©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG GUIDE

ELECTRONIC DEVICES

Illustration

1. The number densities of electrons and holes
in pure $S i$ at $27^{\circ} C$ is $2 \times 10^{16} \mathrm{~m}^{-3}$. When it is
doped with indium, the hole density increases
to $4 \times 10^{22} m^{-3}$, find the electron density in doped sillicon.

D View Text Solution

2. In an n-type silicon, which of the following statements is true?
(a) Electrons are majority carries and trivalent atoms are the dopants.
(b) Electrons are majority carries and pentavalent atoms are the dopants.
(c) Holes are minority carries and
paentavalent atoms are the dopants.
(d) Holes are minority carries and trivalent atoms are the dopants.

D Watch Video Solution

3. In a $p-n$ junction diode having depletion
layer of thickness $10^{-6} m$, the potential across
it is $0.1 V$. The electric field produced is

D Watch Video Solution

4. If the forward voltage in a semiconductor
diode is changed from 0.5 V to 0.7 V , then the forward current changes by 1.0 mA . The forward resistance of diode junction will be

- Watch Video Solution

5. In a full wave rectifier circuit operating from

50 Hz mains frequency, the fundamental frequency in the ripple would be
6. An laternativing voltage of $350 \mathrm{~V}, 60 \mathrm{~Hz}$ is applied on a full wave rectifier. The internal resistance of each diode is 200Ω. If
$R_{L}=5 k \Omega$, then find
(i) the peak value of output current.
(ii) the value of output direct current.
(iii) the output dc power.
(iv) the rms value of output current.
(v) the efficiency of rectifier.
(vi) the value of peak inverse voltage (P.I.V.).
7. The current gain of a transistor in common emitter configuration is 70 . If emitter is 8.8 mA , then find
(i) base current
(ii) collector current.
(iii) the current gain in common base configuration.
8. A transistor having $\alpha=0.99$ is used in a common base amplifier. If the load resistance is $4.5 k \Omega$ and the dynamic resistance of the emitter junction is 50Ω, find
(i) voltage gain
(ii) power gain

- View Text Solution

9. To get an output 1 from the circuit shown in
figure the input must be :

- Watch Video Solution

10. The following configuration of gate is equivalent to which gate? Write its truth table.

D Watch Video Solution

11. Two inputs of NAND gates are shorted, what is the equivalent logic gate for this configuration?

D Watch Video Solution

Neet Cafe Topicwise Practice Questions

1. The manifestation of band structure in
solids is due to
A. Heisenberg uncertainty principle
B. Pauli exclusion principle
C. Bohr's correspondence principle
D. Boltzmann law

Answer: B

D Watch Video Solution

2. Find the wavelength of light that may excite
an electron in the valence band of diamond to
the conduction band. The energy gap is 5.50 eV
A. 226 nm
B. 312 nm
C. 432 nm
D. 550 nm

Answer: A

D Watch Video Solution
3. If the energy gap between valence band and conduction band is 5 eV , then it is
A. a conductor
B. an insulator
C. a semiconductor
D. a superconductor

Answer: B

D Watch Video Solution

4. Carbon, silicon and germanium have four
valence elcectrons each . These are
characterised by valence and conduction
bands separated by energy band - gap respectively equal to $\left(E_{g}\right)_{c}\left(E_{g}\right)_{s i}$ and $\left(E_{g}\right)_{G e}$. Which of the following statements ture?

$$
\begin{aligned}
& \text { A. }\left(E_{g}\right)_{S i}<\left(E_{g}\right)_{G e}<\left(E_{g}\right)_{C} \\
& \text { B. }\left(E_{g}\right)_{<}\left(E_{g}\right)_{G e}<\left(E_{g}\right)_{S i} \\
& \text { C. }\left(E_{g}\right)_{>}\left(E_{g}\right)_{S i}>\left(E_{g}\right)_{G e} \\
& \text { D. }\left(E_{g}\right)_{C}=\left(E_{g}\right)_{S i}=\left(E_{g}\right)_{G e}
\end{aligned}
$$

Answer: C

D Watch Video Solution

5. The electricity conductivity of a semiconductor increases
when
electromagnetic radiation of wavelength
shorter than 2480 nm is incident on it. The band gap (in eV) for the semiconductor is
A. 0.9
B. 0.7
C. 0.5
D. 0.1
6. At absolute zero temperature, a semiconductor acts as a/an
A. conductor
B. insulator
C. dielectric

D. none of these

Answer: B
7. A silicon specimen is made into a P-type semiconductor by dopping, on an average, one helium atoms per 5×10^{7} silicon atoms. If the number density of atoms in the silicon specimen is 5×10^{28} atom $/ \mathrm{m}^{3}$ then the number of acceptor atoms in silicon per cubic centimeter will be
A. 2.5×10^{30} atom $/ \mathrm{cm}^{3}$
B. $1.0 \times 10^{15} \mathrm{atom} / \mathrm{cm}^{3}$
C. $1.0 \times 10^{13} \mathrm{atom} / \mathrm{cm}^{3}$

D. 2.5×10^{34} atom $/ \mathrm{cm}^{3}$

Answer: B

- Watch Video Solution

8. Which of the following statements is correct?
A. 7-type germanium is negatively charged and p-type germanium is positively
charged
B. n - type germanium is positively charged
and p-type germanium is negatively
charged.
C. Both n-type and p-type germanium are negatively charged.
D. Both n-type and p-type germanium are
electrically neutral.

Answer: D

9. A small impurity is added to germanium to get a n-type seiniconductor. This impurity is a
A. trivalent substance
B. pentavalent substance
C. bivalent substance
D. monovalent substance

Answer: B

D Watch Video Solution
10. The impurity atom added to germenium to make it N-type semiconductor is
A. aluminium
B. gallium
C. iridium
D. phosphorous

Answer: D

11. What is the conductivity of a semiconductor (in $\Omega^{-1} m^{-1}$) if electron density $=5 \times 10^{12} \mathrm{~cm}^{-3}$ and hole density $=8 \times 10^{13} \mathrm{~cm}^{-3}$?
$\left(\mu_{e}=2.3 V^{-1} s^{-1} m^{2}, \mu_{h}=0.01 m^{2} V^{-1} s^{-1}\right)$
A. 5.634
B. 1.968
C. 3.421
D. 8.964

Answer: B
12. If the ratio of the concentration of electron to that of holes in a semiconductor is $\frac{7}{5}$ and the ratio of current is $\frac{7}{4}$ then what is the ratio of their drift velocities?
A. $\frac{4}{7}$
B. $\frac{5}{8}$
C. $\frac{4}{5}$
D. $\frac{5}{4}$

Answer: D

D Watch Video Solution

13. For a p-type semiconductor, which of the following statements is true?
A. Electrons are majority carriers and trivalent atoms are the dopants.
B. Electrons are minority carriers and pentavalent atoms are the dopants.
C. Holes are minority carriers and pentavalent atoms are the dopants.
D. Holes are majority carriers and trivalent atoms are the dopants.

Answer: D

D Watch Video Solution

14. In a semiconductor material $(1 / 5)$ th of the total current is carried by the holes and the remaining is carried by the electrons. The drift

speed of electrons is twice that of holes at this

temperature. Thr ratio between the number densities of electrons and holes is

> A. $\frac{21}{6}$
> B. 5
> C. $\frac{3}{8}$
> D. 2

Answer: D

D Watch Video Solution
15. A block of pure silicon at $300 K$ has a length
of 10 cm and an area of $1.0 \mathrm{~cm}^{2}$. A battery of emf $2 V$ is connected across it. The mobility of electron is $0.14 m^{2} v^{-1} S^{-1}$ and their number density is $1.5 \times 10^{16} \mathrm{~m}^{-3}$. The mobility of holes is $0.05 m^{2} v^{-1} S^{-1}$.

The electron current is

$$
\begin{aligned}
& \text { A. } 6.72 \times 10^{-4} A \\
& \text { B. } 6.72 \times 10^{-5} A \\
& \text { C. } 6.72 \times 10^{-6} A \\
& \text { D. } 6.72 \times 10^{-7} A
\end{aligned}
$$

Answer: D

- Watch Video Solution

16. When a solid with a band gap has a donor
level just below
A. an insulator
B. a conductor
C. p-type semiconductor
D. n-type semiconductor

Answer: D

D View Text Solution

17. A pure semiconductor has equal electron and hole concentration of $10^{16} \mathrm{~m}^{-3}$. Doping by indium increases number of hole concentration n_{h} to $5 \times 10^{22} m^{-3}$. Then, the value of number of electron concentration n_{e} in the doped semiconductor is
A. $10^{6} / m^{3}$
B. $10^{22} / \mathrm{m}^{3}$
C. $2 \times 10^{9} / m^{3}$
D. $10^{19} / m^{3}$

Answer: C

D Watch Video Solution

18. An intrinsic semiconductor has a resistivity of $0.50 \Omega \mathrm{~m}$ at room temperature. Find the intrinsic carrier concentration if the mobilities
of electrons and holes are $0.39 m^{2} V^{-1} s^{-1}$ and $0.11 m^{2} V^{-1} s^{-1}$ respectively
A. $1.2 \times 10^{18} / \mathrm{m}^{3}$
B. $2.5 \times 10^{19} / \mathrm{m}^{3}$
C. $1.9 \times 10^{20} / \mathrm{m}^{3}$
D. $3.1 \times 10^{21} / \mathrm{m}^{3}$

Answer: B

D Watch Video Solution
19. p-type semiconductor is obtained by doping
A. germanium with arsenic
B. germanium with aluminium
C. germanium with antimony

D. germanium with phosphorus

Answer: B

20. Conductivity in semiconductor is due to
A. holes only
B. electrons only
C. both electrons and holes

D. neither electrons nor holes

Answer: C
(Watch Video Solution
21. Which of the following equations correctly represents the temperature variation of energy gap between the conduction and valence bands for Si ?

$$
\begin{aligned}
& \text { A. } E_{g}(T)=0.70-2.23 \times 10^{-4} \mathrm{TeV} \\
& \text { B. } E_{g}(T)=0.70+2.23 \times 10^{4} \mathrm{TeV} \\
& \text { C. } E_{g}(T)=1.10-3.60 \times 10^{-4} \mathrm{TeV} \\
& \text { D. } E_{g}(T)=1.10+3.60 \times 10^{-4} \mathrm{TeV}
\end{aligned}
$$

Answer: C

22. Region which have no free electron and holes in $\mathrm{P}-\mathrm{N}$ junction is
A. n-region
B. p-region
C. depletion region
D. none of these

Answer: C

- Watch Video Solution

23. The current flowing through 10Ω resistor in the circuit shown in the figure is

A. 50 mA
B. 20 mA
C. 40 mA
D. 40 mA

Answer: D

D View Text Solution

24. A potential barrier of 0.3 V exists across a
p-n junction. If the depletion region is $1 \mu \mathrm{~m}$
wide, what is the intensity of electric field in
this region?
A. $2 \times 10^{5} \mathrm{Vm}^{-1}$
B. $3 \times 10^{5} V m^{-1}$
C. $4 \times 10^{5} V m^{-1}$

D. $5 \times 10^{5} V m^{-1}$

Answer: B

D Watch Video Solution

25. When $p-n$ junction diode is forward biased then
A. the depletion region is reduced and barrier height is increased.
B. the depletion region is widened and
barrier height is reduced.
C. both the depletion region and barrier
height are reduced.
D. both the depletion region and barrier
height are increased.

Answer: C

D Watch Video Solution
26. In an unbiased p-n junction, holes diffuse from the p -region to n -region because
A. free electrons in the n-region attract
them.
B. they move across the junction by the potential difference.
C. hole concentration in p-region is more
as compared to n-region.
D. all the above

Answer: C

D View Text Solution

27. The circuit shown in the figure contains two diodes each with a forward resistance of
30Ω and with infinite backward resistance. If
the battery is 3 V , the current through the 50
Ω resistance (in ampere) is

A. Zero
B. 0.01
C. 0.02
D. 0.03

Answer: C
28. In the circuit shown, the reading of the ammeter if diode is not ideal, will be

A. 0
B. 15 mA
C. $>15 m A$
D. $<15 m A$

Answer: D

D Watch Video Solution

29. Current through the ideal diode as shown
in figure is

A. Zero
B. 20 A
C. $\frac{1}{20} A$
D. $\frac{1}{50} A$

Answer: A

- Watch Video Solution

30. The dominant mechanisms for motion of charge carriers in forward and reverse biased silicon $P-N$ junction are
A. drift in forward bias, diffusion in reverse
bias
B. diffusion in forward bias, drift in reverse bias
C. diffusion in both forward and reverse bias

D. drift in both forward and reverse bias

Answer: B

31. A junction diode has a resistance of 25Ω when forward biased and 2500Ω when reverse biased. What is the current in the diode, for the arrangement shown ?

A. $\frac{1}{15} A$
B. $\frac{1}{7} A$
C. $\frac{1}{25} A$
D. $\frac{1}{480} \mathrm{~A}$

Answer: B

- Watch Video Solution

32. Two identical $p-n$ junctions may be connected in series in which a battery in three ways, fig. The potential drops across the two $p-n$ junctions are equal in

Circuit 3
A. circuit 1 and circuit 2
B. circuit 2 and circuit 3
C. circuit 3 and circuit 1
D. circuit 1 only

Answer: B

- Watch Video Solution

33. In the given circuit

the current through the battery is
A. 0.5 A
B. $1 A$
C. 1.5 A
D. $2 A$

Answer: C

- Watch Video Solution

34. In the given circuit for ideal diode, the current through the battery is

A. 0.5 A
B. 1.5 A
C. 1.0 A
D. $2 A$

Answer: C

D Watch Video Solution

35. When the voltage drop across a $p . n$ junction diode is increased from 0.65 V to 0.70 V , the change in the diode current is
$5 m A$. What is the dynamic resistance of the diode?
A. 20Ω
B. 50Ω
C. 10Ω
D. 80Ω

Answer: C
(Watch Video Solution
36. In the diode circuit shown in figure,

A. D_{1} and D_{2} are reverse biased
B. D_{1} and D_{2} are forward biased
C. D_{1} is forward biased and D_{2} is reverse biased.
D. D_{1} is reverse biased and D_{2} is forward biased.

Answer: C

- Watch Video Solution

37. The current through the ideal diode as shown in the figure is

A. $0 A$
B. 0.02 A
C. 0.04 A

D. 0.06 A

Answer: B

D Watch Video Solution

38. In which of the following figures, junction diode is forward biased?

B.
C.

D.

Answer: C

- Watch Video Solution

39. The circuit shown in the figure contains
three diodes each with forward resistance of

50 ohms and with infinite backward resistance.

If the battery voltage is 6 V , the current through the 100 ohm resistance is

A. 0
B. 36 mA
C. 43 mA

D. 50 mA

Answer: B

D Watch Video Solution

40. The vallue of ripple factor for full wave rectifier is
A. 41%
B. 141%
C. 48.2%
D. 121%

Answer: C

D View Text Solution

41. Which is the correct diagram of a halfwave reactifier?

Answer: B

D Watch Video Solution
42. Which of the following circuits provides
full wave rectification of an ac input?
A.

c.

D.

Answer: D

D Watch Video Solution

43. With an ac input from 50 Hz power line, the
ripple frequency is
A. 50 Hz in the dc output of half wave as
well as full wave rectifier
B. 100 Hz in the dc output of half wave as
well as full wave rectifier
C. 50 Hz in the dc output of half wave and

100 Hz in dc output of full wave rectifier
D. 100 Hz in the dc output of half wave and

50 Hz in the dc output of full wave rectifier.
44. In a half wave rectifier circuit operating from 50 Hz mains frequency, the fundamental frequency in the ripple would be
A. 25 Hz
B. 50 Hz
C. 70.7 Hz
D. 100 Hz
45. A Zener diode when used as a voltage regulator is connected
(a) in forward bias
(b) in reverse bias
(c) in parallel to the load
(d) in series to the load.
A. (i) and (ii) are correct
B. (ii) and (iii) are correct
C. (i) only correct
D. (iv) only correct

Answer: B

D Watch Video Solution

46. A $\mathrm{p}-\mathrm{n}$ photodiode is fabricated from a
semiconductor with band gap of 2.8 eV . Which
of the following wavelengths it can detect?
A. 950 nm
B. 850 nm
C. 580 nm
D. 440 nm

Answer: D

D Watch Video Solution

47. Consider the following statements A and
B and identify the correct answer
(A) A Zener diode is always connected in reverse bias to use it as voltage regulator.
(B) The potential barrier of a $p-n$ junction
lies between 0.1 to 0.3 V , approximately.
A. A and B are correct.
$B . A$ and B are wrong.
C. A is correct, but B is wrong.
D. A is wrong, but B is correct.

Answer: C

D Watch Video Solution

48. A Zener diode is specified as having a breakdown voltage of 9.1 V , with a maximum power dissipation of 364 mW . What is the maximum current the diode can handle?
A. 40 mA
B. 60 mA
C. 50 mA
D. 45 mA

Answer: A
49. From the Zener diode circuit shown in figure, the current through the Zener diode is

A. 34 mA
B. 31.5 mA
C. 36.5 mA
D. 2.5 mA

Answer: B

- View Text Solution

50. In the circuit given, the current through
the Zener diode is

A. 10 mA
B. 6.67 mA
C. 5 mA
D. 3.33 mA

Answer: D

D View Text Solution

51. If the voltage between the terminals A and

B is 17 V and Zener brekdown voltage is 9 V ,
then the potential across R is

A. 26 V
B. 8 V
C. 9 V
D. 17 V

52. GaAs (with a band gap $=1.5 \mathrm{eV}$) as an LED

can emit
A. blue light
B. green light
C. infrared rays
D. X - rays

Answer: C
53. In the following circuit, the current flowing through $1 k \Omega$. resistor is

A. 0 mA
B. 5 mA
C. 10 mA

D. 15 mA

Answer: B

D Watch Video Solution

54. Identify the mismatch of the following.
A. Photo diode - Optical signal
B. Diode laser - Spontaneous emission
C. Diodc laser - Stimulated emission
D. Solar cell - Electrical energy into light

Answer: D

D View Text Solution

55. The device used for detecting optical signal is
A. Zener diode
B. photodiode
C. LED
D. junction diode

Answer: B

D Watch Video Solution

56. A zener diode has a contact potential of 1 V
in the absence of biasing. It undergoes Zener
breakdown for an electric field of $10^{6} \mathrm{~V} / \mathrm{m}$ at
the depletion region of $p-n$ junction. If the
width of the depletion region is $2.5 \mu \mathrm{~m}$, what
should be the reverse biased potential for the
Zener breakdown to occur ?
A. 3.5 V
B. 2.5 V
C. 1.5 V
D. 0.5 V

Answer: B

D Watch Video Solution
57. The p-n junction which generates an emf when solar radiation falls on it, with no external bias applied, is a
A. light emitting diode
B. photodiode
C. solar cell
D. zener diode

Answer: C

D Watch Video Solution

58. The part of a transistor which is heavily doped to produce a large number of majority carriers, is
A. base
B. emitter
C. collector
D. none of these

Answer: B

D Watch Video Solution

59. In an NPN transistor the collector current is $24 m A$. If 80% of electrons reach collector it base current in $m A$ is
A. 36
B. 26
C. 16
D. 6

Answer: D

D Watch Video Solution

60. In an n-p-n transistor 10^{10} electrons enter
the emitter in 10^{-6} s. If 2% of the electrons are
lost in the base, find the current transfer ratio

and the current amplification factor.

A. 0.88
B. 0.78
C. 0.98
D. 0.68

Answer: C
(Watch Video Solution
61. One way in which the operation of an $n-p-n$ transistor differs from that of a p-n-p transistor is that
A. the emitter junction is reverse biased in
the $n-p-n$.
B. the emitter injects minority carriers into
the base region of the $p-n-p$ and majority carriers in the base region of the $n-p-n$.
C. the emitter injects holes into the base
region of the $p-n-p$ and electrons into
the base region of the n-p-n.
D. the emitter injects electrons into the
base region of the $p-n-p$ and holes into
the base region of the $n-p-n$.

Answer: C

D View Text Solution

62. The heavily and lightly doped regions of a
bipolar junction transistor are respectively
A. base and emitter
B. base and collector
C. emitter and base

D. collector and emitter

Answer: C

D Watch Video Solution

63. In the cuircuit shown here the transistor used has a current gain $\beta=100$. What should be the bias resistor $R_{B E}$ so that $V_{C E}=5 V\left(\right.$ neglect $\left.V_{B E}\right)$

A. $200 \times 10^{3} \Omega$
B. $1 \times 10^{6} \Omega$

C. 500Ω

D. $2 \times 10^{3} \Omega$

Answer: A

D Watch Video Solution

64. A transistor connected at common emitter mode contains load resistance of 5 k and an input resistance of $1 k \Omega$. If the input peak voltage is 5 mV and the current gain is 50 , find the voltage gain.
A. 250
B. 500
C. 125
D. 50

Answer: A

D View Text Solution

65. A transistor is connected in a common emitter configuration.

The collector supply is 8 V and the voltage
drop across a resistor of 800Ω in
the collector circuit is 0.5 V . If the current gain
factor (α) is 0.96 , Find the base
current.
A. $26 m A$
B. $30 \mu A$
C. $36 \mu A$
D. $40 \mu \mathrm{~A}$

Answer: A

66. The current amplification factor α of a common base transistor and the current amplification factor β of a common emitter transistor are not related by

$$
\begin{aligned}
& \text { A. } \alpha=\frac{\beta}{1+\beta} \\
& \text { B. } \beta=\frac{\alpha}{1-\beta} \\
& \text { C. } \frac{1}{\alpha}-\frac{1}{\beta}=1 \\
& \text { D. } \beta=\frac{\alpha}{1+\alpha}
\end{aligned}
$$

Watch Video Solution

67. In a transistor, the current amplification
factor α is 0.9. The transistor is connected in
common base configuration. The change in collector current when base current changes by 4 mA is
A. 1.2 mA
B. 12 mA
C. 24 mA
D. 36 mA

Answer: D

- Watch Video Solution

68. If α and β are the current gain in the CB
and CE configurations respectively of the
transistor circuit, then $\frac{\beta-\alpha}{\alpha \beta}=$
A. zero
B. 1
C. 2

D. 0.5

Answer: B

D Watch Video Solution

69. The current gain of a transistor in a common base
arrangement in 0.98 . Find the change in collector current corresponding to a
change of 5.0 mA in emitter current . What would be the change in base current?
A. $4.6 \mathrm{~mA}, 0.1 \mathrm{~mA}$
B. $4.9 \mathrm{~mA}, 0.2 \mathrm{~mA}$
C. $5.9 \mathrm{~mA}, 0.3 \mathrm{~mA}$
D. $5.9 \mathrm{~mA}, 0.8 \mathrm{~mA}$

Answer: A

D Watch Video Solution
70. A transistor is used in common emitter configuration. Given its $\alpha=0.9$, calculate the
change in collector current when the base current changes by $2 \mu A$.
A. $1 \mu A$
B. $0.9 \mu \mathrm{~A}$
C. $30 \mu A$
D. $18 \mu A$

Answer: D
(Watch Video Solution
71. The collector supply voltage is 6 V and the voltage drop across a resistor of 600Ω in the collector circuit is 0.6 V , in a circuit of a transistor connected in common emitter mode. What is the base current if the current gain is $20 ?$
A. 0.25 mA
B. 0.05 mA
C. 0.12 mA
D. 0.02 mA

Answer: B

D Watch Video Solution

72. In a junction transistor, the current gain B
is defined as
A. The ratio of the change in collector
current to the change in emitter current
for a constant collector voltage in the
common base configuration.

B. he ratio of change in emitter current to

the change in base current for constant
emitter voltage in common emitter configuration.
C. The ratio of change in collector current
to the change in base current for
constant collector voltage in CE
configuration.
D. The ratio of change in base current to
the change in collector current for
constant collector voltage in CE
configuration

Answer: C

D View Text Solution

73. For a transistor, $\beta=100$. The value of a is
A. 1.01
B. 0.99
C. 100

D. 0.01

Answer: B

D View Text Solution

74. The current gain for transistor working as
a common base amplifier is 0.96 . If the emitter
current is 7.2 mA , then the base current is
A. 0.29
B. 0.35 mA
C. 0.39 mA
D. 0.43 mA

Answer: A

D Watch Video Solution

75. In a transistor amplifier
$\beta=62, R_{L}=5000 \Omega$ and internal resistance
of the transistor is 500Ω. Its power amplification will be.
A. 6200
B. 45850
C. 38440
D. 15320

Answer: C

D Watch Video Solution

76. The input resistance of a silicon transistor is 665Ω. Its base current is changed by $15 \mu A$
which results in the change in collector
current by $2 m A$. This transistor is used as a common emitter amplifier with a load resistance of $5 k \Omega$. What is the voltage gain of the amplifier.
A. 1002.5
B. 1232.8
C. 7235.9
D. 9879.3

Answer: A
77. For a transistor amplifier, the voltage gain
A. remains constant for all frequencies.
B. is high at high and low frequencies and
constant in the middle frequency range.
C. is low at high and low frequencies and
constant at mid frequencies.
D. none of these.

Answer: C
78. In a common-base amplifier, the phase difference between the input signal voltage and output voltage is :
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: A
79. In a common emitter amplifier, using output reisistance of 5000 ohm and input resistance fo 2000 ohm, if the peak value of input signal voltage is 10 mV and $\beta=50$, then the peak value of output voltage is

> A. $5 \times 10^{-6} \mathrm{~V}$
> B. $12.5 \times 10^{-4} \mathrm{~V}$
> C. 1.25 V
> D. 125 V

D Watch Video Solution

80. Two amplifiers are connected one after the other in series (cascaded). The first amplifier
has a voltage gain of 10 and the second has a voltage gain of 20 . If the input signal is 0.01 V , calcualte the output AC signal .
A. 1 V
B. 2 V

C. 3 V

D. 4 V

Answer: B

D Watch Video Solution

81. The input resistance of a common emitter transistor amplifier, if the output resistance is $500 k \Omega$, the current gain $\alpha=0.98$ and the power gain is 6.0625×10^{6} is
A. 198Ω
B. 300Ω
C. 100Ω
D. 400Ω

Answer: A

D Watch Video Solution

82. An amplifier has a voltage gain $A_{V}=1000$.

The voltage gain in $d B$ is
A. 30 dB
B. 60 dB
C. 3 dB
D. 20 dB

Answer: B

D Watch Video Solution
83. An n-p-n transistor having a.c. current gain of 50 to be used to make to make an amplifier

gain of the amplifier?

A. 8.5
B. 6
C. 4
D. 3

Answer: B
(Watch Video Solution
84. In a common emitter transistor amplifier,
the output resistance is $500 K \Omega$ and the
current gain $\beta=49$. If the power gain of the
amplifier is 5×10^{6}, the input resistance is
A. 325Ω
B. 165Ω
C. 240Ω
D. 225Ω

Answer: C

85. A transistor oscillator is
(i) An amplifier with positive feedback
(ii) An amplifier with reduced gain
(iii) The one in which DC supply energy is converted into AC output energy. Then
A. only (i) and (ii) are correct
B. only (1) and (iii) are correct
C. only (ii) and (iii) are correct
D. all (i), (ii) and (iii) are correct

Answer: B

D Watch Video Solution

86. For a common emitter amplifier, the audio
frequency voltage across the collector resistance $2 k \Omega$ is 2 V . If the current amplication factor of the transistor is 200 , and the base resistance is $1.5 k \Omega$, the input signal voltage and base current are
A. $0.1 V$ and $1 \mu A$
B. 0.15 V and $10 \mu \mathrm{~A}$
C. 0.015 V and 1 A
D. 0.0075 V and $5 \mu A$

Answer: D

D Watch Video Solution

87. If β, R_{L} and r are the ac current gain, load resistance and the input resistance of a transistor respectively in CE configuration, the voltage and the power gains respectively are
A. $\beta \frac{R_{L}}{r}$ and $\beta^{2} \frac{R_{L}}{r}$
B. $\beta \frac{r}{R_{L}}$ and $\beta^{2} \frac{r}{R_{L}}$
C. $\beta \frac{R_{L}}{r}$ and $\beta\left(\frac{R_{L}}{r}\right)^{2}$
D. $\beta \frac{r}{R_{L}}$ and $\beta\left(\frac{r}{R_{L}}\right)^{2}$

Answer: A

- Watch Video Solution

88. The transfer characteristics of a base
biased common in the figure. Which of the
following statements are true?

A. At $V_{i}=1 V$, it can be used as an amplifier.
B. At $V_{i}=0.5 V$, it can be used as a switch
turned off.

C. At $V_{i}=2.5 V$, it can be used as a switch

turned on.
D. All of these

Answer: D

D View Text Solution

89. The transfer characteristics of a base biased transistor has the operation regions, namely, cutoff, active region and saturation
region. For using the transistor as an amplifier it has to operate in the
A. active region
B. cut off region
C. saturation region

D. cut off and saturation

Answer: A

D Watch Video Solution

90. To get an OR gate from a NAND gate we need
A. Only 2 NAND gates.
B. Two NOT gates obtained from NAND
gates and one NAND gate.
C. 4 NAND gates and 2 AND gates obtained
from NAND gate.
D. 3 NAND gates and 3 NOT gates obtained
from NAND gates.

Answer: B

(Watch Video Solution

91. In the following circuit, Y is

A. A
B. B
C. $A B$
D. $A+B$

Answer: A

- Watch Video Solution

92. The Booleam expression for the given

circuit is

A. $\overline{A . B}$
B. $A+B$
c. $\bar{A}+B$
D. $A+\bar{B}$

Answer: A

- Watch Video Solution

93. In Boolean expression, a gate may be expressed as $Y=\overline{A+B}$. Which one of the following is it?

A. OR gate

B. AND gate
C. NOR gate
D. NAND gate

Answer: C

D Watch Video Solution

94. Which of the following gates (figure) will have an output of 1 ?

A. (iv)
B. (i)
C. (ii)
D. (iii)

Answer: D

- Watch Video Solution

95. The combination of the gates as shown in
figure represent

A. OR gate
B. AND gate
C. NOR gate
D. XOR gate

Answer: A

Watch Video Solution

96. The real time variation of input signals A and B are as shown below. If the inputs are fed into NAND gate, then select the output signal from the following :-

A.

B.

c.

D.

Answer: B

D Watch Video Solution

97. Identify the logic operation performed by
the circuit as shown in the figure.

A. AND

B. OR
C. NAND
D. NOT

Answer: B

- Watch Video Solution

98. In the circuit below, A and B represent two

inputs and C represents the output. The circuit represents

A. OR gate
B. NOR gate
C. AND gate
D. NAND gate

Answer: C

D View Text Solution

99. In the Boolean algebra, what is the equivalent expression for $\bar{A} \cdot \bar{B}$?
A. $A+B$
B. $\overline{A+B}$
C. $A \cdot B$
D. $\bar{A} \cdot B$

Answer: B

- Watch Video Solution

100. The inputs and outputs for different time
intervals are given below for NAND gate

Time interval	Input A	Input B	Output Y
t_{1} to t_{2}	0	1	P
t_{2} to t_{3}	0	0	Q
t_{3} to t_{4}	1	0	R
t_{4} to t_{5}	1	1	S

The value taken by P, Q, R, S are respectively
A. 1,1,1,0
B. 0,1,0,1
C. $0,1,0,0$
D. 1,0,1,1

Answer: A

D Watch Video Solution
101. The Boolean equation for the circuit given
in figure is

A. $Y=\bar{A} \cdot B+C$
B. $Y=\bar{A} \cdot(\bar{B}+\bar{C})$
C. $Y=\bar{A}(B+\bar{C})$
D. $Y=\bar{A} \cdot(B+C)$

Answer: D

- Watch Video Solution

102. Select the outputs Y of the combination

 of gates shown below for inputs$A=1, B=0, A=1, B=1$
$A=0, B=0$ respectively :-

A. $(0,1,1)$
B. $(1,0,1)$
C. $(1,1,1)$
D. $(1,0,0)$

Answer: D

D Watch Video Solution

103. Which logic gate is represented by the
following combination of logic gates

A. OR
B. NAND
C. AND
D. NOR

Answer: C

- Watch Video Solution

104. The circuit as shown in the figure is equivalent to

A. AND gate
B. NOR gate
C. OR gate

D. NAND gate

Answer: D

D Watch Video Solution
105. The logic circuit shown below has the input waveforms A and B as shown. Pick out the correct out put waveform.

A. 7:
B.

C.

D.

Answer: B

D Watch Video Solution

106. The output Y of the logic circuit as shown
in figure is

$$
\text { A. }(A+B) \cdot \bar{C}
$$

B. $(A+C) \cdot \bar{C}$
C. $(B+C) \cdot \bar{A}$
D. $A+B+C$

Answer: A

D Watch Video Solution

107. NAND gates can be used to form AND gate. What is the the minimum number of

NAND gates required for this purpose?
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

108. The circuit as shown in figure is equivalent

A. NOR gate
B. OR gate
C. AND gate
D. NAND gate

Answer: D

- Watch Video Solution

109. The simplified Y output of the given logic

circuit is

A. $\bar{A}+\bar{B}$
B. \bar{A}
C. \bar{B}
D. $A B$

D Watch Video Solution

110. In Boolean algebra $\overline{(A+\bar{B})} \cdot C$ will be equal to
A. $(\bar{A} \cdot B)+\bar{C}$
B. $(A \cdot \bar{B})+C$
C. $(A \cdot B) \cdot C$
D. $(A+\bar{B})+C$

Answer: A
111. The circuit as shown in figure is equivalent
to

(a) OR gate
(c) NAND gate
(b) NOR gate
(d) AND gate
A. OR gate
B. NOR gate
C. NAND gate
D. AND gate

Answer: A

- Watch Video Solution

112. The output Y of the logic circuit as shown
in figure is best represents as

A. $\bar{A}+\overline{B \cdot C}$
B. $A+\bar{B} \cdot C$
C. $\overline{A+B \cdot C}$
D. $A+\bar{B} \cdot C$

Answer: D

D Watch Video Solution

113. The combination of the gates shown
below yields

A. NAND gate

B. OR gate

C. NOT gate
D. AND gate

Answer: D

- Watch Video Solution

114. The circuit diagram (see fig.) shows a 'logic combination' with the states outputs X, Y and Z given for input P, Q, R and S all at state 1 (i.e., high). When inputs P and R
change to state 0 i.e., low) with inputs Q and S
still at 1 , the condition of output X, Y and Z chages to

A. 1, 0, 0
B. 1, 1, 1
C. $0,1,0$
D. $0,0,1$

- Watch Video Solution

115. In the circuit givne, A, B and C are inputs and Y is the output.

The output of Y is
A. high for all the high inputs
B. high for all the low inputs
C. high when $A=1, B=1, C=0$

D. low for all low inputs

Answer: D

- Watch Video Solution

116. Which of the following truth tables
corresponds to NAND gate?

A	B	Y	A	B	Y	A	B	Y	A	B	Y
0	0	1	0	0	0	0	0	1	0	0	1
0	1	1	0	1	0	0	1	0	0	1	1
1	0	1	1	0	0	1	0	0	1	0	1
1	1	0	1	1	1	1		1	1	1	1
(i)			(ii)						(iv)		

(a) (iv)
(b) (iii)
(c)
ii)
(d) (i)
A. (iv)
B. (iii)
C. (ii)
D. (i)

Answer: D
(Watch Video Solution

117. The output of given logic circuit is

A. $A \cdot(B+C)$
B. $A \cdot(B \cdot C)$
C. $(A+B) \cdot(A+C)$
D. $A+B+C$

118.

The output y , when all three inputs are first high and then low, will respectively be
A. 1, 0
B. 1, 1
C. 0,0
D. 0,1

D Watch Video Solution

119. The logic gates giving output ' 1 ' for the
inputs of ' 1 ' and ' 0 ' are
A. AND and OR
B. OR and NOR
C. NAND and NOR
D. NAND and OR

Answer: D

- Watch Video Solution

120. The truth table for the following logic

circuit is

A. $\left|\begin{array}{ccc}A & B & Y \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$
B. $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right|$
C. $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$
D. $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right|$

Answer: A

D Watch Video Solution

1. Which one of the following statement is false?
A. Pure Si doped with trivalent impurities
gives a p - type semiconductor.
B. Majority carriers in a n - type
semiconductor are holes.
C. Minority carriers in a p - type
semiconductor are electrons.
D. The resistance
semiconductor decreases with increases of temperature.

Answer: C

D Watch Video Solution

2. The following network of gates

is equivalent to
A.

B.

C.

D.

Answer: C

D Watch Video Solution

3. The voltage gain of an amplifier with 9% negative feedback is 10 . The voltage gain without feedback will be

A. 90

B. 100
C. 9
D. 10

Answer: B

D Watch Video Solution
4. Which of the following elements when added as an impurity into the germanium produces a p - type semiconductor?
A. P
B. As
C. Al
D. Sb

Answer: C

D View Text Solution
5. At temperature of absolute zero an intrinsic semiconductor is
A. insulator
B. metallic conductor
C. superconductor

D. extrinsic semiconductor

Answer: A
(Watch Video Solution
6. The figure shows the voltage waveforms across two inputs A and B and the output Y of a logic circuit. The logic circuit gate is

A. OR gate
B. AND gate
C. NOR gate

D. NAND gate

Answer: D

D Watch Video Solution

7. In an n-p-n transistor amplifier, the collector
current is 9 mA . If 90% of the electrons emitted reach the collector, then
A. the emitter current is 1 mA .
B. the base current is 10 mA .

$$
\text { C. } \alpha=0.9, \beta=9.0
$$

$$
\text { D. } \alpha=9.0, \beta=0.9
$$

Answer: C

D View Text Solution

8. A 220 V ac supply is connected between points A and B as shown 220 V in figure. What will be the potential AC difference V across the

A. 0 V
B. 110 V
C. 220 V
D. $200 \sqrt{2} V$

Answer: D

D Watch Video Solution

9. If the energy gap between valence band and
conduction band is 10 eV , then the material is
a/an
A. metal
B. insulator
C. semiconductor
D. superconductor

D Watch Video Solution

10. SSI integrated chip contains
A. less than 10 gates
B. 10 to 100 gates
C. 100 to 1000 gates
D. 1000 to 10000 gates
11. In the figure, the input waveform is

converted into the output waveform by a device X. The devise X is a/an

A. amplifier
B. half wave rectifier
C. full wave rectifier
D. oscillator

Answer: C

D Watch Video Solution

12. The input resistance of a silicon transisitor
is 100Ω. Base current is changed by $50 \mu A$
which result in a change in collector current by 5 mA . This transisitor is used as a common emitter amplifier with a load resistance of $4 k \Omega$
. The voltage gain of the amplifier is

A. 1000

B. 2000

C. 4000

D. 5000

Answer: C

D View Text Solution

13. Match List I with List II and select the correct answer using the codes given below
the lists.

List I		List II	
P.	Photodiode	1.	Light into electrical energy
Q.	Zener diode	2.	Electrical energy into light
R.	Solar cell	3.	Optical signal
S.	LED	4.	Voltage regulator

$\begin{array}{llll}P & Q & R & S\end{array}$

A.
$\begin{array}{llll}2 & 3 & 4 & 1\end{array}$
$\begin{array}{llll}P & Q & R & S\end{array}$
B.
$\begin{array}{llll}4 & 1 & 2 & 3\end{array}$
${ }_{C} P \quad Q \quad R \quad S$
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
D. $\begin{array}{llll}P & Q & R & S\end{array}$
D.
3
4
1
2

Answer: D

14. The amplifiers X, Y and Z are connected in series. The voltage gain of X, Y and Z are connected in series. The voltage gain of X, Y and Z are 10,20 and 40 respectively. If the input signal is 1 mV , then the output signal voltage is
A. 4 V
B. 6 V
C. 8 V
D. 10 V

Answer: C

D View Text Solution

15. Four photodiodes D_{1}, D_{2}, D_{3} and D_{4} are made of semiconductors having band gaps of
$2.5 \mathrm{eV}, 3 \mathrm{eV}, 2 \mathrm{eV}, 3.5 \mathrm{eV}$ respectively. Which one will be able to detect light of wavelength 600 nm ?
A. D_{4}
B. D_{3}
C. D_{2}

D. D_{1} is reverse biased and D_{2} is forward

 biased.Answer: B

D View Text Solution

16. In the circuit, the current flowing through
the zener diode is

A. 10 mA
B. 15 mA
C. 20 mA
D. 5 mA

Answer: B

- Watch Video Solution

17. Of the diodes shown in the following diagrams, which one is reverse biased?

18. The current in the circuit will be

A. $5 / 40 \mathrm{~A}$
B. $5 / 50 \mathrm{~A}$
C. $5 / 10 \mathrm{~A}$

D. $5 / 20 \mathrm{~A}$

Answer: B

D Watch Video Solution

19. In the case of forward biasing of $P N$ -
junction, which one of the following figures
correctly depicts the direction of flow of carriers?

Answer: B

- Watch Video Solution

20. p-n junction is called as forward biased when
A. the positive pole of the battery is joined
to the p - semiconductor and negative
pole to the n - semiconductor
B. the positive pole of the battery is
connected to n - semiconductor and
negative pole to the p -semiconductor
C. a mechanical force is applied in the
forward direction
D. None of these

- Watch Video Solution

21. The transfer ratio (β) of a transistor is 50 .

The input resistance of the transistor when
used in the common emitter configuration is
$1 k \Omega$. The peak value of the collector current for a peak value of AC input voltage of 0.01 V is
A. $100 \mu \mathrm{~A}$
B. $0.01 \mu \mathrm{~A}$
C. $0.25 \mu \mathrm{~A}$

D. $500 \mu \mathrm{~A}$

Answer: D

D View Text Solution

22. When the emitter current of a transistor is
changed by 1 mA , its collector current changes
by 0.990 mA . In the common base circuit,
current gain for the transistor is
A. 0.099

B. 1.01

C. 1.001

D. 0.990 .

Answer: D

D Watch Video Solution

23. In a transistor, the current amplification
factor α is 0.9. The transistor is connected in
common base configuration. The change in
collector current when base current changes by 4 mA is
A. 4 mA
B. 12 mA
C. 24 mA
D. 36 mA

Answer: D
(Watch Video Solution
24. Mobility of electron and holes in a sample of intristic germanium at room temperature are $0.36 m^{2} V^{-1} s^{-1}$ and $0.17 m^{2} V^{-1} s^{-1}$.

The electron and hole densities are each equal to $2.5 \times 10^{19} \mathrm{~m}^{-3}$. The electrical conductivity of germanium is
A. $0.47 \mathrm{Sm}^{-1}$
B. $5.18 \mathrm{Sm}^{-1}$
C. $2.12 S m^{-1}$
D. $1.09 \mathrm{Sm}^{-1}$

Answer: C

D Watch Video Solution

25. Digital signals
(i) do not provide a continuous set of values.
(ii) represents values as descrete steps.
(iii) can utillize binary system
(iv) can utillize decimal as well as binary
system.

The true option is.
A. (i) and (ii) only
B. (ii) and (iii) only
C. (i), (ii) and (iii) but not (iv)
D. All of (i), (ii), (iii) and (iv).

Answer: C

D Watch Video Solution

1. Which one of the following statement is false?
A. Pure Si doped with trivalent impurities
gives ap-type semiconductor.
B. Majority earners in a n-type
semiconductor are holes.
C. Minority carriers in a p-type
semiconductor are electrons.
D. The resistance
semiconductor decreases with increase of temperature.

Answer: B

D Watch Video Solution

2. The device that can act as a complete electronic circuit is
A. junction diode
B. integrated circuit
C. junction transistor
D. zener diode

Answer: B

D Watch Video Solution

3. A common emitter amplifier has a voltage gain of 50 , an input impedance of 100Ω and an output impedance of 200Ω. The power gain of the amplifier is :-
A. 500
B. 1000
C. 1250
D. 50

Answer: C

- Watch Video Solution

4. To get an output $y=1$ from the circuit shown below, the input must be

A. $a-0, b-1, c-0$
B. $a-0, b-0, c-1$
C. $a-1, b-0, c-1$
D. $a-1, b-0, c-0$

Answer: C

- Watch Video Solution

5. The following figure shows a logic gate circuit with two inputs A and B and the output Y. The voltage waveforms of A, B and the output Y are as given

A. NOR gate

B. OR gate

C. AND gate
D. NAND gate

Answer: D

- Watch Video Solution

6. For transistor action:
(1) Base, emitter and collector regions should
have similar size and doping concentrations.
(2) The base region must be very thin and
lightly doped.
(3) The emitter-base junction is forward biased and base-collector junction is reverse biased.
(4) Both the emitter-base junction as well as
the base-collector junction are forward biased.

Which one of the following pairs of statements is correct?
A. (1) and (4)
B. (1) and (2)
C. (2) and (3)

D. (3) and (4)

Answer: C

D View Text Solution

7. A transistor is operated in common emitter configuration at $V_{c}=2 V$ such that a change in the base current from $100 \mu A$ to $300 \mu A$ produces a change in the collector current from $10 m A$ to $20 m A$. The current gain is
A. 50
B. 75

C. 100

D. 25

Answer: A

D Watch Video Solution

8. In forward biasing of the p-n junction
A. the positive terminal of the battery is
region becomes thick.
B. the positive terminal of the battery is
connected to m-side and the depletion
region becomes thin.
C. the positive terminal of the battery is
connected to n -side and the depletion
region becomes thick.
D. the positive terminal of the battery is
connected to p -side and the depletion region becomes thin.

Answer: D

D View Text Solution

9. Symbolic representation of four logic gates
are shown as:

Pick out which ones are for AND, NAND and

NOT gates, respectively
A. (ii), (iii) and (iv)
B. (iii), (ii) and (i)
C. (iii), (ii) and (iv)
D. (ii), (iv) and (iii)

Answer: D

D Watch Video Solution

10. If a small amount of antimony is added to germanium crystal
A. it becomes a p-type semiconductor
B. the antimony becomes an acceptor atom
C. there will be more free electrons than holes in the semiconductor
D. its resistance is increased

Answer: C

D Watch Video Solution

11. A zener diode, having breakdown voltage equal to 15 V is used in a voltage regulator circuit shown in the figure. The current
through the diode is

A. 5 mA
B. 10 mA
C. 15 mA
D. 20 mA

Answer: A
12. In the following figure, the diodes which are forward biased are:
(B)
A. (A), (B) and (D)
B. (C) only
C. (A) and (c)
D. (B) and (D)

Answer: C

D Watch Video Solution

13. Pure $S i$ at $500 K$ has equal number of electron $\left(n_{e}\right)$ and hole $\left(n_{h}\right)$ concentration of $1.5 \times 10^{16} m^{-3}$. Dopping by indium. Increases
$n_{h} \quad$ to $4.5 \times 10^{22} \mathrm{~m}^{-3}$. The doped semiconductor is of
A. p-type having electron concentration

$$
n_{e}=5 \times 10^{9} m^{-3}
$$

B. h-type with electron concentration

$$
n_{e}=5 \times 10^{22} m^{-3}
$$

C.p-type with electron concentration

$$
n_{e}=2.5 \times 10^{10} m^{-3}
$$

D. n-type with electron concentration

$$
n_{e}=2.5 \times 10^{23} m^{-1}
$$

Answer: A

- Watch Video Solution

14. Two ideal diodes are connected to a battery as shown in the circuit. The current supplied by the battery is

A. 0.75 A
B. zero
C. 0.25 A
D. 0.5 A

Answer: D

D Watch Video Solution

15. In a $C E$ transistor amplifier, the audio signal voltage across the collector resistance of $2 k \Omega$ is $2 V$. If the base resistance is $1 k \Omega$ and
the current amplification of the transistor is 100 , the input signal voltage is
A. 0.1 V
B. 1.0 V
C. 1 mV
D. 10 mV

Answer: D
(Watch Video Solution
16. C and $S i$ both have same lattice structure,
having 4 bonding electrons in each. However,
C is insulator whereas $S i$ is intrinsic semiconductor. This is because
A. In case of C the valence band is not completely filled at absolute zero temperature.
B. In case of C the conduction band is
partly filled even at absolute zero
temperature.
C. The four bonding electrons in the case
of C lie in the second orbit, whereas in
the case of Si they lie in the third.
D. The four bonding electrons in the case
of C lie in the third orbit, whereas for Si
they lie in the fourth orbit.

Answer: C

D Watch Video Solution

17. The figure shows a logic circuit with two inputs A and B and the output C. The voltage wave forms across A, B and C are as given. The logic circuit gate is

A. OR gate
B. NOR gate
C. AND gate
D. NAND gate

Answer: A

D Watch Video Solution

18. The input resistance of a silicon transistor
is 100Ω. Base current is changed by $40 \mu A$
which results in a change in collector current by $2 m A$. This transistor is used as a common-
emitter amplifier with a load resistance of $4 k \Omega$
. The voltage gain of the amplifier is
A. 2000
B. 3000
C. 4000
D. 1000

Answer: A
(Watch Video Solution
19. To get an output $Y=1$ in given circuit, which of the following input will be correct?

A. A-1, B-0, C-0
B. $\mathrm{A}-1, \mathrm{~B}-0, \mathrm{C}-1$
C. A-1, B-1, C-1
D. $A-0, B-1, C-0$

Answer: B:C
20. In a common emitter (CE) amplifier having a voltage gain G, the transistor used has transconductor 0.03 mho and current gain 25 .

If the above transistor is replaced with another one with transconductance 0.02 mho and current gain 20 , the voltage gain will
A. $\frac{1}{3} G$
B. $\frac{5}{4} G$
C. $\frac{2}{3} G$

D. $1.5 G$

Answer: C

D Watch Video Solution

21. In a n-type semiconductor, which of the following statement is true?
A. Holes are minority carriers and
pentavalent atoms are dopants.
B. Holes are majority carriers and trivalent atoms are dopants.
C. Electrons are majority carriers and trivalent atoms are dopants.
D. Electrons are minority carriers and pentavalent atoms are dopants.

Answer: A

D Watch Video Solution

22. The output (X) of the logic circuit shown in
figure will be

A. $X=A . B$
B. $X=\overline{A+B}$
C. $X=\overline{\bar{A}} \cdot \overline{\bar{B}}$
D. $X=\overline{A . B}$

Answer: A

- Watch Video Solution

23. The given graph represents $V-I$ characteristic for a semiconductor device. which of the following statement is correct?

A. It is V-I characteristic for solar cell where,
point A represents open circuit voltage
and point B short circuit current.
B. It is for a solar cell and points A and B
represent open circuit voltage and current, respectively.
C. It is for a photodiode and points A and B
represent open circuit voltage and
current, respectively.
D. It is for a LED and points A and B represent open circuit voltage and short circuit current, respectively.

Answer: A

D Watch Video Solution

24. The barrier potential of a p-n junction depends on : (i) type of semiconductor material (ii) amount of doping
(iii)

temperature.

Which is one of the following is correct?
A. (1) and (2) only
B. (2) only
C. (2) and (3) only
D. (1), (2) and (3)

Answer: D
(Watch Video Solution
25. Which logic gate is represented by the following combination of logic gates

A. AND
B. NOR
C. OR
D. NAND

Answer: A

- Watch Video Solution

26. If in a $p-n$ junction diode, a square input
single of 10 V is applied as shown

$-5 \mathrm{~V}$

A.

Answer: B

D Watch Video Solution

27. The input signal given to a CE amplifier having a voltage gain of 150 is
$V_{1}=2 \cos \left(15 t+\frac{\pi}{3}\right)$. The corresponding output signal will be

$$
\begin{aligned}
& \text { A. } 2 \cos \left(15 t+\frac{5 \pi}{6}\right) \\
& \text { B. } 300 \cos \left(15 t+\frac{4 \pi}{3}\right) \\
& \text { C. } 300 \cos \left(15 t+\frac{\pi}{3}\right) \\
& \text { D. } 75 \cos \left(15 t+\frac{2 \pi}{3}\right)
\end{aligned}
$$

Answer: B

28. In the given figure, a diode D is connected to an external resistance $R=100 \Omega$ and an emf of 3.5 V . If the barrier potential developed across the diode is 0.5 V , the current in the circuit will be :

A. 20 mA
B. 35 mA
C. 30 mA
D. 40 mA

Answer: C

- Watch Video Solution

29. To get output 1 for the following circuit, the correct choice for the input is :

A. $A=I, B=I, C=O A=1, B=1, C=0$
B. $A=1, B=0, C=1$
C. $A=0, B=1, C=0$
D. $A=1, B=0, C=0$

Answer: B

- Watch Video Solution

30. A n-p-n transisitor is connected in common emitter configuration in a given amplifier. A
load resistance of 800Ω is connected in the collector circuit and the voltage drop across it
is $0.8 V$. If the current amplification factor is
0.96 and the input resistance of the circuits is
192Ω, the voltage gain and the power gain of the amplifier will respectively be
A. $4,3.69$
B. $4,3.84$
C. $3.69,3.84$
D.

Answer: C

D Watch Video Solution

31. Consider the junction diode as ideal. The
value of current flowing through $A B$ is:

A. $10^{-1} A$
B. $10^{-3} A$
C. $0 A$
D. $10^{-2} A$

Answer: D

D Watch Video Solution

32. For CE transistor amplifier, the audio signal
voltage across the collector resistance of $2 k \Omega$
is 4 V . If the current amplification factor of the
transistor is 100 and the base resistance is $1 k \Omega$, then the input signal voltage is
A. 10 mV
B. 20 mV
C. 30 mV
D. 15 mV

Answer: B
(Watch Video Solution
33. The given circuit has two ideal diodes connected as show in the figure. The current flowing through the resistance R_{1} will be

A. 2.5 A
B. 10.0 A
C. 1.43 A
D. 3.13 A

Answer: A

- Watch Video Solution

34. What is the output Y in the following circuit, when all the three output A, B, C are first 0 and then 1 ?

A. 0,1
B. 0,0
C. 1,0
D. 1,

Answer: C

D Watch Video Solution

35. In a common emitter transistor amplifier
the audio signal voltage across the collector is
$3 V$. The resistance of collector is $3 k \Omega$. If
current gain is 100 and the base resistance is
$2 k \Omega$, the voltage and power gain of the amlifier is :
A. 15 and 200
B. 150 and 15000
C. 20 and 2000
D. 200 and 1000

Answer: B
(Watch Video Solution
36. The given electrical network is equivalent to

A. OR gate
B. NOR gate
C. NOT gate
D. AND gate

Answer: B
37. Which one of the following represents
forward bias diode?
A. ${ }^{-4 v} \triangle m_{n}^{R}-3 y$
B. ${ }^{-2 v} \triangle 1-m_{n}^{R-12 v}$
C. ${ }^{3 v} D x m^{R}$
D. ${ }^{o v} D x-m^{g}-2 v$

Answer: D

D Watch Video Solution
38. In the combination of the following gates
the output Y can be written in terms of inputs A and B as:

A. $\overline{A . B}$
B. $A \cdot \bar{B}+\bar{A}+B$
C. $\overline{A . B}+A . B$
D. $\overline{A+B}$

Answer: B

- Watch Video Solution

39. In the circuit shown in the figure, the input
voltage V_{i} is $20 V, V_{B E}=0$ and $V_{C E}=0$. The
values of I_{B}, I_{C} and β are given by:

A. $I_{B}=40 \mu A, I_{C}=10 m A, \beta=250$
B. $I_{B}=25 \mu A, I_{C}=5 m A, \beta=200$
C. $I_{B}=20 \mu A, I_{C}=5 m A, \beta=250$
D. $I_{B}=40 \mu A, I_{C}=5 m A, \beta=125$

Answer: D

- Watch Video Solution

40. In a $p-n$ junction diode, change in temperature due to heating
A. affects only reverse resistance
B. affects only forward resistance
C. does not affect resistance of p-n
junction

D. affects the overall V-I characteristics of

p-n junction

Answer: D

D Watch Video Solution

41. For a p-type semiconductor, which of the following statements is true?
A. Electrons are the majority carriers and pentavalent atoms are the dopants.
B. Electrons are the majority carriers and trivalent atoms are the dopants.
C. Holes are the majority carriers and trivalent atoms are the dopants.
D. Holes are the majority carriers and pentavalent atoms are the dopants.

Answer: C

- Watch Video Solution

42. The correct Boolean operation represented
by the circuit diagram drawn is

A. NOR
B. AND
C. OR
D. NAND

Answer: D

- Watch Video Solution

