B, C, D are four points in space and $|\overline{A B} \times \overline{C D}+\overline{B C} \times \overline{A D}+\overline{C A} \times \overline{B D}|=\lambda$ (area $\Delta A B C$) then value of
λ is \qquad
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

15. Given $a=i+j-k, b=-i+2 j+k$ and $c=-i+2 j-k$. A unit vector perpendicular to both $a+b$ and $b+c$ is
A. $\frac{2 i+j+k}{\sqrt{6}}$
B. j
C. k
D. $\frac{i+j+k}{\sqrt{3}}$

Answer: C

- Watch Video Solution

16. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product $[2 \vec{a}-\vec{b} 2 \vec{b}-\vec{c} 2 \vec{c}-\vec{a}]$ is 0 b. 1 c. $-\sqrt{3}$ d. $\sqrt{3}$
A. 0
B. 1
C. $-\sqrt{3}$
D. $\sqrt{3}$

Answer: A

- Watch Video Solution

17. If the vectors \vec{a}, \vec{b}, and \vec{c} form the $\operatorname{sides} B C, C \operatorname{Aand} A B$, respectively, of triangle $A B C$, then $\vec{a} \vec{b}+\vec{b} \vec{c}+\vec{a}=0 \quad$ b.

$$
\begin{align*}
& \vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \tag{d.}\\
& \vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0
\end{align*}
$$

$$
\text { c. } \quad \vec{a} \vec{b}=\vec{b} \vec{c}=\vec{a}
$$

A. $a \cdot b+b \cdot c+c \cdot a=0$
B. $a \times b=b \times c=c \times a$
C. $a \cdot b=b \cdot c=c \cdot a$
D. $a \times b=b \times c=c \times a=0$

Answer: B

- Watch Video Solution

18. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other, then the angle between \vec{a} and \vec{b} is
A. 45°
B. 60°
C. $\cos ^{-1}(1 / \sqrt{3})$
D. $\cos ^{-1}(2 / 7)$

Answer: B

- Watch Video Solution

19. Let $\bar{V}=2 i+j-k$ and $\bar{W}=i+3 k$

If \bar{U} is a unit vector, then the max imum value of the scalar triple product $[\bar{U} \bar{V} \bar{W}]$ is
A. -1
B. $\sqrt{10}+\sqrt{16}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: C

- Watch Video Solution

20. A vector c perpendicular to the vectors $2 i+3 j-k$ and $i-2 j+3 k$ satisfying $c .(2 i-j+k)=-6$ is
A. $-2 i+j-k$
B. $2 i-j-\frac{4}{3} k$
C. $-3 i+3 j+3 k$
D. $3 i-3 j+3 k$

Answer: C

- Watch Video Solution

21. If a, b, c be three units vectors such that $a \times(b \times c)=\left(\frac{1}{2}\right) b ; b$ and c being non-parallel then
A. the angle between a and c is $\pi / 3$
B. the angle between a and cis $\pi / 2$
C. the angle between a and b is $\pi / 3$
D. the angle between a and b is $\pi / 6$

Answer: A

- Watch Video Solution

22. If a vector ofmagnitude 50 is collinear with vector
$\vec{b}=6 \hat{i}-8 \hat{j}-\frac{15}{2} \hat{k}$ and makes an acute anlewih positive z -axis then:
A. $24 i-32 j-30 k$
B. $-24 i+32 j+30 k$
C. $24 i+32 j-30 k$
D. none of these

Answer: A

- Watch Video Solution

23. IfA, B are two points on the curve $y=x^{2}$ in the $x o y$ plane satisfying $\overrightarrow{O A} \cdot \vec{i}=1$ and $\overrightarrow{O B} \cdot \vec{i}=-2$ then the length of the vector $2 \overrightarrow{0} A-3 \vec{O} B$ is
A. $\sqrt{14}$
B. $2 \sqrt{51}$
C. $3 \sqrt{41}$
D. none of these

Answer: D

- Watch Video Solution

24. If A, B, C, D are four points in space satisfying $\overline{A B} \cdot \overline{C D}=K\left[|\overline{A D}|^{2}+|\overline{B C}|^{2}-|A C|^{2}-|B D|^{2}\right]$ then the value of K is
A. 2
B. $1 / 3$
C. $1 / 2$
D. 1

Answer: C

- Watch Video Solution

25. The distance of the point B with position vector $i+2 j+3 k$ from the line passing through the point A with position vector $4 i+2 j+2 k$ and parallel to the vector $2 i+3 j+6 k$ is
A. $\sqrt{10}$
B. $\sqrt{5}$
C. $\sqrt{6}$
D. none of these

Answer: A

26. If a, b and c are unit vectors then $|a-b|^{2}+|b-c|^{2}+|c-a|^{2}$ does not exceed.
A. 4
B. 9
C. 8
D. 6

Answer: B

- View Text Solution

27. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i}+a \hat{j}+k, \hat{j}+a \hat{k} a n d a \hat{i}+\hat{k}$ becomes minimum.
A. -3
B. 3
C. $1 / \sqrt{3}$
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

28. If $a=i-j-k, a \cdot b=1$ and $a \times b=-j+k$, then k is equal to
A. $i+j-k$
B. $-2 j+k$
C. i
D. $2 j+k$

Answer: C

29. The unit vector which is orthogonal to the vector $5 i+2 j+6 k$ and is coplanar with the vectors $2 i+j+k$ and $i-j+k$ is
A. $\frac{1}{\sqrt{41}}(2 i-6 j+k)$
B. $\frac{1}{\sqrt{29}}(2 i-5 j)$
C. $\frac{1}{\sqrt{10}}(3 j-k)$
D. $\frac{1}{\sqrt{69}}(2 i-8 j+k)$

Answer: C

- Watch Video Solution

30. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k} a n d \vec{c}=\hat{i}+\hat{j}-\hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projectionof c is $1 / \sqrt{3}$ is $4 \hat{i}-\hat{j}+4 \hat{k} \mathrm{~b}$.
$3 \hat{i}+\hat{j}+3 \hat{k} \mathrm{c} .2 \hat{i}+\hat{j}-2 \hat{k} \mathrm{~d} .4 \hat{i}+\hat{j}-4 \hat{k}$
A. $4 i-j+4 k$
B. $3 i+j+3 k$
C. $2 i+j+2 k$
D. $4 i+j-4 k$

Answer: C

- Watch Video Solution

31. If $|a|=1,|b|=2$ and $|a-2 b|=4$ then $|a+3 b|$ is equal to
A. 8
B. $\sqrt{\frac{51}{2}}$
C. $\sqrt{\frac{19}{2}}$
D. $\sqrt{\frac{77}{2}}$

Answer: D

- Watch Video Solution

32. If $|a|^{2}=8$ and $a \times(i+j+2 k)=0$ then the value of $a \cdot(-i+j+4 k)$ is
A. $\frac{4}{\sqrt{3}}$
B. $\frac{16}{\sqrt{3}}$
C. $\frac{8}{\sqrt{3}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

33. If a, b, c are unit vectors, then the maximum value of $|a+2 b|^{2}+|b+3 c|^{2}+|c+4 a|^{2}$ is
A. 28
B. 21
C. 48

Answer: B

- View Text Solution

34. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=\hat{i}+\hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|$ and angle between vectors $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. 2
D. $\frac{\sqrt{3}}{2}$

Answer: A

35. The non-zero vectors are \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c} is
A. 0
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: D

- Watch Video Solution

36. If $\vec{u}, \vec{v}, \vec{w}$ are non -coplanar vectors and p, q, are real numbers then the equality

$$
[3 \vec{u} p \vec{v} p \vec{w}]-[p \vec{v} \vec{w} q \vec{u}]-[2 \vec{w}-q \vec{v} q \vec{u}]=0 \text { holds for }
$$

A. more than two but not all values of (p, q)
B. all values of (p, q)
C. exactly one values of (p, q)
D. exactly two values of (p, q)

Answer: C

- Watch Video Solution

37. vectors $\vec{a}=i-j+2 k, \vec{b}=2 i+4 j+k$ and $\vec{c}=\lambda i+j+\mu k$ are mutually orthogonal then (λ, μ) is
A. $(-2,3)$
B. $(3,-2)$
C. $(-3,2)$
D. $(2,-3)$

Answer: C

- Watch Video Solution

38. Let $\vec{a}=\hat{j}-\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$. Then the vector b satisfying $\vec{a} x \vec{b}+\vec{c}=0$ and $\vec{a} \cdot \vec{b}=3$, is
A. $i-j-2 k$
B. $i+j-2 k$
C. $-i+j-2 k$
D. $2 i-j+2 k$

Answer: C

- Watch Video Solution

39. If $a=\frac{1}{\sqrt{10}}(3 i+k)$ and $b=\frac{1}{7}(2 i+3 j-6 k)$, then the value of $(2 a-b) \cdot[(a \times b) \times(a+2 b)]$ is
A. 3
B. -5
C. -3
D. 5

Answer: B

- Watch Video Solution

40. The vectors a and b are not perpendicular and c and d are two vectors
satisfying $b \times c=b \times d$ and $a . d=0$. The vectors d is equal to
A. $c-\left(\frac{a . c}{a . b}\right) b$
B. $b-\left(\frac{b . c}{a . b}\right) c$
C. $c+\left(\frac{a . c}{a . b}\right) b$
D. $b+\left(\frac{b . c}{a . b}\right) c$

Answer: A

- Watch Video Solution

41. If the vectors $\mathrm{pi}+\mathrm{j}+\mathrm{k}, \mathrm{i}+\mathrm{qj}+\mathrm{k}$ and $\mathrm{i}+\mathrm{j}+\mathrm{rk}$, where $p \neq q \neq r \neq 1$ are coplanar, then : pqr- $(\mathrm{p}+\mathrm{q}+\mathrm{r})=\ldots . .$.
A. 2
B. 0
C. -1
D. -2

Answer: D

- Watch Video Solution

42. Let a, b and c be three non-zero vectors which are pairwise noncollinear. If $a+3 b$ is collinear with c and $b+2 c$ is collinear with a, then $a+3 b+6 c$ is
A. a
B. b
C. 0
D. $a+c$

Answer: C

- Watch Video Solution

43. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on \vec{c} is

$$
\begin{aligned}
& \frac{1}{\sqrt{3}} \text { is given by } \hat{i}-3 \hat{j}+3 \hat{k} \text { b. }-3 \hat{i}-3 \hat{j}+3 \hat{k} \text { c. } 3 \hat{i}-\hat{j}+3 \hat{k} \text { d. } \\
& \hat{i}+3 \hat{j}-3 \hat{k}
\end{aligned}
$$

A. $i-3 k+3 k$
B. $-3 i-3 j-k$
C. $3 i-j+k$
D. $i+3 j-3 k$

Answer: C

44. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other, then the angle between \vec{a} and \vec{b} is
A. $\pi / 2$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 6$

Answer: B

Watch Video Solution

45. Let $A B C D$ be a parallelogram such that $\vec{A} B=\vec{q}, \vec{A} D=\vec{p}$ and $\angle B A D$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD , then \vec{r} is
A. $r=-q+\frac{(p \cdot q)}{p \cdot p} p$
B. $r=q-\frac{(p \cdot q)}{p \cdot p} p$
C. $r=-3 q+\frac{3(p \cdot q)}{p \cdot p} p$
D. $r=3 q-\frac{3(p \cdot q)}{p \cdot p} p$

Answer: A

- Watch Video Solution

Solved Examples Level 2 Single Correct Answer Type Questions

1. The vector \vec{c}, directed along the internal bisector of the angle between the
vectors
$\vec{c}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|\vec{c}|=5 \sqrt{6}$, is
A. $\pm(5 / 3)(i-7 j+2 k)$
B. $(5 / 3)(5 i+5 j+2 k)$
C. $\pm(5 / 3)(i+7 j+2 k)$
D. $(5 / 3)(-5 i+5 j+2 k)$

- Watch Video Solution

2. If \bar{a}, \bar{b} and \bar{c} be there non-zero vectors, no two of which are collinear. If the vectors $\bar{a}+2 \bar{b}$ is collinear with \bar{c} and $\bar{b}+3 \bar{c}$ is collinear with a, then (λ being some non-zero scalar) $\bar{a}+2 \bar{b}+6 \bar{c}$ is equal to
A. λa
B. λb
C. λc
D. 0

Answer: D

3. The value of k for which the points $A(1,0,3), B(-1,3,4), C(1,2,1)$ and $D(k$, $2,5)$ are coplanar, are
A. 1
B. 2
C. 0
D. -1

Answer: D

- Watch Video Solution

4. Let a, b, c be distinct non-negative numbers. If the vectors $a i+a j+c k, i+k$ and $c i+c j+b k$ lie in a plane, then c is the
A. the arithmetic mean of a and b
B. the geometric mean of a and b
C. the harmonic mean of a and b
D. equal to zero

Answer: B

(Watch Video Solution

5. Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector R satisfies th equation $p \times((X-q) \times p) q \times((x-r) x q)+r x$ $((x-p) x r)$ Then x is given by :
A. $(1 / 2)(p+q-2 r)$
B. $(1 / 2)(p+q+r)$
C. $(1 / 3)(p+q+r)$
D. $(1 / 3)(2 p+q-r)$

Answer: B

- Watch Video Solution

6. If a, b, c and d are unit vectors, then $|a-b|^{2}+|b-c|^{2}+|c-d|^{2}+|d-a|^{2}+|c-a|^{2}+|b-d|^{2}$ does not exceed
A. 4
B. 12
C. 8
D. 16

Answer: B

- View Text Solution

7. Let $\vec{a}=\vec{i}-\vec{k}, \vec{b}=x \vec{i}+\vec{j}+(1-x) \vec{k} \quad$ and $\vec{c}=y \vec{i}+x \vec{j}+(1+x-y) \vec{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on only x
(b) only y Neither $x n$ or $y(\mathrm{~d})$ both $x a n d y$
A. only x
B. only y
C. neither x nor y
D. both x and y

Answer: C

- Watch Video Solution

8. The vectors $a=2 \hat{i}+\hat{j}-2 \hat{k}, b=\hat{i}+\hat{j}$. If c is a vector such that $a . c=|c|$ and $|c-a|=2 \sqrt{2}$, angle between $a \times b$ and c is 45°, then $|(a \times b) \times c|$ is
A. $2 / 3$
B. $3 / 2$
C. 2
D. 3

Answer: B

9. A tangent is drawn to the curve $y=\frac{8}{x^{2}}$ in $X Y$-plane at the point $A\left(x_{0}, y_{0}\right)$, where $x_{0}=2$ and the tangent cuts the X -axis at a point B . Then $\overline{A B} \cdot \overline{O B}=$
A. 2
B. 1
C. 0
D. 3

Answer: D

- Watch Video Solution

10. The vectors $3 i-2 j+k, i-3 j+5 k$ and $2 i+j-4 k$ form the sides of a triangle. This triangle is
A. 2
B. 3
C. 1
D. $11 / \sqrt{3}$

Answer: B

- Watch Video Solution

11. For unit vectors b and c and any non zero vector a, the value of $\{\{(a+b) \times(a+c)\} \times(b \times c)\} \cdot(b+c)$ is
A. $|a|^{2}$
B. $2|a|^{2}$
C. $3|a|^{2}$
D. none of these

Answer: D

12. Three non-coplanar vector a, b and c are drawn from a common initial point. The angle between the plane passing through the terminal points of these vectors and the vector $a \times b+b \times c+c \times a$ is
A. $\pi / 4$
B. $\pi / 2$
C. $\pi / 3$
D. none of these

Answer: B

- View Text Solution

13. A unit tengent vector at $t=2$ on the curve $x=t^{2}+2, y=4 t^{3}-5, z=2 t^{2}-6 t$ is
A. $\frac{1}{\sqrt{3}}(i+j+k)$
B. $\frac{1}{3}(2 i+2 j+k)$
C. $\frac{1}{\sqrt{6}}(2 i+j+k)$
D. none of these

Answer: D

- Watch Video Solution

14. A particle moves along a curve so that its coordinates at time t are $x=$ $\mathrm{t}, y=\frac{1}{2} t^{2}, z=\frac{1}{3} t^{3}$. The acceleration at $\mathrm{t}=1$ is
A. $j+2 k$
B. $\mathrm{j}+\mathrm{k}$
C. $2 \mathrm{j}+\mathrm{k}$
D. none of these

Answer: A

15. Consider the parallelopiped wide sides $a=3 i+2 j+k, b=1+j+2 k$ and c $=I+3 j+3 k$ then the angle between a and the plane containing the face determined by b and c is
A. $\sin ^{-1}(1 / 3)$
B. $\cos ^{-1}(9 / 14)$
C. $\sin ^{-1}(9 / 14)$
D. $\sin ^{-1}(2 / 3)$

Answer: C

- Watch Video Solution

16. A unit vector n perpendicular to the plane determined by the points A $(0,-2,1), B(1,-2,-2)$ and $C(-1,1,0)$
A. $\frac{1}{3}(2 i+j+2 k)$
B. $1 / 4 \sqrt{6}(8 i+4 j+4 k)$
C. $\frac{1}{\sqrt{3}}(i-j+k)$
D. $\frac{1}{\sqrt{14}}(3 i+j+2 k)$

Answer: B

- Watch Video Solution

17. The vector $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$. The length of the median through A is
A. $\sqrt{14}$
B. $\sqrt{18}$
C. $\sqrt{29}$
D. none of these

Answer: B

18. If $a+b+c=0$ and $|a|=3,|b|=5$ and $|c|=7$ then the angle between a and b is
A. $\pi / 6$
B. $2 \pi / 3$
C. $\pi / 3$
D. $5 \pi / 3$

Answer: C

- Watch Video Solution

19. The vector $((i-j) \times(j-k)) \times(i+5 k)$ is equal to
A. $5 i-4 j-k$
B. $3 i-2 j+5 k$
C. $4 i-5 j-k$
D. $5 i+4 j-k$

Answer: A

- Watch Video Solution

20. The position vector of a point P is $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ where $x, y, z \varepsilon N$ and $\vec{a}=\hat{i}+\hat{j}+\hat{k}$. If $\vec{r} \cdot \vec{a}=10$, then the number of possible position of P is
A. 72
B. 36
C. 60
D. 108

Answer: B

- Watch Video Solution

21. If \vec{a} and \vec{b} are two unit vectors and θ be the angle between them, then $\sin \left(\frac{\theta}{2}\right)=$
A. $\frac{1}{2}|a-b|$
B. 1
C. $\frac{1}{2}|a+b|$
D. 0

Answer: A

- Watch Video Solution

22. Vectors $i+j+(m+1) k, i+j+m k$ and $i-j+m k$ are coplaner for
A. 1
B. 4
C. 3
D. none of these

Answer: D

- Watch Video Solution

23. If \vec{a}, \vec{b} and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is $3 \pi / 4$
b. $\pi / 4 \mathrm{c} . \pi / 2 \mathrm{~d} . \pi$
A. $3 \pi / 4$
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: A

24. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\vec{b}=\hat{\mathrm{i}}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values of α and β ? $\alpha=2, \beta=2$ (2) $\alpha=1, \beta=2$ (3) $\alpha=2, \beta=1$ (4) $\alpha=1, \beta=1$
A. $a \cdot i+3=0$
B. $a \cdot k-4=0$
C. $a \cdot i-1=0$
D. $a \cdot k+2=0$

Answer: B

- Watch Video Solution

25. Let the volume of parallelopiped whose coteriminous edges are given by $u=i+j+\lambda k, v=i+j+3 k$ and $w=2 i+j+k$ be 1 (unit) ${ }^{3}$. If θ is angle between the edges u and w, then $\cos \theta$ can be
A. $\frac{7}{6 \sqrt{3}}$
B. $\frac{5}{7}$
C. $\frac{5}{3 \sqrt{3}}$
D. $\frac{7}{6 \sqrt{6}}$

Answer: A

- Watch Video Solution

Solved Examples Numerical Answer Type Questions

1. Suppose $A B=i+2 j+4 k$ and $A C=5 i+j+2 k$ are two sides of a triangle ABC whose centroid is G , then $|A G|=$ \qquad

- Watch Video Solution

2. Let the position vectors of vertices of a $\triangle A B C$ be $O A=3 i+j+2 k, O B=i+2 j+3 k$ and $O C=2 i+3 j+k$. length of altitude of $\triangle A B C$ from A is p , then $2 p^{2}=$

- View Text Solution

3. Suppose $4 i+7 j+8 k, 2 i+3 j+4 k, 2 i+5 j+7 k$ are respectively the position vectors of the vertices, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of $\triangle A B C$. If the bisector of $\angle B A C$ meet at point D in $B C$, position vector of D is $2 i+(13 / 3) j+\lambda k, \quad$ then $\lambda=$ \qquad

- View Text Solution

4. Prove that the volume of the tetrahedron and that formed by the centroids of the faces are in the ratio of $27: 1$.

- Watch Video Solution

5. $\bar{a}=2 \bar{i}+\bar{j}-2 \bar{k}$ and $\bar{b}=\bar{i}+\bar{j}$ if \bar{c} is a vector such that $\bar{a} \cdot \bar{c}=|\bar{c}|,|\bar{c}-\bar{a}|=2 \sqrt{2}$ and and the angle between $\bar{a} \times \bar{b}$ and \bar{c} is 30°, then $|(\bar{a} \times \bar{b}) \times \bar{c}|=$
6. Suppose a and b are two unit vectors and θ is acute angle between them. If $|a-b|^{2}=4 \sin ^{2}(\alpha \theta)$, then $8 \alpha^{2}=$ \qquad

- Watch Video Solution

7. The vector a, b and c are such tha $|a|=|b|=1$ and $|c|=2$
$a \times(a \times c)+b=0$ find the possible angles between a and c.

- Watch Video Solution

8. Let $a=2 i-3 j+4 k, b=i+2 j-2 k$ and $c=3 i-j+k$. Let V be, the volume (in cubic unit) of the parallelopiped having $a+b+c, a-b+c$ and $a+b-c$ as coterminus edges, then $\mathrm{V}=$
9.

$A(3 i-2 j-k), B(2 i+3 j-4 k), C(-i+j+2 k)$ and $D(4 i+5 j+\lambda k)$ are coplanar points, then $\lambda=$ \qquad

- Watch Video Solution

10. Suppose $a+x^{2} b+y^{2} c=0$ and $a \times b+c \times a=16(b \times c)$, then (x, y) lies on a circle of radius \qquad units

- View Text Solution

11. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 respectively. If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$, the acute angle between \vec{a} and \vec{c} is

- Watch Video Solution

12. Suppose ABC is a right angled triangle with $\angle C=\pi / 2$. If $|A B|=5$, then $A B \cdot A C+B C \cdot B A+C A \cdot C B=$

Watch Video Solution

13. Let $a=5 i+4 j-k, b=-4 i+j+5 k, c=i+3 j-k$. Let α be a vector perpendicular to both a and b such that $\alpha \cdot c=63$, then $|\alpha|^{2} / 21^{2}=$ \qquad

- View Text Solution

14. If the volume of parallelepiped whose coterminous edges are $a=i+j+2 k, b=2 i+\lambda j+k$ and $c=2 i+2 j+\lambda k$ is 35 (unit) ${ }^{3}$, then $a \cdot b+b \cdot c-c \cdot a=$ \qquad

- View Text Solution

15.

$P=(x+1) i+x j+x k, Q=x i+(x+1) j+x k, k=x i+x j+(x+1)$ are coplanar vectors and $3(P . Q)^{2}-\lambda|R \times Q|^{2}=0, \quad$ then $\lambda=$

- View Text Solution

16. Let $|a|=\sqrt{3},|b|=5, b \cdot c=10$, angle between b and c is equal to $\pi / 3$. If a is perpendicular to $b \times c$, then $|a \times(b \times c)|=$ \qquad

- View Text Solution

17. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three vectors such that $a \neq 0$ and $a \times b=2 a \times c,|a|=|c|=1,|b|=4$ and $|b \times c|=\sqrt{15}$.
$b-2 c=\lambda a$, then λ is equal ot

- Watch Video Solution

18. Let $a=i-2 j+3 k$. If b is a vector such that $a \cdot b=|b|^{2}$ and $|a-b|=\sqrt{7}$, then $|b|^{2}=$ \qquad

- Watch Video Solution

19. Suppose the diagonals of a parallelogram are represented by vectors $i+3 j-2 k$ and $3 i+j-4 k$. If A is the area of this parallelogram, then $A=$

- Watch Video Solution

20. Let a be vector, such that $|a|=5$. Then $|a \cdot i|^{2}+|a \cdot j|^{2}+|a \cdot k|^{2}=$

- Watch Video Solution

21. If $\vec{r}=l(\vec{b} \times \vec{c})+m(\vec{c} \times \vec{a})+n(\vec{a} \times \vec{b}) \quad$ and $[\vec{a}, \vec{b}, \vec{c}]=2$, then $l+m+n$ is equal to

- Watch Video Solution

22.

$a=5 i-3 j+2 k, b=-i+2 j+3 k, c=7 i-18 j+21 k$, then $[a-b$

- Watch Video Solution

23. If $a=2 i-3 j+5 k, b=3 i-4 j+5 k$ and $c=5 i-3 j-2 k$ then volume of the parallelopiped with coterminus edges $a+b, b+c, c+a$ is
24. Suppose a, b, c are three unit vectors such that

$$
|a-b|^{2}+|b-c|^{2}+|c-a|^{2}=9,
$$

then $|2 a+7 b+7 c|=$ \qquad

- Watch Video Solution

25. If $4 x+3 y+12 z=26, x, y, z, \in R$, then minimum possible value of $x^{2}+y^{2}+z^{2}$ is \qquad

- Watch Video Solution

Exercise Concept Based Single Correct Answer Type Questions

1. Which of the following statements are correct :- If M is the mid point of
$A B$ and O is any point, then
A. $O M=O A+M A$
B. $O M=O A-M A$
C. $O M=\frac{1}{2}(O A-O B)$
D. $O M=\frac{1}{2}(O B+O A)$

Answer: D

- Watch Video Solution

2. The angle between $3 i+4 j$ and $2 j-5 k$ is
A. $\frac{\pi}{2}$
B. $\cos ^{-1} \frac{8}{5 \sqrt{29}}$
C. $\frac{\pi}{6}$
D. $\cos ^{-1} \frac{1}{3}$

Answer: B
3. A unit vector c perpendicular to a and coplanar with a and b, $a=i+j+k, b=i+2 j$ is given by
A. $\frac{1}{\sqrt{2}}(i+k)$
B. $\frac{1}{\sqrt{2}}(i-j)$
C. $\frac{1}{\sqrt{2}}(j+k)$
D. $\frac{1}{\sqrt{2}}(-j+k)$

Answer: D

- Watch Video Solution

4. A vector b , which is collinear with vector $a=2 i+j-k$ and satisfies $a \cdot b=2$ is given by
A. $\frac{1}{2}(2 i+j-k)$
B. $\frac{1}{3}(2 i+j-k)$
C. $\frac{1}{4}(2 i+j-k)$
D. $\frac{1}{2}(-2 i-j+k)$

Answer: B

- Watch Video Solution

5. If $u=i+j-k, v=2 i+j+k$ and $w=i+j+2 k$ then the magnitude of projection of $u \times v$ on w is given by
A. $\sqrt{\frac{1}{2}}$
B. $\sqrt{\frac{1}{3}}$
C. $\sqrt{\frac{3}{4}}$
D. $\sqrt{\frac{3}{2}}$

Answer: D

- Watch Video Solution

6. If a and b are non-collinear vectors, then the value of λ for which
$u=(\lambda+2) a+b$ and
$v=(1+4 \lambda) a-2 b$ are collinear is
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. $\frac{3}{4}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

7. The area of the triangle formed by $\mathrm{A}(1,0,0), \mathrm{B}(0,1,0), \mathrm{C}(1,1,1)$ is
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{4}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

8. A unit vector perpendicular to $3 i+4 j$ and $i-j+k$ is
A. $\frac{1}{\sqrt{3}}(i+j+k)$
B. $\frac{1}{\sqrt{14}}(i-2 k+3 k)$
C. $\frac{1}{\sqrt{74}}(4 i+3 j-7 k)$
D. $\frac{1}{\sqrt{74}}(4 i-3 j-7 k)$

Answer: D

- Watch Video Solution

9. The value of scalar triple product $i-2 j+3 k, 2 i+j-k$ and $j+k$ is
A. 12
B. 10
C. 14
D. 16

Answer: A

- Watch Video Solution

10.

The
vector

$$
[(i-j+k) \times(2 i-3 j-k)] \times[(-3 i+j+k) \times(2 j+k)] \text { is given by }
$$

A. $3 i+5 j-3 k$
B. $-5(3 i-5 j-3 k)$
C. $5(3 i+5 j-3 k)$
D. $(15 i-25 j+15 k)$

Answer: B

- Watch Video Solution

Exercise Level 1 Single Correct Answer Type Questions

1. Let $|a|=3$ and $|b|=4$. The value of μ for which the vectors $a+\mu b$ and $a-\mu b$ will be perpendicular is
A. $3 / 4$
B. $2 / 3$
C. $-5 / 2$
D. $-2 / 3$

Answer: A

2. The value of α for which the vectors
$2 i-j+k, i+2 j+\alpha k$ and $3 i-4 j+5 k$ are coplanar is
A. 3
B. -3
C. 2
D. none of these

Answer: B

- Watch Video Solution

3. The area of a parallelogram having diagonals $a=3 i+j-2 k$ and $b=i-3 j+4 k$ is
A. $5 \sqrt{3}$
B. $2 \sqrt{3}$
C. $4 \sqrt{3}$
D. none of these

Answer: A

- Watch Video Solution

4. If \vec{r} satisfies $\vec{r} \times(\vec{i}+2 \vec{j}+\vec{k})=\vec{i}-\vec{k}$ then for any scalar t, $\vec{r}=$
A. $i+t(i+2 j+k)$
B. $j+t(i+2 j+k)$
C. $k+t(i+2 j+k)$
D. $i-k+t(i+2 j+k)$

Answer: B

- Watch Video Solution

5. The vectors $\vec{a}, \vec{b}, \vec{c}$ are of the same length and pairwise form equal angles. If $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$ then \vec{c} may be:
A. $i+k$
B. $-i+4 j-k$
C. $-\frac{1}{3} i+\frac{4}{3} j-\frac{1}{3} k$
D. $\frac{1}{3} i+\frac{4}{3} j-\frac{1}{3} k$

Answer: C

- Watch Video Solution

6. The vectors $\overrightarrow{A B}=3 \hat{i}+2 \widehat{+} 2 \hat{k}$ and $\overrightarrow{B C}=-\hat{i}-2 \hat{k}$ are the adjacent sides of parallelogram. The angle between its diagonal is (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$ (C) $\frac{3 \pi}{4}$ (D) (2pi)/3
А. $\pi / 4$
B. $\pi / 3$
C. $\pi / 2$
D. $2 \pi / 3$

Answer: A

- Watch Video Solution

7. Let the unit vectors a and b be perpendicular and the unit vector c be inclined at an angle θ to both a and b. If $c=\alpha a+\beta b+\gamma(a \times b)$, then
A. $\alpha=2 \beta$
B. $\gamma^{2}=1+2 \alpha^{2}$
C. $\gamma^{2}=\cos 2 \theta$
D. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

Answer: D

- Watch Video Solution

8. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in the interval
A. $\left[0, \frac{\pi}{6}\right]$
B. $\left(\frac{5 \pi}{6}, 2 \pi\right]$
C. $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
D. $\left[\frac{\pi}{2}, \frac{5 \pi}{6}\right]$

Answer: A

- Watch Video Solution

9. For non-coplanar vectors a, b and $\mathrm{c},|(a \times b) \cdot c|=|a||b||c|$ holds if and only if
A. $a \cdot b=b \cdot c=c \cdot a=0$
B. $a \cdot b=0=b \cdot c$
C. $a \cdot b=0=c \cdot a$
D. $b \cdot c=0=c \cdot a$

Answer: A

- Watch Video Solution

10. The volume of the tetrahedron whose vertices are the points with positon vectors $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\hat{k} \quad$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic units if the value of λ is
A. -1
B. 1
C. -7
D. 5

Answer: B

- Watch Video Solution

$(x, x+1, x+2),(x+3, x+3, x+5)$ and $(x+6, x+7, x+8)$ are coplanar for (A) all values of x (B) $x<0$ (C) $x>0$ (D) none of these
A. only finite number of values of x
B. $x<0$
C. Only $\mathrm{x}=\mathrm{z}$
D. none of these

Answer: B

- Watch Video Solution

12. A vector oflength $\sqrt{7}$ which is perpendicul to $2 \bar{j}-\bar{k}$ and $-\bar{i}+2 \bar{j}-3 \bar{k}$ and makes obtus angle with y -aixs is
A. $(1 / \sqrt{5})(4 i-j+\sqrt{18} k)$
B. $(1 / \sqrt{3})(4 i-j-2 k)$
C. $(1 / \sqrt{3})(-4 i+j+2 k)$
D. $(1 / \sqrt{3})(-4 i-j+2 k)$

Answer: B

- Watch Video Solution

13. Let $\quad|a|=|b|=2$ and $p=a+b, q=a-b$.
$|p \times q|=2\left(k-(a . b)^{2}\right)^{1 / 2}$ then
A. $k=16$
B. $\mathrm{k}=8$
C. $k=4$
D. $\mathrm{k}=1$

Answer: A
14. IF r.a $=0, r$. $b=0$ and r. $c=0$ for some non-zero vector r. Then, the value of $[a b c]$ is
A. 0
B. $1 / 2$
C. 1
D. 2

Answer: A

- Watch Video Solution

15. If the position vectors of three consecutive vertices of any parallelogram are
$\vec{i}+\vec{j}+\vec{k}, \vec{i}+3 \vec{j}+5 \vec{k}, 7 \vec{i}+9 \vec{j}+11 \vec{k}$ then the position vector of its fourth vertex is:
A. $6(i+j+k)$
B. $7(i+j+k)$
C. $2 j-4 k$
D. $6 i+8 j+10 k$

Answer: B

- Watch Video Solution

16. The volume of the parallelopiped whose sides are given by $\overrightarrow{O A}=2 \hat{i}-3 \hat{j}, \overrightarrow{O B}+\hat{i}+\hat{j}-\hat{k}$ $\overrightarrow{O C}=3 \hat{i}-\hat{k}$, is
A. $4 / 13$
B. 4
C. $2 / 7$
D. none of these
17. The value of $|a \times i|^{2}+|a \times j|^{2}+|a \times k|^{2}$ is
A. a^{2}
B. $2 a^{2}$
C. $3 a^{2}$
D. none of these

Answer: B

- Watch Video Solution

18. If a, b and c are any three vectors, then $a \times(b \times c)=(a \times b) \times c$ if and only if
A. b and care collinear
B. a and c are collinear
C. a and b are collinera
D. none of these

Answer: B

- Watch Video Solution

19. $i \times(a \times i)+j \times(a \times j)+k \times(a \times k)$ is always equal to
A. a
B. 2a
C. 0
D. 3a

Answer: B

D Watch Video Solution

20. The value of $[a \times b, b \times c, c \times a]$ is
A. 2 [abc]
B. [a b c]
C. $[a b c]^{2}$
D. 0

Answer: C

- Watch Video Solution

21. Given vectors $a=(3,-1,5)$ and $b=(1,2,-3)$. A vector c which is perpendicular to z-axis and satisfying $c \cdot a=9$ and $c \cdot b=-4$ is
A. $(2,-2,0)$
B. $(4,-2,0)$
C. $(2,-3,0)$
D. $(1,2,4)$

- Watch Video Solution

22. Area of the parallelogram on the vectors $a+3 b$ and $3 a+b$ if $|a|=|b|=1$ and the angle between a and b is $\pi / 6$ is
A. 2
B. 4
C. 8
D. 16

Answer: B

- View Text Solution

23. If $a=x i+5 j+7 k, b=i+j-k, c=i+2 j+2 k$ are coplanar then the value of x is
24. If $a \cdot(b \times c)=3$ then
A. $c \cdot(a \times b)=-3$
B. $a \cdot(c \times b)=-3$
C. $b \cdot(a \times c)=3$
D. $(a \times c) \cdot b=3$

Answer: B

- View Text Solution

25. Let $a=2 i+2 j+k$ and b be another vector such that $a \cdot b=14$ and $a \times b=3 i+j-8 k$ then the vector b is equal to
A. $5 i+j+2 k$
B. $5 i-j-2 k$
C. $5 i+j-2 k$
D. $3 i+j+4 k$

Answer: A

- Watch Video Solution

26. ABCDEF is a regular hexagon with centre a the origin such that $\overrightarrow{A B}+\overrightarrow{E B}+\overrightarrow{F C}=\lambda \overrightarrow{E D}$ then $\lambda=$ (A) 2 (B) 4 (C) 6 (D) 3
A. 2
B. 4
C. 6
D. 3

Answer: B

27. A non zero vector \vec{a} is parallel to the kine of intersection of the plane determined by the vectors veri, $\vec{i}+\vec{j}$ and the plane determined by the vectors $\vec{i}-\operatorname{verj}, \vec{i}+\vec{k}$ find the angle between \vec{a} and the vector $\vec{i}-2 \vec{j}+2 \vec{k}$.
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Answer: D

- Watch Video Solution

28. Let P, Q, R and S be the points on the plane with position vectors $-2 i-j, 4 i, 3 i+3 j a n d-3 j+2 j, \quad$ respectively. The quadrilateral $P Q R S$ must be a Parallelogram, which is neither a rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square
A. parallelogram, which is neither rhombus nor a rectangle
B. square
C. rectangle but not a square
D. rhombus, but not a square

Answer: A

- Watch Video Solution

29. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that
$(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{c}=\frac{1}{2}$, then
A. a, b, c are non-coplanar
B. b, c, d are non-coplanar
C. b, d are non-parallel
D. a, d are parallel and b, c are parallel

Watch Video Solution

30. The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\widehat{a}, \hat{b}, \hat{c}$ such that $\widehat{a} \cdot \hat{b}=\hat{b} \cdot \hat{c}=\hat{c} \cdot \widehat{a}=\frac{1}{2}$. Then, the volume of the parallelopiped is
A. $1 / \sqrt{2}$
B. $1 / 2 \sqrt{2}$
C. $\sqrt{3} / 2$
D. $1 / \sqrt{3}$

Answer: A

- Watch Video Solution

31. If a is a non-zero real number, then prove that the vectors $\vec{\alpha}=a \hat{i}+2 a \hat{j}-3 a \hat{k}, \vec{\beta}=(2 a+1) \hat{i}+(2 a+3) \hat{j}+(a+1) \hat{k} a n d, \vec{\gamma}=($ are never coplanar.
A. $\{0\}$
B. $(0, \infty)$
C. $(-\infty, 1)$
D. $(1, \infty)$

Answer: A

- Watch Video Solution

32. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=h \vec{a}+k \vec{b}=r \vec{c}+s \vec{d}$, where \vec{a}, \vec{b} are non-collinear and \vec{c}, \vec{d} are also non-collinear then:
A. $p=[c b d]$
B. $p=[a c d]$
C. $p=[a b d]$
D. $p=[a b c]$
33. Let the unit vectors a and b be perpendicular and the unit vector c be inclined at an angle θ to both a and b. If $c=\alpha a+\beta b+\gamma(a \times b)$, then
A. $\alpha=\beta$
B. $\alpha=2 \beta$
C. $\alpha=\frac{\beta}{2}$
D. $\beta^{2}-\frac{1+\beta}{2}$

Answer: A

- Watch Video Solution

Exercise Level 2 Single Correct Answer Type Questions

1. A line makes angles $\alpha, \beta, \gamma \operatorname{and} \delta$ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.
A. 1
B. $1 / 3$
C. $8 / 3$
D. $4 / 3$

Answer: D

- Watch Video Solution

2. If $(a \times b) \times(c \times d)=[a b d] c+k d$ then the value of k is
A. [b a c]
B. $[\mathrm{abc}]$
C. [b c d]
D. [c b d]

Answer: A

3. The one of the value of x for which the angle between $c=x i+j+k$ and $d=i+x j+k$ is $\pi / 3$ is
A. $1+\sqrt{2}$
B. $2+\sqrt{2}$
C. $3+\sqrt{2}$
D. none of these

Answer: D

- Watch Video Solution

4. The line $x=-2, y=4+2 t, z=-3+t$ intersect
A. the $x y$-plane
B. the xz-plane in $(-2,0,-4)$
C. the yz-plane
D. none of these

Answer: A

- View Text Solution

5. Let $u=2 i-j+3 k$ and $a=4 i-j+2 k$. The vector component of u orthogonal to a is
A. $(1 / 7)(20 i-5 j+10 k)$
B. $(1 / 7)(4 i+24 j+4 k)$
C. $(1 / 7)(11 i+2 j+6 k)$
D. $(-1 / 7)(6 i+2 j-11 k)$

Answer: D

- Watch Video Solution

6. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ lie in the same plane then $(a \times b) \times(c \times d)$ is equal to
A. $c+d$
B. 0
C. $[a, b, c] a+2 b$
D. $[b, c, d] c+d$

Answer: B

- Watch Video Solution

7. If $(a \times b) \cdot(c \times d)=(a \cdot c)(b \cdot d)+k(a . d)(b . c)$ then the value of k is
A. 1
B. 0
C. -2
D. -1

Answer: D

- Watch Video Solution

8. The distance between $(5,1,3)$ and the line $x=3, y=7+t, z=1+t$ is
A. 4
B. 2
C. 6
D. 8

Answer: C

Watch Video Solution
9. The distance between the lines
$x=1-4 t, y=2+t, z=3+2 t$ and $x=1+s, y=4-2 s, z=-1+$ is
A. 8
B. $16 / \sqrt{90}$
C. $8 / \sqrt{5}$
D. $16 / \sqrt{110}$

Answer: D

- Watch Video Solution

10. The vertices of a triangle $A B C$ are $A(1,-2,2), B(1,4,0)$ and $C(-4,1,1)$ respectively. If M be the foot of perpendicular drawn from B on $A C$, then $\vec{B} M$ is
A. $-\frac{20}{3} i-10 j+\frac{10}{3} k$
B. $-\frac{10}{7} i-\frac{30}{7} j+\frac{10}{7} k$
C. $\frac{20}{7} i+5 j-\frac{10}{7} k$
D. $-\frac{20}{7} i-\frac{30}{7} j+\frac{10}{7} k$

Answer: D

D Watch Video Solution

11. If a, b, c are non-coplanar vectors such that $(2 h+k) a+(3-4 h+l) b+(1+h+k) c=h a+k b+l c$ then
A. $h=1, k=-4 / 3, l=4 / 3$
B. $h=4 / 3, k=-4 / 3, l=1$
C. $h=1 / 3, k=-1 / 3, l=2 / 3$
D. none of these

Answer: B

D Watch Video Solution

12. Show that the angle between two diagonals of a cube is $\cos ^{-1} \sqrt{\frac{1}{3}}$.
A. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
B. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{2}{3}\right)$

Answer: C

- Watch Video Solution

13. The point of intersection of the lines $r \times a=b \times a, r \times b=a \times b$ is
A. a
B. $\mathrm{b}-\mathrm{a}$
C. a-b
D. $a+b$

Answer: D
14.
$a=a_{1} i+a_{2} j+a_{3} k, b=b_{1} i+b_{2} j+b_{3} k, c=c_{1} i+c_{2} j+c_{3} k, d=d_{1} i+c$
and
$k(a \times b) \times(c \times d)=\left|\begin{array}{llll}-a & -b & c & d \\ a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{3} & b_{3} & c_{3} & d_{3}\end{array}\right|$
(formal expression) then
A. $k=16$
B. $\mathrm{k}=2$
C. $\mathrm{k}=4$
D. none of these

Answer: B

15. The value of $(b \times c) \cdot(a \times d)+(c \times a) \cdot(b \times d)+(a \times b) \cdot(c \times d)$ is
A. [a, b, c] - [b, c, d]
B. $[\mathrm{a}, \mathrm{b}, \mathrm{c}]+[\mathrm{b}, \mathrm{c}, \mathrm{d}]$
C. 0
D. none of these

Answer: C

- View Text Solution

16. The lines $r=b-2 c+\lambda(a+b)$ and $r=2 b-c+\mu(b+c)$ intersect at the point.
A. $b-2 c$
B. $b+2 c$
C. $b+c$
D. $c-b$

Answer: A

- View Text Solution

17. If $a=i+2 j-3 k, b=2 i+j-k$ then the vector v satisfying $a \times v=a \times b$ and $a \cdot v=0$ is $b+t a, t$ being a scalar for
A. all values of t
B. for no value of t
C. finite number of values of t
D. $t=-1 / 4$

Answer: C

18. The value of
$|a \times(i \times j)|^{2}+|a \times(j \times k)|^{2}+|a \times(k \times i)|^{2}$ is
A. $|a|^{2}$
B. $2|a|^{2}$
C. $3|a|^{2}$
D. none of these

Answer: B

- Watch Video Solution

19. The locus of a point equidistant from two points with position vectors \vec{a} and \vec{b} is
A. $(r-(a+b)) \cdot b=0$
B. $\left(r-\frac{1}{2}(a+b)\right) \cdot a=0$
C. $\left(r-\frac{1}{2}(a+b)\right) \cdot(a-b)=0$
D. $\left(r-\frac{1}{2}(a+b)\right) \cdot(a+b)=0$

Answer: C

- Watch Video Solution

20. A vector $\vec{a}=(x, y, z)$ makes an obtuse angle with F -axis, and make equal angles with $\vec{b}=(y,-2 z, 3 x)$ and $\vec{c}=(2 z, 3 x,-y)$ and \vec{a} is perpendicular to $\vec{d}=(1,-1,2)$ if $|\vec{a}|=2 \sqrt{3}$ then vector \vec{a} is:
A. $(-2,2,2)$
B. $(1,1, \sqrt{10})$
C. $(2,-2,-2)$
D. none of these

Answer: C

- Watch Video Solution

21. If $a \times b=c$ and $b \times c=a$, then
A. a, b, c are orthogonal in pairs but $|a| \neq|c|$
B. a, b, c are orthogonal in pairs but $|b| \neq 1$
C. a, b, c are not orthogonal to each other in pairs
D. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are orthogonal in pairs and $|a|=|c|,|b|=1$

Answer: D

- View Text Solution

22. Let $O A B C$ be a regular tetrahedron, then angle between edges $O A$ and $B C$ is:
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{2 \pi}{3}$

D View Text Solution

23. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \quad$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b}
is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}$ is equal to
A. 0
B. 1
C. $\left(\frac{1}{4}\right)\left(\sum_{i=1}^{3} a_{i}^{2}\right)\left(\sum_{i=1}^{3} b_{i}^{2}\right)$
D. none of these

Answer: C

24. The vector \vec{a} has the components $2 p$ and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, \vec{a} has components $(p+1)$ and 1 , then p is equal to a. $-4 \mathrm{~b} .-1 / 3 \mathrm{c} .1 \mathrm{~d}$. 2
A. $p=0$
B. $p=1$ or $p=1 / 3$
C. $p=1$ or $p=1 / 3$
D. $\mathrm{p}=1$ or $\mathrm{p}=-1$

Answer: C

- Watch Video Solution

25. $a \cdot((b \times c) \times(a+(b \times c))$ is equal to

$$
\text { A. } 0
$$

B. 2 [a b c]
C. [abc]
D. none of these

Answer: A

- Watch Video Solution

26. If $\vec{X} \cdot \vec{A}=0, \vec{X} \cdot \vec{B}=0, \vec{X} . \vec{C}=0$ for some non-zero vector \vec{X} then $[\vec{A} \vec{B} \vec{C}]=0$
A. $|A||B||C|$
B. 0
C. $2|A||B||C|$
D. none of these

Answer: B

27. Given the vectors $a=3 i-j+5 k$ and $b=i+2 j-3 k$. A vector c which is perpendicular to the z-axis and satisfies $c \cdot a=9$ and $c \cdot b=-4$ is
A. $2 i-3 j$
B. $-2 i+3 j$
C. $-4 i-4 j$
D. $i-j+k$

Answer: A

Watch Video Solution

28. The unit vector in $X O Z$ plane and making angles 45° and 60° respectively with $\vec{a}=2 i+2 j-k$ and $\vec{b}=0 i+j-k$, is
A. $\frac{1}{\sqrt{2}}(-i+k)$
B. $\frac{1}{\sqrt{2}}(i-k)$
C. $-\frac{1}{\sqrt{2}}(i+k)$
D. none of these

Answer: B

- Watch Video Solution

29. If vector $\vec{a}+\vec{b}$ bisects the angle between \vec{a} and \vec{b}, then prove that $|\vec{a}|=|\vec{b}|$.
A. $|a|=2|b|$
B. $|a|+|b|^{2}=|a+b|^{2}$
C. $|a|=|b|$
D. $|a|-|b|=|a-b|$

Answer: C

30. The vector $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$. The length of the median through A is
A. $\sqrt{5}$
B. $\sqrt{14}$
C. $\sqrt{17}$
D. $\sqrt{18}$

Answer: D

- Watch Video Solution

31. $A B C D$ is quadrilateral such that $\vec{A} B=\vec{b}, \vec{A} D=\vec{d}, \vec{A} C=m \vec{b}+p \vec{?}$ Show that he area of the quadrilateral $A B C D i s \frac{1}{2}|m+p||\vec{b} \times \vec{d}|$.
A. $\frac{1}{2}(m+p)|b \times d|$
B. $(m+p)|b \times d|$
C. $2(m+p)|b \times d|$
D. $\frac{1}{2}|m-p||b \times d|$

Answer: A

- Watch Video Solution

32. If $\vec{u}=\vec{a}-\vec{b}, \vec{v}=\vec{a}+\vec{b}$ and $|\vec{a}|=|\vec{b}|=2$, then $|\vec{u} \times \vec{v}|$ is equal to
A. $2\left(k^{2}-(a . b)^{2}\right)$
B. $2\left(k^{4}-(a . b)^{2}\right)^{1 / 2}$
C. $\left(k^{4}+(a . b)^{2}\right)^{1 / 2}$
D. $\left(k^{4}+(a . b)^{2}\right)^{1 / 2}$

Answer: B

Exercise Numerical Answer Type Questions

1. Let $A B C D$ be a parallelogram whose diagonals intersect at point P.
Suppose S is any point in space. If $S A+S B+S C+S D=\lambda S P$ then $\lambda=$ \qquad

- View Text Solution

2. If $A B C D E F$ is a regular hexagon, then
$\overline{A B}+\overline{A C}+\overline{A E}+\overline{A F}=$

- Watch Video Solution

3. Suppose a and b are two non-zero vectors and angle between a and b is θ, where $0<\theta<\pi / 2$. If $|a \times b|=|a \cdot b|, \quad$ then $\pi / \theta=$ \qquad
4. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three vectors such that $|a|=7$. If $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$, then $|a \cdot b+a \cdot c|=$ \qquad

Watch Video Solution

5. Suppose a, b, c are three vectors such that $a+b+c=0,|a|=|b|=1$ and $a \cdot b+b \cdot c-c \cdot a=-3 / 2$, then $\mid c$

- Watch Video Solution

6. Suppose a, b, c are three vectors such that $|a|=|b|=|c|=1$ and $a+b+c=0$, then $|a-b|^{2}+|b-c|^{2}+\mid c-$

- Watch Video Solution

7. Suppose $-i+j-k$ bisects the angle between the vector c and $3 i+4 j$. If $c=\alpha i+\beta j+\gamma k$ and $|c|=3$, then $|\gamma|=$

- View Text Solution

8. Suppose $a, b, c>0$ and are respectively the pth , qth and rth terms of a

G.P. Let

$x=(\log a) i+(\log b) j+(\log c) k$
$y=(q-r) i+(r-p) j+(p-q) k$
If angle between x and y is $k \pi$, then $\mathrm{k}=$ \qquad

- Watch Video Solution

9. Let $a=2 \lambda^{2} i+4 \lambda j+k$ and $b=7 i-2 j+\lambda k$. The number of values of λ for which angle between a and b is θ, where $\pi / 2<\theta<\pi$ and angle between b and k is ϕ where $0<\varphi<\pi / 6$, is \qquad
10. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three non-coplanar vectors. Suppose
$\Delta=\left|\begin{array}{lll}a \cdot a & a \cdot b & a \cdot c \\ b \cdot a & b \cdot b & b \cdot c \\ c \cdot a & c \cdot b & c \cdot c\end{array}\right|$
If $\Delta=[a b c]^{r}$ then $r=$

- Watch Video Solution

11. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three non-coplanar vectors, then
$\frac{(a+b+c) \cdot((a+c) \times(a+b))}{[a b c]}=$

- Watch Video Solution

12. Suppose $A_{1}, A_{2}, \ldots, A_{5}$ are vertices of a regular pentagon with O as centre.

If $\sum_{i=1}^{4}\left(O A_{i} \times O A_{i+1}\right)=\lambda\left(O A_{1} \times O A_{2}\right)$ then $\lambda=$ \qquad
13. Suppose a, b, c are three non-zero vectors such that b and c are noncollinear.

- Watch Video Solution

14.

$\alpha=3 i+j$ and $\beta=2 i-j+3 k . \quad$ Suppose $\beta=\beta_{1}-\beta_{2}, \quad$ where β_{1} is parallel to α and β_{2} is perpendicular to
α. If $\beta_{1} \times \beta_{2}=-\frac{3}{2} i+a j+b k$, then $\mathrm{a}+\mathrm{b}=$ \qquad

- Watch Video Solution

15. Let $a=i-2 j+k$ and $b=i-j+\lambda k$, (where $\lambda \in Z$) be two vectors. If C is a vector such that $a \times b=c \times b, c \cdot a=0$ and $2 b \cdot c+1=0, \quad$ then $\lambda=$
16.

The vectors,
$p=(a+1) i+a j+a k, q=a i+(a+1) j+a k$ and $r=a i+a j+(a+$. If $3(p . q)^{2}-\lambda|r \times q|^{2}=0$, then the value of λ is \qquad

View Text Solution

17. Suppose $O A=2 i+2 j+k, O B=3 i+4 j+12 k$. If $O C=\frac{1}{16}(45 i+a j+b k)$ is internal angle bisector of $\triangle O A B$, then b $a=$ \qquad

- View Text Solution

18.

Let
$A=(2 \alpha, 1, \alpha), B=(2,1,3), C=3 i-j+4 k . \quad$ If $A B \times C=5 i-9 j-$

Questions From Previous Years Alee Jee Main Papers

1. If $|\bar{a}|=4,|\bar{b}|=2$ and the angle between \bar{a} and \bar{b} is $\frac{\pi}{6}$, then $(\bar{a} \times \bar{b})^{2}$ is equal to
A. 48
B. 16
C. 9
D. none of these

Answer: B

- Watch Video Solution

2. If a, b, c are vectors such that $\left[\begin{array}{lll}a & b & c\end{array}\right]=4$ then
$\left[\begin{array}{lll}a \times b & b \times c & c \times a\end{array}\right]=$
A. 16
B. 64
C. 4
D. 8

Answer: A

- Watch Video Solution

3. If $a+b+c=0$ and $|a|=5,|b|=3$ and $|c|=7$, then angle between a and b is
A. 60°
B. 30°
C. 45°
D. 90°
4. If $|a|=5,|b|=4,|c|=3$ then the value of $(a \cdot b+b \cdot c+c \cdot a)$ given that $a+b+c=0$
A. 25
B. 50
C. -25
D. -50

Answer: C

- Watch Video Solution

5. If $\bar{a}=3 i-5 j$ and $\bar{b}=6 i+3 j$ are two vectors, and \bar{c} is a vector such that $\bar{c}=\bar{a} \times \bar{b}$,
then : $|\bar{a}|:|\bar{b}|:|\bar{c}|=$
A. $\sqrt{34}: \sqrt{45}: \sqrt{39}$
B. $\sqrt{34}: \sqrt{45}: 39$
C. 34: 39: 45
D. 39: 35: 34

Answer: B

- Watch Video Solution

6. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$.If \widehat{n} is a unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v} \cdot \widehat{n}$ then $|\vec{w} \cdot \widehat{n}|$ is equal to
A. 1
B. 2
C. 3
D. 0

Answer: C

7. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{9}-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$. find the total work done by the forces in units.
A. 30 units
B. 40 units
C. 50 units
D. 20 units

Answer: B

- Watch Video Solution

8. The vector $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$. The length of the median through A is
A. $\sqrt{72}$
B. $\sqrt{33}$
C. $\sqrt{288}$
D. $\sqrt{18}$

Answer: B

- Watch Video Solution

9. If a, b, c are non coplanner vectors and λ is a real no.then the vector $a+2 b+3 c, \lambda b+4 c$ and $(2 \lambda-1) c$ are non coplanner for:-
A. all except two values of λ
B. all except one value of λ
C. for all values of λ
D. no value of λ
10. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2 a n d|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals 2 b. $\sqrt{7}$ c. $\sqrt{14}$ d. 14
A. $\sqrt{14}$
B. $\sqrt{7}$
C. 2
D. 14

Answer: A

- Watch Video Solution

11. Let \vec{a}, \vec{b} and \vec{c} be the non zero vectors such that $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. if theta is the acute angle between
the vectors \vec{b} and \vec{a} then theta equals (A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$ (D) $2 \frac{\sqrt{2}}{3}$
A. $2 / 3$
B. $\sqrt{2} / 3$
C. $1 / 3$
D. $2 \sqrt{2} / 3$

Answer: D

12. If C is the mid-point of $A B$ and P is any point outside $A B$, then
A. $P A+P B+2 P C=0$
B. $P A+P B+P C=0$
C. $P A+P B=2 P C$
D. $P A+P B=P C$

Answer: C

- Watch Video Solution

13. For any vector x, the value of $(\vec{x} \times \hat{i})^{2}+(\vec{x} \times \hat{j})^{2}+(\vec{x} \times \hat{k})^{2}$ is equal to
A. $2 a^{2}$
B. $4 a^{2}$
C. $3 a^{2}$
D. a^{2}

Answer: A

- Watch Video Solution

14. Let a, b, c be distinct non-negative numbers. If the vectors $a i+a j+c k, i+k$ and $c i+c j+b k$ lie in a plane, then c is the
A. equal to zero
B. the harmonic mean of a and b
C. the geometric mean of a and b
D. the arithmetic mean of a and b

Answer: C

D Watch Video Solution

15. If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors and λ is a real numbers then $\left[\begin{array}{ll}\lambda(\bar{a}+\bar{b}) \lambda^{2} \bar{b} & \lambda \bar{c}]=[\bar{a} \bar{b}+\bar{c} \bar{b}] \text { for }\end{array}\right.$
A. exactly three values of λ
B. exactly two values of λ
C. exactly one value of λ
D. no value of λ
16. Let $\vec{a}=\vec{i}-\vec{k}, \vec{b}=x \vec{i}+\vec{j}+(1-x) \vec{k} \quad$ and $\vec{c}=y \vec{i}+x \vec{j}+(1+x-y) \vec{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on only x
(b) only y Neither $x n$ or y (d) both $x a n d y$
A. both x and y
B. neither on x nor on y
C. only y
D. only x

Answer: B

- Watch Video Solution

17. If $(a \times b) \times c=a \times(b \times c)$. Where a, b and c are any three vectors such that $a . b \neq 0, b . c \neq 0$ then a and c are
A. parallel
B. inclined at an angle of $\pi / 3$ between then
C. inclined at angle of $\pi / 6$ between then
D. perpendicular

Answer: A

- Watch Video Solution

18. Values of a for which the points A, B, C with position vectors $2 i-j+k, i-$ $3 j-5 k$ and ai $-3 j+k$, respectively, are the vertices of a right angled triangle with $C=\frac{\pi}{2}$ are
A. 2 and -1
B. 2 and 1
C. -2 and -1
D. -2 and 1

- Watch Video Solution

19. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=x \hat{i}+(x-2) \hat{j}-\hat{k}$. If the vector \vec{c} lies in the plane of \vec{a} and \vec{b} then xequals
A. 0
B. 1
C. -4
D. -2

Answer: D

- Watch Video Solution

20. If \widehat{u} and \hat{v} are unit vectors and θ is the acute angle between them, then $2 \widehat{u} \times 3 \hat{v}$ is a unit vector for (1) exactly two values of θ (2) more than
two values of θ (3) no value of θ (4) exactly one value of θ
A. exactly two values of θ
B. more than two value of θ
C. no value of θ
D. Exactly one value of θ

Answer: D

- Watch Video Solution

21. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values 0α and β ? (A) alpha=2, beta=1 (B) alpha=1, beta=1 (C) alpha=2, beta=1 (D) alpha=1, beta=2
A. $\alpha=2, \beta=2$
B. $\alpha=1, \beta=2$
C. $\alpha=2, \beta=1$
D. $\alpha=1, \beta=1$

Answer: D

- Watch Video Solution

22. The nonzero vectors are \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c} is
A. 0
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: D

- Watch Video Solution

23. If $\vec{u}, \vec{v}, \vec{w}$ are non -coplanar vectors and p, q, are real numbers then the equality

$$
[3 \vec{u} p \vec{v} p \vec{w}]-[p \vec{v} \vec{w} q \vec{u}]-[2 \vec{w}-q \vec{v} q \vec{u}]=0 \text { holds for }
$$

A. more than two but not all values of (p, q)
B. all values of (p, q)
C. exactly one values of (p, q)
D. exactly two values of (p, q)

Answer: C

- Watch Video Solution

24. vectors $\vec{a}=i-j+2 k, \vec{b}=2 i+4 j+k$ and $\vec{c}=\lambda i+j+\mu k$ are mutually orthogonal then (λ, μ) is
A. $(-2,3)$
B. $(3,-2)$
C. $(-3,2)$
D. $(2,-3)$

Answer: C

- Watch Video Solution

25. Let $\vec{a}=\hat{j}-\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$. Then the vector b satisfying $\vec{a} x \vec{b}+\vec{c}=0$ and $\vec{a} \cdot \vec{b}=3$, is
A. $i-j-2 k$
B. $i+j-2 k$
C. $-i+j-2 k$
D. $2 i-j+2 k$

Answer: C

26. If $a=\frac{1}{\sqrt{10}}(3 i+k)$ and $b=\frac{1}{7}(2 i+3 j-6 k)$, then the value of $(2 a-b) \cdot[(a \times b) \times(a+2 b)]$ is
A. 3
B. -5
C. -3
D. 5

Answer: B

Watch Video Solution

27. The vectors a and b are not perpendicular and c and d are two vectors
satisfying $b \times c=b \times d$ and $a . d=0$. The vectors d is equal to
A. $c-\left(\frac{a . c}{a . b}\right) b$
B. $b-\left(\frac{b . c}{a . b}\right) c$
C. $c+\left(\frac{a . c}{a . b}\right) b$
D. $b+\left(\frac{b . c}{a . b}\right) c$

Answer: A

- Watch Video Solution

28. If the vectors $\mathrm{pi}+\mathrm{j}+\mathrm{k}, \mathrm{i}+\mathrm{qj}+\mathrm{k}$ and $\mathrm{i}+\mathrm{j}+\mathrm{rk}$, where $p \neq q \neq r \neq 1$ are coplanar, then : pqr- $(\mathrm{p}+\mathrm{q}+\mathrm{r})=. . .$. .
A. 2
B. 0
C. -1
D. -2

Answer: D

- Watch Video Solution

29. Let a, b and c be three non-zero vectors which are pairwise noncollinear. If $a+3 b$ is collinear with c and $b+2 c$ is collinear with a, then $a+3 b+6 c$ is
A. a
B. C
C. 0
D. $a+c$

Answer: C

- Watch Video Solution

30. Let \hat{a} and \hat{b} be two unit vectors. If the vectors $\vec{c}=\widehat{a}+2 \hat{b}$ and $\vec{d}=5 \widehat{a}-4 \hat{b}$ are perpendicular to each other then the angle between \widehat{a} and \hat{b} is (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$
A. $\pi / 2$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 6$

Answer: B

- Watch Video Solution

31. Let ABCD be a parallelogram such that $\vec{A} B=\vec{q}, \vec{A} D=\vec{p}$ and $\angle B A D$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD , then \vec{r} is
A. $r=-q+\left(\frac{p . q}{p \cdot p}\right) p$
B. $r=q-\left(\frac{p . q}{p . p}\right) p$
C. $r=-3 q+3\left(\frac{p . q}{p \cdot p}\right) p$
D. $r=3 q-3\left(\frac{p \cdot q}{p \cdot p}\right) p$
32. The vector $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$. The length of the median through A is
A. $\sqrt{72}$
B. $\sqrt{33}$
C. $\sqrt{45}$
D. $\sqrt{18}$

Answer: B

- Watch Video Solution

33. If \vec{a} and \vec{b} are non colinear vectors, then the value of α for which the vectors $\vec{u}=(\alpha-2) \vec{a}+\vec{b}$ and $\vec{v}=(2+3 \alpha) \vec{a}-3 \vec{b}$ are collinear is (A) $\frac{3}{2}$ (B) $\frac{2}{3}$ (C) $\frac{-3}{2}$ (D) $\frac{-2}{3}$
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. $-\frac{3}{2}$
D. $-\frac{2}{3}$

Answer: B

- Watch Video Solution

34. Let $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vectors of the type $\vec{b}+\lambda \vec{c}$ for some scalar λ, whose projection on \vec{a} is of magnitude $\sqrt{\frac{2}{3}}$, is:
A. $2 i+j+5 k$
B. $2 i+3 j-3 k$
C. $2 i-j+5 k$
D. $2 i+3 j+5 k$

Answer: B

- Watch Video Solution

35. If $[a \times b b \times c c \times a]=\lambda[a b c]^{2}$, then λ is euqual to
A. 2
B. 3
C. 0
D. 1

Answer: D

Watch Video Solution
36. If $|a|=2,|b|=3$ and $|2 a-b|=5, \quad$ then $|2 a+b|$ equals
A. 17
B. 7
C. 5
D. 1

Answer: C

- Watch Video Solution

37. If $|c|^{2}=60$ and $c \times(i+j+5 k)=0$, then a value of $c \cdot(-7 i+2 j+3 k)$ is:
A. $4 \sqrt{2}$
B. 12
C. 24
D. $12 \sqrt{2}$

Answer: D

38. If x, y and z are three unit vectors in three dimensional space, then the minimum value of $|x+y|^{2}+|y+z|^{2}+|z+x|^{2}=$
A. $\frac{3}{2}$
B. 3
C. $3 \sqrt{3}$
D. 6

Answer: B

- Watch Video Solution

39. If $x=3 i-6 j-k, y=i+4 j-3 k$ and $z=3 i-4 j-12 k$, then the magnitude of the projection of $x \times y$ on z is
A. 12
B. 15
C. 14
D. 13

Answer: C

- Watch Video Solution

40. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that no two of them are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. If θ is the angle between vectors \vec{b} and \vec{c}, then the value of $\sin \theta$ is:
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{-\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{-2 \sqrt{3}}{3}$

Answer: A

41. Given a parallelogram $A B C D$. If $|\overrightarrow{A B}|=a,|\overrightarrow{A D}|=b \&|\overrightarrow{A C}|=c$, then $\overrightarrow{D B} \cdot \overrightarrow{A B}$ has the value
A. $\frac{1}{2}\left(3 a^{2}+b^{2}-c^{2}\right)$
B. $\frac{1}{4}\left(a^{2}+b^{2}-c^{2}\right)$
C. $\frac{1}{3}\left(b^{2}+c^{2}-a^{2}\right)$
D. $\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)$

Answer: A

- Watch Video Solution

42. Let \vec{a} and \vec{b} be two unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$ if $\vec{c}=\vec{a}+2 \vec{b}+3(\vec{a} X \vec{b})$ then $2|\vec{c}|$ is equal to
A. $\sqrt{55}$
B. $\sqrt{51}$
C. $\sqrt{43}$
D. $\sqrt{37}$

Answer: A

- Watch Video Solution

43. Let a, b and c be three unit vectors such that $a \times(b \times c)=\frac{\sqrt{3}}{2}(b+c)$. If b is not parallel to c , then the angle between a and b is
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{6}$

Answer: D

44. In a triangle $A B C$, right angled at the vertex A, if the position vectors of A, B and C are respectively $3 \hat{i}+\hat{j}-\hat{k},-\hat{i}+3 \hat{j}+p \hat{k}$ and $5 \hat{i}+q \hat{j}-4 \hat{k}$, then the point (p, q) lies on a line
A. making an obtuse angle with the positive direction of x-axis.
B. parallel to x-axis.
C. parallel to y-axis.
D. making an acute angle with the positive direction of x -axis.

Answer: D

- Watch Video Solution

45. Let $A B C$ be a triangle whose circumcenter is at P, if the positions vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and P are $\vec{a}, \vec{b}, \vec{c}$ and $\frac{\vec{a}+\vec{b}+\vec{c}}{4}$ respectively, then the positions vector of the orthocenter of this triangle, is:
A. $-\frac{1}{2}(a+b+c)$
B. $a+b+c$
C. $\frac{1}{2}(a+b+c)$
D. 0

Answer: C

- Watch Video Solution

46. Let $a=2 \hat{i}-2 \hat{k}, b=\hat{i}+\hat{j}$ and c be a vectors such that $|c-a|=3,|(a \times b) \times c|=3 \quad$ and the angle between $\quad c \quad$ and $a \times b$ is 30°. Then a. c is equal to
A. $1 / 8$
B. $25 / 8$
C. 2
D. 5

Answer: C

- Watch Video Solution

47. The area (in sq units) of the parallelogram whose diagonals are along the vectors $8 \hat{i}-6 \hat{j}$ and $3 \hat{i}+4 \hat{j}-12 \hat{k}$ is:
A. 26
B. 65
C. 20
D. 52

Answer: B

- Watch Video Solution

48. If $b=3 j+4 k$, is written as sum of a vector b_{1} parallel to $a=i+j$ and a vector b_{2} perpendicular to a , then $b_{1} \times b_{2}$ is equal to
A. $-3 i+3 j-9 k$
B. $6 i-6 j+\left(\frac{9}{2}\right) k$
C. $-6 i+6 j-9 / 2 k$
D. $3 i-3 j+9 k$

Answer: B

- Watch Video Solution

49. Let \vec{u} be a vector coplanar with the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{j}+\hat{k}$ If \vec{u} is perpendicular to \vec{a} and $\vec{u} \cdot \vec{b}=24$ then $|\vec{u}|^{2}$ is equal to
A. 315
B. 256
C. 84
D. 336

Answer: D

D Watch Video Solution

50. If a, b and c are unit vectors such that $a+2 b+2 c=0, \quad$ then $|a \times c|$ is equal to
A. $\frac{1}{4}$
B. $\frac{\sqrt{15}}{16}$
C. $\frac{15}{16}$
D. $\frac{\sqrt{15}}{4}$

Answer: D

- Watch Video Solution

51. If the position vectors of the vertices A, B and C of a $\triangle A B C$ are respectively $4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+4 \hat{k}$ and $2 \hat{i}+5 \hat{j}+7 \hat{k}$, then the positions
vector of the point, where the bisector of $\angle A$ meets BC is:
A. $\frac{1}{2}(4 i+8 j+11 k)$
B. $\frac{1}{3}(6 i+13 j+18 k)$
C. $\frac{1}{4}(8 i+14 j+19 k)$
D. $\frac{1}{3}(6 i+11 j+15 k)$

Answer: D

- Watch Video Solution

52. Let $a=i+j+k, c=j-k$ and a vector b is such that $a \times b=c$ and $a \cdot b=3$. Then $|b|$ equals:
A. $\sqrt{\frac{11}{3}}$
B. $\frac{11}{\sqrt{3}}$
C. $\frac{\sqrt{11}}{3}$
D. $\frac{11}{3}$

D Watch Video Solution

53. Let $\alpha=(\lambda-2) a \neq b$ and $\beta=(4 \lambda-2) a+3 b$ be two given vectors where vectors a and b are non-collinear. The value of λ for which vectors α and β are collinear, is.
A. -4
B. -3
C. 4
D. 3

Answer: A

54. Let $\sqrt{3 i}+\hat{j}, \hat{i}+\sqrt{3 j}$ and $\beta \hat{i}+(1-\beta) \hat{j}$ respectively be the position vedors of the points A, B and C with respect the origin O . If the distance of C from the bisector of the acute angle between $O A$ and $O B$ is $\frac{3}{\sqrt{2}}$, then the sum all possible values of β is \qquad .
A. 4
B. 3
C. 2
D. 1

Answer: D

- Watch Video Solution

55. Let $a=\hat{i}+2 \hat{j}+4 \hat{k} \quad b=\hat{i}=\lambda \hat{j}+4 \hat{k}$ and $c=2 \hat{i}+4 \hat{j}+\left(\lambda^{2}+1\right) \hat{k}$ be coplanar vectors. Then the non-zero vectors $a \times c$ is
A. $-10 i-5 j$
B. $-14 i-5 j$
C. $-14 i+5 j$
D. $-10 i+5 j$

Answer: D

- Watch Video Solution

56. Let $a=\hat{i}-\hat{j}, b=\hat{i}+\hat{j}+\hat{k}$ and c be a vector such that $a \times c+b=0$ and a.c $=4$, then $|c|^{2}$ is equal to .
A. $19 / 2$
B. 9
C. 8
D. $17 / 2$
57. Let $\vec{a}=2 \hat{i}+(\lambda)_{1} \hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}+\left(3-(\text { labda })_{2}\right) \hat{j}+6 \hat{k}$ and $\vec{c}=3 \hat{i}+6 \hat{j}+\left((\lambda)_{3}-1\right) \hat{k}$ be three vectors such that $\vec{b}=2 \vec{a}$ and \vec{a} is perpendicular to \vec{c} then a possible value of $\left((\lambda)_{1},(\lambda)_{2},(\lambda)_{3}\right)$ is:
(a) $(1,3,1)$ (b) $\left(\left(-\frac{1}{2}\right), 4,0\right)$
(c) $(1,5,1)$ (d) $\left(\left(\frac{1}{2}\right), 4,-2\right)$
A. $(1,2,3)$
B. $(-1 / 2,4,0)$
C. $(1 / 2,4,-2)$
D. $(15,1)$

Answer: B

- Watch Video Solution

58. Let $a=\hat{i}+\hat{j}+\sqrt{2} \hat{k}, b=b_{1} \hat{i}+b_{2} \hat{j}+\sqrt{2} \hat{k}$ and $c=5 \hat{i}+\hat{j}+\sqrt{2} \hat{k}$ be three vectors such that the projection vector of b on a is a . If $a+b$ is
perpendicular to c, then $|b|$ is equal to
A. $\sqrt{32}$
B. 6
C. $\sqrt{22}$
D. 4

Answer: B

- Watch Video Solution

59. The sum of the distinct real values of mu for which the vectors, $\mu \hat{i}+\hat{j}+\hat{k}, \hat{i}+\mu \hat{j}+\hat{k}, \hat{i}+\hat{j}+\mu \hat{k}$ are co-planar is :
A. -1
B. 0
C. 1
D. 2

D Watch Video Solution

60. Let a, b and c be three unit vectors out of which vectors b and c are non -parallel. If α and β are the angles which vector a makes with vectors b and c respectively and $a \times(b \times c)=\frac{1}{2} b$, Then $|\alpha-\beta|$ is equal to
A. 30°
B. 90°
C. 60°
D. 45°

Answer: A

61.

$\alpha=3 i+j$ and $\beta=2 i-j+3 k$. If $\beta=\beta_{1}-\beta_{2}$, where β_{1} is parallel to α and β_{2} is perpendicular to α, then $\beta_{1} \times \beta_{2}$ is equal to
A. $\frac{1}{2}(-3 i+9 j+5 k)$
B. $\frac{1}{2}(3 i-9 j+5 k)$
C. $3 i-9 j-5 k$
D. $-3 i+9 j+5 k$

Answer: A

- Watch Video Solution

62. Let $a=3 \hat{i}+2 \hat{j}+x \hat{k}$ and $b=\hat{i}-\hat{j}+\hat{k}$ for some real x Then $|a \times b|=r$ is possible if
A. $0<r \leq \sqrt{\frac{3}{2}}$
B. $\sqrt{\frac{3}{2}}<r \leq 3 \sqrt{\frac{3}{2}}$
C. $3 \sqrt{\frac{3}{2}}<r \leq 5 \sqrt{\frac{3}{2}}$
D. $r \geq 5 \sqrt{\frac{3}{2}}$

Answer: D

- Watch Video Solution

63. If unit vector a makes angles $\frac{\pi}{3}$ with $\mathrm{i}, \pi / 4$ with j and $\theta \in(0, \pi)$ with k , then a value of θ is
A. $\frac{2 \pi}{3}$
B. $\frac{5 \pi}{6}$
C. $\frac{5 \pi}{12}$
D. $\frac{\pi}{4}$

Answer: A

64. if the volume of parallelopiped formed by the vectors $\hat{i}+\lambda \hat{j}+\hat{k}, \hat{j}+\lambda \hat{k}$ and $\lambda \hat{i}+\hat{k}$ is minimum then λ is equal to
A. $-\sqrt{3}$
B. $\sqrt{3}$
C. $\frac{1}{\sqrt{3}}$
D. $-\frac{1}{\sqrt{3}}$

Answer: C

- Watch Video Solution

65. Let $a=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $b=\hat{i}+2 \hat{j}-2 \hat{k}$ be two vectors. If a vector perpendicular to both the $a+b$ and $a-b$ has the magnitude 112 , then one such vector is:
A. $4(2 i+2 j+k)$
B. $4(-2 i-2 j+k)$
C. $4(2 i+2 j-k)$
D. $4(2 i-2 j-k$

Answer: D

- Watch Video Solution

Questions From Previous Years B Architecture Entrance Examination Papers

1. Let \vec{u}, \vec{v} and \vec{w} be vector such $\vec{u}+\vec{v}+\vec{w}=\overrightarrow{0}$. If $|\vec{u}|=3,|\vec{v}|=4$ and $|\vec{w}|=5$, then find $\vec{u} \vec{v}+\vec{v} \vec{w}+\vec{w} \vec{u}$.
A. -25
B. 0
C. 25
D. 47
2. If a and b are two non-parallel vectors having equal magnitude, then the vector $(a-b) \times(a \times b)$ is parallel to
A. b
B. $a-b$
C. $a+b$
D. a

Answer: C

Watch Video Solution

3. Let a, b, c be distinct non-negative numbers. If the vectors $a i+a j+c k, i+k$ and $c i+c j+b k$ lie in a plane, then c is the
A. geometric mean of a, b
B. harmonic mean of a, b
C. equal to zero
D. arithmetic mean of a, b

Answer: A

- Watch Video Solution

4. Let x, y and z be unit vectors such that
$|x-y|^{2}+|y-z|^{2}+|z-x|^{2}=9$
Then $|x+y-z|^{2}-4 x . y=$
A. 1
B. 4
C. 6
D. 8

Answer: C

5. If a, b and c are three unit vectors satisfying $2 a \times(a \times b)+c=0$ then the acute angle between a and b is
A. $\frac{\pi}{5}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: D

- Watch Video Solution

6. If $b=i-j+3 k, c=j+2 k$ and a is a unit vector, then the maximum value of the scalar triple product $[a b c]$ is
A. $\sqrt{30}$
B. $\sqrt{29}$
C. $\sqrt{26}$
D. $\sqrt{60}$

Answer: A

- View Text Solution

7. If a, b and c are non-zero vectors such that $a \times b=c, b \times c=a$ and $c \times a=b$ then
A. $[\mathrm{a} b \mathrm{c}]=0$
B. $a=b=c$
C. $|a|=|b|=|c|$
D. $|a|+|b|-|c|=0$

Answer: C

8. Let $\vec{O} A=\vec{a}, \vec{O} B=10 \vec{a}+2 \vec{b}$, and $\vec{O} C=$ bwhere O is origin. Let p denote the area of th quadrilateral $O A B C a n d q$ denote the area of teh parallelogram with $O A a n d O C$ as adjacent sides. Prove that $p=6 q$.
A. q^{6}
B. $6 q$
C. $q / 6$
D. $6-q$

Answer: B

- Watch Video Solution

9. If a and b are two vectors such that $2 a+b=e_{1}$ and $a+2 b=e_{2}$, where $e_{1}=(1,1,1)$ and $e_{2}=(1,1,-1)$, then the angle between a and b is
A. $\cos ^{-1}\left(\frac{7}{9}\right)$
B. $\cos ^{-1}\left(\frac{7}{11}\right)$
C. $\cos ^{-1}\left(-\frac{7}{11}\right)$
D. $\cos ^{-1}\left(-\frac{7}{9}\right)$

Answer: C

- Watch Video Solution

10. If $\mathrm{u}, \mathrm{v}, \mathrm{w}$ are unit vectors satisfying $2 u+2 v+2 w=0$, then $|u-v|$ equals
A. $\frac{7}{4}$
B. $\sqrt{\frac{5}{2}}$
C. $\sqrt{\frac{7}{2}}$
D. $\frac{5}{4}$

Answer: C

11. Let $\bar{V}=2 i+j-k$ and $\bar{W}=i+3 k$

If \bar{U} is a unit vector, then the max imum value of the scalar triple product $[\bar{U} \bar{V} \bar{W}]$ is
A. $\sqrt{6}$
B. $\sqrt{10}+\sqrt{16}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: C

Watch Video Solution

12. Unit vectors $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are coplanar. A unit vector d is perpendicular to them. If
$(a \times b) \times(c \times d)=\frac{1}{6} i-\frac{1}{3} j+\frac{1}{3} k$
and the angle between a and b is 30°, then c is/are
A. $\pm \frac{1}{3}(-i-2 j+2 k)$
B. $\frac{1}{3}(2 i+j-k)$
C. $\pm \frac{1}{3}(-i+2 j-2 k)$
D. $\frac{1}{3}(-2 i-2 j+k)$

Answer: C

- Watch Video Solution

13. Let $x=2 i+j-2 k$ and $y=i+j$. If z is a vector such that $x . z=|z|,|z-x|=2 \sqrt{2}$ and the angle between $x \times y$ and z is 30°, then the magnitude of the vector $(x \times y) \times z$ is:
A. $\frac{\sqrt{3}}{2}$
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. $\frac{3 \sqrt{3}}{2}$

Answer: B

- Watch Video Solution

14. From a point A with position vector $p(i+j+k), \mathrm{AB}$ and AC are drawn perpendicular to the lines $r=k+\lambda(i+j)$ and $r=-k+\mu(i-j)$ respectively. A value of p is equal to
A. -1
B. $\sqrt{2}$
C. 2
D. -2

Answer: A::B::C::D

- Watch Video Solution

15. Three vector a, b and c are such that
$|a|=1,|b|=2,|c|=4$ and $a+b+c=0$. Then the value of $4 a . b+3 b . c+3 c . a$ is equal to
A. 27
B. - 68
C. -26
D. -34

Answer: C

- Watch Video Solution

16. If a, b and c are non-collinear unit vectors also b, c are non-collinear and $2 a \times(b \times c)=b+c$, then
A. $\pi / 6$
B. $2 \pi / 3$
C. $\pi / 4$
D. $3 \pi 4$

Answer: B

- Watch Video Solution

17. $\bar{a}=2 \bar{i}+\bar{j}-2 \bar{k}$ and $\bar{b}=\bar{i}+\bar{j}$ if \bar{c} is a vector such that $\bar{a} \cdot \bar{c}=|\bar{c}|,|\bar{c}-\bar{a}|=2 \sqrt{2}$ and and the angle between $\bar{a} \times \bar{b}$ and \bar{c} is 30°, then $|(\bar{a} \times \bar{b}) \times \bar{c}|=$
A. $1 / 2$
B. 3
C. $3 / 2$
D. 6

Answer: C

18. Let an angle between a and b be $2 \pi / 3$. If $|b|=2|a|$ and the vectors a $+x b$ and $a-b$ are at right angles, then the value of x is:
A. $2 / 3$
B. $2 / 5$
C. $1 / 3$
D. $1 / 5$

Answer: B

- Watch Video Solution

19. If three vectors $V_{1}=\alpha i+j+k, V_{2}=i+\beta j-2 k$ and $V_{3}=i+j$ are coplanar, and V_{1} and V_{3} are perpendicular, then the vector $V_{1} \times V_{2}$ is:

$$
\text { A. }-i+j+2 k
$$

B. $i-j+2 k$
C. $-i+j$
D. $2 i-2 j+k$

Answer: B

- Watch Video Solution

20.

$O A=a=\frac{1}{2}(i+j-2 k), O C=b=i-2 j+k$ and $O B=10 a+2 b$
. Let p (in (unit) ${ }^{2}$) be the area of the quadrilateral OABC and q (in (unit) ${ }^{2}$
) be the area of the parallelogram with OA and OC as adjacent sides, then p / q is equal to
A. 3
B. 4
C. 6
D. 8

Answer: C

Watch Video Solution

