©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - KUMAR PRAKASHAN

CONSTRUCTIONS

Textual Examples

1. Construction 11.1: To divide a line segment
in a given ratio.
2. To construct the tangents to a circle from a point outside it.

- Watch Video Solution

Other Important Examples

1. Draw triangle $A B C$ with
$B C=4 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $\angle C=120^{\circ}$.

Then construct a triangle whose side are $\frac{4}{5}$ of the corresponding side of $\triangle A B C$.

D Watch Video Solution

2. Draw a pair of tangnets to a circle with radius 4 cm which are inclined to each other at an angle of 45°.

D Watch Video Solution

Exercise 111

1. Draw a line segment of length 7.6 cm and divide it in the ratio 5:8 Measure the two parts.

D Watch Video Solution

2. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and

6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.
3. Construct a triangle with sieds $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

- Watch Video Solution

4. Construct an isosceles triangle whose base
is 8 cm and altitude 4 cm and then another
triangle whose sides are $1 \frac{1}{2}$ thimes the corresponding sides of the isosceles triangle.
5. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm} . A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then sonstruct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle ABC

D Watch Video Solution

6. Draw a triangle $A B C$ with side
$B C=7 \mathrm{~cm}, \angle B=45^{\circ}, \angle A=105^{\circ} . \quad$ Then,
construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle A B C$.

D Watch Video Solution

7. Draw a right trianlge in which the side (other than hypotenuse) are of length 4 cm and 3 cm . Then construct another triangle 5 whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

D Watch Video Solution

1. Draw a circle of radius 6 cm . From a pint 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

- Watch Video Solution

2. Construct a tangent to a circle of radius 4
cm from a point on the concentric circle of
radius 6 cm and measure its length. Also verify the measurement by actual calculation.

D Watch Video Solution

3. Draw a circle of radius 3 cm . Take two point P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q .

D Watch Video Solution

4. Draw a pair of tangents to a circle of radius

5 cm which are incloined to each other at an angle of 60°.

- Watch Video Solution

5. Draw a line segment $A B$ of length 8 cm .

Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.
6. Let $A B C$ be a right triangle in which
$A B=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $\angle B=90^{\circ}(. B D$
is the perpendicular from B on $A C$. The circle through B, C, D is drawn. Construct the tangents from A to this circle.

- Watch Video Solution

7. Draw a circle with the help of a bangle. Take
a point outside the circle. Construct the pair
of tangents from this point to the circle.

D Watch Video Solution

Test Your Skills

1. Draw a line segment $A B$ of length $A B$ of
length 8.5 cm and divide it internally in the ratio 2: 3.

- Watch Video Solution

2. Construct a triangle of sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and

5 cm . Then construct a triangle similar to it 5 whose sides are $\frac{5}{4}$ times the correspoinding sides of the first triangle.

D Watch Video Solution

$$
\text { 3. Draw a } \triangle A B C \quad \text { with }
$$

$A B=6 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $\angle B=45^{\circ}$.

Then construct a triangle similar to $\triangle A B C$
whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle A B C$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 4. Draw a } \Delta A B C \quad \text { with } \\
& A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm} \text { and } \angle B=45^{\circ} \text {. }
\end{aligned}
$$

Then construct a triangle similar to $\triangle A B C$ whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle A B C$.

D Watch Video Solution

5. Draw a
$A B=4 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$.
Then construct a triangle similar to $\triangle A B C$
whose sides are $1 \frac{1}{2}$ times the corresponding sides of $\triangle A B C$.

D Watch Video Solution

6. Draw a circle of radius 5 cm . From a point 9
cm away from the centre, construct a pair of tangents to the circle.
7. Draw a circle of radius 4 cm . From a point 10 cm away from the centre, construct a pair of tangents to the circle.

D Watch Video Solution

8. Draw a circle with radius 4 cm and a diameter $A B$ of the circle. Extend $A B$ on both
the sides and take one point each on both the
extended parts. Draw of pair of tangnets to the circle from each of these points.

D Watch Video Solution

9. Draw line segment $A B$ of length 10 cm . Draw
a circle with centre A and radius 4 cm and another circle with centre B and radius 3 cm ,

Construct pair of tangents to each circle from the centre of the other circle.

- Watch Video Solution

1. Construct a triangle with sieds $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

- Watch Video Solution

2. Draw $\triangle \mathrm{ABC}$ with $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and
$\angle B=60^{\circ}$. Then, construct a triangle similar
to $A A B C$ whose sides are $3 / 4$ of the corresponding sides of $\triangle A B C$.

D Watch Video Solution

3. Determine a point which divides a line segment of length 10 cm internally in the ratio 3:4.

- Watch Video Solution

4. Draw a line segment of length 8 cm and divide it internally in the ratio 4:5.

D Watch Video Solution

$$
\begin{aligned}
& \text { 5. Draw } \\
& A B=6 \mathrm{~cm}, B C=8 \mathrm{~cm} \text { and } \angle B=90^{\circ} .
\end{aligned}
$$

Then, construct another triangle similar to Δ
ABC whose sides are $\frac{3}{4}$ of the corresponding sides of $\Delta \mathrm{ABC}$.
6. Construct an isosceles triangle whose base in 10 cm and altitude is 4 cm . Then, construct another triangle similar to it whose sides are 6 $\frac{6}{5}$ times the corresponding sides of the first triangle.

- Watch Video Solution

7. Draw a circle of radius 4 cm and take a point

P on it. Without using the centre of the circle, draw a tangent to the circle at P.
8. Draw two concentric circles with centre O
and radii 3 cm and 5 cm . From a point on the biggercircle, draw tangents to the smaller circle.

- Watch Video Solution

9. Draw a circle with centre and radius 4 cm
and take a point P 7.5 cm away from the centre
O. Then, from P draw a pair of tangents to the circle.

D Watch Video Solution

10. Draw a segement $A B$ of length 11 cm . Draw circles with centres A and B with radius 4 cm and 3 cm respectively. Then, draw a pair of tangents to each circle from the centre of the other circle.

Objective Questions

1. To draw a pair of tangents to a circle which are inclined to each other at an angle of 35°, it is required to draw tangents at the end points of two radii which are inclined to each other at an angle of

- Watch Video Solution

2. To divide a line segment in the ratio
$\sqrt{3}: \frac{1}{\sqrt{3}}$ is same as dividing it in the ratio
3. P is a point in the plane of a circle with centre O and radius 4 cm . If $\mathrm{OP}=3 \mathrm{~cm}$, tangent/s can be drawn to the circle from point P.

- Watch Video Solution

4. The two tangents drawn to a circle at the end points of a diameter are to each
other.

D Watch Video Solution

5. If two radit of a circle are inclined to each other at an angle of 70°, then the tangents at the end points of those radii are inclined to each other at an angle of........

D Watch Video Solution
6. To divide segment $A B$ in the ratio 3:5, ray $A X$
is drawn such that $\angle B A X$ is an acute angle.

Then, the number of points to be marked at equal distance on $A X$ must be at least
A. 3
B. 5
C. 8
D. 15

Answer:

7. To construct a triangle similar to A ABC
using a scale factor $\frac{3}{7}$, BC should be divided internally in the ratio........
A. 3:4
B. 3:7
C. 3: 10
D. $4: 7$
8. Point P lies on segment $A B$ such that $\frac{A P}{A B}=\frac{2}{5}$. Then, point P divides AB internally in the ratio.......
A. 2:5
B. 2:3
C. 3:5
D. 5:2

D Watch Video Solution

9. A segment $A B$ is divided at a point P such
that $7 \mathrm{~PB}=3 \mathrm{AB}$. Then, the ratio $\mathrm{AP}: P B=.$.
A. $4: 7$
B. 7: 4
C. $7: 3$
D. $4: 3$

Answer: C::D
10. To divide a line segment internally in the ratio 4:7, the number of arcs to be drawn on a ray inclined to the line segment is
A. 4
B. 7
C. 11
D. 28
11. To draw two tangents to a circle which are inclined at an angle of 60° the perpendiculars are to be drawn at the ends of two radii which are inclined at an angle of
A. 60°
B. 120°
C. 90°
D. 75°

Answer: A::B

D Watch Video Solution

12. To draw two tangents to a circle which are perpendicular to each other, the perpendiculars are to be drawn at the ends of two radii which are inclined at an angle of........
A. 120°
B. 60°
C. 30°
D. 90°

Answer:

D Watch Video Solution

13. If two tangents to a circle are inclined at an
angle of 35°, the radit through the points of
contact of those tangents are inclined at an
angle of
A. 35°
B. 55°
C. 125°
D. 145°

Answer: A::D

D Watch Video Solution

14. To draw two tangents to a circle with centre O and radius 3 cm from a point $P, 8 \mathrm{~cm}$ from O , we draw a circle with centre at the midpoint of OP and radius cm.
A. 8
B. 3
C. 5
D. 4

Answer: D

D Watch Video Solution

15. If two tangents to a circle are inclined at an angle of 75°, then the radii through their
points of contact are inclined at an angle of
A. 15°
B. 75°
C. 105°
D. 125°

Answer: A
(Watch Video Solution
16. Point P lies in the exterior of a circle with cnetre O and radius 5 cm . If $O P=13 \mathrm{~cm}$, then what is the length of a tangnet from P to the circle?

D Watch Video Solution

17. Point P lies on segment $A B$ such that $\frac{A P}{A B}=\frac{3}{8}$. In what ratio does the point P divide $A B$ internally ?
18. If two tangents from point P to a circle are inclined to each other at a angle of 140°, at what angle will the radii from the points of contact of those tangents be inclined ?

D Watch Video Solution

19. Point P lies on segment $A B$ such that
$3 A B=10 A P$. In which ratio does the point P divide $A B$ internally ?
20. If a triangle is to be constructed similar to
a given triangle $A B C$ with scale factor $\frac{4}{7}$, in what ratio should BC be divided internally ?

- Watch Video Solution

21. It is possible to divide a line segment in the
ratio $\sqrt{5}: \frac{1}{\sqrt{5}}$.
22. It is possible to divide a line segment in the ratio $2+\sqrt{3}: 2-\sqrt{3}$.

D Watch Video Solution

23. Check weather statement is true or False :

A pair of tangents can be constructed to a circle or radius 5 cm from a point P situated at a distance of 4 cm from the centre.

D Watch Video Solution

24. True or False: A pair of tangents can be constructed to a circle of radius 4 cm from a point P situated at a distance 8 cm from the centre.

D Watch Video Solution

25. True or False : A pair of tangents to a circle
can be constructed which are inclined at an angle of 170°.
