

MATHS

BOOKS - KUMAR PRAKASHAN

POLYNOMIALS

Textual Examples

1. Look at the graphs in the figures given below. Each is the graph of y = p(x), where p(x) is a polynomial. For each of the graphs, find the

number of zeroes of p(x).

Watch Video Solution

2. Look at the graphs in the figures given below. Each is the graph of y = p(x), where p(x) is a polynomial. For each of the graphs, find the

number of zeroes of p(x).

3. Look at the graphs in the figures given below. Each is the graph of y = p(x), where p(x) is a

number of zeroes of p(x).

4. Look at the graphs in the figures given below. Each is the graph of y = p(x), where p(x) is a

number of zeroes of p(x).

5. Look at the graphs in the figures given below. Each is the graph of y = p(x), where p(x) is a

number of zeroes of p(x).

6. Look at the graphs in the figures given below. Each is the graph of y = p(x), where p(x) is a

number of zeroes of p(x).

7. Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$, and verify the relationship between the zeroes and the coefficients.

8. Find the zeroes of the polynomial $x^2 - 3$ and verify the relationship between the zeroes and the coefficients.

Watch Video Solution

9. Find the quadratic polynomial the sum and product of whose zeroes are -3 and 2, respectively.

10. Verify that $3, -1, -\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x) = 3x^3 - 5x^2 - 11x - 3$, and then verify the relationship between the zeroes and the coefficients.

Watch Video Solution

11. Divide $2x^2 + 3x + 1$ by x + 2.

15. The graphs of y = p(x) are given in the figures

below, for some polynomials p(x) :

Find the number of zeroes of p(x) in each case .

1. The graphs of y = p(x) are given in the figures

below, for some polynomials p(x) :

Find the number of zeroes of p(x) in each case .

2. The graphs of y = p(x) are given in the figures below, for some polynomials p(x) :

Find the number of zeroes of p(x) in each case .

3. The graphs of y=p(x) are given in the figures

below, for some polynomials p(x) :

Find the number of zeroes of p(x) in each case .

4. When the polynomial $p(x) = x^4 + 5x^3 + 10x^2 + 16x + 7$ is divided by divisor $g(x) = x^2 + 2x + 3$, the remainder is ax + b. Find the values of a and b.

Watch Video Solution

5. Find the value of a for which the polynomial

 $3x^3 + 14x^2 + 9x + a$ is divisible by 3x + 5.

Exercise 2 2

 Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients :

 x^2-2x-8

Watch Video Solution

2. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients :

 $4s^2 - 4s + 1$

3. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients :

$$6x^2 - 3 - 7x$$

Watch Video Solution

4. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients :

 $4u^2 + 8u$

5. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients :

 $t^2 - 15$

Watch Video Solution

6. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients :

 $3x^2 - x - 4$

7. Find the quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

 $rac{1}{4},\;-1$

8. Find the quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

$$\sqrt{2}, \frac{1}{3}$$

9. Find the quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

 $0,\sqrt{5}$

Watch Video Solution

10. Find the quadratic polynomial each with the given numbers as the sum and product of its

```
zeroes respectively :
```

1, 1

11. Find the quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

$$-rac{1}{4},rac{1}{4}$$

12. Find the quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

4, 1

1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each

of the following :

$$p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2$$

Watch Video Solution

2. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :

$$p(x)=x^4-3x^2+4x+5, g(x)=x^2+1-x$$

3. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :

$$p(x)=x^4-5x+6, g(x)=2-x^2.$$

Watch Video Solution

4. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial :

$$t^2-3, 2t^4+3t^3-2t^2-9t-12$$

5. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial :

 $x^2 + 3x + 1, 3x^4 + 5x^3 - 7x^2 + 2x + 2$

Watch Video Solution

6. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial :

$$x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$$

8. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder are x - 2 and -2x + 4 respectively. Find g(x).

Give examples of polynomials 9. p(x), q(x), q(x) and r(x), which satisfy the division algorithm and deq p(x) = deq q(x)Watch Video Solution

10. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

degq(x) = degr(x)

11. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

degr(x) = 0.

Watch Video Solution

Exercise 2 4

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the

coefficients in each case :

$$2x^3+x^2-5x+2,rac{1}{2},1,\ -2$$

2. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case :

$$x^3 - 4x^2 + 5x - 2, 2, 1, 1$$

3. Find a cubic polynomial with the sum of its zeroes, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Watch Video Solution

4. If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are a - b, a, a + b, find a and b.
5. It two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$, find other zeroes.

Watch Video Solution

6. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

1. The graphs of y=p(x) are given in the figures below, for some polynomials p(x) find the number

of zeroes of p(x) :

2. The graphs of y = p(x) are given in the figures below, for some polynomials p(x) find the number of zeroes of p(x) : X \odot Watch Video Solution

3. The graphs of y = p(x) are given in the figures below, for some polynomials p(x) :

4. The graphs of y = p(x) are given in the figures

below, for some polynomials p(x) :

5. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial : $y^2 - 8y - 20$

Watch Video Solution

6. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial : $2x^2 + 11x + 15$

7. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial :

 $6x^2 - 17x + 12$

Watch Video Solution

8. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial : $x^2 - 4x - 77$

9. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial : $x^2 + 2\sqrt{5}x - 15$

Watch Video Solution

10. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial : $12x^2 + 17x - 5$

11. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial : $2s^2 - (1 + 2\sqrt{2})s + \sqrt{2}$

12. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial : $v^2 + 4\sqrt{3}v - 15$

14. Find a quadratic polynomial each with given numbers as the sum and product of its zeroes respectively :

$$\frac{1}{2}, \frac{-5}{2}$$

15. Find a quadratic polynomial each with given numbers as the sum and product of its zeroes respectively :

$$\sqrt{3}, \frac{1}{5}$$

Watch Video Solution

16. Find a quadratic polynomial each with given numbers as the sum and product of its zeroes respectively :

Vide Calution

$$rac{\sqrt{3}}{2}, -4$$

17. Find a quadratic polynomial each with given numbers as the sum and product of its zeroes respectively :

$$0, -\sqrt{10}$$

Watch Video Solution

18. Verify that 1, 2 and $\frac{3}{2}$ are the zeroes of the cubic polynomial $p(x) = 2x^3 - 9x^2 + 13x - 6$. Then, verify the relationship between the zeroes and the coefficient of the polynomial.

and the product of zeroes is 15.

21. For what value of a, -3 is a zero of the polynomial $p(x) = x^3 + 12x^2 + ax + 60?$

Watch Video Solution

22. If the product of the zeroes of the polynomial

 $p(x) = ax^2 + 11x + 12$ is 6, find the value of a.

Watch Video Solution

23. If $lpha \,$ and $\,$ $eta \,$ are the zeroes of the polynomial $p(x) = 3x^2 - 14x + 15$, find the value of $lpha^2 + eta^2$.

24. For what value of k, 7 is a zero of the polynomial $p(x) = x^2 - (5k - 18)x - 35?$ Also find the other zero.

Watch Video Solution

25. If α and β are the zeroes of the polynomial $p(x) = 3x^2 + 11x + a$, form a quadratic polynomial whose zeroes are 3α and 3β .

26. Without finding the zeroes α and β of the polynomial $p(x) = x^2 - 5x + 6$, find the values of the following :

$$\frac{1}{lpha} + \frac{1}{eta}$$

Watch Video Solution

27. Without finding the zeroes α and β of the polynomial $p(x) = x^2 - 5x + 6$, find the values of the following :

$$\alpha^2 + \beta^2.$$

28. Without finding the zeroes $lpha \ ext{ and } eta$ of the polynomial $p(x) = x^2 - 5x + 6$, find the values of the following :

 $\alpha^3 + \beta^3$.

Watch Video Solution

29. When the polynomial $p(x) = x^3 + 2x^2 + kx + 3$ is divided by x - 3, the remainder is 21. Find the value of k and the

quotient. Hence, find the zeroes of the polynomial

 $x^3 + 2x^2 + kx - 18.$

Watch Video Solution

30. Given that $\sqrt{2}$ is a zero of the polynomial $6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2}$, find the other two zeroes of the polynomial.

Watch Video Solution

31. Find all the other zeroes of the polynomial $p(x) = 2x^4 - 9x^3 + 5x^2 + 3x - 1$, if two of its

33. What must be added to polynomial $2x^3 + 9x^2 - 5x - 15$ so that the resulting polynomial is exactly divisible by 2x + 3?

Practice Thoroughly

1. Find the zeroes of the following quadratic polynomials by factorisation method and verify the relationship between the zeroes and the coefficients of the polynomial :

 $x^2 - 7x + 12$

2. Find the zeroes of the following quadratic polynomials by factorisation method and verify the relationship between the zeroes and the coefficients of the polynomial :

$$x^2+2\sqrt{2}x-6$$

Watch Video Solution

3. Find the zeroes of the following quadratic polynomials by factorisation method and verify the relationship between the zeroes and the

coefficients of the polynomial :

$$x^2 - rac{2}{15}x - rac{1}{15}$$

4. Find the zeroes of the following quadratic polynomials by factorisation method and verify the relationship between the zeroes and the coefficients of the polynomial :

 $6x^2 + x - 12$

5. Find the zeroes of the following quadratic polynomials by factorisation method and verify the relationship between the zeroes and the coefficients of the polynomial :

$$t^2-rac{3\sqrt{5}}{2}t-5$$

Watch Video Solution

6. Find the zeroes of the following quadratic polynomials by factorisation method and verify the relationship between the zeroes and the

coefficients of the polynomial :

$$2x^2-ig(1+2\sqrt{2}ig)x+\sqrt{2}$$

7. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

-4, 3

8. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

-10, 21

9. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

$$-4\sqrt{2}, -10$$

10. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

$$-2\sqrt{7}, -21$$

Watch Video Solution

11. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

$$1, -20$$

12. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively :

 $-6\sqrt{3}, 15$

Watch Video Solution

13. If lpha and eta are the zeroes of the polynomial $p(x)=9x^2+9x+2$, find the value of $lpha^2+eta^2.$

14. Form a quadratic polynomial whose zeroes are

 $7 + \sqrt{5}$ and $7 - \sqrt{5}$.

Watch Video Solution

15. If the sum of zeroes of the polynomial $p(x)=(a-1)x^2+(2a-6)x+(3a-18) ext{ is } -1$

, find the product of its zeroes.

16. If the zeroes of the polynomial $x^2 + px + q$ are double in the value of the zeroes of $2x^2 - 9x + 4$, find the values of p and q.

Watch Video Solution

17. Obtain all the zeroes of $6x^3 - 17x^2 + 15x - 4$ given that one of its zeroes is $\frac{1}{2}$.

18. Check whether $x^2 + 2x + 2$ is a factor of $x^4 - x^3 - 3x^2 - 4x + 2$ or not. Watch Video Solution

19. What must be subtracted from the polynomial $p(x) = x^3 + 13x^2 + 35x + 50$, so that the resulting polynomial is exactly divisible by $g(x) = x^2 + 11x + 10$?

20. Find all the zeroes of the polynomial
$$3x^4 - 15x^3 + 17x^2 + 5x - 6$$
 if two of its zeroes are $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$. **Vatch Video Solution**

Objective Questions

1. Fill in the blanks so as to make each of the following statements true :

The zero of linear polynomial p(x)=3x+2

is.....

2. Fill in the blanks so as to make each of the following statements true :

The product of the zeroes of quadratic polynomial

 $p(x)=x^2-7x+12$ is.....

3. Fill in the blanks so as to make each of the following statements true :

The sum of zeroes of cubic polynomial $p(x)=2x^3-17x+38x-15\,{
m is.....}$

4. Fill in the blanks so as to make each of the following statements true :

If 3 one of the zeroes of polynomial $p(x)=x^3+3x^2+kx-24$, then k=.....

Watch Video Solution

5. Fill in the blanks so as to make each of the following statements true :

If the sum of zeroes and the product of zeroes of

the polynomial $p(x) = x^2 + (k-7)x + (k+1)$

are equal, then k=.....

6. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :

The number of zeroes lying between -1 and 1 of

the polynomial p(x), whose graph is given, is.....

 $\mathsf{A.}\,4$

B. 3

 $\mathsf{C.}\,2$

D. 1

Answer: C

7. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :
The quadratic polynomial for which the sum and

product of zeroes are 4 and 4 respectively is......

A.
$$x^2 - 4x - 4$$

$$\mathsf{B.}\,x^2+4x+4$$

C. $x^2 + 4x - 4$

D.
$$x^2 - 4x + 4$$
Answer: D

8. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :

The quadratic polynomial whose sum and product

of zeroes are -3 and 2 respectively is.....

A.
$$x^2 + 3x + 2$$

B.
$$x^2-3x-2$$

C.
$$x^2 + 2x + 3$$

D.
$$x^2 - 2x - 3$$

Answer: A

9. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :

The quadratic polynomial with zeroes 5 and 3 is.....

A.
$$x^2 - 8x + 15$$

B.
$$x^2+8x+15$$

C.
$$x^2 + 8x - 15$$

D.
$$x^2-8x-15$$

Answer: A

10. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :

If α, β and γ are the zeroes of the cubic

Answer: B

11. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :

If α , β and γ are the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$, then $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \dots$ A. $\frac{b}{d}$

$$B. - \frac{b}{d}$$
$$C. \frac{c}{d}$$
$$D. - \frac{c}{d}$$

Answer: A

12. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true : The zeroes of the polynomial $x^2 + 2x - 15$ are......

A. 3 and 5

- B.-3 and -5
- C.3 and -5
- D.-3 and 5

Answer: C

13. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :

If α and β are the zeroes of polynomial $p(x) = 6x^2 - 7x - 3$, then $\frac{1}{\alpha} + \frac{1}{\beta} = \dots$ A. $\frac{7}{6}$ B. $\frac{7}{3}$ C. $-\frac{7}{3}$

Answer: C

Watch Video Solution

14. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :

For the cubic polynomial $p(x) = x^3 - x^2 - 17x - 15$, the sum of the products of zeroes taken two at a time is......

$$A. - 15$$

B. - 17

 $C.\,17$

D. 15

Answer: B

Watch Video Solution

15. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :

If the zeroes of quadratic polynomial

$$p(x)=6x^2-13x+3m-9$$
 are reciprocal of

each other, then m=.....

A. 6

 $B.\,15$

 $\mathsf{C.}\,5$

 $\mathsf{D.}\,2$

Answer: C

16. Answer each question by selecting the proper alternative from those given below each question so as to make the statement true :

The zeroes of polynomial $x^2+99x+127$ are.....

A. both positive

B. both negative

C. equal

D. having opposite signs

Answer: B

17. Answer the following by a number or a word or a sentence :

What is the sum of the zeroes of the polynomial

$$x^2 - 12x + 20?$$

Watch Video Solution

18. Answer the following by a number or a word or a sentence : Given that one of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ is zero, what is the product of other two zeroes?

19. Answer the following by a number or a word or

a sentence :

What is the product of zeroes of the cubic

polynomial $p(x)=x^3+5x^2-2x-24?$

Watch Video Solution

20. Answer the following by a number or a word or a sentence :

Can x^2-1 be the quotient on division of

 x^6+2x^3+x-1 by a polynomial in x of degree

21. Answer the following by a number or a word or a sentence :

If on division of a polynomial p(x) by a polynomial

g(x), the quotient is zero, what is the relation

between the degrees of p(x) and g(x)?

22. State whether each of the following statements is true or false :

If the graph of a polynomial intersects the x-axis at

only one point, it cannot be a quadratic polynomial.

Watch Video Solution

23. State whether each of the following statements is true or false :

If two of the zeroes of a cubic polynomial are zero,

then it does not have the term with x and the

constant term.

Vatch Video Solution
24. State whether each of the following
statements is true or false :
2 is one of the zeroes of the polynomial

$$p(x) = x^2 - 6x + 8$$

25. State whether each of the following statements is true or false : 5 is one of the zerores of the polynomial $p(x) = 2x^3 - 5x - 13x + 30$

Watch Video Solution

26. State whether each of the following statements is true or false :

If 3 is one of the zeroes of the polynomial $p(x) = x^2 - 11x + k$, then k= 24.

