© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - KUMAR PRAKASHAN

ELECTRICITY

Questions And Answers

1. Give brief information about an electric charge. OR

Write a short note on electric charge.

D Watch Video Solution

2. What is a free electron? Explain conducting and

 nonconducting materials in terms of it.- Watch Video Solution

3. What is a switch ?
(D) Watch Video Solution
4. What is an electric circuit?

D Watch Video Solution

5. Define electric current. Explain the difference between electron current and conventional current.

- Watch Video Solution

6. State the formula of an electric current and define its unit.

- Watch Video Solution

7. If a number of electrons pass through the cross-
section of a conductor in time t, what is the electric
current flowing through it?
8. State the smaller units of electric current.

- Watch Video Solution

9. Name the instrument used to measure electric current.

D Watch Video Solution
10. Write a short note on electric potential.
11. Explain briefly about electric potential.

- Watch Video Solution

12. Name the physical quantity responsible for a flow of electrons in a metal wire.

- Watch Video Solution

13. Define electric potential difference. State the
formula for it. Name and define the SI unit of
potential difference.

- Watch Video Solution

14. Name the instrument used to measure electric potential difference.

- Watch Video Solution

15. What is a circuit diagram ?
16. Draw a labelled diagram of an electric circuit comprising a battery, electric bulb, ammeter and plug key (closed). Show the direction of the conventional current.

D Watch Video Solution

17. State the Ohm.s law. Explain how it is used to define the SI unit of resistance.
18. State two factors on which the strength of an electric current in a given conductor depends?

- Watch Video Solution

19. What is a variable resistance ? Give one example of it.

- Watch Video Solution

20. Explain the cause of resistance in a conductor and differentiate between conductors and insulators.
21. Name the substances used to make a conducting wire, resistive wire and resistor.

Watch Video Solution

22. What is electrical resistivity of a material ? State its SI unit and define it.
23. Explain : .Electrical resistivity is a characteristic property of the material..

- Watch Video Solution

24. State the factors on which the resistivity of a material depends.

- Watch Video Solution

25. A conducting wire of length 1 has resistance R. If its length is increased to nl by stretching it uniformly, what would be the new resistance of wire?
(Assume that there is no change in the volume of the wire when it is stretched.)

- Watch Video Solution

26. Use the data in Table 2 to answer the following:

Which material is the best conductor ?

D Watch Video Solution

27. State the law of combination of resistances in series and draw a circuit diagram containing three resistors connected in series.
28. Give the law of combination of resistances in parallel and draw a circuit diagram containing three resistors connected in parallel.

D Watch Video Solution

29. Explain the series combination of resistors and derive the formula of equivalent resistance.

D Watch Video Solution
30. State the characteristics of the series combination of resistors.

- Watch Video Solution

31. Explain the parallel combination of resistors and derive the formula of equivalent resistance.

- Watch Video Solution

32. State the characteristics of the parallel combination of resistors.
33. What will be the equivalent resistance of n resistors each having resistance R when connected in series and parallel separately?

- Watch Video Solution

34. State the merits and demerits of a series cnmbination of resistors.
35. State the merits and demerits of a parallel combination of resistors.

- Watch Video Solution

36. Why is a series arrangement not used for connecting domestric electrical applinaces in a circuit
?

- Watch Video Solution

37. Write the disadvantages of series circuits for demostic wiring.
38. Give reasons why different electrical appliances in a domestic circuit are connected in parallel.

- Watch Video Solution

39. Write the advantages of parallel circuits in domestic wiring.

D Watch Video Solution
40. How is heat produced by an electric current?

- Watch Video Solution

41. What is the heating effect of electric current?

- Watch Video Solution

42. Explain electrical energy and derive its formula.

Obtain Joule.s law of heating.

D Watch Video Solution

43. Derive the formula of the heat energy produced in the conductor because of electric current flows in it
for the relax time-interval .t.. Give its unit.

- Watch Video Solution

44. State and explain the Joule.s law of heating.

- Watch Video Solution

45. Write the Joule.s law of heating. State the factors
on which heat generated in a conductor due to electric current depends.
46. State various paractical applications of heating effect of electric current in everyday life.

- Watch Video Solution

47. Explain how the heating effect of electric current is utilized in an electric bulb (called incandescent lamp) to produce light.

D Watch Video Solution

48. Write short note on .Electric fuse..
49. What is an electric fuse? Explain its fabrication. function and use in electric circuit in detail.

- Watch Video Solution

50. What is meant by electric power? Obtain a formula for it. State units of electric power.

- Watch Video Solution

51. What is electric energy? What is its commercial (or practical) unit? Define it.

- Watch Video Solution

52. Are electrons consumed in an electric circuit?

(D) Watch Video Solution

Questions And Answers Intext Questions

1. What does an electric circuit mean?

D Watch Video Solution
2. Define the unit of current.
3. Calculate the number of electrons constituting one coulomb of charge.

D Watch Video Solution
4. Name a device that helps to maintain a potential difference across a conductor.
5. What is meant by saying that the potential difference between two points is 1 V ?

- Watch Video Solution

6. How much energy is given to each coulomb of charge passing through a 6 V battery?

- Watch Video Solution

7. On what factors does the resistance of a conductor depend?
8. Will current can flow more easily through a thick wire or a thin wire of the same material, when connected to the same source? Why?

- Watch Video Solution

9. Let the resistance of an electrical component remain constant while the potential difference across
the two ends of the component decreases to half of
its former value. What change will occur in the current through it?
10. Why are coils of electric toasters and electric irons made of an alloy rather than a pure metal?

- Watch Video Solution

11. Use the data in Table 2 to answer the following:

Which is a better conductor, iron or mercury?

- Watch Video Solution

12. Draw a schematic diagram of a circuit consisting
of a battery of three cells of 2 V each, a 5Ω resistor,
an 8Ω resistor, and a 12Ω resistor, and a plug key, all connected in series.

D Watch Video Solution

13. Redraw the circuit of 9.39 , putting in an ammeter
to measure the current through the resistors and a
voltmeter to measure the potential difference across
the 12Ω resistor. What would be the readings in the ammeter and the voltmeter ?

D Watch Video Solution

14. Judge the equivalent resistance when the following are connected in parallel:
1Ω and $10^{6} \Omega$

- Watch Video Solution

15. Judge the equivalent resistance when the following are connected in parallel:
$1 \Omega, 10^{3} \Omega$ and $10^{6} \Omega$
16. An electric lamp of 100Ω, a toaster of resistance
50Ω, and a water filter of resistance 500Ω are connected in parallel to a 220 V source. What is the resistance of an electric iron connected to the same source that takes as much current as all three appliances and what is the current through it?

- Watch Video Solution

17. What are the advantages of connecting electrical
devices in parallel with the battery instead of connecting them in series?
18. How can three resistor of resistances $2 \Omega, 3 \Omega$ and 6Ω be connected to give a total resistance of 4Ω

D Watch Video Solution

19. How can three resistor of resistances $2 \Omega, 3 \Omega$ and 6Ω be connected to give a total resistance of 1Ω ?
20. What is (a) the highest, (b) the lowest total resistance that can be secured by combinations of four coils of resistances $4 \Omega, 8 \Omega, 12 \Omega, 24 \Omega$?

- Watch Video Solution

21. Why does the cord of an electric heater not glow while the heating element does?

- Watch Video Solution

22. Compute the heat generated while transferring 96000 coulomb of charge in one hour through a
potential difference of 50 V .

- Watch Video Solution

23. An electric iron of resistance 20 ohm takes a current of 5 A . Calculate the heat developed in 30 s .

D Watch Video Solution

24. What determines the rate at which energy is delivered by a current?
25. An electric motor takes 5 A from a 220 V line.

Determine the power of the motor and the energy consumed in 2 h .

D Watch Video Solution

Questions And Answers Textbook Illustrations

1. A current of 0.5 A is drawn by a filament of an
electric bulb for 10 minutes. Find the amount of eletric charge that flows through the circuit.
2. How much work is done in moving a charge of 2 C across two points having a potential difference 12 V ?

- Watch Video Solution

3. How much current will an electric bulb draw from a

220 V source, if the resistance of the bulb filament is
1200Ω ?

- Watch Video Solution

4. How much current will an electric heater coil draw
from a 220 V source, if the resistance of the heater

- Watch Video Solution

5. The potential difference between the terminals of an electric heater is 60 V when it draws a current of 4

A from the source. What current will the heater draw, if the potential difference is increased to 120 V ?

- Watch Video Solution

6. Resistance of a metal wire of length 1 m is
26Ω at $20^{\circ} C$.If the diameter of the wire is 0.3 mm ,
what will be the resistively fo the metal at that
temperature ? Using Table 2 (on page 116), predict the material of the wire.

- Watch Video Solution

7. A wire of given material having length I and area of
cross-section A has a resistance of 4 n . What would be the resistance of another wire of the same material having length $\frac{1}{2}$ and area of cross - section 2 A ?

- Watch Video Solution

8. An electric lamp, whose resistance is 20Ω, and a conductor of 4Ω resistance are connected to a 6 V battery (see figure).

Calculate (a) the total resistance of the circuit, (b) the current through the circuit, and (c) the potential difference across the electric lamp and conductor.

D Watch Video Solution
9. In the circuit diagram given in figure suppose the resistors $\quad R_{1}, R_{2}$ and R_{3} have the values $5 \Omega, 10 \Omega, 30 \Omega$ respectively, which have been connected to a battery of 12 V . Calculate (a) the current through each resistor, (b) the total current in the circuit, and (c) the total circuit resistance.

- Watch Video Solution

10.

$R_{1}=10 \Omega, R_{2}=40 \Omega, R_{3}=30 \Omega, R_{4}=20 \Omega, R_{5}=60 \Omega$
a 12 V battery is connected to the arrangement.

Calculate (a) the total resistance in the circuit and (
b) the total current flowing in the circuit.

D Watch Video Solution

11. An electric iron consumes energy at a rate of 840

W , when heating is at the maximum rate and 360 W ,
when heating is atthe minimum. The voltage is 220 V .
What are the current and the resistance in each case?

- Watch Video Solution

12. 100 J of heat is producec! in each second in a 4Ω
resistance. Find the potential difference across the
resistor.

D Watch Video Solution

13. An electric bulb is connected to a 220 V generator.

The current is 0.50 A . What is the power of the bulb?

- Watch Video Solution

14. An electric refrigerator rated 400 W operates 8 hours/day. What is the cost of the energy to operate if for 30 days at Rs 3.00 per kWh ?

Questions And Answers More To Know

1. How does a metal conduct electricity ?

D Watch Video Solution

Textual Exercise

1. A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R., then the ratio $\frac{R}{R \text {. }}$ is

$$
\text { A. } \frac{1}{25}
$$

B. $\frac{1}{5}$
C. 5
D. 25

Answer: D

- Watch Video Solution

2. Which of the following terms does not represent electrical power in a circuit?
A. $I^{2} R$
B. $I R^{2}$
C. $V I$

$$
\text { D. } \frac{V^{2}}{R}
$$

Answer: B

D Watch Video Solution

3. An electric bulb is rated 220 V and 100 W . When it is

 operated on 110 V the power consumed will beA. 100W
B. 75 W
C. 50 W

Answer: D

- Watch Video Solution

4. Two conducting wires of the same material and of equal lengths and equal diameters 1 are first connected in series and then parallel in a circuit across the same potential difference. The ratio of heat produced in series and parallel combinations would be-
A. 1:2
B. 2:1
C. 1:4
D. $4: 1$

Answer: C

- Watch Video Solution

5. How is a voltmeter connected in the circuit to measure the potential difference between two points?
6. A copper wire has diameter 0.5 mm and resistivity of $1.6 \times 10^{-6} \Omega \mathrm{~m}$. What will be the length of this wire to make its resistance 10Ω ? How much does the resistance change if the diameter is doubled?

D Watch Video Solution

7. The values of current I flowing in for the corresponding values of potential difference V across the resistor are given below :

I (amperes)	0.5	1.0	2.0	3.0	4.0
V (volts)	1.6	3.4	6.7	10.2	13.2

Plot a graph between V and I and calculate the resistance of that resistor.
8. When a 12 V battery is connected across an unknown resistor, there is a current of 2.5 mA in the circuit. Find the value of the resistance of the resistor.

D Watch Video Solution

9. A battery of 9 V is connected in series with resistors of $0.2 \Omega, 0.3 \Omega, 0.4 \Omega, 0.5 \Omega$ and 12Ω respectively. How much current would flow through the 12Ω resistor?
10. How many 176 'Omega' resistors (in parallel) are required to carry 5 A on a 220 V line?

Watch Video Solution

11. Show how you would connect three resistors, each of resistance 6Ω, so that the combination has a resistance of (i) 9Ω, (ii) 4Ω.
12. Several electric bulbs designed to be used on a 220 V electric supply line are rated 10 W . How many bulbs can be connected in parallel with each other across the two wires of 220 V line if the maximum allowable current is 5 A ?

- Watch Video Solution

13. A hot plate of an electric oven connected to a

220 V line has two resistance coils A and B, each of
24Ω resistance, which may be used separately, in
series, or in parallel. What are the currents in the three cases?

- Watch Video Solution

14. Compare the power used in the 2Ω resistor in each of the following circuits:
a 6 V battery in series with 1Ω and 2Ω resistors

- Watch Video Solution

15. Compare the power used in the 2Ω resistor in each of the following circuits:
a 4 V battery in parallel with 12Ω and 2Ω resistors
16. Two lamps, one rated 100 W at 220 V , and the other 60 W at 220 V are connected in parallel to electric mains supply. What current is drawn from the line if the supply voltage is 220 V ?

- Watch Video Solution

17. Which uses more energy, a 250 W TV set in 1 h , or a

1200W toaster in 10 minutes?
18. An electric heater of resistance 8 ohm draws 15A
from the service mains for 2 hours. Calculate the rate at which heat is developed in the heater.

- Watch Video Solution

19. Why is the tungsten used almost exclusively for
filament of electric lamps? Explain.

- Watch Video Solution

20. Why are the conductors of electric heating devices, such as bread-toasters and electric irons,
made of an alloy rather than a pure metal? Explain.

- Watch Video Solution

21. Why is the series arrangement not used for domestic circuits? Explain.

- Watch Video Solution

22. How does the resistance of a wire vary with its area of cross-section? Explain.
23. Why are copper and aluminium wires usually employed for electricity transmission? Explain.

D Watch Video Solution

Additional Question And Answers Solve The Following Examples

1. 240 joules of work is done in moving 20coulomb electric charge from one pole to the other pole of a battery. Calculate the voltage of the battery.
2.5 V electric potential difference is applied between two ends of a conducting wire. If 600C of electric charge passes through it in 10minutes, calculate the resistance of the wire.

- Watch Video Solution

3. Two copper wires A and B have the same mass. The resistance of wire A is 0.5Ω and the length of wire B is double that of wire A. Find the resistance of wire B.
4. If the length of a given conducting wire is kept constant and its diameter is doubled, what will be the resistance of the new wire?

- Watch Video Solution

5. Two resistors of $1 \mathrm{k} \Omega$ and 200Ω are connected in series with a 12 V battery. Calculate the current flowing in the circuit and the voltage developed across the 200Ω resistor.

- Watch Video Solution

6. For the circuit shown in figure given below, calculate (a) the total resistance of the circuit. (b) the total current flowing in the circuit. (c) the voltage developed across the two ends of R_{1}.

6 V
7. Two 60W bulbs are used for 4hours everyday and five 100W bulbs are used for 5 hours everyday. How many units of electricity will be consumed in 30 days?

- Watch Video Solution

8. 24 W power is consumed by a bulb when it is connected with 12 V battery. How much power will be consumed if it is connected with 6V battery?
9. Find the equivalent resistance of the circuit shown in the following figure:

Also find the total current flowing in this circuit.

D Watch Video Solution

10. In the following circuit A, B and C are three ammeters. 0.5 A current is shown by ammeter B .

Find the currents passing through ammeters A and C .

- Watch Video Solution

11. In the following circuit A, B and C are three ammeters. 0.5 A current is shown by ammeter B .

Find the total resistance of the circuit.

D Watch Video Solution

12. If an electric bulb gives light for 1 hour while carrying 0.5 A current, how much electric charge passes through it and how many electrons pass through it during this time?

$$
\left(e=1.6 \times 10^{-19} C\right)
$$

13. An electric current of 64 mA flows through a bulb for 10 minutes. How many electrons pass through the bulb during this time? $\left(e=1.6 \times 10^{-19} C\right)$

- Watch Video Solution

14. In order to get a current of 0.5 A in a circuit by connecting a bulb of resistance 20Ω with 12 V battery,
what should be the resistance to be connected in series? What will be the voltage drop across the bulb?
15. Three resistors are connected in parallel with a 30V battery. A current of 7.5A flows through the circuit. If two out of the three resistors are of 10Ω and 12Ω, determine the resistance of the third resistor.

- Watch Video Solution

16. For the circuit shown in the following figure, determine the eqUivalent resistance between points

A and B. Also find the current I flowing through the
circuit.

- Watch Video Solution

17. Determine the equivalent resistance between point A and B in the following circuit:

- Watch Video Solution

19. Find the electric current in the following circuit:

D Watch Video Solution

20. Determine the equivalent resistance between points X and Y in the follOwing circuit:

D Watch Video Solution

21. An electric heater consumes 4.4 kW power when connected with a 220 V line voltage.

Calculate the current flowing in the heater.
22. An electric heater consumes 4.4 kW power when connected with a 220 V line voltage.

Calculate the resistance of the heater.

D Watch Video Solution

23. An electric heater consumes 4.4 kW power when connected with a 220 V line voltage.

Calculate the energy consumed in 2 hours.

D Watch Video Solution

Additional Question And Answers State At Least Three

Quantities

1. Resistance and Resistivity

- Watch Video Solution

2. Series combination of resistors and Parallel combination of resistors

D Watch Video Solution

Additional Question And Answers Give Scientific Reasons For The Following Statements

1. It is not advisable to connect an electric bulb and electric heater in series.

D Watch Video Solution

2. For domestic purposes, different electrical devices are connected in parallel instead of connecting them in series.

- Watch Video Solution

3. Fairy decorative lights are always connected in parallel.
4. In a tungsten electric-bulb, a coil of wire, rather than a straight wire, is used.

D Watch Video Solution

Additional Question And Answers Additonal Information

1. Electric current is flowing in a conductor. Can we
say the conductor is charged ?

Objective Questions And Answers Answer The Following Questions In One Word Sentence

1. Name the scientist in whose honour the SI unit of electric current is named.

(D) Watch Video Solution

2. Which type of electric force acts between the proton and the electron?

D Watch Video Solution
3. Write the relation between the joule. coulomb and the volt.

- Watch Video Solution

4. How is the device measuring electric current connected in the circuit?

- Watch Video Solution

5. You are given aluminium wire and copper Wire having the same dimensions. Which wire will carry
more electric current if the applied potential difference is the same for the two wires?

- Watch Video Solution

6. Name one electric appliance working on the principle of heating effect of electric current.

- Watch Video Solution

7. If a resistive wire is uniformly stretched, what Will be a change in its resistance?
8. Name a physical quantity which can be expressed in Ws.

D Watch Video Solution
9. Name the particle responsible for flow of electric current in a metallic conductor.

- Watch Video Solution

10. Which instrument is used to measure electric potential difference?
11. Draw a symbol for variable resistor.

D Watch Video Solution

12. How much energy in joule is consumed when 100 units electricity are used?

- Watch Video Solution

13. Write the Ohm.s law in the form of a formula.

Objective Questions And Answers Fill In The Blanks

1. Electric charge on is taken negative.

D Watch Video Solution

2. In a substance, the direction of conventional current is opposite to the direction of current.

3. Electric component,has symbol

(D) Watch Video Solution
4. The SI unit of electric potential is

D Watch Video Solution
5. In a circuit, a voltmeter is always connected to
the electrical component.
6. When a battery is connected in a circuit, in the external circuit, electric current flows from the terminal to the terminal of the battery.

- Watch Video Solution

7. The SI unit of electric power is \qquad

- Watch Video Solution

8. According to Joule.s law, heat energy produced in a resistor is directly proportional to the square of

D Watch Video Solution

9.1 unit (commercial unit of electric energy) =
 \qquad

D Watch Video Solution

10. The equivalent resistance between points X and Y
in the circuit shown in the following figure is

11. The rate of consumption of electric energy with

 time is calledD Watch Video Solution
12. $1 \mathrm{~A}=. \mu A$.

D Watch Video Solution

Objective Questions And Answers State Whether The Following Statements Are True Or False

1. The SI unit of electric current is the coulomb ?.

D Watch Video Solution

2. To measure electric current, an ammeter is connected in series With a resistor, why?

- Watch Video Solution

3. $\mathrm{W}=\mathrm{VQ}$, define?
4. The current flowing through each resistor is the same when resistors having different resistances are connected in parallel.

- Watch Video Solution

5. The equivalent resistance $\left(R_{s}\right)$ of a series
combination of resistors is given by
$\frac{1}{R_{s}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+$
(D) Watch Video Solution
6. Nichrome wire is used to make resistors.

- Watch Video Solution

7. When the temperature of a metallic substance increases up to a certain limit, its resistance decreases?

D Watch Video Solution

8. For two wires of the same material and having the
same length, the resistance of the thicker wire is less
than that of the other wire ?
9. Electric charge is measured by using an ammeter ?

- Watch Video Solution

10. Work can be expressed in coulomb-volt ?

D Watch Video Solution

11. Two bulbs of 60 W . 220 V , when connected in series with a supply voltage of 220 V , light up with maximum intensity.

Objective Questions And Answers Match The Following

Column I	Column II	Column III
1. Electric current 2. Electric potential difference 3. Resistance 4. Electric energy 5. Electric power	a. V/ b. $9 / t$ c. W / Q d. V / I e. YIt	p. The volt /ampere q. The Joule r. The coulomb / second s. The joule / second t. The volt

D Watch Video Solution

2. Match the columns

Column I	Column II	Column III
1. Copper 2. Nichrome 3. Wood 4. Silicon	a. Insulator b. Semi- conductor c. Conductor d. Resistor	p. It is used to make resistance. It stops electric current.
		r. It is used to make conduc- ting wire.
		s. It is used to
make elec-		
trontc		
components.		

[^0]

D Watch Video Solution

Objective Questions And Answers Choose The Correct Option From Those Given Below Each Question

1. The SI unit of electric charge is the

A. ampere
B. volt
C. watt
D. coulomb

Answer: D

- Watch Video Solution

2. How many electrons will be there in 1.6 C charge?
A. 10^{17}
B. 10^{18}

C. 10^{19}

D. $10^{\wedge} 20^{`}$

Answer: C

- Watch Video Solution

3. $1 \mu A=\ldots \ldots \ldots m A$
A. 10^{-16}
B. 10^{-3}
C. 10^{3}
D. $10^{-3} m A$

Answer: B

- Watch Video Solution

4. Which of the follOwing materials has more number of free electrons in a given volume?
A. Copper
B. Glass
C. Rubber
D. Iron

Answer: A
5. According to Ohm.s law ...
A. the resistance increases with an increase in
current.
B. the resistance increases with an increase in
voltage.
C. the current increases with an increase in
voltage.
D. both the resistance and current increase with an increase in voltage.

Answer: C

(D) Watch Video Solution

6. The formula for electric current is \qquad
A. $I=Q t$
B. $I=\frac{Q}{t}$
C. $I=\frac{t}{Q}$
D. $I=W . t$

Answer: B
7. 2 A electric current is passed for 1 minute through
a conducting wire. How much electric charge will pass through this wire?
A. 2 C
B. 30 C
C. 60C
D. 120 C

Answer: D
8. If 4.8 A current is passed through an electrical appliance, the number of electrons passing through it in 1 second will be
A. 0.33×10^{19}
B. 3.3×10^{19}
C. 3×10^{19}
D. 4.8×10^{19}

Answer: C

9. Which of the following formulae represents voltage?

A. $\frac{\text { Work }}{\text { current } \times \text { time }}$
 B. $\frac{\text { Work } \times \text { time }}{\text { current }}$

C. Work \times electric charge
D. Work \times electric charge \times time

Answer: A

D Watch Video Solution

10. The unit of electric potential difference is
A. J
B. J/C
C. JC
D. C / J

Answer: B

D Watch Video Solution

11. If the work done to take 3 C electric charge from one point to another point is 15 J , what will be the potential difference between these two points?
B. 15 V
C. 5 V
D. 45 V

Answer: C

- Watch Video Solution

12. The resistance of a conducting wire is 10Ω. If a battery of 1.5 V is connected to it, the electric current
flowing through it will be
A. 0.15 mA
B. 1.5 mA

C. 15 mA

D. 150 mA

Answer: D

D Watch Video Solution

13. On which factors does the resistivity of a conducting wire depend?
A. The length of the wire
B. The area of cross-section of the wire
C. The volume of the wire

D. The material of the wire

Answer: D

D Watch Video Solution

14. If five equal pieces of a resistance wire having 5Ω resistance are connected in parallel, their equivalent resistance will be \qquad
A. $\frac{1}{5} \Omega$
B. 1Ω
C. 5Ω
D. 25Ω

D Watch Video Solution

15. The SI unit of resistivity is
A. Ω
B. Ωm
C. $\frac{\Omega}{m}$
D. $\frac{m}{\Omega}$

Answer: C

16. What will be the equivalent resistance between points A and B of the following electric circuit?

A. 1Ω
B. 2Ω
C. 5Ω
D. 10Ω

Answer: D
17. The equivalent resistance between points A and B of the following electric circuit will be

A. 4Ω
B. 8Ω
C. 2Ω
D. 16Ω

(D) Watch Video Solution

18. The equivalent resistance between points A and B in the following electric circuit is

A. 2.5Ω
B. 5Ω
C. 12.5Ω
D. 20Ω

Answer: C

D Watch Video Solution
19. Which physical quantity is expressed in kWh?
A. Work
B. Electric power
C. Electric current

D. Electric potential

Answer: A

D Watch Video Solution

20.1 kWh = J
A. 3.6×10^{6}
B. 3.6×10^{3}
C. 3.6×10^{-6}
D. 3.6×10^{-3}
21. An electric heater consumes 1.1 kW power when

220 V voltage is applied to it. The current flowing through it must be
A. 1.1 A
B. 2.2 A
C. 4 A
D. 5 A

Answer: D

22.1 A = mA

A. 100
B. 10^{3}
C. 10^{-3}
D. 10^{-6}

Answer: B

- Watch Video Solution

23. In an electric field, electric potential at a point is 10V. How much work has to be done to bring 0.5 C electric charge from infinite distance to that pOint?
A. 0.5J
B. 2 J
C. 5 J
D. 10J

Answer: C
24. is the work done in moving a unit positive charge from point A to B in an electric field.
A. Electric potential at point A.
B. Electric potential at point B.
C. Electric potential difference between points A and B.
D. Electric current from point A to point B.

Answer: C

D Watch Video Solution

25. In an electric field. electric potential at point A is

40 V and that at point B is 90 V . The work to be done in taking $2 C$ charge from point A to point B is
A. 25 J
B. 25 J
C. 90 J
D. 100 J

Answer: D

26. Sonika is working with the circuit shown in the following figure:

The circuit has two gaps: X and y. She has wires of five different materials - I, II, III, IV and V. She knows that the bulb will light up only when both gaps are filled with conducting materials.

She records her observations in a table. After completing the experiment, ink fell on the paper and
she lost entries in row 3.

No.	Material in X	Material in Y	Bulb (On/Off
1	I	II	Off
2	I	IV	On
3			Off
4	III	V	On

Based on the rest of the information in the table, out of the following what could be the materials in row 3 ?

A. II and III

B. III and IV
C. IV and V
D. I and III

Answer: A

D Watch Video Solution

27. . Ωm. is the SI unit of
A. resistance
B. resistivity
C. conductivity
D. resistance per unit length

Answer: B
28.I-V graph for a resistance Wire is shown in the figure given below:

What will be resistance of this wire?
A. 50Ω
B. 20Ω
C. 7.2Ω
D. $\frac{1}{120} \Omega$

Answer: B

- Watch Video Solution

29. What will be the change in the resistivity of a resistance wire. When its length is doubled by stretching it uniformly ?
A. Will be doubled
B. Will be half
C. Will be one- fourth

D. Will not change

Answer: D

D Watch Video Solution

30. Observe the circuit in,the following figure and select the correct statement:
A. Resistors with resistances R_{1} and R_{2} are . connected in series.
B. Resistors with resistances R_{1} and R_{2} are connected in parallel.
C. Resistors with resistances R_{2} and R_{3} are connected in series.
D. Resistors with resistances R_{2} and R_{3} are connected in parallel.

Answer: D

- Watch Video Solution

31. Resistors with resistances $5 \Omega, 10 \Omega$ and 15Ω are connected in parallel to each other. What will bc thc
A. Less than 5Ω
B. More than 15Ω
C. More than 30Ω
D. Equal to 30Ω

Answer: A

- Watch Video Solution

32. The resistance of a wire is R. When this wire is
stretched so that its length becomes double, its
cross-sectional area becomes half. What will be the resistance of this stretched wire?
A. $\frac{R}{2}$
B. R
C. $2 R$
D. $4 R$

Answer: D

D Watch Video Solution

33. When three resistors, each of resistance R, are connected in parallel, the equivalent resistance is
found out to be 10Ω. R must be
A. 10Ω
B. 20Ω
C. 30Ω
D. 5Ω

Answer: C

D Watch Video Solution
34. In the following figure, what will be the equivalent resistance between points A and B ?

A. 1Ω
B. 2Ω
C. 4Ω
D. 8Ω

Answer: B

D Watch Video Solution
35. A wire having resistance 20Ω is bent in the form of a circle as shown in the following figure:

What will be the resistance between two end points A and B located on the diameter?
A. 5Ω
B. 10Ω
C. 20Ω
D. 40Ω

Answer: A
36. Which of the following options is not the formula for heat energy (in joule) produced when a current is passed through a conductor?

$$
\begin{aligned}
& \text { A. } H=I^{2} R t \\
& \text { B. } H=\frac{V^{2}}{R} t \\
& \text { C. } H=I V t \\
& \text { D. } H=\frac{V^{2}}{I^{2}} t
\end{aligned}
$$

Answer: D

37. Which option is correct for the following statements A and B ?

Statement A: The current passing through each resistor is the same in a series combination of resistors.

Statement B: The voltage between two ends of each resistor is the same in a parallel combination of resistors.
A. Statement A is true but statement B is false.
B. Statement A is false but statement B is true.
C. Statement A and statement B both are true.
D. Statement A and statement B both are false.

Answer: C

D Watch Video Solution

38. In which of the following circuits the voltmeter and ammeter are connected properly to veritY the Ohm.s law?

A.

B.

Answer: B

D Watch Video Solution

39. Maximum 1 A current can pass through a bulb
haVing resistance 100Ω. What will be the power of this bulb?
A. 10 W

B. 100 W

C. 1000 W
D. 0.01 W

Answer: B

- Watch Video Solution

40. Which of the following is not a unit of electric energy?
A. The watt-second
B. The kilowatt hour
C. The joule
D. The watt

Answer: D

- Watch Video Solution

41. Of which physical quantity is the unit,.VA. ?
A. Electric energy
B. Electric power
C. Heat energy

D. Electric potential

Answer: B

D Watch Video Solution

42. Which of the following circuit symbols is used to represent an electric cell?
A.
B.
C.
D.

D Watch Video Solution

43. The resistance of 300 m long wire with cross-
sectional area $10^{-6} \mathrm{~m}^{2}$ and resistivity $10^{-7} \Omega \mathrm{~m}$ is
A. 30Ω
B. 3Ω
C. 0.3Ω
D. 300Ω
44. What will be the equivalent resistance of the following circuit?

A. 10Ω
B. 5Ω
C. 2.5Ω
D. 1Ω

Answer: C

D Watch Video Solution

45. Three resistors of resistances $2 \Omega, 3 \Omega$ and 5Ω are
connected in series with 10 V battery. The voltage across 2Ω resistor will be
A. 10 V
B. 5 V
C. 3 V
D. 2 V
46. An electric iron of power 2 kW is used for 3 hours.

At Rs 5 per unit, the electricity bill will be
A. Rs 45
B. Rs 30
C. Rs 15
D. Rs 10

Answer: B
47. The working of electric fuse is based on the ...
A. chemical effect of electric current.
B. heating effect of electric current.
C. voltage regulation in the circuit.
D. current regulation in the circuit.

Answer: B

D Watch Video Solution

48. Resistivity of a material depends on of the material.
A. the length of the wire
B. the area of cross-section of the wire
C. the temperature

D. the volume of the wire

Answer: C

D Watch Video Solution

49. When resistors of resistances
R_{1} and $R_{2}\left(R_{2}<R_{1}\right)$ are connected in parallel and the currents flowing through them are I_{1} and I_{2} respectively, then

$$
\text { A. } I_{1}=I_{2}
$$

B. $I_{1}>I_{2}$
C. $I_{1}<I_{2}$

D. nothing can be said about the currents

Answer: C

- Watch Video Solution

50. When resistors of resistances
R_{1} and $R_{2}\left(R_{2}>R_{1}\right)$ are connected in series and the currents flowing through them are I_{1} and I_{2} respectively, then

$$
\text { A. } I_{1}=I_{2}
$$

B. $I_{1}>I_{2}$
C. $I_{1}<I_{2}$

D. nothing can be said about the currents

Answer: A

D Watch Video Solution
51. In the following circuit, which electric component is connected in a wrong manner?

A. Voltmeter
B. Ammeter
C. Plug key
D. Cell

Answer: A
52.1 $\mathrm{C}=. \mu C$
A. 10^{-6}
B. 10^{-3}
C. 1
D. 10^{6}

Answer: D

D Watch Video Solution
53. Connection of two cells of 1.5 V is shown in the following figure:

What is the voltage between the points A and B ?
A. 1.5 V
B. 3 V
C. 0.75 V
D. 0 V

Answer: B

D Watch Video Solution
54. The following figure shows the V - I graph for four
different resistors:

Which resistor has the maximum resistance?

A. A
B. B
C. C
D. D

Answer: D

D Watch Video Solution

55. A potential difference of 100 V is applied across an electric bulb marked 40 W .200 V . The power consumed in the bulb is
A. 100 W
B. 40 W
C. 20 W
D. 10 W

D Watch Video Solution

Objective Questions And Answers Answer The Following Questions As Directed Miscellaneous

1. The voltage - current (V-1) graphs for a metallic conductor at two different temperatures T_{1} and T_{2} are shown below:

At which temperature is the resistance higher?

D Watch Video Solution

2. A wire of given length is doubled on itself and this
process is repeated once again. By what factor does
the resistance of the wire change?

- Watch Video Solution

3. Through which of the following two wires, does the electric current flow more easily?
(a) A thick wire (b) a thin wire of the same material and of the same length when connected to the same source. State the reason.

- Watch Video Solution

4. 400 J of heat is produced in 4 s in a 4.0ohm resistor. Find the potential difference across the resistor.

- Watch Video Solution

5. What is the commercial unit of electrical energy?

D Watch Video Solution

6. On what principle is an electric bulb based?

(Watch Video Solution

7. In a circuit, two resistors of resistances
5Ω and 10Ω are connected in series. Compare the current passing through the two resistors.
8. Write the reletion between resistance R of the filament of a bulb, its power and a constant voltage V applied across it.

- Watch Video Solution

9. Which of the following bulbs has more resistance?
(a) A $220 \mathrm{~V}, 100 \mathrm{~W}$ bulb (b) a $220 \mathrm{~V}, 60 \mathrm{~W}$ bulb.

D Watch Video Solution
10. Find the minimum resistance that can be made using five resistors, each of 5Ω.

- Watch Video Solution

11. How does the resistance (R) of a wire depend upon its radius (r) ?

- Watch Video Solution

12. An ammeter has a range ($0-3 A$) and there are 30
divisions on its scale. Calculate the least count of the ammeter.
13. In a voltmeter there are 20 divisions between 0 mark and 0.5 V mark. Calculate the least count of the voltmeter.

- Watch Video Solution

14. To verify the Ohm.s law a circuit diagram was drawn by a student as shown below:

What do K, L, M, N stand for?

D Watch Video Solution
15. Four students connect 4 cells of 1.5 V each to get a battery of voltage 6 V . State the incorrect connection

/ connections. Justify your answer.

- Watch Video Solution

16. Which of the following statements is correct?
(a) one volt is one joule per ampere.
(b) one volt is one joule per coulomb.

D Watch Video Solution

17. Keeping the resistance constant, the potential difference applied across the ends of a component is halved. How does the current change?
18. Keeping the potential difference constant, the resistance of a circuit is halved. How does the current change?

- Watch Video Solution

19. A potential difference of 10 V is needed to make a current of 0.02 A flow through a wire. What potential difference is needed to make a current of 250 mA to
flow through the same wire?

- Watch Video Solution

20. A current of 200 mA flows through a 4 kOhm resistor. What is the potential difference across the resistor?

- Watch Video Solution

21. The electrical resistivities of four materials A, B, C
and D are given below:
$A: 110 \times 10^{-8} \Omega m$
$B: 1.0 \times 10^{10} \Omega m$
$C: 10.0 \times 10^{-8} \Omega m$
$D: 2.3 \times 10^{3} \Omega m$

Which material is a (a) good conductor (b) resistor (c) insulator (d) semi-conductor?

- Watch Video Solution

22. The equivalent resistance of a series combination of two resistors is ' 9 Omega' and the equivalent resistance of a parallel combination of the same two resistors is 2Ω. Find the resistances of the resistors.

- Watch Video Solution

23. An electric lamp is labelled $12 \mathrm{~V}, 36 \mathrm{~W}$. This indicate that it should be used with a 12 V supply. What other
information does the label provide?

- Watch Video Solution

24. Name two devices whose working is based on the heating effect of electric current.

- Watch Video Solution

25. Name the gases which are filled into the filamenttype electric light bulbs.
26. Why are the filament-type electric light bulbs not power efficient?

D Watch Video Solution

27. Under what conditions is the Ohm.s law applicable?

D Watch Video Solution
28. Why is Nichrome used as a heating element?

D Watch Video Solution
29. Why are Constantan and Manganin used for making standard resistors?

- Watch Video Solution

30. Why is lead-tin alloy used for making a fuse?

D Watch Video Solution
31. What is the difference between a resistor \sim and resistance?
32. What do you mean by the term load in an electric circuit?

- Watch Video Solution

33. How does the current divide itself in a parallel combination of resistors?

- Watch Video Solution

34. How does the potential difference divide itself in a series combination of resistors?
35. How is heat produced in a conductor by an electric current?

D Watch Video Solution

36. If a number of bulbs of different wattages are joined in parallel With a voltage source, which bulb will glow With maximum brightness?
37. Which bulb will glow With maximum brightness in
case bulbs of different wattages are joined in series
With a voltage source?

D Watch Video Solution

38. What can you say about the resistance of an ammeter?

- Watch Video Solution

39. What can you say about the resistance of a voltmeter?

- Watch Video Solution

40. How does the resistance of a metallic Wire depend on its temperature?

- Watch Video Solution

41. Two wires have the same length, same radius but one of them is made of copper and the other is made of iron. Which Will have more resistance?
(D) Watch Video Solution
42. Name a substance whose resistance decreases with temperature.

- Watch Video Solution

43. Name a substance whose resistance almost remains unchanged With a change in temperature.

- Watch Video Solution

44. Distinguish between the kilowatt and the kilowatt hour.
45. Name two characteristics of a heater coil.

- Watch Video Solution

46. The power-voltage rating of an electric appliance is $100 \mathrm{~W}-250 \mathrm{~V}$ What does it signify?

- Watch Video Solution

47. Why is much less heat generated in long electric cables than in the filament of an electric bulb?
48. How much energy is consumed by 2 kW AC when used for 2 hour?

- Watch Video Solution

49. A wire of resistivity p is pulled to double its
length. What will be its new resistivity?

D Watch Video Solution
50. How does the resistance of an ohmic conductor depend on the applied voltage?

- Watch Video Solution

51. What causes the potential difference between the two terminals of a cell?

- Watch Video Solution

52. Name and define the smallest commercial unit of electricity.
53. If, the current I, through a resistor is increased by 100.\% (assume that the temperature of the resistor remains unchanged), find the percentage increase in power dissipated.

D Watch Video Solution

Value Based Questin With Answers

1. Medha observed that the tubelights in the corridor of her school were always switched on the whole day.

She brought the matter to the notice of her class
teacher who talked to the Principal about it. The Principal took immediate action.

Medha helped this way to reduce air pollution.
Explain how.

- Watch Video Solution

2. Medha observed that the tubelights in the corridor of her school were always switched on the whole day.

She brought the matter to the notice of her class
teacher who talked to the Principal about it. The
Principal took immediate action.
What values do you learn from Medha in this episode?

- Watch Video Solution

3. Medha observed that the tubelights in the corridor of her school were always switched on the whole day.

She brought the matter to the notice of her class teacher who talked to the Principal about it. The Principal took immediate action.

What steps can the school take to get ~ electricity consumption reduced?
4. Shalini is a student of class X. Her mother was
preparing tea in an old electric kettle having metal
case. When she switched on the electric kettle. she got a severe electric shock.

Shalini put off the main switch qUickly and found that
the connecting cord was torn, where her mother touched the metal case of the kettle. She also found that the red and black wires of the connecting cord were firmly connected to the two lower terminals of
the power plug but the green wire of the cord was not connected to the upper terminal of the plug.

Shalini replaced the torn connecting cord and also
connected the three wires of the cord firmly to the power plug terminals.

On the basis of the above passage, answer the following questions:

Why did Shalini switch off the main switch qUickly?

- Watch Video Solution

5. Shalini is a student of class X. Her mother was preparing tea in an old electric kettle having metal case. When she switched on the electric kettle. she got a severe electric shock.

Shalini put off the main switch qUickly and found that
the connecting cord was torn, where her mother touched the metal case of the kettle. She also found
that the red and black wires of the connecting cord
were firmly connected to the two lower terminals of the power plug but the green wire of the cord was not connected to the upper terminal of the plug.

Shalini replaced the torn connecting cord and also connected the three wires of the cord firmly to the power plug terminals.

On the basis of the above passage, answer the following questions:

Which wire red. black or green, touched the metal case of electric kettle when Shalini.s mother got electric shock?

D Watch Video Solution

6. Shalini is a student of class X. Her mother was
preparing tea in an old electric kettle having metal
case. When she switched on the electric kettle. she got a severe electric shock.

Shalini put off the main switch qUickly and found that
the connecting cord was torn, where her mother touched the metal case of the kettle. She also found that the red and black wires of the connecting cord were firmly connected to the two lower terminals of
the power plug but the green wire of the cord was not connected to the upper terminal of the plug.

Shalini replaced the torn connecting cord and also
connected the three wires of the cord firmly to the power plug terminals.

On the basis of the above passage, answer the following questions:

What values are displayed by Shalini in this incident?

- Watch Video Solution

7. Bharat was doing an experiment by using an ammeter. Suddenly. it fell from his hand and broke. He was afraid. that he might be scolded and threaten by
his teacher. His classmate advised him not to tell the teacher. but he refused and told his teacher. On
listening lu him patiently, the teacher did not scold
him and threaten as it was just an accident and used
the opportunity to show the internal structure of the
ammeter to the whole class.

On the basis of above passage, answer the following questions:

What values do you learn from Bharat?

D Watch Video Solution

8. Bharat was doing an experiment by using an ammeter. Suddenly. it fell from his hand and broke. He
was afraid. that he might be scolded and threaten by
his teacher. His classmate advised him not to tell the
teacher. but he refused and told his teacher. On
listening lu him patiently, the teacher did not scold
him and threaten as it was just an accident and used
the opportunity to show the internal structure of the ammeter to the whole class.

On the basis of above passage, answer the following questions:

What is the use of ammeter? How is it connected in the circuit?

D Watch Video Solution

9. Bharat was doing an experiment by using an ammeter. Suddenly. it fell from his hand and broke. He was afraid. that he might be scolded and threaten by
his teacher. His classmate advised him not to tell the teacher. but he refused and told his teacher. On
listening lu him patiently, the teacher did not scold
him and threaten as it was just an accident and used
the opportunity to show the internal structure of the ammeter to the whole class.

On the basis of above passage, answer the following questions:

State the aim of anyone experiment, where Bharat could have used the ammeter.

- Watch Video Solution

10. Mitali.s mother was cooking in the kitchen for guests. Mitali saw her mother had plugged in microwave, hot plate and food processor on the same
plug point. She immediately switched off the plug and removed all the plugs and re-plugged them in separate individual plugs.

What happens when we use too many electrical devices plugged in one power point?

- Watch Video Solution

11. Mitali.s mother was cooking in the kitchen for guests. Mitali saw her mother had plugged in microwave, hot plate and food processor on the same plug point. She immediately switched off the plug and removed all the plugs and re-plugged them in
separate individual plugs.
What is the power of a device?

- Watch Video Solution

12. Mitali.s mother was cooking in the kitchen for guests. Mitali saw her mother had plugged in microwave, hot plate and food processor on the same
plug point. She immediately switched off the plug and removed all the plugs and re-plugged them in separate individual plugs.

What value did Mitali display in the above act?
13. Vishva noticed in a dhaba around 50 bulbs, each of 100 W all were glowing. She calculated the cost of electricity consumed in one hour and told the dhaba owner to reduce the expenses and at the same time save electricity by using CFL bulbs instead of ordinary
filament-type bulbs.
What would be the cost of electric energy if 50 bulbs, each of 100 W . are used for one hour? 1 unit costs Rs 5.

- Watch Video Solution

14. Vishva noticed in a dhaba around 50 bulbs, each of 100 W all were glowing. She calculated the cost of electricity consumed in one hour and told the dhaba owner to reduce the expenses and at the same time save electricity by using CFL bulbs instead of ordinary filament-type bulbs.

What is a CFL?

- Watch Video Solution

15. Vishva noticed in a dhaba around 50 bulbs, each
of 100 W all were glowing. She calculated the cost of
electricity consumed in one hour and told the dhaba
owner to reduce the expenses and at the same time save electricity by using CFL bulbs instead of ordinary filament-type bulbs.

What value did Vishva display in the above case?

D Watch Video Solution

Practical Skill Based Question With Answers

1. The scales of an ammeter and a voltmeter are
shown below:

What is the range of the ammeter and the range of the voltmeter?

D Watch Video Solution
2. The scales of an ammeter and a voltmeter are
shown below:

Find the least count of the ammeter and the voltmeter.

- Watch Video Solution

3. See the figure given below and find the readings of ideal ammeter and ideal voltmeter.
(There is no zero error.)

D Watch Video Solution
4. In a given ammeter, a student observes that the needle indicates 17 divisions in the ammeter when
performing an experiment to verifY Ohm.s law. If the ammeter has 10 divisions between o and 0.5 A, then what is the value of 17 divisions?

- Watch Video Solution

5. Four resistors, each of 10Ω are connected to form a
square as shown in the given figure. Find the eqUivalent resistance between the opposite corner A
and C and between two points on anyone side (AB).

(D) Watch Video Solution
6. In the circuit shown in figure given below and find the current recorded by the ammeter (A).

D Watch Video Solution

7. Read the following information:
(1) The resistivity of copper is lower than that of aluminium which in turn is lower than that of constantan.
(2) Six wires labelled as A, B, C, D, E and F have been
designed as per the following parameters:

Wire	Length	Dlameter	Material	Resistance
A	I	$2 d$	Alumintum	R_{A}
B	$2 l$	$d / 2$	Constantan	R_{B}
C	3 l	$d / 2$	Constantan	R_{C}
D	$\mathrm{L} / 2$	$3 d$	Copper	R_{D}
E	$2 l$	$2 d$	Alumintum	R_{R}
F	$\mathrm{L} / 2$	$4 d$	Copper	R_{F}

Answer the following questions using the above data:
Which of the wires has maximum resistance and why?

- Watch Video Solution

8. Read the following information:
(1) The resistivity of copper is lower than that of aluminium which in turn is lower than that of constantan.
(2) Six wires labelled as A, B, C, D, E and F have been designed as per the following parameters:

Wire	Lengh	Diameter	Material	Resistance
A	1	$2 d$	Alumintum	R_{A}
B	2 l	$d / 2$	Constantan	R_{B}
C	3 l	$d / 2$	Constantan	R_{C}
D	$\mathrm{U} / 2$	$3 d$	Copper	R_{D}
E	$2 l$	$2 d$	Alumintum	R_{F}
F	$\mathrm{U} / 2$	$4 d$	Copper	R_{F}

Answer the following questions using the above data:
Which of the wires has minimum resistance and why?

- Watch Video Solution

9. Read the following information:
(1) The resistivity of copper is lower than that of aluminium which in turn is lower than that of
constantan.
(2) Six wires labelled as A, B, C, D, E and F have been designed as per the following parameters:

Wre	Length	Diameter	Material	Resistance
A	1	2 d	Alumintum	R_{A}
B	2	d/2	Constantan	R_{B}
c	3	d/2	Constantan	$R_{\text {c }}$
D	1/2	$3 d$	Copper	$R_{\text {D }}$
E	21	$2 d$	Alumintum	R_{g}
F	1/2	$4 d$	Copper	R_{p}

Answer the following questions using the above data:
Arrange R_{A}, R_{B} and R_{C} in ascending order of their values. Justify your answer.

D Watch Video Solution
10. n resistors, each of resistance R are first connected in series and then in parallel. What is the ratio of the total effective resistance of the circuit in the series to the parallel combination?

D Watch Video Solution

11. Find out the readings of ammeter and voltmeter in
the circuit given below:

(D) Watch Video Solution

12. In the given circuit diagram, calculate:

the value of current through each resistor
13. In the given circuit diagram, calculate:

the total current in the circuit
(D) Watch Video Solution
14. In the given circuit diagram, calculate:

the total effective resistance of the circuit.

- Watch Video Solution

15. Show four different ways in which three resistors of .r. ohm, each may be connected in a circuit. In which case is the eqUivalent resistance of the
combination:
(1)Maximum?
(2) Minimum?

D Watch Video Solution

16. Find the current drawn from the battery by the network of four resistors shown in the figure.

- View Text Solution

17. Find the equivalent resistance across the ends A and B of this circuit.
18. Five resistors areconnected in a circuit as shown.

Find the ammeter reading when the circuit is closed.

D View Text Solution

19. Draw a diagram of an electric circuit containing a cell, a key, an ammeter, a resistor of 2Ω in series with
a combination of two resistor (4Ω each) in parallel and a voltmeter across the parallel combination.

Will the potential defference across the 2Ω resistor be
the same as that across the parallel combination of 4Ω resistors ?Give the reason.

- Watch Video Solution

20. A current of 1A flows in a series circuit containing
an electric lamp and a conducor of 5Ω connected to a
10 V battery. Calculate the resistance of the electric lamp.

Now if a resistance 10Ω is connected in parallel with this series combination, what change
any)incurrent flowing through 5Ω conductor and potential difference across the lam will take palce?

Give the reason.

[^0]: -

 Watch Video Solution

