©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KUMAR PRAKASHAN

REAL NUMBERS

Textual Examples

1. Use Euclid's algorithm to find the HCF of 4052 and 12576.

- Watch Video Solution

2. Show that every positive even integer is of the form 2 q , and that every positive odd integer is of the form $2 q+1$, where q is some integer.
3. Show that any positive odd integer is of the form $4 q+1$ or $4 q+3$, where q is some integer.

- Watch Video Solution

4. A sweetseller has 420 kaju barjis and 130 badam barjis. She wants to stack them in such a way that each stack has the same number of barjis, and they take up the least area of the tray. What is the number of barj is that can be placed in each stack for this purpose?

- Watch Video Solution

5. Consider the numbers 4^{n}, where n is a natural number. Check whether there is any value of n for which 4^{n} ends with the digit zero.

- Watch Video Solution

6. Find the LCM and HCF of 6 and 20 by the prime factorisation method.

- Watch Video Solution

7. Find the HCF of 96 and 404 by the prime factorisation method. Hence, find their LCM

- Watch Video Solution

8. Find the HCF and LCM of 6,72 and 120 , using the prime factorisation m ethod.

- Watch Video Solution

9. Prove that $\sqrt{3}$ is irrational.

- Watch Video Solution

10. Show that $5-\sqrt{3}$ is irrational.

- Watch Video Solution

11. Show that $3 \sqrt{2}$ is irrational.

- Watch Video Solution

Other Important Examples

1. The measurements of a room are $7 \mathrm{~m} 50 \mathrm{~cm}, 6 \mathrm{~m}$ and 3 m 75 cm . Find the length of the longest rod that can measure all the three dimensions of the room exactly.
2. Prove that the sum of any positive integer and its square is an even number.

- Watch Video Solution

3. Show that the square of any positive integer is of the form 5 m or 5 m ± 1.
4. Prove that $\sqrt{7}$ is irrational.

- Watch Video Solution

5. Prove that $2 \sqrt{5}+\sqrt{3}$ is irrational.

- Watch Video Solution

6. Without actually performing the long division, write the decimal expansion of the following rational numbers
(1) $\frac{113}{200}$
(2) $\frac{613}{2500}$
(3) $\frac{4213}{3125}$
(4) $\frac{63}{32}$

- Watch Video Solution

7. Express the non-terminating repeating decimal number $1 . \overline{325}$ in the $\frac{p}{q}$ form.

- Watch Video Solution

8. Find the HCF of 660 and 252 by using Euclid's division algorithm and verify it by using prime factorisation m ethod.

- Watch Video Solution

9. Find the HCF of 315 and 1275 by prime factorisation method. Then, find their LCM

- Watch Video Solution

10. Three bells toll at intervals of 8,12 and 15 minutes respectively. If they start tolling together, after what time will they toll together again

- Watch Video Solution

Exercise 11

1. Use Euclid's division algorithm to find the $>$ HCF of (1) 135 and 225 (2
) 196 and 38220 (3) 867 and 255.

- Watch Video Solution

2. Show that any positive odd integer is of the form $6 q+1$ or $6 q+3$ or $6 q$ +5 , where q is some integer.

- Watch Video Solution

3. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march ?

- Watch Video Solution

4. Use Euclid's division lemma to show that the square of any positive integer is either of the form 3 m or $3 \mathrm{~m} .+1$ for some integer m .

- Watch Video Solution

5. Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 m, 9 m+1$ or $9 m+8$.

- Watch Video Solution

Exercise 12

1. Express each number as a product of its prime factors : (1) 140 (2) 156
(3) 3825 (4) 5005 (5) 7429

- Watch Video Solution

2. Find the LCM and HCF of the following pairs of integers and verify that

LCM X HCF = product of the two numbers : (1) 26 and 91 (2) 510 and 92 (
$3) 336$ and 54

- Watch Video Solution

3. Find the LCM and HCF of the following integers by applying the prime factorization method :
(1) 12,15 and 21
(2) 17,23 and 29
(3) 8,9 and 25 .

- Watch Video Solution

4. Given that $\operatorname{HCF}(306,657)=9$, find $\operatorname{LCM}(306,657)$.

- Watch Video Solution

5. Check whether 6^{n} can end with the digit 0 for any natural number n

- Watch Video Solution

6. Explain why $7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$ are composite numbers.

- Watch Video Solution

7. There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the starting point ?

- Watch Video Solution

Exercise 13

1. Prove that $\sqrt{5}$ is irrational

- Watch Video Solution

2. Prove that $3+2 \sqrt{5}$ is irrational.
3. Prove that the following are irrationals
(1) $\frac{1}{\sqrt{2}}(2) 7 \sqrt{5}(3) 6+\sqrt{2}$

- Watch Video Solution

Exercise 14

1. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal al expansion :
(1) $\frac{13}{3125}$
(2) $\frac{17}{8}$
(3) $\frac{64}{455}$
(4) $\frac{15}{1600}$
(5) $\frac{29}{343}$
(6) $\frac{23}{2^{3} 5^{2}}$
(7) $\frac{129}{2^{2} 5^{7} 7^{5}}$
(8) $\frac{6}{15}$
(9) $\frac{35}{50}(10$

- Watch Video Solution

2. Write down the decimal expansions of those rational numbers m Question 1 above which have terminating decimal expansions.

Watch Video Solution

3. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form $\frac{p}{q}$ what can you say about the prime factors of q ?
(1) 43.123456789
(2) 0.120120012000120000
(3) $43 . \overline{123456789}$

- Watch Video Solution

Practice Thoroughly

1. Can the number $6^{n}, \mathrm{n}$ being a positive integer end with digit 0 ? Give reasons.
2. Can two positive integers have 18 as their HCF and 380 as their LCM ?

Give reasons,

- Watch Video Solution

3. Show that the square of an odd positive integer is of the form $8 m+1$, for some whole ? number m.

- Watch Video Solution

4. Prove that if x and y are both odd positive Integers, then $x^{2}+y^{2}$ is even but not divisible by 4 .

- Watch Video Solution

5. Show that the square of an odd positive c integer is of the form $6 q+1$ or $6 q+3$ for some integer q.
6. For any positive integer a, show that one and only one out $a, a+2$ and $a+4$ is divisible by 3 .

- Watch Video Solution

7. Prove that $\sqrt{3}+\sqrt{5}$ is irrational.

- Watch Video Solution

8. Show that 12^{n} cannot end with digit 0 or 5 for any natural number n .

- Watch Video Solution

9. Find the HCF of 195, 416 and 637 by using Euclid's division algorithm.

- Watch Video Solution

10. Find the greatest number which divides 450,570 and 880 leaving remainders 2,3 and 5 respectively.

- Watch Video Solution

11. Find the greatest number of 7 digits which is exactly divisible by 12,15 and 21.

- Watch Video Solution

Objective Questions

1. The decimal expansion of $\frac{13211}{1250}$ terminates after decimal places.
2. If two positive integers a and b are expressible as $a=x^{3} y$ and $b=x^{2} y^{3} \mathrm{x}$ and y being prime numbers, then $\operatorname{HCF}(\mathrm{a}, \mathrm{b})$ is

Watch Video Solution

3. The product of two consecutive positive integers is always divisible by

- Watch Video Solution

4. $\operatorname{HCF}(156,455)=$ \qquad

- Watch Video Solution

5. $\operatorname{LCM}(220,60)=$ \qquad
6. If the square of any positive integer a is divided by 6 , the remainder cannot be
A. 1
B. 3
C. 4
D. 5

Answer: 5

- Watch Video Solution

7. According to Euclid's division lemma, for positive integer a and 5, if a = $5 q+r$ is unique, then $r=\ldots$. is not possible.
A. 0
B. 2
C. 6
D. 4

Answer: 6

- Watch Video Solution

8. The greatest four digit number that is divisible by 95 is
A. 9995
B. 9975
C. 9985
D. 9950

Answer: 9975

- Watch Video Solution

9. Any positive odd integer a is of the form for some integer m.
A. $4 m+1$ or $4 m+2$
B. $4 \mathrm{~m}+2$ or $4 \mathrm{~m}+3$
C. $4 m+1$ or $4 m+3$
D. $4 m$ or $4 m+1$

Answer: 4m +1 or 4m+3

- Watch Video Solution

10. The LCM of the smallest prime number and the smallest composite number is
A. 4
B. 3
C. 2
D. 1
11. For two positive integers a and b, if $\operatorname{HCF}(a, b)=7$ and $\operatorname{LCM}(a, b)=385$, then their product is \qquad
A. 385
B. 2695
C. 2595
D. 2675

Answer: 2695

- Watch Video Solution

12. The prime factorisation of 98 is \qquad
A. $2^{2} \times 7^{2}$
B. 2×7^{2}
C. $2^{2} \times 7$

$$
\text { D. } 2 \times 7
$$

Answer: 2×7^{2}

Watch Video Solution
13. From the given factor tree, the values of x and y are respectively.

A. 35 and 210
B. 210 and 35
C. 200 and 40
D. 40 and 200

Answer: 210 and 35

- Watch Video Solution

14. is not an irrational number. $\sqrt{ } 6 \sqrt{ } 5 \sqrt{ } 4 \sqrt{ } 3$
A. $\sqrt{6}$
B. $\sqrt{5}$
C. $\sqrt{4}$
D. $\sqrt{3}$

Answer: $\sqrt{4}$

- Watch Video Solution

15. is a rational number between $\sqrt{2}$ and $\sqrt{3}$ a. $4 / 5$ b. 3/2 c. 3/4 d. 6/5
A. $\frac{4}{5}$
B. $\frac{3}{2}$
C. $\frac{3}{4}$
D. $\frac{6}{5}$

Answer: $\frac{3}{2}$

Watch Video Solution

16. If the HCF of 65 and 117. is expressible in the form $65 \mathrm{~m}-117$, then the value of m is
A. 4
B. 2
C. 1
D. 3

Answer: 2

17. The largest number which divides 70 and 125 leaving remainders 5 and 8 respectively is \qquad
A. 13
B. 65
C. 875
D. 1750

Answer: 13

- Watch Video Solution

18. The decimal expansion of $\frac{27}{2^{113} \times 5^{110}}$ no terminates after places of decimal
A. 113
B. 110
C. 3
D. 223

Answer: 113

- Watch Video Solution

19. Given positive integers a and b, there exists unique integers q and r satisfying $a=b q+r$. In this statement r should be smaller than which integer ?

- Watch Video Solution

20. What is the HCF of 65 and 117 ?
21. What is the LCM of 36 and 100 ?

- Watch Video Solution

22. After how many places of decimal does 751 the decimal expansion of $\frac{751}{2^{4} 5^{2}}$ terminate?

- Watch Video Solution

23. State the smallest positive integer which is divisible by 28 and 63 both.

- Watch Video Solution

24. The decimal expansion of $\frac{256}{125}$ is nonterminating repeating.

- Watch Video Solution

25. The HCF of 25 and 52 is 1

- Watch Video Solution

26. The decimal expansion of $\frac{87}{2^{5} 5^{2}}$ terminates after decimal places.

- Watch Video Solution

27. π is a rational number.

- Watch Video Solution

28. For two positive integers a and $b, \operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=a \times b$.

- Watch Video Solution

1. Show that the square of any positive integer is of the form 4 m or $4 \mathrm{~m}+$ 1 for some integer m.

- Watch Video Solution

2. Show that the square of any positive integer cannot be of the form 6 m
+2 or $6 m+5$ for ? some integer m.

- Watch Video Solution

3. Show that the cube of any positive integer j is of the form $4 m$ or $4 m+1$ or $4 \mathrm{~m}+3$ for some integer m .

- Watch Video Solution

4. if n is an odd integer, then show that $n^{2}-1$ is divisible by 8 .
5. Using Euclid's division algorithm, find the HCF of 441, 567 and 693.

- Watch Video Solution

6. Using Euclid's division algorithm, find the largest number that divides 1251, 9377 and 15628 leaving remainders 1,2 and 3 respectively.

- Watch Video Solution

7. Using Euclid's division algorithm, find the HCF of 5404 and 4800

- Watch Video Solution

8. Using Euclid's division algorithm, find the HCF of 1620, 1725 and 255.

- Watch Video Solution

9. For any positive integer n, prove that $n^{3}-n$ is divisible by 6 .

Watch Video Solution

10. Find the missing numbers a, b, c and d in the following factor tree

11. Find the HCF of 525 and 1120 by the prime factorisation method. Then, find their LCM using the relation formula.

- Watch Video Solution

12. The HCF of 128 and 68 is expressible in ? the form $128 \mathrm{~m}-15 \times 68$. Find the value of m . Also find the LCM of 128 and 68 using prim e factorisation m ethod.

- Watch Video Solution

13. Explain why $5 \times 7 \times 13+13$ is a composite number

- Watch Video Solution

14. The HCF of two numbers is 145 and their LCM is 2175 . If one of the numbers is 725 , find the other number.
15. Find the HCF and LCM of 510 and 92 and also verify that HCF \times LCM $=$ the product of two given numbers.

- Watch Video Solution

16. Find the HCF and LCM of 60, 120 and 288.

D Watch Video Solution

17. Prove that $3+2 \sqrt{5}$ is irrational.

D Watch Video Solution

18. Prove that $\sqrt{3}+\sqrt{5}$ is irrational.
19. Prove that $\sqrt{11}$ is irrational.

- Watch Video Solution

20. Prove that $5 \sqrt{7}$ is irrational.

- Watch Video Solution

21. Prove that $\frac{2}{\sqrt{3}}$ is irrational.

- Watch Video Solution

22. Prove that $\sqrt{p}+\sqrt{q}$ is irrational, where p and q are primes.

- Watch Video Solution

23. Prove that there is no rational number whose square is 6 .

- Watch Video Solution

24. Without actually performing the long division, , state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion
(1) $\frac{317}{500}(2) \frac{19}{24}(3) \frac{513}{160}($
(4) $\frac{62}{375}$
(5) $\frac{894}{2000}$
(6) $\frac{348}{700}$
(7) $\frac{1537}{4000}(8) \frac{106}{42}$

Watch Video Solution

25. Express $0 . \overline{43}$ in the $\frac{p}{q}$ form

- Watch Video Solution

26. Write down the decimal expansions of the following rational numbers without performing the long division :
(1) $\frac{7}{16}(2) \frac{133}{250}$
(3) $\frac{517}{625}$
(4) $\frac{891}{1250}$
