©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - KUMAR PRAKASHAN KENDRA CHEMISTRY
 (GUJRATI ENGLISH)

EQUILIBRIUM

Section A Questions

1. State the important biological and environmental chemical equilibrium with example.

- View Text Solution

2. How many types of equilibrium based on proportion of reactant and product ?
3. Explain solid-liquid equilibrium by giving example.

- View Text Solution

4. Describe measuring equilibrium vapour pressure of water at a constant temperature.

- View Text Solution

5. Explain liquid-vapour equilibrium.

- View Text Solution

6. The time for complete evaporation depends on which factors ? Explain.
7. What is Boiling point ?

- View Text Solution

8. Explain factors affect the boiling point.

- View Text Solution

9. What is vapour pressure ? "In open vessel rate of vaporization is constant still equilibrium is not establish" - Explain.

- View Text Solution

10. Explain solid-vapour equilibrium by example.

- View Text Solution

11. Explain the equilibrium when sublimation of solid take place in close vessel.

- View Text Solution

12. Explain equilibrium involving dissolution of solid in liquid.

- View Text Solution

13. Explain equilibrium in saturated solution and its dynamic nature.

- View Text Solution

14. Explain equilibrium of gases in liquids.

- View Text Solution

15. Explain equilibrium in soda water and explain it by Henry's law.
16. Explain types of physical equilibrium by giving example.

- View Text Solution

17. Write general characteristics of equilibria involving physical processes.

- View Text Solution

18. Explain chemical equilibrium by giving example of general reaction.

- View Text Solution

19. Chemical equilibrium, explain by example of 'chemical reaction'.
20. Explain the dynamic nature of chemical equilibrium with suitable reaction of example.

- View Text Solution

21. Explain dynamic nature of chemical system in laboratory

- View Text Solution

22. Give law of chemical equilibrium for equilibrium process.

- View Text Solution

23. Write equilibrium constant (equilibrium law) for the following reaction.

$$
(\mathrm{i}) 4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

(ii) $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
(iii) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$

- View Text Solution

24. Obtain the relation between equilibrium constant K and K^{\prime} forward and reverse reaction.

- View Text Solution

25. If any equilibrium process equation is multiply by any factor n, still there is no change in equilibrium constant explain with example.

- View Text Solution

26. What is homogeneous equilibrium ? Give examples.
27. Partial pressure of (p) is in proportional to the concentration (c) explain.

- View Text Solution

28. $a A+b B \Leftrightarrow c C+d D$ here A, B, C, D are in gaseous phase. Derive the relation between K_{p} and K_{c}.

- View Text Solution

29. Which type of relation of K_{p} and K_{c} when $\Delta n=0, \Delta n>0$ and $\Delta n<0$

- View Text Solution

30. What is heterogeneous equilibria ? Give its types with examples.
31. Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression ?

- View Text Solution

32. Give equilibrium expression constant of the following reaction.
(a) $\mathrm{Ni}_{(\mathrm{s})}+4 \mathrm{CO}_{(\mathrm{g})} \Leftrightarrow \mathrm{Ni}(\mathrm{CO})_{4(g)}$
(b) $\mathrm{Ag}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{HNO}_{3(\mathrm{~g})} \Leftrightarrow 2 \mathrm{AgNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

- View Text Solution

33. Write the difference between Homogeneous equilibrium and Heterogeneous equilibrium.

- View Text Solution

34. Write applications of equilibrium constants.
35. Write the uses of equilibrium constant.

- View Text Solution

36. Explain the use of equilibrium constant to predicate the proportion of reaction with example.

- View Text Solution

37. Explain reaction quotient and prediction the direction of the reaction.

- View Text Solution

38. Explain calculation of concentration at the value of equilibrium constant.
39. Explain chemical equilibrium and free energy change.

- View Text Solution

40. Explain the relation between time of equilibrium and thermodynamics.

- View Text Solution

41. Derive relation between equilibrium constant K , Reaction quotient Q and Gibbs energy change (ΔG).

- View Text Solution

42. How the prediction of reaction is carried out ?
(a) By the value of K
(b) By the value of Q
(c) By the value of ΔG
(d) By the value ΔG^{\ominus}.

- View Text Solution

43. (a) What is required in chemical synthesis ? What will be done for that ?
(b) Write Le-Chatelier's principle.

- View Text Solution

44. Give requirements for chemical synthesis and give the changes in equilibrium and laws.

- View Text Solution

45. Write effect of concentration change on equilibrium and explain by suitable example.

- View Text Solution

46. Explain : Effect of concentration equilibrium occurs in two drops of 0.2 M potassium thiocynate (KSCN) added in 1 mL . 0.2 M Iron (III) Nitrate solution.

- View Text Solution

47. Explain effect of concentration on equilibrium by suitable experiments.
$F e_{(a q)}^{3+}$ Yellow $+S C \bar{N}_{(a q)}$ Colourless $\Leftrightarrow[F e(S C N)]_{(a q)}^{2+}$ Deep red Explain effect by added, (i) Oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ (ii) HgCl_{2} and (iii) Potassium thiocynate (KSCN) in equilibrium reaction.
48. Explain effect of pressure change on equilibrium system by suitable examples.

- View Text Solution

49. Explain : Effect of Inert Gas addition on equilibrium.

- View Text Solution

50. Explain effect of temperature change on chemical equilibrium by example.

- View Text Solution

51. Explain effect of temperature on equilibrium by suitable experiment.

- View Text Solution

52. Explain effect of catalyst on chemical equilibrium by example.

- View Text Solution

53. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
(a) What is the initial effect of the change on vapour pressure ?
(b) How do rates of evaporation and condensation change initially?
(c) What happens when equilibrium is restored finally and what will be the final vapour pressure?

- View Text Solution

54. Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
(a) $P C l_{5(g)} \Leftrightarrow P \mathrm{Cl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
(b) $\mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CaCO}_{3(\mathrm{~s})}$
(c) $3 \mathrm{Fe}_{(\mathrm{s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+4 \mathrm{H}_{2(\mathrm{~g})}$

- View Text Solution

55. Which of the following reactions will get affected by increasing the pressure ? Also, mention whether change will cause the reaction to go into forward or backward direction.
(i) $\mathrm{COCl}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CO}_{(\mathrm{g})}+\mathrm{Cl}_{(2)(\mathrm{g})}$
(ii) $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{~S}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CS}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
(iii) $\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{C}_{(\mathrm{s})} \Leftrightarrow 2 \mathrm{CO}_{(\mathrm{g})}$
(iv) $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$
(v) $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
(vi) $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

- View Text Solution

56. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction :
$\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}$
(a) Write as expression for K_{p} for the above reaction.
(b) How will the values of K_{p} and composition of equilibrium mixture be affected by
(i) increasing the pressure
(ii) increasing the temperature
(iii) using a catalyst ?

- View Text Solution

57. Describe the effect of:
(a) addition of H_{2}
(b) addition of $\mathrm{CH}_{3} \mathrm{OH}$
(c) removal of CO
(d) removal of $\mathrm{CH}_{3} \mathrm{OH}$ on the equilibrium of the reaction:
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$

- View Text Solution

58. At 473K, equilibrium constant K_{c} for decomposition of phosphorus pentachloride, PCl_{5} is 8.3×10^{-3}. If decomposition is depicted as, $P C l_{5(\mathrm{~g})} \Leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}, \Delta_{\mathrm{r}} H^{\Theta}=124.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(a) Write an expression for K_{c} for the reaction.
(b) What is the value of K_{c} for the reverse reaction at the same temperature?
(c) What would be the effect on K_{c} if (i) more PCl_{5} is added (ii) pressure is increased (iii) the temperature is increased ?

- View Text Solution

59. What is ionic equilibrium ? Discuss the relation of types of substance and ionic equilibrium in solution.

- View Text Solution

60. Write a acid, base and salt available in nature.
61. Explain hydration of sodium chloride.

- View Text Solution

62. Write Arrhenius concept of Acids and Bases.

- View Text Solution

63. Explain the existence of hydronium ion in aqueous solution.

- View Text Solution

64. Explain : Proton $\left(H^{+}\right)$does not exist in aqueous solution.
65. Write the Bronsted - Lowry principle for acids and bases.

- View Text Solution

66. What is meant by the conjugate acid-base pair ? Find the conjugate acid/base for the following species:
$\mathrm{HNO}_{2}, \mathrm{CN}^{-}, \mathrm{HClO}_{4}, \mathrm{~F}^{-}, \mathrm{OH}^{-}, \mathrm{CO}_{3}^{2-}$ and S^{2-}

- View Text Solution

67. Write Lewis Acid-Base principle.

- View Text Solution

68. Explain acid-base and its type according (A) Arrhenius and

Bronsted-Lowry by examples.
69. Get the equation of ionic product $\left(K_{w}\right)$ of water.

- View Text Solution

70. Explain concentration of pure water : Equilibrium of pure water is on left side.

- View Text Solution

71. Explain pH scale and pH .

- View Text Solution

72. Write about methods of measurement of pH of solution.

- View Text Solution

73. Write about relation of pH and concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in Acidic, Basic and Neutral solution.

- View Text Solution

74. Derive relation of pH and pOH .

- View Text Solution

75. Derive the equation of ionization constants K_{a} of weak acids HX.

- View Text Solution

76. Write characteristics and uses of K_{a} value.

- View Text Solution

77. Derive the equation of ionization constant $\left(K_{b}\right)$ of weak base.

- View Text Solution

78. Write characteristics and uses of weak base equailibrium constant K_{b}.

- View Text Solution

79. Write examples of weak acids and weak bases and give ionic equilibrium in its aqueous solution.

- View Text Solution

80. Explain a general step-wise approach to evaluate the pH of the weak electrolyte.
81. Derive $K_{a} \times K_{b}=K_{w}$ equation.

- View Text Solution

82. Derive the equation of relation between weak base ionization constant K_{b} and its conjugate acid ionization constant K_{a}.

- View Text Solution

83. Derive $K_{w}=K_{a} \times K_{b}$ and $K_{w}=p K_{a}+p K_{b}$ for weak base B and its conjugate acid BH^{+}.

- View Text Solution

84. Explain ionization and ionization constant in di and polyprotic acid .

- View Text Solution

85. Diprotic and Triprotic acid

- View Text Solution

86. What is polyprotic acid ? Give example of polyprotic acid and its ionization.

- View Text Solution

87. Discuss the factors affecting acid strength by examples.

- View Text Solution

88. Write about common ion effect.

- View Text Solution

89. Derive defination and explain common ion effect by example .

- View Text Solution

90. Explain effect of resulting solution on addition of 0.05 M acetate ion to 0.05 M acetic acid solution .

- View Text Solution

91. What is hydrolysis ? Give difference between unhydrolyse and hydrolyse ion.

- View Text Solution

92. Give classification and examples of salts an the base of hydrolysis .

- View Text Solution

93. Predict if the solutions of the following salts are neutral , acidic or basic:
$\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF

- View Text Solution

94. Following are explain by reasons :

NaCl solution is neutral.

- View Text Solution

95. Following are explain by reasons:

The solution of strong acid and strong base salts is neutral.
96. Following are explain by reasons :
$\mathrm{NaCH}_{3} \mathrm{COO}$ solution is basic

- View Text Solution

97. Following are explain by reasons :

The solution of strong base and weak acid salt is basic

- View Text Solution

98. Following are explain by reasons:
$\mathrm{NH}_{4} \mathrm{Cl}$ solution is acidic.

- View Text Solution

99. Following are explain by reasons :

The solution of weak base and strong acid salt is acidic.
100. Following are explain by reasons :

The solution of $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}$ is (almost) neutral.

D View Text Solution

101. Following are explain by reasons :

The solution of weak acid-weak base salts is almost neutral.

D View Text Solution

102. What is buffer solutions ? Explain types of buffer solutions by examples.

- View Text Solution

103. Give the importance of buffer solution.

- View Text Solution

104. Derive the Henderson-Hasselbalch equation.

- View Text Solution

105. Derive the equation for calculation of pH of acidic buffer solution.

- View Text Solution

106. Explain preparation of acidic buffer solution with example.
107. How to make buffer of ammonia $\left(p K_{a}=9.25\right)$, What is the pH of this buffer?

- View Text Solution

108. What is solubility of salt ? Explain classification of salt based on solubility?

- View Text Solution

109. Explain the factors affecting solubility of salts in solution.

- View Text Solution

110. Derive the equation of solubility and solubility product of sparingly soluble salt $M_{x}^{p+} X_{y}^{q-}$
111. Explain relation of solubility (S) and $K_{s p}$.

- View Text Solution

112. Derive the equation of following sparingly soluble salt.
(a)Two ions having MX formula
(b)Three ions having $M X_{2}$ or $M_{2} X$ types salts
(c) Four ions having $A X_{3}$ or $A_{3} X$ type salts .
(d)Five ions $A_{2} X_{3}$ or $A_{3} X_{2}$ type salts.

- View Text Solution

113. Explain common in effect for solubility of salts

D View Text Solution

114. Explain solubility of salt in presence of common ion.

- View Text Solution

115. Explain difference between ionic product and solubilities product . Explain the reaction with precipitation of sparingly soluble salt.

- View Text Solution

116. Explain the uses of common ion effect.

- View Text Solution

117. The solubility of salt of weak acid $M X$ (e.g. phosphoric) is increase at tower pH explain with equation.

- View Text Solution

118. The equilibrium constant for the reaction $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H_{(g)}$ at 731 K temperature is 46.4 . Calculate equilibrium constant of the following reaction at same temperature.
$(1) 2 \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{I}_{2(\mathrm{~g})} \Leftrightarrow 4 \mathrm{HI} \mathrm{g}_{\mathrm{g})}$
(2) $\frac{1}{2} H_{2(g)}+\frac{1}{2} I_{2(g)} \Leftrightarrow H I_{(g)}$
(3) $H I_{(g)} \Leftrightarrow \frac{1}{2} H_{2(g)}+\frac{1}{2} I_{2(g)}$
(4) $2 \mathrm{HI}_{(\mathrm{g})} \Leftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$

- View Text Solution

119. The concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at 731 K respectively $0.92 \times 10^{-2}, 0.20 \times 10^{-2}$ and $2.96 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$, calculate equilibrium constant.

$$
H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}
$$

- View Text Solution

120. The following concentrations were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at 500K.
$\left[N_{2}\right]=1.5 \times 10^{-2} \mathrm{M} .\left[\mathrm{H}_{2}\right]=3.0 \times 10^{-2} \mathrm{M}$ and $\left[\mathrm{NH}_{3}\right]=1.2 \times 10^{-2} \mathrm{M}$.
Calculate equilibrium constant. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$

- View Text Solution

121. At equilibrium, the concentration of : $N_{2}=3.0 \times 10^{-3} \mathrm{M}$, $O_{2}=4.2 \times 10^{-3} \mathrm{M}$ and $N O=2.8 \times 10^{-3} \mathrm{M}$ in a sealed vessel at 800 K .

What will be K_{c} for the reaction
$N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$

- View Text Solution

122. What is K_{c} for the following equilibrium when the equilibrium concentration of each substance is : $\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M}$?
$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$

- View Text Solution

123. The equilibrium constant expression for a gas reaction is ,
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{\left[\mathrm{NO}^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right.}$
Write the balanced chemical equation corresponding to this expression.

- View Text Solution

124. The reaction occurs between H_{2} and I at 731 K temperature equilibrium concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI are as under in Table

Experiment No.	$\left\|\mathrm{H}_{2(4)}\right\|$	[${ }_{2 \text { cw }}$]	$\left.{ }^{[1 \mathrm{H}}{ }_{(0)}\right]^{\text {d }}$
1.	1.14×10^{-2}	0.12×10^{-2}	2.52×10^{-2}
2.	0.92×10^{-2}	0.20×10^{-2}	2.96×10^{-2}
3.	0.77×10^{-2}	0.31×10^{-2}	3.34×10^{-2}
4.	0.92×10^{-2}	0.22×10^{-2}	3.08×10^{-2}

Calculate $\frac{[\mathrm{HI}]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$ and $\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$ and discuss of obtained results and derive chemical equilibrium rule.
125. The decomposition of HI in closed vessel at 731 K take place.

Experiment	$\left\|\mathrm{H}_{2(\mathrm{~g})}\right\|$	$\left[\mathrm{I}_{2(\mathrm{~g})}\right]$	$\left[\mathrm{HI}_{(\mathrm{g})}\right]$
5.	0.345×10^{-2}	0.345×10^{-2}	2.35×10^{-2}
6.	0.86×10^{-2}	0.86×10^{-2}	5.86×10^{-2}

Calculate equilibrium constant. What is the result on the base of problem 7.7 and 7.8 ?

- View Text Solution

126. Derive the relation of value of K_{p} and K_{c} of the following balance reaction.

$$
H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}
$$

- View Text Solution

127. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$, For this equilibrium reaction at given temperature find relation between K_{p} and K_{c}

- View Text Solution

128. $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and Cl_{2} are at equilibrium at 500 K and having concentration $1.59 \mathrm{M} \mathrm{PCl}_{3}, 1.59 \mathrm{M} \mathrm{Cl}_{2}$ and $1.41 \mathrm{M} \mathrm{PCl}_{5}$. Calculate K_{c} for the reaction, $\mathrm{PCl}_{5} \Leftrightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$.

D View Text Solution

129. Nitric oxide reacts with Br_{2} and gives nitrosyl bromide as per reaction given below:
$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NOBr}_{(\mathrm{g})}$
When 0.087 mol of NO and 0.0437 mol of Br_{2} are mixed in a closed container at constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate equilibrium amount of NO and Br_{2}.

- View Text Solution

130. The value of $K_{c}=4.24$ at 800 K for the reaction,
$\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \quad$ Calculate \quad equilibrium concentrations of $\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$ at 800 K , if only CO and $\mathrm{H}_{2} \mathrm{O}$ are present initially at concentrations of 0.10M each.

- View Text Solution

131. For the equilibrium
$2 \mathrm{NOCl}_{(\mathrm{g})} \Leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
the value of the equilibrium constant, K_{c} is 3.75×10^{-6} at 1069 K .
Calculate the K_{p} for the reaction at this temperature ?

- View Text Solution

132. For the following equilibrium, $K_{c}=6.3 \times 10^{14}$ at 1000 K . $\mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{3(\mathrm{~g})}=\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is K_{c} for the reverse reaction ?

- View Text Solution

133. Reaction between N_{2} and $\mathrm{O}_{2 \text {. }}$ takes place as follows : $2 N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N_{2} O_{(g)}$ If a mixture of $0.482 \mathrm{~mol} N_{2}$ and 0.933 mol of O_{2} is placed in a 10 L reaction vessel and allowed to form N 2 O at a temperature for which $K_{c}=2.0 \times 10^{-37}$, determine the composition of equilibrium mixture.

- View Text Solution

134. At $450 \mathrm{~K}, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction of equilibrium .
$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$ What is K_{c} at this temperature ?

- View Text Solution

135. A sample of $H I_{(g)}$ is placed in flask at a pressure of 0.2 atm . At equilibrium the partial pressure of $H I_{(g)}$ is 0.04 atm . What is K_{p} for the
given equilibrium?
$2 H I_{(g)} \Leftrightarrow H_{2(g)}+I_{2(g)}$

D View Text Solution

136. $K_{p}=0.04 \mathrm{~atm}$ at 899 K for the equilibrium shown below. What is the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium ?
$\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})} \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$

- View Text Solution

137. A sample of pure PCl_{5} was introduced into an evacuated vessel at 473 K. After equilibrium was attained, concentration of PCl_{5} was found to be $0.5 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$. If value of K_{c} is 8.3×10^{-3}, what are the concentrations of PCl_{3} and Cl_{2} at equilibrium ?
$\mathrm{PCl}_{5(\mathrm{~g})} \Leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
138. Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium :
$2 B r C l(g) ~ \Leftrightarrow B r_{2(g)}+\mathrm{Cl}_{2(g)}$ for which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of $3.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$, what is its molar concentration in the mixture at equilibrium ?

- View Text Solution

139. The equilibrium constant for the following reaction is 1.6×10^{5} at 1024 K

$$
H_{2(g)}+B r_{2(g)} \Leftrightarrow 2 H B r_{(g)}
$$

Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024 K .
140. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of two stage reaction involves the formation of CO and H_{2}. In second stage, CO formed in first stage is reacted with more steam in water gas shift reaction,
$\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$
If a reaction vessel at $400^{\circ} \mathrm{C}$ is charged with an equimolar mixture of CO and steam such that $p_{\mathrm{CO}}=P_{\mathrm{H}_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium ? $K_{p}=10.1$ at $400^{\circ} \mathrm{C}$.

- View Text Solution

141. The value of K_{c} for the reaction $3 O_{2(g)} \Leftrightarrow 2 O_{3(g)}$ is 2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of O_{2} in air at $25^{\circ} \mathrm{C}$ is 1.6×10^{-2}, what is the concentration of O_{3} ?

- View Text Solution

142. The reaction, $\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is at equilibrium at 1300 K in a 1 L flask. It also contain 0.30 mol of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of CH_{4} in the flask. Determine the concentration of CH_{4} in the mixture. The equilibrium constant, K_{c} for the reaction at the given temperature is 3.90 .

- View Text Solution

143. Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

(i) Write the concentration ratio (reaction quotient), Q_{c} for this reaction (note : water is not in excess and is not a solvent in this reaction)
(ii) At 293 K , if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture.

Calculate the equilibrium constant.
(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and
maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime. Has equilibrium been reached ?

- View Text Solution

144. At definite temperature total pressure is P bar derive equilibrium constant.
$\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$

- View Text Solution

145. At definite temperature in open vessel decomposition of Ammonium carbonate take place and total pressure is P bar derive K_{p}.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3(\mathrm{~s})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

- View Text Solution

146. In evacuated closed vessel the total pressure is P bar at equilibrium.

Write equilibrium constant K_{p} of the following reaction.
Reaction : $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \Leftrightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$

- View Text Solution

147. Following equilibrium is established to decomposing of Ammonium carbonate $\mathrm{NH}_{4} \mathrm{COONH}_{2}$ in closed vessel at 700 K temperature.
$\mathrm{NH}_{4} \mathrm{COONH}_{2(\mathrm{~s})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2}$
At initial if there is vaccum and at equilibrium total pressure is P bar than derive the value of K_{p} with respect to P.

- View Text Solution

148. Write the expression for the equilibrium constant, K_{c} for each of the following reactions
(1) $2 \mathrm{NOCl}_{(\mathrm{g})} \Leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
(2) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})}$
$(3) \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(a q)}$
$(4) \mathrm{Fe}_{(a q)}^{3+}+3 \mathrm{OH}_{(a q)}^{-} \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3(s)}$
$(5) I_{2(s)}+5 F_{2(s)} \Leftrightarrow 2 I F_{5(g)}$

- View Text Solution

149. Find out the value of K_{c} for each of the following equilibria from the value of K_{p} :
${\text { (i) } 2 \mathrm{NOCl}_{(\mathrm{g})}} \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2(\mathrm{~g})}, K_{p}=1.8 \times 10^{-2}, 500 \mathrm{~K}$
(ii) $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2(\mathrm{~g})}, \mathrm{K}_{p}=167,1073 \mathrm{~K}$

- View Text Solution

150. The value of K_{p} for the reaction,
$\mathrm{CO}_{2(\mathrm{~g})}+C_{(s)} \Leftrightarrow 2 \mathrm{CO}(g)$ is 3.0 at 1000 K . If initially $p_{\mathrm{CO}_{2}}=0.48$ bar and $p_{C O}=0$ bar and pure graphite is present, calculate the equilibrium partial pressures of CO and CO_{2}.
151. At $700 \mathrm{~K} \mathrm{H}_{2}$ and I_{2} with reaction $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$ in $K_{c}=57.0$. At t time $\left[\mathrm{H}_{2}\right]_{t}=0.1 \mathrm{M},\left[\mathrm{I}_{2}\right]_{t}=0.2 \mathrm{M}$ and $[\mathrm{HI}]_{t}=0.40$. After t time reaction proceed in which direction?

- View Text Solution

152. The value of K_{c} for the reaction $2 \mathrm{~A} \Leftrightarrow \mathrm{~B}+\mathrm{C}$ is 2×10^{-3}. At a given time, the composition of reaction mixture is $[\mathrm{A}]=[\mathrm{B}]=[\mathrm{C}]=3 \times 10^{-4} \mathrm{M}$. In which direction the reaction will proceed ?

- View Text Solution

153. Equilibrium constant, K_{c} for the reaction $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ at 500 K is 0.061 At a particular time, the analysis shows that composition of the reaction mixture is $3.0 \mathrm{~mol} L^{-1} N_{2}, 2.0 \mathrm{~mol} L^{-1} H_{2}$, and 0.5 mol $L^{-1} \mathrm{NH}_{3}$. Is the reaction at equilibrium ? If not in which direction does the reaction tend to proceed to reach equilibrium ?

- View Text Solution

154. 13.8 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ was placed in a 1 L reaction vessel at 400 K and allowed to attain equilibrium,

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

The total pressure at equilibrium was found to be 9.15 bar. Calculate K_{c}, K_{p} and partial pressure at equilibrium.

- View Text Solution

155. 3.00 mol of PCl_{5} kept in 1 L closed reaction vessel was allowed to attain equilibrium at 380 K . Calculate composition of the mixture at equilibrium. $K_{c}=1.80$
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$

- View Text Solution

156. One of the reaction that takes place in producing steel from iron ore is the reduction of iron (II) oxide by carbon monoxide to give iron metal and CO_{2}.
$\mathrm{FeO}_{(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})} \Leftrightarrow \mathrm{Fe}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \mathrm{K}_{\mathrm{p}}=0.265 \mathrm{~atm}$ at 1050 K.
What are the equilibrium partial pressures of CO and CO_{2} at 1050 K if the initial partial pressures are: $p_{C O}=1.4 \mathrm{~atm}$ and $2 p_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$?

- View Text Solution

157. What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M ?
$2 I C l_{(g)} \Leftrightarrow I_{2(g)}+C l_{2(g)}, K_{c}=0.14$

- View Text Solution

158. At 700 K , equilibrium constant for the reaction $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$ is 54.8 . If $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathrm{H} \mathrm{I}_{(\mathrm{g})}$ is present at equilibrium at 700 K , what are the concentration of $H_{2(g)}$ and $I_{2(g)}$
assuming that we initially started with $\mathrm{HI}(\mathrm{g})$ and allowed it to reach equilibrium at 700 K ?

D View Text Solution

159. A mixture of 1.57 mol of $\mathrm{N}_{2} 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of NH_{3} is introduced into a 20 L reaction vessel at 500 K . At this temperature, the equilibrium constant, K_{c} for the reaction $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ is 1.7×10^{2}. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction ?

- View Text Solution

160. At a certain temperature and total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of I atoms $I_{2(g)} \Leftrightarrow 2 I_{(g)}$. Calculate K_{p} for the equilibrium.

D View Text Solution

161. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in 10 L vessel and heated to 725 K . At equilibrium 40% of water (by mass) reacts with CO according to the equation:
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})} \Leftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$
Calculate the equilibrium constant for the reaction.

- View Text Solution

162. At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has 90.55% CO by mass.
$C_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{CO}_{(\mathrm{g})}$
Calculate K_{c} for this reaction at the above temperature.

- View Text Solution

163. The value of ΔG^{θ} for the phosphorylation of glucose in glycolysis is
$13.8 \mathrm{~kJ} / \mathrm{mol}$. Find the value of K_{c} at 298 K .
164. Hydrolysis of sucrose gives,

Sucrose $+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow$ Glucose + Fructose
Equilibrium constant K_{c} for the reaction is 2×10^{13} at 300 K . Calculate ΔG^{\ominus} at 300 K.

- View Text Solution

165. Calculate (a) ΔG^{0} and (b) the equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298 K ,
$N O_{(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow N O_{2(g)}$
where , $\Delta G_{f}^{\ominus}\left(\mathrm{NO}_{2}\right)=52.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta G_{f}^{\ominus}(\mathrm{NO})=87.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta G_{f}^{\ominus}\left(O_{2}\right)=0.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- View Text Solution

166. Predict which of the following reaction will have appreciable concentration of reactants and products :
(a) $\mathrm{Cl}_{2(\mathrm{~g})} \Leftrightarrow 2 C l_{(\mathrm{g})}, K_{c}=5 \times 10^{-39}$
(b) $\mathrm{Cl}_{2(g)}+2 \mathrm{NO}_{(g)} \Leftrightarrow 2 \mathrm{NOCl}_{(g)}, K_{c}=3.7 \times 10^{8}$
$(\mathrm{c}) \mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{NO}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})}, K_{c}=1.8$

- View Text Solution

167. What will be the conjugate bases for the following Bronsted acids : $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCO_{3} ?

- View Text Solution

168. Write the conjugate acids for the following Bronsted bases : $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and HCOO^{-}.

- View Text Solution

169. Classify the following species into Lewis acids and Lewis bases and show how these act as such : (i) $\mathrm{H}_{2} \mathrm{O}$, (ii) HCO_{3}^{-}, (iii) HSO_{4}^{-}, (iv) NH_{3}

- View Text Solution

170. Classify the following species into Lewis acids and Lewis bases and show how these act as such : (a) HO^{-}, (b) F^{-}, (c) H^{+}, (d) BCl_{3}

- View Text Solution

171. Which of the followings are Lewis acids ?
$\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{+}$and NH_{4}^{+}

- View Text Solution

172. What will be the conjugate bases for the Bronsted acids: $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCO_{3}^{-}
173. Write the conjugate acids for the following Bronsted bases : $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and HCO_{3}^{-}.

- View Text Solution

174. The species : $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and base.

- View Text Solution

175. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. what is its pH ?
176. Calculate pH of a $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl .

- View Text Solution

177. The pH of a sample of vinegar is 3.76 . Calculate the concentration of hydrogen ion in it.

- View Text Solution

178. Assuming complete dissociation, calculate the pH of the following solutions:
(a) 0.003 M HCl , (b) 0.005 M NaOH , (c) 0.002 M HBr , (d) 0.002 M KOH

- View Text Solution

179. Calculate the pH of the following solutions:
(a) 2 g of TIOH dissolved in water to give 2 litre of solution.
(b) 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 ml , of solution.
(c) 0.3 g of NaOH dissolved in water to give 200 mL of solution.
(d) 1 mL of 13.6 M HCl is diluted with water to give 1 litre of solution.

- View Text Solution

180. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:
(a) Human muscle-fluid, 6.83
(b) Human stomach fluid, 1.2
(c) Human blood, 7.38
(d) Human saliva, 6.4.

- View Text Solution

181. The pH of milk, black coffee, tomato juice, lemon juice and egg white are 6.8, 5.0, 4.2, 2.2 and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.
182. If 0.561 g of KOH is dissolved in water to give 200 mL of solution at 298 K. Calculate the concentrations of potassium, hydrogen and hydroxyl ions. What is its pH ? $(\mathrm{K}=39, \mathrm{O}=16, \mathrm{H}=1)$

- View Text Solution

183. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{~g} / \mathrm{L}$ of solution. Calculate the concentrations of strontium and hydroxyl lons and the pH of the solution.

- View Text Solution

184. The ionization constant of HF is 3.2×10^{-4}. Calculate the degree of dissociation of HF in its 0.02 M solution. Calculate the concentration of all species present $\left(\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{F}^{-}\right.$and HF$)$ in the solution and its pH .
185. The pH of 0.1 M monobasic acid is 4.50 . Calculate the concentration of species H^{+}, A^{-}and HA at equilibrium. Also , Determine the value of K_{a} and $p K_{a}$ of the monobasic acid.

D View Text Solution

186. Calculate the pH of 0.08 M solution of hypochlorous acid, HOCl. The ionization constant of the acid is 2.5×10^{-5}. Determine the percent dissociation of HOCl.

- View Text Solution

187. The pH of 0.004 M hydrazine solution is 9.7 . Calculate its ionization constant K_{b} and $p K_{b}$.
188. Ionic product of water at 310 K is 2.7×10^{-14}. What is the pH of neutral water at this temperature?

- View Text Solution

189. Calculate the pH of the solution in which $0.2 \mathrm{M} \mathrm{NH} 4_{4} \mathrm{Cl}$ and $0.1 \mathrm{M} \mathrm{NH}_{3}$ are present. The $p K_{b}$ of ammonia solution is $p K_{b}=4.75$

- View Text Solution

190. Dissociated constant of weak acid $\mathrm{CH}_{3} \mathrm{COOH}$ is $1.8 \times 10^{-5} \cdot \operatorname{In} 0.1 \mathrm{M}$ solution calculate concentration $\mathrm{CH}_{3} \mathrm{COO}^{-}$and H^{+}. Calculate pH of solution. If 0.1 M HCl added to this solution than calculate degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$.

- View Text Solution

191. Hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is weak base and its dissociation constant is 1.8×10^{-6}. So, calculate pH of 0.25 M solution.

- View Text Solution

192. The dissociation constant of weak acid ammonium is 5.6×10^{-10} and dissociation constant of weak base ammonia $K_{b}=1.8 \times 10^{-5}$. Calculate ionic product of water.

- View Text Solution

193. Determine the degree of ionization and pH of a 0.05 M of ammonia solution. The ionization constant of ammonia can be taken from $K_{b}=1.77 \times 10^{-5}$. Also, calculate the ionization constant of the conjugate acid of ammonia .

- View Text Solution

194. A 0.02 M solution of pyridinium hydrochloride has $\mathrm{pH}=3.44$. Calculate the ionization constant of pyridine.

- View Text Solution

195. The ionization constant of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively. Calculate the ionization constants of the corresponding conjugate base.

- View Text Solution

196. The ionization constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion is 0.05 M solution of phenol ? What will be its degree of ionization if the solution is also 0.01 M in sodium phenolate ?

- View Text Solution

197. The ionization constant of acetic acid is 1.74×10^{-5}. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH .

- View Text Solution

198. It has been found that the pH of a 0.01 M solution of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $p K_{a}$.

- View Text Solution

199. The degree of ionization of a 0.1 M bromoacetic acid solution is 0.132 .

Calculate the pH of the solution and the $p K_{a}$ of bromoacetic acid.

- View Text Solution

200. The pH of 0.005 M codeine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 . Calculate its ionization constant and $p K_{b}$.

- View Text Solution

201. Calculate the degree of ionization of 0.05 M acetic acid if its $p K_{a}$ value is 4.74 . How is the degree of dissociation affected when its solution also contains (a) 0.01 M , (b) 0.1 M in HCl ?

- View Text Solution

202. The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34 . Calculate the ionization constant of the acid and its degree of ionization in the solution.

- View Text Solution

203. Calculate the pH of the resultant mixtures :
$10 \mathrm{~mL} \mathrm{0.2} \mathrm{M} \mathrm{Ca(OH})_{2}+25 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{HCl}$

- View Text Solution

204. Calculate the pH of the resultant mixtures :
$10 \mathrm{~mL} 0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL} 0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$

- View Text Solution

205. Calculate the pH of the resultant mixtures:
$10 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{KOH}$

D View Text Solution

206. Calculate the pH of a 0.10 M ammonia solution. Calculate the pH after 50.0 mL of this solution is treated with 25.0 mL of 0.10 M HCl . The
dissociation constant of ammonia, $K_{b}=1.77 \times 10^{-5}$

- View Text Solution

207. The $p K_{a}$ of acetic acid and $p K_{b}$ of ammonium hydroxide are 4.76 and 4.75 respectively. Calculate the pH of ammonium acetate solution.

- View Text Solution

208. The ionisation constant of chloroacetic acid is 1.35×10^{-3}. What will be the pH of 0.1 M acid and its 0.1 M sodium salt solution?

- View Text Solution

209. The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis .
210. $K_{s p}$ of $\mathrm{BaSO}_{4}=1.05 \times 10^{-10}$ at same temperature is the concentration of Ba^{2+} and SO_{4}^{2-} in saturated solution.

- View Text Solution

211. Calculate the solubility of $A_{2} X_{3}$ in pure water, assuming that neither kind of ion reacts with water. The solubility product of $A_{2} X_{3}, K_{s p}=1.1 \times 10^{-23}$.

- View Text Solution

212. The values of $K_{s p}$ of two sparingly soluble salts $\mathrm{NI}(\mathrm{OH})_{2}$ and AgCN are 2.0×10^{-15} and 6×10^{-17} respectively. Which salt is more soluble ? Explain.

- View Text Solution

213. Calculate the molar solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.10 M NaOH . The ionic product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is 2.0×10^{-15}.

- View Text Solution

214. Determine the solubilities of silver chromate, barium chromate, ferric hydroxide , lead chloride and mercurous constants given in Table 7.9
. Determine also the molarities of individual ions.
(i) $K_{s p}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=1.1 \times 10^{-12}$
(ii) $K_{\text {sp }}\left(\mathrm{BaCrO}_{4}\right)=1.2 \times 10^{-10}$
(iii) $K_{\text {sp }}\left(\mathrm{Fe}(\mathrm{OH})_{3}\right)=1.0 \times 10^{-38}$
(iv) $K_{s p}\left(\mathrm{PbCl}_{2}\right)=1.6 \times 10^{-5}$
(v) $K_{\text {sp }}\left(\mathrm{Hg}_{2} \mathrm{Cl}_{2}\right)=1.3 \times 10^{-18}$
$\left(\right.$ vi) $K_{s p}\left(H g_{2} I_{2}\right)=4.5 \times 10^{-29}$

- View Text Solution

215. The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are 1.1×10^{-12} and 5.0×10^{-13} respectively. Calculate the ratio of the molarities of their saturated solutions.

- View Text Solution

216. Equal volumes of 0.002 M solutions of sodium iodate and cupric chlorate are mixed together. Will it lead to precipitation of copper iodate ? (For cupric iodate $K_{s p}=7.4 \times 10^{-8}$)

- View Text Solution

217. The ionization constant of benzoic acid is 6.46×10^{-5} and $K_{s p}$ for silver benzoate is 2.5×10^{-13}. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water ?

- View Text Solution

218. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, $\left.K_{s p}=6.3 \times 10^{-18}\right)$

- View Text Solution

219. What is the minimum volume of water required to dissolve 1 g of calcium sulphate at 298 K ? (For calcium sulphate , $K_{s p}=9.1 \times 10^{-6}$)

- View Text Solution

220. The concentration of sulphide ion in 0.1 M HCl solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} \mathrm{M}$. if 10 mL of this is added to 5 mL of 0.04 M solution of the following : $\mathrm{FeSO}_{4}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{2}$ and CdCl_{2}

- View Text Solution

1. At 400 K in a closed vessel $\mathrm{H}_{2(\mathrm{~g})}+I_{2(\mathrm{~g})} \Leftrightarrow 2 H I_{(g)}$ reaction take place. At equilibrium concentration of $H_{2}: 0.6 \mathrm{~mol}^{-1}$ concentration of $I_{2}: 0.8$ $\mathrm{mol} L^{-1}$ and concentration of $\mathrm{HI}: 0.14 \mathrm{~mol}^{-1}$ than calculate the equilibrium constant.

- View Text Solution

2. In a close vessel $\mathrm{PCl}_{5(\mathrm{~g})}$ is obtained by the chemical reaction between PCl_{3} and Cl_{2}. If the equilibrium concentration in this vessel of $\mathrm{PCl}_{3}, \mathrm{Cl}_{2}$ and PCl_{5} at 500 K tempe. is $1.59 \mathrm{M}, 1.59 \mathrm{M}$ and 1.41 M respectively. Than find equilibrium constant.

$$
P C l_{3(g)}+C l_{2(g)} \Leftrightarrow P C l_{5(g)}
$$

- View Text Solution

3. In the synthesis of HI , the amounts of $\mathrm{H}_{2(\mathrm{~g})}, \mathrm{I}_{2(\mathrm{~g})}$, and $\mathrm{HI}_{(\mathrm{g})}$, at equilibrium were found to be $0.8,0.8$ and 2.4 mole respectively in 10 liter vessel then calculate equilibrium constant of given reaction at constant temp and also calculate equilibrium constant of reverse reaction.

$$
H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)} .
$$

D View Text Solution

$4.8 \mathrm{gm} \mathrm{H}_{2}$ and 256 gm HI in 4 L flask calculate this active mass. ($\mathrm{H}=1 \mathrm{~g}$ $\mathrm{mol}^{-1}, \mathrm{l}=127 \mathrm{~g} \mathrm{~mol}^{-1}$)

- View Text Solution

5. At definite temperature K_{c} is given by following equation,

$$
K_{c}=\frac{\left[I_{2}\right]\left[\mathrm{H}_{5} \mathrm{IO}_{6}\right]^{5}}{\left[\mathrm{IO}_{3}^{-}\right]^{7}\left[\mathrm{H}_{2} \mathrm{O}\right]^{9}\left[\mathrm{H}^{+}\right]^{7}}
$$

Write the equilibrium equation.
6. (i) $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ and (ii) $\frac{1}{2} N_{2(g)}+\frac{3}{2} H_{2(g)} \Leftrightarrow N H_{3(g)}$ their equilibrium constant are respectively $K_{c}(1)$ and $K_{c}(2)$ state their relation.

D View Text Solution

Section A Try Your Self 3

1. Reaction $\mathrm{H}_{2(\mathrm{~g})}+I_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{HI}_{(\mathrm{g})} 0.4 \mathrm{~mol}_{2}$ and I_{2} taken in 2 L vessel if 0.5 mol HI form at equilibrium than calculate K_{p}

- View Text Solution

2. $1 \mathrm{~mol} N_{2}$ and $3 \mathrm{~mol} \mathrm{H}_{2}$ heated at 473 K and 100 atm pressure. At equilibrium moles of NH_{3} is 0.5 mol . Than calculate the equilibrium
constant of the given reaction

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

D View Text Solution

3. Reaction $\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(g)}$ equilibrium constant is 100 . Find equilibrium constant for following reaction.
(1) $2 \mathrm{NO}_{2(g)} \Leftrightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})}$
(2) $N O_{2(g)} \Leftrightarrow \frac{1}{2} N_{2(g)}+O_{2(g)}$

- View Text Solution

4. At 673 K of $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$ reaction is $K_{c} 0.50$. If pressure is in atmosphere, then calculate $K_{p} .\left(\mathrm{R}=0.082 \mathrm{Latm}^{-1} \mathrm{~mol}^{-1}\right)$

- View Text Solution

5. 298 K of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ reaction is in equilibrium $K_{p}=0.14 \mathrm{~atm}$.

Calculate of $K_{c}\left(\mathrm{R}=0.082{\left.\mathrm{Latm} K^{-1} \mathrm{~mol}^{-1}\right)}_{(}\right.$

View Text Solution

6. Equilibrium constant of following reaction is 0.5 .
$\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$ at equilibrium [CO]=0.18 mol L L^{-1} and $\left[\mathrm{H}_{2}\right]=0.22 \mathrm{~mol} \mathrm{~L}^{-1}$ Calculate the concentration of $\mathrm{CH}_{3} \mathrm{OH}$.

- View Text Solution

7. Reaction $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$, At 400 K is $K_{p}=41$, So, calculate K_{p} of following reactions at 400 K .
(a) $2 \mathrm{~N}_{2(\mathrm{~g})}+6 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 4 \mathrm{NH}_{3(\mathrm{~g})}$
(b) $2 \mathrm{NH}_{3(\mathrm{~g})} \Leftrightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$
(c) $\frac{1}{2} N_{2(g)}+\frac{3}{2} H_{2(g)} \Leftrightarrow N H_{3(g)}$
8. At 400 K for reaction $2 \mathrm{NO}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ is $\mathrm{NO}_{2} 0.710 \mathrm{M}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ 0.145 Mz concentration. Find of equilibrium constant.

- View Text Solution

9. $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$, at 298 K of K_{c} is 7×10^{25} than calculate for $\mathrm{SO}_{3(\mathrm{~g})} \Leftrightarrow \mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2}$

- View Text Solution

10. For the reaction $2 \mathrm{NOCl}_{(\mathrm{g})} \Leftrightarrow 2 N O_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ the value of equilibrium constant K_{p} is 0.033 bar at 1060 K temp. then calculate value of K_{c}.

- View Text Solution

1. At 1100 K temperature CaCO_{3} and $\mathrm{CaO}_{(s)}$ are in equilibrium pressure of CO_{2} is $2.0 \times 10^{5} \mathrm{~Pa}$. Find equilibrium constant.

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2(\mathrm{~g})}
$$

- View Text Solution

2. Which are Homogenous and Heterogenous equilibrium ?
(a) $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
(b) $\mathrm{Ca}(\mathrm{OH})_{2(s)} \Leftrightarrow \mathrm{Ca}_{(a q)}^{2+}+20 \mathrm{H}_{(a q)}^{-}$
(c) $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(a q)}$
(d) $\mathrm{Ag}_{2} \mathrm{O}_{(c s)}+2 \mathrm{H}_{(a q)}^{+} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{Ag}_{(a q)}^{+}$
(e) $\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(a q)} \Leftrightarrow \mathrm{NH}_{4(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$
(f) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{CH}_{2} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}$

- View Text Solution

3. At 600 K Ammonium carbomate decompose in closed vessel :
$\mathrm{NH}_{4} \mathrm{COONH}_{2(\mathrm{~s})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$, at equilibrium total pressure is 3
bar, So calculate K_{p}.

- View Text Solution

4. At $600^{\circ} \mathrm{NH}_{4} \mathrm{COONH}_{2(\mathrm{~s})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$ is $\mathrm{K}_{p}=3.2 \times 10^{2} \mathrm{bar}^{3}$ of equilibrium constant, , So, calculate $K_{c^{*}}\left(\mathrm{R}=0.0831 \mathrm{~L}\right.$ bar $\left.K^{-1} \mathrm{~mol}^{-1}\right)$

- View Text Solution

5. The equilibrium constant of $\mathrm{NH}_{4} \mathrm{COONH}_{2}$ in a closed vessel at 400 K temperature is $600 \mathrm{bar}^{3}$. Than what will be the total pressure at equilibrium?
$\mathrm{NH}_{4} \mathrm{COONH}_{2(\mathrm{~s})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$

- View Text Solution

1. In Glycolysis process during phosphorylation of Glucose equilibrium constant at 298 K is 3.6×10^{-3} find of ΔG^{\ominus}. What is indicates ?
$\left[\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]\left(\Delta G^{\ominus}>0 \therefore\right.$ Reaction is not spontaneous $)$

- View Text Solution

2. $6.9 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$ is taken 0.5 L closed vessel at 400 K temperature. The equilibrium $N_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ total pressure at equilibrium is 9.15 atm calculate K_{c}, K_{p} and partial pressure of each component.

- View Text Solution

3. 2 mole PCl_{5} is heated in 4 L closed vessel at definite temperature. At equilibrium $55 \% \quad \mathrm{PCl}_{5}$ remain undissociated. Find K_{c}. Reaction : $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
4. Reaction $2 \mathrm{NOCl}_{(g)} \Leftrightarrow 2 N O_{(g)}+\mathrm{Cl}_{2(g)}$ at 1060 K temperature K_{p} is $0.033 \mathrm{~atm}^{-1}$. Find $K_{c} .(\mathrm{R}=0.082)$

- View Text Solution

5. At definite temperature 3 atm pressure $75 \% \mathrm{PCl}_{5}$ decompose in PCl_{3} and $C l_{2}$. Find K_{p}.

- View Text Solution

6. At 413 K temperature and 100 atm pressure $1 \mathrm{~mol} \mathrm{~N}_{2}$ and $3 \mathrm{~mol} \mathrm{H}_{2}$ heated in closed vessel. At equilibrium $0.5 \mathrm{~mol}_{\mathrm{NH}_{3}}$ is present, find K_{p}.

- View Text Solution

7. $0.5 \mathrm{~mol} \mathrm{CaCO}_{3}$ solid decompose in 500 mL heated in closed vessel at 400 K reaction $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$ equilibrium constant of
$K_{c}=0.9 \mathrm{~mol} \mathrm{~L}^{-1}$. Calculate mol of CO_{2} at equilibrium how much percentage of reaction completed ?

- View Text Solution

8. $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ of $\mathrm{K}_{\mathrm{p}}=0.15 \mathrm{~atm}(298 \mathrm{~K})$, so calculate K in torr and $\mathrm{mol} / \mathrm{L} .\left(1 \mathrm{~atm}=760\right.$ torr, $\left.\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$

- View Text Solution

9. $10 \% \mathrm{PCl}_{5}$ decompose at definite temperature and 4 atm pressure. At same temperature if $20 \% \mathrm{PCl}_{5}$ decompose than find pressure. (Temperature not change.)

- View Text Solution

10. $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{3} O H_{(\mathrm{g})}$ for this reaction is K_{c} is 0.5 . If the concentration of CO and H_{2} at equilibrium 0.18 M and 0.22 M respectively
what is the concentration of $\mathrm{CH}_{3} \mathrm{OH}$?

- View Text Solution

11. In a closed vessel at $448{ }^{\circ} \mathrm{C} 0.5 \mathrm{~mol} \mathrm{H}_{2}$ and $0.5 \mathrm{~mol} I_{2}$ react and from hydrogen iodide. Reaction $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$ of $K_{c}=50$. (i) At equilibrium the moles of I_{2} which are unreacted. (ii) Calculate K_{p}.

- View Text Solution

12. At 717 K 3.2 mol HI heated in a close tube. $20 \% \mathrm{I}$ decompose at equilibrium $2 \mathrm{HI}_{(\mathrm{g})} \Leftrightarrow \mathrm{H}_{2(\mathrm{~g})}+I_{2(\mathrm{~g})}$ and find K_{c} and mol of $\mathrm{HI}, \mathrm{H}_{2}$ and I_{2}.

- View Text Solution

13. At 1 bar pressure and 310 K temperature $25 \%, \mathrm{~N}_{2} \mathrm{O}_{4}$ decompose. Reaction : $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ (i) Find K_{p} (ii) At 0 bar pressure and 310 K how much percentage of $\mathrm{N}_{2} \mathrm{O}_{4}$ is decompose ?
14. $1 \mathrm{~mol} \mathrm{~N}_{2}$ and $3 \mathrm{~mol} \mathrm{H}_{2}$ taken in 4L definite temperature of closed vessel. Reaction $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ according to $0.25 \% \mathrm{~N}_{2}$ convert into ammonia. Calculate K_{c} and how much reaction of K_{c} ?
$\frac{1}{2} N_{2(g)}+\frac{3}{2} H_{2(g)} \Leftrightarrow N_{3(g)}$

- View Text Solution

15. In 10 L vessel $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and O_{2} gases and definite temperature of $K_{c}=$ 100. So reaction $2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{(3) \mathrm{g}}$ at equilibrium if SO_{3} and SO_{2} are same in mol than find the moles of O_{2}. If SO_{3} is double than SO_{2} than what is the mol of O_{2} ? ?

- View Text Solution

16. At $380 \mathrm{~K} \mathrm{NH}_{4} \mathrm{H}_{5}$ decompose than total pressure is 1.12 bar. Find K_{p}.
$\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \Leftrightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$

- View Text Solution

17. At 1000 K in 0.654 L vessel $\mathrm{CaCO}_{3(\mathrm{~s})}$ is taken. $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$, the equilibrium constant is 3.9×10^{-2} bar. Find the weight of CaO at equilibrium. ($\mathrm{Ca}=4 \mathrm{O}, \mathrm{C}=12, \mathrm{O}=16$)

- View Text Solution

18. At definite temp the K_{c} of the following reaction is 0.18 . $P C l_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \Leftrightarrow P C l_{5(\mathrm{~g})}$ At a definite temp. in reaction mixture $\left[\mathrm{PCl}_{3}\right]=0.042 \mathrm{M},\left[\mathrm{Cl}_{2}\right]=0.024 \mathrm{M}$ and $\left[\mathrm{PCl}_{5}\right]=0.005 \mathrm{M}$. Is this reaction in equilibrium ? In which direction reaction moves?

- View Text Solution

19. At 298 K the K_{c} of reaction is 3.0×10^{14}. At definate temp in reaction mixture $\left[\mathrm{Cu}^{2+}\right]=1.8 \times 10^{-2} \mathrm{M},\left[\mathrm{Ag}^{+}\right]=3.0 \times 10^{-9} \mathrm{M}$ is this reaction in
equilibrium? In which direction reaction moves?

- View Text Solution

20. (i) $\frac{1}{2} N_{2(\mathrm{~g})}+\frac{3}{2} H_{2(\mathrm{~g})} \Leftrightarrow N H_{3(\mathrm{~g})}$, At 298 K is $\Delta G^{\ominus}=-16.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, So find K_{p}.
(ii)At 298 K is $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}$, Calculate K_{p} and ΔG^{\ominus}.

- View Text Solution

21. For are reaction at 298 K is $K_{p}=1.7 \times 10^{12}$, So $\mathrm{J} \mathrm{mol}^{-1}$ a find ΔG^{\ominus}. ($\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)

- View Text Solution

Section A Try Your Self 6

1. What will be the conjugate acid-base pair in $\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}$

- View Text Solution

2. Give conjugate base - conjugate acid pair of $\mathrm{NH}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)} \Leftrightarrow \mathrm{NH}_{4(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$

- View Text Solution

$$
\begin{aligned}
& \text { 3. Which is the } \\
& \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{(a q)}^{-}
\end{aligned}
$$

- View Text Solution

4. Which is the Acid in $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$which one is weak base ?

- View Text Solution

5. Classify in acids and bases of following $\mathrm{CO}_{2}, \mathrm{BCl}_{3}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{NO}_{2}^{+}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$

- View Text Solution

6. Which are only Lewis acid but not Bronsted acid of $\mathrm{CO}_{2}, \mathrm{BCl}_{3}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{NO}_{2}^{+}$and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$?

- View Text Solution

7. Write conjugate base of following : $\mathrm{HF}, \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HPO}_{4}^{2-}$

- View Text Solution

8. Give conjugate acid of following: $\mathrm{HS}^{-}, \mathrm{NH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}, \mathrm{OH}^{-}$
9. Give conjugate acid and conjugate base of following: (i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ (ii) $H \mathrm{HO}_{4}^{-2}$ (iii)HS ${ }^{-}$

- View Text Solution

10. Complete the following Acid-Base reaction and define reactant as Acid / Base.
(i) $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{CO}_{3}^{2-}$
(iv) $\mathrm{NH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$
(v) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{NO}_{2}^{+}$
(vi) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{NH}_{2}^{-}$

- View Text Solution

11. Which are the conjugate base of strong acid $\mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$? It is strong or weak ?

- View Text Solution

12. Which are the acids of this reaction?
$\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}$
Which acid is strong ?

- View Text Solution

13. Which are the acids of this reaction?
$\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}$
Which base is weak ?

- View Text Solution

1. Calculate pH and pOH of 0.03 M NaOH solution.

- View Text Solution

2. Calculate pH of following solutions :
(a) 0.1 M HCl
(b) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(c) $0.1 \mathrm{M} \mathrm{HNO}_{3}$
(d) 0.1 M NaOH
(e) 0.1 M KOH
(f) $0.1 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$

- View Text Solution

3. Water add in 1.0 mL 0.1 M HCl solution to give 50 mL . Calculate pH change of solution.
4. Calculate pH of the following: (a) $0.002 \mathrm{M} \mathrm{HNO}_{3}$ and (b) $0.06 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

- View Text Solution

5. 100 mL NaOH solution $\mathrm{pH}=10$, so calculate $\left[\mathrm{OH}^{-}\right]$.

- View Text Solution

6. Calculation of hydrogen in concentration of following: (a) 0.001 M HNO_{3} (b) 0.0001 M KOH

- View Text Solution

7. Calculate $\left[\mathrm{H}^{+}\right]$in $\mathrm{pH}=12$ and 5.6

- View Text Solution

8. If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.5 \times 10^{-8}$, So calculate $\left[\mathrm{OH}^{-}\right]$and pH of solution.

- View Text Solution

9. How many gram NaOH dissolve to make 1 L NaOH solution containing 10.06 pH ?

- View Text Solution

10. Which pH value is more in the following ?
(a) 0.1 M HCl and 0.1 M NaOH
(b) 0.1 M HCl and 0.01 M HCl
(c) 0.1 M NaOH and 0.01 M NaOH

- View Text Solution

1. Calculate $\left[\mathrm{OH}^{-}\right]$and pH of $0.001 \mathrm{M}=\left[\mathrm{H}^{+}\right]$containing solution.

- View Text Solution

2. $K_{a}=1.4 \times 10^{-5}$ of propanoic acid. Calculate its pH of 0.1 M solution.

- View Text Solution

3. 5% ionization is occur in $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution. Calculate its dissociation constant.

- View Text Solution

4. Dimethyl amine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ is weak base and its ionization constant 5.4×10^{-5}. Calculate $\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pOH}$ and pH of its 0.2 M solution at equilibrium.

Section A Try Your Self 9

1. Dissociation constat of weak acid HA is 1.8×10^{-4} calculate Dissociation constant of its conjugate base A^{-}

D View Text Solution

2. What will be the change in pH by adding of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ in 0.1 M $\mathrm{CH}_{3} \mathrm{COOH}$ at 298 K temperature $?\left(p K_{a}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{COOH}=4.74\right)$

- View Text Solution

3. What will be the change in pH by adding of 0.1 M NH 44 in 0.1 M $\mathrm{NH}_{4} \mathrm{OH}$ (weak base) solution ? $\left(\mathrm{K}_{b}\right.$ of $\left.\mathrm{NH}_{4} \mathrm{OH}=1.77 \times 10^{-5}\right)$

- View Text Solution

4. The ionization constant of benzoic acid is 6.5×10^{-5} at 298 K temperature. Calculate pH of its 0.15 M solution.

- View Text Solution

5. K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.76×10^{-5} at 298 K temperature. Calculate dissociation constant of its conjugate base.

- View Text Solution

6. 0.1 mol acetic acid and 0.1 mol sodium acetate in 500 mL solution pH is 4.74. Find ionization constant.

- View Text Solution

7. The pH of 0.1 M HCN solution is 5.2 calculate K_{a} of this solution.
8. Calculate the volume of 0.1 M NaOH required to compute neutralization 300 mL HCl having 2.25 pH .

- View Text Solution

9. Calculate pH of 0.02 mL ClCH 2 COOH . Its $K_{a}=1.36 \times 10^{-3}$ calculate its $p K_{b}$.

- View Text Solution

10. Calculate pH and degree of hydrolysis of $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$. $\left[K_{h}=5.6 \times 10^{-10}\right]$

- View Text Solution

11. Calculate K_{h} and pH of $0.1 \quad \mathrm{M} \quad \mathrm{NH}_{4} \mathrm{Cl}$ solution .
$\left[K_{w}=1 \times 10^{-14}, K_{\mathrm{NH}_{4} \mathrm{OH}}=1.75 \times 10^{-5}\right]$
12. pH of $\mathrm{NH}_{4} \mathrm{Cl}$ solution is $=5.28$ calculate degree of hydrolysis of its 0.02 M solution.

- View Text Solution

13. Calculate $\left[\mathrm{H}^{+}\right]$of 0.2 M HCN in 1 M KCN solution. $\left[K_{H C N}=4 \times 10^{-10}\right]$

- View Text Solution

Section A Try Your Self 10

1. The concentration of saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $8.2 \times 10^{-4} g L^{-1}$ at 298 K temp. Then calculate its solubility product.

- View Text Solution

2. At 298 K temp. the $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.8×10^{-11}. If the 0.1 M NaOH solution is added in it then what is the concentration of $\mathrm{Mg}(\mathrm{OH})_{2}$?

Calculate its solubility in water.

- View Text Solution

3. The $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.0×10^{-12}. At which pH the $0.01 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ begins to precipitate ? Calculate solubility.

- View Text Solution

4. The 2.901 L saturated solution is formed by $0.08 \mathrm{~g} \mathrm{CaF}_{2}$ at 298 K temp. then calculate $K_{s p}$ (Molecular moles of CaF_{2} is $78 \mathrm{~g} \mathrm{~mol}^{-1}$)

- View Text Solution

5. The $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.2×10^{-11} calculate its solubility in pure water.
6. The solubility product by Lead sulphate, PbSO_{4} is 1.3×10^{-8} calculate its solubility in pure water. The molecular mass of $\mathrm{PbSO}_{4}=303 \mathrm{~g} \mathrm{~mol}^{-1}$

- View Text Solution

7. The $K_{s p}$ of $C a F_{2}$ is 1.7×10^{-10}. Then what is the volume in mililitre of saturated solution of 10 miligram CaF_{2} ? (Molecular mass of $\mathrm{Ca}(40)$, $F(19)$).

- View Text Solution

8. At 298 K temp. the $K_{\text {sp }}$ of CaF_{2} is 1.7×10^{-10}. One person daily drinks 2.5 L saturated water by CaF_{2}. Then how much gram CaF_{2} present in his body ? (Molecular mass of CaF_{2} is $78 \mathrm{~g} \mathrm{~mol}^{-1}$)

- View Text Solution

9. The pH of saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 12.25 . Then calculate its solubility product.

- View Text Solution

10. The concentration of saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $8.2 \times 10^{-4} \%$ w / V. Calculate its solubility product. Its molecular mass is $58.3 \mathrm{~g} \mathrm{~mol}^{-1}$

- View Text Solution

11. The solution is 2 L of 0.02 M NaOH . The solubility product of $\mathrm{Zn}(\mathrm{OH})_{2}$ is 4.5×10^{-17}. Then how many gram $\mathrm{Zn}(\mathrm{OH})_{2}$ maximum soluble in given NaOH solution?
12. The solubility product of magnesium hydroxide $\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)$ is 1.2×10^{-11}. Calculate its solubility in pure water and 0.05 M NaOH .

- View Text Solution

13. $0.08 \mathrm{~g} / 2.901 \mathrm{~L}$ is a saturated solution of CaF_{2} at 298 K temp. calculate $K_{s p}$ of CaF_{2}.

- View Text Solution

14. The $K_{s p}$ of BaSO_{4} is 1.1×10^{-10}, will a precipitate form when equal volume of $2 \times 10^{-4} \mathrm{BaCl}_{2}$ and $5.0 \times 10^{-3} \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution are mixed ? Explain by calculation.

- View Text Solution

15. The concentration of 500 ML NaOH solution is 0.02 M . How many grams of FeSO_{4} added in this solution for precipitation of $\mathrm{Fe}(\mathrm{OH})_{2}$? The $K_{\text {sp }}$ of $\mathrm{Fe}(\mathrm{OH})_{2}$ is 1.5×10^{-15}, Molecular mass of $\mathrm{Fe}(\mathrm{OH})_{2}$ is $\left.152 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

- View Text Solution

16. Predict whether a precipitate of PbI_{2} will be formed or not on mixing 20 mL of $3 \times 10^{-3} \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution with 80 mL of $2 \times 10^{-3} \mathrm{M} \mathrm{Nal}$ solution. $K_{s p}$ for lead iodide $\left(\mathrm{PBI}_{2}\right)$ is 6.0×10^{-9}.

- View Text Solution

17. If the $\left[F^{-}\right]=2.0 \times 10^{-5} \mathrm{M}$ in water. Then, how many gram of CaCl_{2} will be added for precipitation of $F^{-} ? K_{s p}$ for $\mathrm{CaF}_{2}=1.7 \times 10^{-10}$. (Molecular mass of $\mathrm{CaCl}_{2}=111 \mathrm{~g} \mathrm{~mol}^{-1}$)

- View Text Solution

18. $\left[\mathrm{Ag}^{+}\right]$in solution is $1 \times 10^{-6} \mathrm{M}$ then what is the concentration of Br^{-} $? K_{s p}$ of $\mathrm{AgBr}=4.0 \times 10^{-13}$.

- View Text Solution

19. At 298 K temp., the solubility product for AgCl is 1.5×10^{-10}.Calculate its solubility in gram/Litre in pure water.

- View Text Solution

20. The solubility of AgCl is $1.435 \times 10^{-5} \mathrm{gL} L^{-1}$ at $30^{\circ} \mathrm{C}$ temp. then calculate its solubility product.

- View Text Solution

21. The solubility of CaF_{2} in water is $1.7 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~mL}$ at 298 K temp.

Calculate solubility product of CaF_{2}.
22. The $K_{s p}$ of AgCl is 1.0×10^{-10} calculate solubility of AgCl in 0.2 M AgNO_{3}

- View Text Solution

23. If this is passed in solution of $0.1 \mathrm{M} \mathrm{Zn}^{2+}$ and $0.01 \mathrm{M} \mathrm{Cu}^{2+}$ and concentration of S^{2-} made $8.1 \times 10^{-31} \mathrm{M}$. Precipitation of ZnS and CuS will take place ? $K_{s p}$ of $\mathrm{ZnS}=3.0 \times 10^{-23} \& K_{s p}$ of $\mathrm{CuS}=8.0 \times 10^{-34}$.

- View Text Solution

24. $K_{s p}$ of PbI_{2} is 1.4×10^{-8}. The molecular mass of PbI_{2} is $461 \mathrm{~g} \mathrm{~mol}^{-1}$. Then molecular mass of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is $331.9 \mathrm{~mol}^{-1} \mathrm{So}$, (a) In 500 mL water (b) 500 mL 0.10 M KI (c) What is the weight of PbI_{2} when soluble in 1.33 g $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ containing 500 mL solution?
25. There are equal volume of $0.02 \mathrm{M} \mathrm{CaCl}_{2}$ and $0.00004 \mathrm{M} \mathrm{Na} \mathrm{NO}_{4}$ solution are mixed will a precipitation of $\mathrm{CaSO}_{4} ? K_{s p}=2.4 \times 10^{-5}$

- View Text Solution

Section B Objective Questions

1. What is equilibrium ?

- View Text Solution

2. What is Irreversible Reactions ? Give examples.

- View Text Solution

3. What is reversible reaction ? Give examples.
4. State the factors affecting vapour pressure of solution.

- View Text Solution

5. What is boiling point ?

- View Text Solution

6. At constant temperature the vapour pressure of water, acetone and ether are respectively $23.3,24.6$ and 56 atm. state the order of boiling point.
7. At 298 K temperature the vapour pressure of water, acetone and ether are $234,24.80$ and 56.8 kPa respectively. Which are less vaporizable ?

- View Text Solution

8. Equilibrium can be attained in water and its vapour in open vessel ? Why?

D View Text Solution

9. Which system possess eqilibrium from the following ?
(i) Saturated solution of sugar in open cup.
(ii) At constant temperature mercury in thermometer and its vapour
(iii) boiling water in open vessel
(iv) floating ice in water at $0^{\circ} \mathrm{C}$
(v) ice in water at $15^{\circ} \mathrm{C}$.
10. Is equilibrium establish in open vessel between vapour and water ? Why?

- View Text Solution

11. What is the effect of pressure on gas dissolve in liquid ?

- View Text Solution

12. 5 mL water in watch glass and 10 mL in beaker which water will disappear first ? Why ?

- View Text Solution

13. The boiling point of water at (i) sea shore (ii) 5000 ft . height is 373 K and 370 K respectively ? Why ?
14. What is physical equilibrium?

- View Text Solution

15. In the equilibrium process of ammonia if deuterium is added than which new components are observed ?

- View Text Solution

16. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$ and $2 H I_{(g)} \Leftrightarrow H_{2(g)}+I_{2(g)}$ what is indicates ?

- View Text Solution

17. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$ and $2 H I_{(g)} \Leftrightarrow H_{2(g)}+I_{2(g)}$ If the volume of vessel is same them what can be predicted for equilibrium mixture?
18. What indicated by following figure?

19. What indicated by figure?

- View Text Solution

20. In open vessel sugar solution $\Leftrightarrow \operatorname{sugar}_{(s)}$ which information is obtained in this reaction?

-
 View Text Solution

21. Which information give following figure ?

- View Text Solution

22. What change observe when dihydrogen and dinitrogen taken in closed vessel ? Give its diagram.

- View Text Solution

23. Give explanation of above figure.
24. Which information obtained from following figure ?

- View Text Solution

25. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ Explain.

- View Text Solution

26. What is the standard pressure of atmosphere ?
27. What is the meaning of the boiling point of water is $100^{\circ} \mathrm{C}$?

- View Text Solution

28. In a closed vessel the rate of solubility of sugar and rate of crystallization is same. What it indicate ?

- View Text Solution

29. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \Leftrightarrow \mathrm{NHCl}_{(\mathrm{g})}$, this equilibrium is which physical reaction ?

- View Text Solution

30. $\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ (con. T, closed vessel) At this time what is the pressure of vessel ?
31. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$ in this equilibrium process what is the relation between K_{c} and $K_{c}{ }_{c}$.

- View Text Solution

32. $\frac{1}{2} H_{2(g)}+\frac{1}{2} I_{2(g)} \Leftrightarrow H I_{(g)}$ in this equilibrium what is the relation between K_{C} and $K_{c}{ }_{c}$

- View Text Solution

33. $(\mathrm{i}) \mathrm{H}_{2(\mathrm{~g})}+I_{2(\mathrm{~g})} \Leftrightarrow 2 H I_{(g)}$
(ii) $\frac{1}{2} H_{2(g)}+\frac{1}{2} I_{2(g)} \Leftrightarrow H I_{(g)}$
(iii) $n H_{2(g)}+n I_{2(g)} \Leftrightarrow 2 H I_{(g)}$

For these reactions the equilibrium constant is respectively $K_{c}(1), K_{c}(2)$ and $K_{c}(3)$ state their relation ?

- View Text Solution

34. $\mathrm{H}_{2(\mathrm{~g})}+I_{2(g)} \Leftrightarrow 2 \mathrm{HI}_{(\mathrm{g})}$ for this reaction $K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[I_{2}\right]}=9$ what is the equilibrium constant for reverse reaction ?

- View Text Solution

35. $\operatorname{In} p=\left(\frac{n}{V}\right) R T$ explain the terms and derive $\mathrm{p}=\mathrm{CRT}$.

- View Text Solution

36. In which equilibrium it will $K_{p}=K_{c}$.
(i) $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
${\text { (ii) } 2 H I_{(g)}}^{\Leftrightarrow} H_{2(g)}+I_{2(g)}$
(iii) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
(iv) $C_{(s)}+O_{2(g)} \Leftrightarrow \mathrm{CO}_{2(g)}$
(v) $\mathrm{PCl}_{5(\mathrm{~g})} \Leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
$(\mathrm{vi}) \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$
37. Derive the reaction between K_{p} and K_{c} in these three reactions.
(a) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
(b) $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$
(c) $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$

(D) View Text Solution

38. At 298 K temperature for this reaction $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}, K_{p}=4.0 \times 10^{24}$ then at 500 K . What will be the value of K_{p} from these two value 2.5×10^{10} and 2.5×10^{-10} ?

- View Text Solution

39. For reaction, $\mathrm{PCl}_{5(\mathrm{~g})} \Leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}, K_{c}=1.79 \mathrm{~L} \mathrm{~mol}^{-1}$. Then at 500 K state the value of K_{p} with respect to R .
40. In this reaction $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$ initially [CO]=0.1 M and at equilibrium [CO] $=0.067 \mathrm{M}$ so, in this reaction will $K_{c}>0$ or $K_{c}<0$?

- View Text Solution

41. In this reaction $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$ initially [CO]=0.1 M and at equilibrium [CO]=0.067 M so, if $K_{c}=4.24$ than what will be the value of K_{p} ?

- View Text Solution

42. State relation between K_{p} and K_{c} based on $\Delta n_{(g)}=0, \Delta n_{(g)}=$ positive and $\Delta n_{(g)}=$ negative.

- View Text Solution

43. Which are heterogenous equilibrium ?
(i) $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(ii) $\mathrm{Ca}(\mathrm{OH})_{2(s)}+a q \Leftrightarrow \mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{OH}_{(a q)}^{-}$
(iii) $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
(iv) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}$
$(\mathrm{v}) \mathrm{Fe}_{(a q)}^{3+}+\mathrm{SCN}_{(a q)}^{-} \Leftrightarrow[\mathrm{Fe}(\mathrm{SCN})]_{(a q)}^{2+}$

- View Text Solution

44. Which are heterogenous equilibrium ?
state the unit of K_{c}.
(i) $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(ii) $\mathrm{Ca}(\mathrm{OH})_{2(s)}+a q \Leftrightarrow \mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{OH}_{(a q)}^{-}$
(iii) $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
(iv) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}$
$(\mathrm{v}) \mathrm{Fe}_{(a q)}^{3+}+\mathrm{SCN}_{(a q)}^{-} \Leftrightarrow[\mathrm{Fe}(\mathrm{SCN})]_{(a q)}^{2+}$
45. What is the difference between unit of K_{p} and K_{c} of any one reaction equilibrium ?

- View Text Solution

46. Prediction of amount of products and reactants on the base of vale of equilibrium constant of the following reactions at constant temperature.
(a) $H_{2(g)} \Leftrightarrow 2 H I_{(g)}, K_{c}=57.0$
(b) $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}, K_{c}=4.64 \times 10^{-3}$
(c) $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}, K_{c}=4.8 \times 10^{-31}$
(d) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{HCl}_{(\mathrm{g})}, K_{c}=4.0 \times 10^{31}$

- View Text Solution

47. (a) Give relation of value of K and amount of products Reactants. (b)

Give relation of value of $\Delta n_{(g)}$ and value of K_{p} and K_{c}.
48. Write relation of value of Q_{c} and K_{c} and direction of reaction.

- View Text Solution

49. How can the spontaneity of reaction determine by the value of ΔG^{0} ?

- View Text Solution

50. Give expression of equilibrium constant of following reactions.
(i) $2 \mathrm{Ag}_{(\mathrm{s})}+\mathrm{Cu}_{(a q)}^{2+} \Leftrightarrow \mathrm{Cu} u_{(s)}+2 \mathrm{Ag}{ }_{(g)}^{+}$
(ii) $\mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{HCl}_{(\mathrm{g})} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}$

- View Text Solution

51. Give units of equilibrium constant of following reactions.
(i) $2 \mathrm{Ag}{ }_{(s)}+\mathrm{Cu}_{(a q)}^{2+} \Leftrightarrow C u_{(s)}+2 A g_{(g)}^{+}$
(ii) $\mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{HCl}_{(\mathrm{g})} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}$
52. In close vessel the reaction $A_{(s)} \Leftrightarrow 4 B_{(g)}+3 C_{(g)}$ is in equilibrium. If the partial pressure of C is double then what will be the partial pressure of B ?

- View Text Solution

53. The hydrolysis reaction of ethyl acetate

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}
$$

Is this reaction get equilibrium in open vessel ?

- View Text Solution

54. Is this decomposition reaction of CaCO_{3} get equilibrium in open vessel ?
$\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2(\mathrm{~g})}$
55. Write equilibrium constants of following reactions.
$(1) 2 \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{POCl}_{3(\mathrm{~g})}$
$(2) 2 \mathrm{SO}_{3(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
(3) $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{Cl}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow 2 \mathrm{HOCl}_{(\mathrm{g})}$
(4) $\mathrm{CuSO}_{4(\mathrm{~s})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \Leftrightarrow \mathrm{CuSO}_{4(\mathrm{~s})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

- View Text Solution

56. Arrange following reaction in decreasing order on its completion.
(i) $H_{2(g)}+B r_{2(g)} \Leftrightarrow 2 H B r_{(g)} \quad K_{c}=2 \times 10^{9}$
(ii) $2 \mathrm{CH}_{4(\mathrm{~g})} \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \quad K_{C}=8.5 \times 10^{-12}$
(iii) $\mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad K_{c}=2.6 \times 10^{21}$

- View Text Solution

57. Which of the following reaction will be least forward ?
(i) $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}, K_{c}=4.8 \times 10^{-31}$ at 298 K
(ii) $\mathrm{Fe}_{(a q)}^{3+}+\mathrm{SCN}_{(a q)}^{-} \Leftrightarrow[\mathrm{Fe}(\mathrm{SCN})]^{2-}, K_{c}=140$ at 298 K
(iii) $_{2}{ }_{2(g)}+\mathrm{Cl}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{HCl}_{(\mathrm{g})}, K_{c}=5 \times 10^{31}$ at 298 K

- View Text Solution

58. At 673 K temperature for reaction
$\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{SO}_{3(\mathrm{~g})}, K_{c}=85$ and $Q_{c}=114.8$, then to get equilibrium the reaction occurs in which direction?

- View Text Solution

59. At 298 K for the reaction $\mathrm{H}_{2(\mathrm{~g})}+J_{2(\mathrm{~g})} \Leftrightarrow 2 H J_{(\mathrm{g})}$ the K_{c} is 50.0 . And for this reaction at any one state Q_{C} is 8.4 then reaction moves in which direction.
60. What is the importance of Le-chatelier's principle ?

D View Text Solution

61. Write annual production and uses of ammonia in the world ?

D View Text Solution

62. Which factors are affect and not affected to equilibrium ?

- View Text Solution

63. In $H_{2(g)}+I_{2(g)}$ (violet) $\Leftrightarrow 2 H I_{(g)}$ if H_{2} is added than at new equilibrium concentration and colour will be

- View Text Solution

64. $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{HI}$ in this equilibrium if H_{2} is added than state the direction of reaction and explain it with help of Q_{C}.

- View Text Solution

65. In the production of ammonia to complete the reaction (increase production) what should be done ?

- View Text Solution

66. CaO is important in construction. It is obtained by heat in, CaCO_{3}. To get CO_{2} why CO_{2} is contentiously removed ?

- View Text Solution

67. 0.002 M potassium thiocyanate added to 1 mL 0.2 M Fe (III) nitrate than what happen ?
68. The oxalic acid is added in test tube and this reaction $\mathrm{Fe}_{(a q)}^{3+}+\mathrm{SCN}_{(a q)}^{-} \Leftrightarrow[\mathrm{Fe}(\mathrm{SCN})]_{(\mathrm{g})}^{2+}$ equilibrium, steered and remain the solution than what will the change in colour of solution?

- View Text Solution

69. What is the reaction to increase the intensity of red colour by adding
HgCl_{2} positive in equilibrium of red colour by adding HgCl_{2} positive in equilibrium of

$$
\mathrm{Fe}_{(a q)}^{3+}+\operatorname{SCN}_{(a q)}^{-} \Leftrightarrow[\mathrm{Fe}(\mathrm{SCN})]_{(a q)}^{2+}
$$

- View Text Solution

70. What will be the effect on concentration by decrease the volume of vessel containing $\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$?
71. In the equilibrium $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ if the volume made half than what is the effect on K ? Why ?

- View Text Solution

72. Explain the effect on value of Q_{c} by decrease the volume of $\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ reaction vessel.

- View Text Solution

73. What changes in pressure is sufficient to increase the products of this
$C_{(s)}+\mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{CO}_{(\mathrm{g})}$ reaction ?

- View Text Solution

74. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$ If argon introduce in this reaction than what happen ?

- View Text Solution

75. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{(a q)}^{3+}+4 \mathrm{Cl}_{(a q)}^{-} \Leftrightarrow\left[\mathrm{CoCl}_{4}\right]_{(a q)}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$ this reaction is endothermic and if blue colour is due to $\mathrm{CoCl}_{4(a q)}^{2-}$. If this mixture kept in ice than what happen?

- View Text Solution

76. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{(a q)}^{3+}+4 \mathrm{Cl}_{(a q)}^{-} \Leftrightarrow\left[\mathrm{CoCl}_{4}\right]_{(a q)}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$ this reaction is endothermic and if blue colour is due to $\mathrm{CoCl}_{4(a q)}^{2-}$. If this mixture kept in ice than What happened when reaction vessel of is kept in $80^{\circ} \mathrm{C}$ containing water ?
77. $\mathrm{N}_{2(\mathrm{~s})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3}$ state the condition for industrial production of ammonia.

- View Text Solution

78. $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}, \Delta H=-92.38 \mathrm{~kJ} \mathrm{~mol}^{-1}$ the reaction is exothermic. So at lower temperature more product is obtained still why the reaction is carried out at high temperature ?

- View Text Solution

79. What is the effect of catalyst on composition of system and the value of K ?

- View Text Solution

80. $2 \mathrm{NO}_{2(\mathrm{~g})}$ (brown) $\Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}, \Delta H=57.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ if the reaction vessel kept in ice and hot water than what is the change in colour ?

D View Text Solution

81. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}, \Delta_{r} H^{\ominus}=180 \mathrm{~kJ}$.To increase the temperature of this reaction, what is the effect on products and value of K ?

- View Text Solution

82. If the saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ is heated than what happen ? This solution is endothermic.

- View Text Solution

83. What happen if the saturated solution of CaCl_{2} is heated ? The process is exothermic.
84. Solid NaOH dissolve in water and if solution is stirred than temperature of solution increases. Now the heating of this solution is suitable?

- View Text Solution

85. At definate temperature. The reaction, $\mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{SO}_{3(\mathrm{~g})} \Delta H$ $=-94.7 \mathrm{~kJ}$ is in closed vessel. The equilibrium will be go in which direction by following changes ?
(i) Increase temperature (ii) Addition of catalyst (iii) addition of SO_{2} gas (iv) To decrease total pressure (v) If volume of vessel will increase (vi) Addition He gas at constant volume (vii) addition He gas at constant pressure.
86. Which temperature and pressure will be to obtain more products in the following reaction? Explain by Le-Chatelier principle.
(i) $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}, \Delta H=-93.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}, \Delta H=+41 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}, \Delta H=175 \mathrm{~kJ}$
(iv) $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}, \Delta H=-92.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- View Text Solution

87. (i) $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$
(ii) $2 N O_{(g)} \Leftrightarrow N_{2(g)}+O_{2}$ In these, the equilibrium constant are K_{1} and
K_{2} at definate temperature then give relation if K_{1} and K_{2} ?

- View Text Solution

88. In the reaction $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$, the equilibrium is established by to take first Cl_{2} then decomposition of PCl_{5} will be increase or decrease?
89. What is electrolyte ? Give examples.

- View Text Solution

90. What is non-electrolyte ?

- View Text Solution

91. Give classification of substances according to Faraday.

- View Text Solution

92. Classify following substances in non electrolyte, strong electrolytes and weak electrolytes.
(i) NaCl , (ii) Sugar , (iii) Glucose , (iv) $\mathrm{CH}_{3} \mathrm{COOH}$, (v) $\mathrm{CH}_{3} \mathrm{COONa}$, (vi) HCl , (vii) HNO_{3}, (viii) NH_{3}, (ix) NaOH

- View Text Solution

93. What is strong electrolyte ? Give examples.

- View Text Solution

94. What is weak electrolyte ? Give examples.

- View Text Solution

95. What is ionic equilibrium ?
96. Which are the source of the following acid or present in our body ?
(i) Hydrochloric acid (ii) Acetic acid (iii) Ascorbic acid (iv) cytric acid (v) Tartaric acid

- View Text Solution

97. Give examples of salts which obtain from nature.

- View Text Solution

98. Classify following in acid, base and salt.
$\mathrm{HCl}, \mathrm{NaOH}, \mathrm{NH}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCOOH}, \mathrm{NaCl}, \mathrm{KOH}, \mathrm{BaSO}_{4}, \mathrm{NaNO}_{3}$, $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}$, Calcium hydroxide , orange juice, nitrous acid , HCN , $\mathrm{NaCN}, \quad \mathrm{NH}_{4} \mathrm{OH} \quad, \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$, Sucrose $\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}, \mathrm{H}_{3} \mathrm{PO}_{4}$ etc.

- View Text Solution

99. Explain distance of Acid and Base on the base of primary properties.

- View Text Solution

100. Degree of ionization depends on which factor.

- View Text Solution

101. Give difference of disscriation and ionization.

- View Text Solution

102. Give information about universal solvent.

- View Text Solution

103. When NaCl dissolve in water than what change observe in electrostatic force? Why ?

- View Text Solution

104. Give similarity and difference of dissociation of Hydrochloric acid and acetic acid in water.

- View Text Solution

105. According to Arrhenius, what is acid and base ?

- View Text Solution

106. Give limitations of Arrhenious acid-base concept.

- View Text Solution

107. What is Bronsted Lowry base ?

- View Text Solution

108. Give conjugate Acid and conjugate base of following:
(i) NH_{3}, (ii) $\mathrm{H}_{2} \mathrm{O}$, (iii) HCO_{3}^{-}, (iv) HSO_{4}^{-}(v) $\mathrm{CH}_{3} \mathrm{COOH}$, (vi) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$, (vii) HPO_{4}^{2-}, (viii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, (ix) $\mathrm{NH}_{2} \mathrm{NH}_{2}$, (x) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$

- View Text Solution

109. Which of the followings are Lewis acids ?
$\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{+}, \mathrm{NH}_{4}^{+}$

D View Text Solution

110. What will be the conjugate base for the Bronsted acids : HF, $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCO_{3}^{-}
111. Write the conjugate acids for the bronsted bases. $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and HCOO^{-}

- View Text Solution

112. The species $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and NH_{3} can act both as Bronsted acids an bases. For each ase give the corresponding conjugate acid and base.

- View Text Solution

113. What is conjugate acid and conjugate base ? Give example.

- View Text Solution

114. According to lewis what is acid and base ?

- View Text Solution

115. Identify Lewis acid and Lewis base in the following $\mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{~N}^{+} \mathrm{O}_{2}, \mathrm{Co}^{3+}, \mathrm{Mg}^{2+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{Cl}^{-}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{AlCl}_{3}, \mathrm{FeCl}_{3}, \mathrm{BCl}_{3}, \mathrm{C}$

- View Text Solution

116. Write self ionization reaction and ionic product of water.

- View Text Solution

117. What is effect of temperature on value of K_{w} and pH ?

- View Text Solution

118. What is the relation of pH and pOH ?
119. Which is the pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ from 8.0, $7.0,6.95$? Why ?

- View Text Solution

120. Which is the pH of $10^{-8} \mathrm{M} \mathrm{NaOH}$ from $8.0,6.0$ and 7.05 ? Why?

- View Text Solution

121. In which range the value of pH and pOH of aqueous solution.

- View Text Solution

122. What is the pH of 1 M HCl ?
123. Which are the methods for measurement of pH ?

- View Text Solution

124. If the change in pH value is 2 unit then what is the change in concentration of H^{+}?

- View Text Solution

125. What is the concentration of pure water and ions ?

- View Text Solution

126. In self ionization of water the equilibrium is in which direction ?

- View Text Solution

127. Indicators HIn weak acids, Give expression of its equilibrium reaction in water and equilibrium constant.

- View Text Solution

128. Which of the following bases are strong or weak than water ?
$\mathrm{ClO}_{4}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$

- View Text Solution

129. $\mathrm{NO}_{2}^{-}, \mathrm{F}^{-}, \mathrm{H}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}$like weak acid's strength of their conjugate base is more than water or less than water?

- View Text Solution

130. Classify following in strong and weak acid.
$\mathrm{HClO}_{4}, \mathrm{HCN}, \mathrm{HI}, \mathrm{HBr}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HNO}_{3}, \mathrm{HNO}_{2}$
131. Classify following in strong and weak base.
$\mathrm{NaOH}, \mathrm{KOH}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Cu}(\mathrm{OH})_{2}, \mathrm{Al}(\mathrm{OH})_{3}, \mathrm{CsOH}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Ca}(\mathrm{OH})_{2}$

D View Text Solution

132. Classify the following pH containing solution in Acid, Base and Neutral.
(a) 7.0 (b) 7.9 (c) 9.0 (d) 2.0 (e) 6.9

- View Text Solution

133. Which type of value are $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ and pOH in acidic solution ?

- View Text Solution

134. Give value of $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ and pOH of neutral solution.

- View Text Solution

135. At 298 K temperature, there are acids and its K_{a} value are as under.
$\mathrm{HF}\left(3.5 \times 10^{-4}\right), \mathrm{CH}_{3} \mathrm{COOH}\left(1.74 \times 10^{-5}\right), \mathrm{HClO}\left(3.0 \times 10^{-8}\right), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(1.3 \times 1$
Arrange these acids in decreasing order of their acidic strength.

- View Text Solution

136. What indicate the value of K_{a} ? What is its dimension ?

- View Text Solution

137. What is indicated by the value of K_{a} ?

- View Text Solution

138. If the degree of ionization (dissociation) of weak acid is α, then write the equation of ionization constat.

- View Text Solution

139. What is $p K_{a}, p K_{b}$ and $p K_{w}$? Give its relation.

- View Text Solution

140. What is the [HF] in 0.02 M HF solution ?

- View Text Solution

141. In 0.1 M HA the $\left[\mathrm{H}^{+}\right]=3.16 \times 10^{-5} \mathrm{M}$, then what is $[\mathrm{HA}]$ and $\left[A^{-}\right]$?

- View Text Solution

142. For one solution, $K_{a}=1.0 \times 10^{-8}$ then what is the $p K_{a}$ and $P K_{b}$ of the solution?

- View Text Solution

143. Give equation of percentage of dissociation of weak acid.

- View Text Solution

144. $\left[\mathrm{H}^{+}\right]=1.41 \times 10^{-3} \mathrm{M}$ in 0.08 M solution of HOCl . Then what is the percentage of dissociation of it ?

- View Text Solution

145. Write equation of ionization constant of weak base MOH.
146. What is the derivatives of ammonia ? Give example.

- View Text Solution

147. Give ionic equilibrium of aqueous solution of weak base $\mathrm{NH}_{2} \mathrm{NH}_{2}$ and pyridine $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$.

- View Text Solution

148. Write ionic equilibrium reactions of aqueous solution of weak acid HNO_{2} and HClO .

- View Text Solution

149. If $\left[\mathrm{H}^{+}\right]=1.67 \times 10^{-10} \mathrm{M}$ in solution than calculate $\left[\mathrm{OH}^{-}\right]$.
150. Weak base $K_{b}=8.96 \times 10^{-7}$ than what is the $p K_{b}$?

- View Text Solution

151. Give reaction between K_{a} and K_{b}

- View Text Solution

152. Which is the conjugate acid of weak base NH_{3} ?

- View Text Solution

153. (i) $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$equilibrium constant $=\mathrm{K}_{1}$
(ii) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$equilibrium constant $=\mathrm{K}_{2}$

Than write reaction and equilibrium constant obtain by addition of these two reaction.
154. The equilibrium constant of one reaction $=K(1)$ and equilibrium constant of one reaction $=\mathrm{K}(2)$ then what is the equilibrium constant of reaction (3) obtain by addition of these two reaction?

- View Text Solution

155. K_{a} of NH_{4}^{+}acid is 1.77×10^{-5}. Then give the equation and ionization constant of its conjugate base.

- View Text Solution

156. There is a $K_{a}(1)$ and $K_{2}(2)$ of sulphuric acid and $\mathrm{H}_{2} \mathrm{SO}_{3}$ are 1.7×10^{-2} and 6.4×10^{-8} respectively then calculate ionization constant of complete ionization of $\mathrm{H}_{2} \mathrm{SO}_{3}$.

- View Text Solution

157. The ionization constant of weak acid $\mathrm{H}_{3} \mathrm{PO}_{4}$ in three step are respectively $K_{a}(1), K_{a}(2)$ and $K_{a}(3)$. Give increasing order of these constant. Give reason.

- View Text Solution

158. What is the increasing order of acidic strength of the following acid ?

Give reason
$\mathrm{HI}, \mathrm{HCl}, \mathrm{HF}, \mathrm{HBr}$.

- View Text Solution

159. Explain the increasing order of acidic strength of following acids. $\mathrm{HF}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and CH_{4}.

- View Text Solution

160. Which is the less strong acid from $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}$? Why?

- View Text Solution

161. Give factors acidic affects the strength of acids.

- View Text Solution

162. Explain concentration of $\mathrm{HA}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}^{+}, \mathrm{Na}^{+}$when 0.05 M sodium acetate is added in 0.05 M acetic acid.

- View Text Solution

163.0.01 $\mathrm{M} \mathrm{NH}_{3}$ and (0.01 M of 50 mL NH 3) $+(0.01 \mathrm{M}, 25 \mathrm{~mL} \mathrm{H})$ from these two solution which has pH more?
164. Classify the following salt solution in acid, base and neutral. $\mathrm{NaCl}, \mathrm{KNO}_{3}, \mathrm{FeCl}_{3}, \mathrm{CuSO}_{4}, \mathrm{CH}_{3} \mathrm{COONa}, \mathrm{HCOOK}, \mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{CrCl}_{3}, \mathrm{~K}_{2} \mathrm{SO}_{4}$

- View Text Solution

165. Which positive and negative ion containing solution are acidic (pH
< 7) ?

- View Text Solution

166. The salts of which +ve and -ve ions are basic ?

- View Text Solution

167. The salts of which ions always neutral ? $(\mathrm{pH}=7)$

- View Text Solution

168. Write equation for calculate of pH of weak acid and weak base salt solution.

- View Text Solution

169. What is the reaction of concentration of solution and degree of hydrolysis ?

- View Text Solution

170. Why the pH of blood is definate?

- View Text Solution

171. Give reason : "Why the pH of a buffer solution does not change on dilution ?
172. What is the pH of acidic buffer ? How it is formed ?

- View Text Solution

173. What is the pH of basic buffer? How it is prepared ?

- View Text Solution

174. Write equation $\left[\mathrm{H}^{+}\right]$and $p^{K a}$ of acid buffer.

- View Text Solution

175. Write the equation of Henderson Hassel balch.

- View Text Solution

176. What indicate the $\frac{\left[A^{-}\right]}{[H A]}$

- View Text Solution

177. The solution of $\left(\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}\right)$ will be acidic, basic or neutral ? Give the equation to calculate its pH .

- View Text Solution

178. What is the pH of mix solution of ammonia and ammonium chloride?

Give equation.

- View Text Solution

179. For acidic buffer pH and $p K_{a}$ an same? Why ?
180. What is the value of pH and $p K_{b}$ of mix solution of ammonium hydroxide and ammonium chloride ? Why ?

- View Text Solution

181. Write ionization reaction of diprotic acid in aqueous solution.

- View Text Solution

182. OH^{-}ions are in acidic solution and $\mathrm{H}_{3} \mathrm{O}^{+}$ions an in basic solution available is it true ? Explain.

- View Text Solution

183. What is the value of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$of pure water at 298 K temp. ?
184. What is the difference in pH when adding of common ion (conjugate base) in weak acid ?

- View Text Solution

185. In pH increase of decrease by adding solution of conjugate acid in silute solution of weak base?

- View Text Solution

186. The salt solution $\mathrm{NH}_{4} \mathrm{OH}$ and HCl is acidic basic or neutral ?

- View Text Solution

187. Write the equation for calculation of hydrolyses constant of salt of weak acid weak base solution.

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}
$$

188. If $K_{h}=\frac{C}{C}$ then write the type of salt.

- View Text Solution

189. Which will be hydrolyse of the following in aqueous solution ?
$\mathrm{Cl}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{Cu}^{2+}, \mathrm{CN}^{-}, \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}, \mathrm{SO}_{4}^{2-}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{PO}_{4}^{3-}$

- View Text Solution

190. Two different acid HA and HX have same pH than their concentration is same ? Why ?

- View Text Solution

191. Explain : 'Sodium carbonate solution is basic.'
192. The self ionization of water is endothermic. While increase the temp. than what is the effect on pH and value of K_{w} ?

- View Text Solution

193. Which of the following are not hydrolysed ?
$\mathrm{MgCl}_{2}, \mathrm{CuCl}_{2}, \mathrm{HCl}, \mathrm{CCl}_{4}, \mathrm{AlCl}_{3}, \mathrm{PCl}_{5}$

- View Text Solution

194. Classify the following salts on the base of solubility.

- View Text Solution

195. What are hydrogroscopic substance ? Give example
196. Which factors the solubility of substance is depends on ?

- View Text Solution

197. What is the solubility product $\left(K_{s p}\right)$?

- View Text Solution

198. Write ionic equilibrium and equation of solubility product of concentrated solution of Barium sulphate $\left(\mathrm{BaSO}_{4}\right)$.

- View Text Solution

199. The solubility of BaSO_{4} is $5 \mathrm{~mol} L^{-1}$ then what is the solubility product ?
200. Derive the equation of relation of solubility (S) of zirconium phosphate $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ and $K_{\text {sp }}$ solubility product.

- View Text Solution

201. The solubility product of BaSO_{4} is 1.1×10^{-10} at 298 K temp. calculate its water solubility.
202. When $Q_{s p}$ is used ?

- View Text Solution

203. If $K_{s p}=Q_{s p}$ than what it indicate ?
204. What indicate if $Q_{s p} \neq K_{s p}$?

- View Text Solution

205. What happen if HCl gas passed in NaCl solution?

- View Text Solution

206. Give use of common ion effect in quantitative analysis.

- View Text Solution

207. In preparation of $\mathrm{Fe}(\mathrm{OH})_{3}$ from FeCl_{3} first $\mathrm{NH}_{4} \mathrm{Cl}$ is added and than
$\mathrm{NH}_{4} \mathrm{OH}$ is added ? Why ?
208. What is the ionic product $Q_{s p}$? Explain by example.

- View Text Solution

209. AgCl is sparingly soluble salt ? If NaCl or KCl is added into it ? What happen?

- View Text Solution

210. For metal sulphide $K_{s p}$ of $\mathrm{CuS}, \mathrm{CdS}, \mathrm{ZnS}$ and MnS respectively $1 \times 10^{-44}, 1 \times 10^{-28}, 1 \times 10^{-22}$ and 1×10^{-14} one mixture of solution of $\mathrm{Cu}^{2+}, \mathrm{Cd}^{2+}$ and Mn^{2+}. In this solution $\mathrm{H}_{2} \mathrm{~S}$ gas passed than which one precipitate last.

- View Text Solution

211. In qualitative analysis $\mathrm{Cu}^{2+}, \mathrm{Cd}^{2+}$ and Pb^{2+} ions are precipate out as sulphide of $2^{\text {nd }}$ group an $\mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Mn}^{2+}$ are precipate out as sulphide group and of $3^{r d}$ B group. In this analysis the reactant $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}$ successively added. What is the reason for that ?

- View Text Solution

212. If $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ Successively added than the solution is acidic or basic?

- View Text Solution

213. Give equilibrium and equilibrium constant of aqueous solution of $\mathrm{H}_{2} \mathrm{~S}$ which used in analysis ?

- View Text Solution

214. The $K_{\text {sp }}$ of PbSO_{4} is 1.44×10^{-8} then calculate concentration of Pb^{2+}.

- View Text Solution

215. In saturated solution at definite temperature how the ions are arrange ?

- View Text Solution

216. If the KCN and HCN are present in aqueous solution then write equation of equilibrium constant.

- View Text Solution

217. Give equation of Hydrolysis constant of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{COONa}$.

- View Text Solution

218. Which $Q_{s p}$ will be high from $0.0001 \mathrm{M} \mathrm{BaCrO}_{4}$ and $0.0001 \mathrm{M} \mathrm{Ag}_{2} \mathrm{CrO}_{4}$?

- View Text Solution

219. The $K_{s p}$ of BaSO_{4} is 1.0×10^{-9}. Then What is the solubility of it in 0.1 $\mathrm{M} \mathrm{MgSO}_{4}$ and $0.01 \mathrm{M} \mathrm{BaCl}_{2}$?

- View Text Solution

220. $K_{s p}$ of PbI_{2} is 1×10^{-8}. Then what is the solubility of PbI_{2} in 0.1 M KI ?

- View Text Solution

221. Between Cl^{-}and OH^{-}which is stronger base?

- View Text Solution

222. Which ion will be hydrolyse in $\mathrm{NH}_{4} \mathrm{Cl}$ solution ?

- View Text Solution

223. What is the reason, why the degree of hydrolysis is not present in $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ solution ?

- View Text Solution

224. The concentration of $\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is $6.5 \times 10^{-5} \mathrm{M}$ in concentrated solution of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ at a temp. then calculate $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

- View Text Solution

225. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$, The K_{p} of this reaction is 35 at 500 K temp. Calculate K_{p} of following reaction at this temp.
(i) $4 \mathrm{NH}_{3(\mathrm{~g})} \Leftrightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+6 \mathrm{H}_{2(\mathrm{~g})}$
(ii) $\frac{1}{2} N_{2(g)}+\frac{3}{2} H_{2(g)} \Leftrightarrow N H_{3(g)}$
226. Explain : BF_{3} is Lewis acid but not Bronsted Lawry acid.

- View Text Solution

227. NH_{3} is not as Lewis and Bronsted-Lawry Base. Explain.

- View Text Solution

228. At 60° temperature $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$. What is the value of equilibrium constant K_{p} of reaction ? At 60° temperature vapour pressure of water is 0.185 bar.

- View Text Solution

229. At definite temperature if the volume of system decrease then what will be change in concentration of CO ?
$2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{CO}_{(\mathrm{g})}$

- View Text Solution

230. Give relation between $K_{s p}$ of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and S .

- View Text Solution

231. Equal concentration possessing solution
$\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KI}$ arrange in decreasing order of pH .

- View Text Solution

232. What is the shape of $\mathrm{H}_{3} \mathrm{O}^{+}$?
233. If the solubility of $A s_{2} S_{3}$ is S then what is the $K_{s p}$?

- View Text Solution

234. Which are the colour of $\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complex ion ?

- View Text Solution

235. Which is the colour of $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ complex ion ?

- View Text Solution

236. What is the pH of $0.005 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution ?

- View Text Solution

237. What is the pH of $0.005 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?

- View Text Solution

238. What is the active mass of water ?

- View Text Solution

239. The solution which has constant pH , is known as ?

- View Text Solution

240. NH_{3} is act as Lewis base in it. Which atom is electron pair donor ?

- View Text Solution

241. What is the pH of $10^{-8} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ form $8,6.5$ and 7.5 ? Why ?
242. Why the $\mathrm{pH} \neq 2.0$ of 1×10^{-2} acidic acid ?

- View Text Solution

243. The solubility of AgCl in water and 0.1 NaCl , in which one it is more ?

- View Text Solution

244. What are the uses of solubility product?

- View Text Solution

245. What is the pH of 0.02 M HCl ?

View Text Solution
246. The K for the reaction $\mathrm{A}+\mathrm{B} \Leftrightarrow \mathrm{C}+\mathrm{D}$ is at $25^{\circ} \mathrm{C}$ temperature is 2×10^{-23} and At $50^{\circ} \mathrm{C}$ temperature 2×10^{-12} this reaction will be endothermic or exothermic ?

- View Text Solution

247. What is the difference between ionic product and solubility product ?

- View Text Solution

Section C Mcqs Darpan S Exam Oriented Mcqs

1. Which is a homogeneous equilibrium of the following ?
A. $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \Leftrightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
B. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
C. $\mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{SO}_{3(\mathrm{~g})}$
D. $H_{2} O_{(l)} \Leftrightarrow H_{2} O_{(s)}$

Answer: C

- View Text Solution

2. Which is a Lewis acid of the following ?
A. NH_{3}
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. BeCl_{2}

Answer: D

- View Text Solution

3. According to which theory, NH_{3} is not a base ?
A. Lewis
B. Arrhenius
C. Bronsted-Lowry
D. Ionization

Answer: B

- View Text Solution

4. In the following which situation precipitation will be occurs ?
A. $Q_{s p}=K_{s p}$
B. $Q_{s p}>K_{s p}$
C. $Q_{s p}<K_{s p}$
D. None of these

Answer: B

5. What is the effect of catalyst on equilibrium constant ?
A. Increase
B. Decrease
C. No effect
D. Increase and decrease

Answer: C

- View Text Solution

6. What is the value of K_{p} for decomposition of $\mathrm{NH}_{4} H S ? \mathrm{P}=$ Total pressure
A. $K_{p}=P$
B. $K_{p}=\frac{P}{2}$
C. $\frac{P}{4}$
D. $\frac{P^{2}}{4}$

Answer: D

D View Text Solution

7. Which is the equation showing the relation between K_{p} and K_{c} ?
A. $K_{p}=K_{c}(R T)^{\Delta n}$
B. $K_{p}=K_{c} R^{n}$
C. $K_{p}=K_{c}(P T)^{\Delta n}$
D. $K_{p}=K_{c}(R T)^{-\Delta n}$

Answer: A

A. $2 H I_{(g)} \Leftrightarrow H_{2(g)}+I_{2(g)}$
B. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
C. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}$
D. $\mathrm{NH}_{4} H S_{(s)} \Leftrightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$

Answer: A

- View Text Solution

9. For spontaneous reaction what is the value of ΔG ?
A. For spontaneous reaction what is the value of
B. Negative
C. Zero
D. Any

Answer: B

10. If the $\Delta G^{\circ}<0$, then what is the value of $-\Delta G^{\circ} / R T$?
A. Zero
B. Positive
C. Negative
D. All

Answer: B

- View Text Solution

11. Which is the conjugate acid of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. HSO_{4}^{-}
B. $\mathrm{H}_{3} \mathrm{O}^{+}$
C. $\mathrm{H}_{3} \mathrm{SO}_{4}^{+}$
D. SO_{4}^{2-}

Answer: C

- View Text Solution

12. Which of the following reaction occurs during Lewis acid-base reaction
?
A. Exchange of proton
B. Exchange of electron
C. Exchange of electron pair
D. Exchange of OH^{-}

Answer: C

13. What is the pH value of human blood ?
A. 7.4
B. 8
C. 6.4
D. 8.4

Answer: A

- View Text Solution

14. The acurate value of pH is measure by which instrument ?
A. Ameter
B. 2
C. pH paper
D. Calary meter

Answer: C

D View Text Solution

15. The solution of salt of $\left(\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH}\right)$ is \qquad
A. Acidic
B. Basic
C. Neutral
D. Protic

Answer: A

- View Text Solution

16. Which of the following is the pH of hydrogen ?
A. 7
B. More than 7
C. Less than 7
D. p^{4}

Answer: C

- View Text Solution

17. Which is the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$?
A. PO_{4}^{3-}
B. $H P O_{4}^{2-}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{H}_{4} \mathrm{PO}_{4}$

Answer: B

18. Which of the following is right for CO_{2} ?
A. It is a Lewis acid.
B. It is a Lewise base.
C. It is a Bronsted acid.
D. It is a Bronsted base.

Answer: A

- View Text Solution

19. Which of the following is not Lewis acid ?
A. AlCl_{3}
B. SnCl_{4}
C. BCl_{3}
D. BeCl_{2}

D View Text Solution

20. In reaction $H_{2}+I_{2} \Leftrightarrow 2 H I$, at equilibrium the concentration of products is double than reactants then what is the value of K_{c} ?
A. 2
B. 4
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: B

D View Text Solution

21. Which type of mix solution $\mathrm{Ba}(\mathrm{OH})_{2}$ of $20 \mathrm{ml} 0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 20 ml
A. Neutral
B. Acidic
C. $\mathrm{pH}<7$
D. Basic

Answer: A

- View Text Solution

22. At 298 K temperature, the sugar is added in open cup and stirred the solution then some amount of sugar remain undissolved then which type of equilibrium is it ?
A. Physical equilibrium
B. Chemical equilibrium
C. Homogeneous cquilibrium
D. Hetrogeneous equilibrium

D View Text Solution

23. In close vessel at 298 K temperature, the water vapour pressure is 25 mm . Then which equilibrium is it ?
A. Homogeneous equilibrium
B. Hetrogeneous equilibrium
C. Chemical equilibrium
D. Ionic equilibrium

Answer: B

D View Text Solution

24. Which of the following use for mesurement of mass of D_{2} and $N D_{3}$?
A. Ferometer
B. pH meter
C. Spectrometer
D. Ameter

Answer: C

- View Text Solution

25. If $K_{c}=\left[\mathrm{CO}_{2}\right]$ then which is the following equilibrium ?
A. $C_{(s)}+O_{2(g)} \Leftrightarrow \mathrm{CO}_{2(g)}$
B. $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}$
C. $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
D. $\mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CaCO}_{3(\mathrm{~s})}$

Answer: C

26. Which of the following expression for equilibrium constant of the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 4 \mathrm{NO}_{(\mathrm{g})}$?

$$
\left[N_{2}\right]\left[O_{2}\right]
$$

A.

$$
[\mathrm{NO}]^{4}
$$

B. $\frac{[\mathrm{NO}]^{4}}{\left[\mathrm{~N}_{2} \mathrm{O}\right]^{2}\left[\mathrm{O}_{2}\right]}$
$\left[\mathrm{N}_{2} \mathrm{O}\right]^{2}\left[\mathrm{O}_{2}\right]$
C. $\frac{\mathrm{NO}^{4}}{[\mathrm{NO}}$
D. $\frac{[\mathrm{NO}]^{4}}{\left[\mathrm{~N}_{2} \mathrm{O}\right]}$

Answer: B

- View Text Solution

27. In reaction $X_{(s)} \Leftrightarrow 4 Y_{(g)}+3 Z_{(g)}$, If in this equilibrium do the partial pressure of Z double then partial pressure of Y is....
A. $2 \sqrt{2}$ times of actual pressure.
B. $\frac{1}{2}$ times of initial pressure.
C. 2 times of initial pressure.
D. $\frac{1}{2 \sqrt{2}}$ times of initial pressure.

Answer: D

- View Text Solution

28. The $K_{s p}$ of AgBr is 1×10^{-10} at $25^{\circ} \mathrm{C}$ temperature then what is the value of $\left[A g^{1}\right]$ In saturated solution ?
A. 10^{-4}
B. 10^{-5}
C. 10^{-6}
D. 10^{-10}

Answer: B

29. Which of the following when reaction occur in present of catalyst ?
A. Activation energy decreases.
B. Activation energy increases.
C. Equilibrium constant increase.
D. Equilibrium constant decrease.

Answer: A

D View Text Solution

30. For $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$, the equilibrium constant is K then which of the following is equilibrium constant of this reaction $n H_{2(g)}+n I_{2(g)} \Leftrightarrow 2 n H I_{(g)} ?$
A. nK
B. K^{n}
C. $\frac{1}{n} K$
D. $(K)^{\frac{1}{n}}$

Answer: B

- View Text Solution

31. In the given reaction which of the following is the relation of between
K_{p} and K_{c} ?
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
A. $K_{p}=K_{c}$
B. $K_{p}>K_{c}$
C. $K_{p}<K_{c}$
D. $K_{p} / K_{c}=$ Zero

Answer: C

32. Which of the relation of K_{p} and K_{c} at equilibrium in $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})} ?$
A. $K_{p}=K_{c}$
B. $K_{p}<K_{c}$
C. $K_{p}>K_{c}$
D. $\frac{K_{p}}{K_{c}}=6$

Answer: C

D View Text Solution

33. Which of the following is the unit of equilibrium constant of given reaction $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$?
A. $\mathrm{mol} L^{-1}$
B. $L^{2} \mathrm{~mol}^{-2}$
C. bar
D. $\left(\mathrm{mol} \mathrm{L}^{-1}\right)^{3}$

Answer: B

- View Text Solution

34. If the reaction is not occur in forward or reverse then
A. $\Delta G=0$
B. $\Delta G<0$
C. $\Delta G>0$
D. ΔG not change

Answer: A

35. Which of the following exponential equation of $\Delta G^{\circ}=-\mathrm{RT} \operatorname{InK}$?
A. $K=e^{\Delta G / R T}$
B. $K=e^{\Delta G^{\circ} / R T}$
C. $K=e^{-\Delta G^{\circ} / R T}$
D. $K=e^{-\Delta G / R T}$

Answer: C

D View Text Solution

36. If $\mathrm{K}>1$ then what is the value of ΔG ?
A. Positive
B. Negative
C. Zero
D. None of these

Answer: B

- View Text Solution

37. Acid acept electron pair in reaction, this according to which principle ?
A. Arrhenious
B. Bronsted-Lowary
C. Lewis
D. Ge-lusace

Answer: C

- View Text Solution

38. The 4.0 pH containing solution, concentration of $\left[\mathrm{H}^{+}\right]$is increased 5 times then what is the pH of resulting solution?
A. 5.0
B. 3.3
C. 4.5
D. 2.5

Answer: B

- View Text Solution

39. Which of the following acid is important for digestion in human stomach ?
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. HCl
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. Cytric acid

Answer: B

40. What is the solubility of speringly soluble salt ?
A. More than 0.1
B. More than 0.01 M
C. Less then 0.01
D. More then 1 M

Answer: C

- View Text Solution

41. Which is the symbol for equilibrium of speringly soluble salt ?
A. K_{a}
B. K_{b}
C. K_{h}
D. $K_{s p}$

Answer: D

- View Text Solution

42. The some amount of $\mathrm{CH}_{3} \mathrm{COONa}_{(s)}$ is added in $\mathrm{CH}_{2} \mathrm{COOH}$ solution then....
A. pH increase
B. pH decrease
C. $\mathrm{pH}=$ Zero
D. pH remain constant

Answer: A

- View Text Solution

43. The solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ is $\mathrm{S} \mathrm{mol} L^{-1}$ then what will be the $K_{\text {Sp }}$?
A. $108 S^{4}$
B. $27 S^{4}$
C. $27 S^{3}$
D. S^{2}

Answer: B

- View Text Solution

44. What is the pH of $0.001 \mathrm{HNO}_{3}$?
A. 1
B. 2
C. 3
D. -2

Answer: C

- View Text Solution

45. The equilibrium of decomposition of $\mathrm{NH}_{4} \mathrm{COONH}_{2}$ is following.
$\mathrm{NH}_{4} \mathrm{COONH}_{2(\mathrm{~s})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$, At equilibrium total pressure $=\mathrm{P}$, then what is the relation of K_{p} and P ?
A. P
B. $\frac{P^{2}}{4}$
C. $\frac{4}{27} P^{3}$
D. P^{2}

Answer: C

- View Text Solution

46. What is the effect on solubility of AgCl , when saturated solution of AgCl is added in different solution of $0.1 \mathrm{AgNO}_{3}$ and 0.1 NaCl ?
A. Solubility in $\mathrm{AgNO}_{3}>$ Solubility in NaCl
B. Solubility in $\mathrm{AgNO}_{3}<$ Solubility in NaCl
C. Solubility in $\mathrm{AgNO}_{3}=$ Solubility in NaCl
D. Solubility in $\mathrm{AgNO}_{3}+$ Solubility in $\mathrm{NaCl}=2 K_{\text {sp }}$

Answer: C

- View Text Solution

47. The solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is $\mathrm{S} \mathrm{mol} L^{-1}$ then what is the equation of $K_{s p}$?
A. S^{2}
B. $4 S^{3}$
C. S^{3}
D. $\frac{S^{2}}{4}$

Answer: B

- View Text Solution

48. What happened when more solution of CdCl_{2} is added in saturated solution of CdS and starred?
A. No effect.
B. Increase the ppts of CdS.
C. Dissolution of precipitate of CdS in solution.
D. Formation of precipitate of CdCl_{2}.

Answer: C

- View Text Solution

49. $N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}+$ Energy, in this equilibrium reaction what is the following when increase the total pressure ?
A. Concentration of N_{2} increase
B. Concentration of H_{2} increase
C. Concentration of H_{2} decrease
D. None of these

Answer: D

- View Text Solution

50. What is the following when Ne gas pass through this vessel ?
$\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ (Red)
A. Red color become dark.
B. Red color become light.
C. The intencity of red color is remain constant.
D. None of these

Answer: C

- View Text Solution

Section C Mcqs Mcqs Asked In Competitive Exam

1. Which one has highest pH from the following ?
A. NaNO_{3}
B. $\mathrm{CH}_{3} \mathrm{COOK}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Answer: D

2. The solution containing $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$ and Hg^{2+} concentration is $10^{-3} \mathrm{M}$. If $K_{s p}$ of $\mathrm{Mns}, \mathrm{FeS}, \mathrm{ZnS}$ an HgS are respectively $10^{-15}, 10^{-2}, 10^{-4}, 10^{-54}$ than which one is the first precipitate by $\mathrm{H}_{2} \mathrm{~S}$?
A. FeS
B. HgS
C. MnS
D. ZnS

Answer: B

- View Text Solution

3. Which one is buffer solution ?
A. NaOH and NaCl
B. HCl and KCl
C. HNO_{3} and HNO_{2}
D. HNO_{2} and NaNO_{2}

Answer: D

- View Text Solution

4. $K_{w}=1 \times 10^{-14}$ calculate the concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $10^{-8} \mathrm{M} \mathrm{HCl}$.
A. $1.0 \times 10^{-8} \mathrm{M}$
B. $1.0525 \times 10^{-7} \mathrm{M}$
C. $1.0 \times 10^{-6} \mathrm{M}$
D. $9.525 \times 10^{-8} \mathrm{M}$

Answer: B

- View Text Solution

5. Weak Acid HA K_{a} is 1.0×10^{-5} in 1 litre 0.100 mole Acid is solubic. At equilibrium dissociation is
A. 1.00%
B. 99.0 \%
C. 0.100%
D. 99.9 \%

Answer: C

- View Text Solution

6. 0.01 M solution is given it's pH is $\left(K_{a}=6.6 \times 10^{-4}\right)$
A. 7.6
B. 8
C. 2.6
D. 5.0

Answer: C

- View Text Solution

7. In mutarotation of α-D Glucose $\Leftrightarrow \beta$-D Glucose equilibrium constant is
1.8. At equilibrium what will be the percentage of α-D Glucose ?
A. 35.8
B. 64.3
C. 55.6
D. 44.4

Answer: A

- View Text Solution

8. If $K_{\text {sp }}$ of $\mathrm{CaSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is 9×10^{-6}. Find the volume of $1 \mathrm{gm} \mathrm{CaSO}_{4}$. (M.M $=136 u$)
A. 2.45 litre
B. 5.1 litre
C. 4.52 litre
D. 3.2 litre

Answer: A

- View Text Solution

9. If $25 \mathrm{ml} 0.2 \mathrm{M} \mathrm{Ca(OH})_{2}$ is neutralized by $10 \mathrm{ml}, 1 \mathrm{M} \mathrm{HCl}$ than the pH of solution is
A. 1.37
B. 9
C. 12
D. 7

Answer: D

View Text Solution
10. 0.1 M HQ acid has $\mathrm{pH}=3$ then find its ionization constant.
A. 3×10^{-1}
B. 1×10^{-3}
C. 1×10^{-5}
D. 1×10^{-7}

Answer: C

Section C Mcqs Mcqs Asked In Jee Neet Aieee

1. Calculate the pOH of a solution at $25^{\circ} \mathrm{C}$ that contains $1 \times 10^{-10} \mathrm{M}$ of hydronium ions, i.e. $\mathrm{H}_{3} \mathrm{O}^{+}$.
A. 4.000
B. 9.0000
C. 1.000
D. 7.000

Answer: A

- View Text Solution

2. If the concentration of OH^{-}ions in the reaction $\mathrm{Fe}(\mathrm{OH})_{3(s)} \Leftrightarrow \mathrm{Fe}_{(a q)}^{3+}+3 \mathrm{OH}_{(a q)}^{-}$is decreased by $\frac{1}{4}$ times, then equilibrium concentration of Fe^{3+} will increase by:
A. 8 times
B. 16 times
C. 64 times
D. 4 times

Answer: C

- View Text Solution

3. Equimolar solutions of the following were prepared in water separately. Which one of the solutions will record the highest pH ?
A. SrCl_{2}
B. BaCl_{2}
C. MgCl_{2}
D. CaCl_{2}

Answer: B

4. Which of the following molecules acts as a Lewis acid?
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
B. $\left(\mathrm{CH}_{3}\right)_{3} P$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
D. $\left(\mathrm{CH}_{3}\right)_{3} B$

Answer: D

- View Text Solution

5. The ionization constant of ammonium hydroxide is 1.77×10^{-5} at 298 K . Hydrolysis constant of ammonium chloride is:
A. 6.5×10^{-12}
B. 5.65×10^{-13}
C. 5.65×10^{-12}
D. 5.65×10^{-10}

Answer: D

- View Text Solution

6. If pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 , the value of its $K_{(S p)}$ is :
A. $4.0 \times 10^{-6} M^{3}$
B. $4.0 \times 10^{-7} M^{3}$
C. $5.0 \times 10^{-6} M^{3}$
D. $5.0 \times 10^{-7} M^{3}$

Answer: D

D View Text Solution

7. In which of the following equilibrium K_{c} and K_{p} are not equal ?

$$
\text { A. } 2 N O_{(g)} \Leftrightarrow N_{2(g)}+O_{2(g)}
$$

B. $\mathrm{SO}_{2(g)}+\mathrm{NO}_{2(g)} \Leftrightarrow \mathrm{SO}_{3(g)}+N O_{(g)}$
C. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
D. $2 C_{(s)}+O_{2(g)} \Leftrightarrow 2 \mathrm{CO}_{2(g)}$

Answer: D

- View Text Solution

8. Which one of the following molecular hydrides acts as a Lewis acid ?
A. NH_{3}
B. $\mathrm{H}_{2} \mathrm{O}$
C. $B_{2} H_{6}$
D. CH_{4}

Answer: C

9. Which of the following is least likely to behave as Lewis base ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. NH_{3}
C. $B F_{3}$
D. OH^{-}

Answer: C

- View Text Solution

10. In qualitative analysis, the metals of Group-I can be separated from other ions by precipitating them as chloride salts. A solution initially contains Ag^{+}and Pb^{2+} at a concentration of 0.10 M . Aqueous HCl is added to this solution until the Cl^{-}concentration is 0.10 M . What will the concentrations of Ag^{+}and Pb^{2+} be at equilibrium ? $\left(K_{s p}\right.$ for $\mathrm{AgCl}=$ $1.8 \times 10^{-10}, K_{\text {sp }}$ for $\mathrm{PbCl}_{2}=1.7 \times 10^{-5}$)
A. $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-7} \mathrm{M},\left[\mathrm{Pb}^{+2}\right]=1.7 \times 10^{-6} \mathrm{M}$
B. $\left[A g^{+}\right]=1.8 \times 10^{-11} \mathrm{M},\left[P b^{+2}\right]=8.5 \times 10^{-5} \mathrm{M}$
C. $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-9} \mathrm{M},\left[\mathrm{Pb}^{+2}\right]=1.7 \times 10^{-3} \mathrm{M}$
D. $\left[A g^{+}\right]=1.8 \times 10^{-11} M,\left[P b^{+2}\right]=8.5 \times 10^{-4} \mathrm{M}$

Answer: C

- View Text Solution

11. The first and second dissociation constants of an acid $\mathrm{H}_{2} \mathrm{~A}$ are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be
A. 0.2×10^{5}
B. 5.0×10^{-5}
C. 5.0×10^{15}
D. 5.0×10^{-15}

Answer: D

- View Text Solution

12. The $p K_{a}$ of a weak acid (HA) is 4.5. The pOH of an aqueous buffered solution of HA in which 50% of the acid is ionized is
A. 7.0
B. 4.5
C. 2.5
D. 9.5

Answer: D

D View Text Solution

13. In a saturated solution of the sparingly soluble strong electrolyte AgIO_{3} (molecular mass = 283), the equilibrium which sets in is
$\mathrm{AgIO}_{3(s)} \Leftrightarrow \mathrm{Ag}_{(a q)}^{+}+\mathrm{IO}_{3(a q)}^{-}$
If the solubillity product constant $K_{s p}$ of AglO_{3} at a given temperature is 1.0×10^{-8}, what is the mass of AgIO_{3} contained in 100 ml of its saturated solution?
A. $1.0 \times 10^{-4} \mathrm{~g}$
B. $28.3 \times 10^{-2} \mathrm{~g}$
C. $2.83 \times 10^{-3} \mathrm{~g}$
D. $1.0 \times 10^{-7} \mathrm{~g}$

Answer: C

- View Text Solution

14. For the following three reactions (i), (ii) and (iii) equilibrium constants are given
(i) $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}, \mathrm{K}_{1}$
(ii) $\mathrm{CO}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}, \mathrm{K}_{2}$
(iii) $\mathrm{CO}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2(\mathrm{~g})}, \mathrm{K}_{3}$

Which of the following relation is correct ?
A. $K_{3} \cdot K_{2}^{3}=K_{1}^{2}$
B. $K_{1} \sqrt{K_{2}}=K_{3}$
C. $K_{2} K_{3}=K_{1}$
D. $K_{3}=K_{1} K_{2}$

Answer: D

- View Text Solution

15. The $p K_{a}$ of a weak acid, HA , is 4.80 . The $p K_{b}$ of a weak base, BOH is 4.78 .

The pH of an aqueous solution of the corresponding salt BA , will be
A. 9.22
B. 9.58
C. 4.79
D. 7.01

Answer: D

- View Text Solution

16. Four species are listed below:
(i) HCO_{3}^{-}
(ii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(iii) HSO_{4}^{-}(iv) $\mathrm{HSO}_{3} \mathrm{~F}$

Which one of the following is the correct sequence of their acid strength
?
A. iii < I < iv < ii
B. $i v<i i<i i i<i$
C. ii < iii < I < iv
D. $I<i i i<i i<i v$

Answer: D

17. The pH of a 0.1 molar solution of the acid HQ is 3 . The value of the ionization constant, K_{a} of this acid is
A. 1×10^{-3}
B. 1×10^{-5}
C. 1×10^{-7}
D. 3×10^{-1}

Answer: B

- View Text Solution

18. The equilibrium constant $\left(K_{c}\right)$ for the reaction $N_{2(g)}+O_{2(g)} \rightarrow 2 \mathrm{NO}_{(g)}$ at temperature T is 4×10^{-4}. The value of K_{c} for the reaction, $N O_{(g)}+\frac{1}{2} N_{2(g)}+\frac{1}{2} O_{2(g)}$ at the same temperature is
A. 2.5×10^{2}
B. 4×10^{-4}
C. 50.0
D. 0.02

Answer: C

- View Text Solution

19. For the reaction $\mathrm{SO}_{2(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow S O_{3(g)}$, if $K_{P}=K_{C}(R T)^{x}$, where the symbols have usual meaning then the value of x is : (assuming ideality)
A. $\frac{1}{2}$
B. 1
C. -1
D. $-\frac{1}{2}$
20. At 300 K and $1 \mathrm{~atm}, 15 \mathrm{~mL}$ of a gaseous hydrocarbon requires 375 ml air containing $20 \% \mathrm{O}_{2}$ by volume for complete combustion. After combustion the gases occupy 330 ml . Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is :
A. $\mathrm{C}_{4} \mathrm{H}_{10}$
B. $\mathrm{C}_{3} \mathrm{H}_{6}$
C. $\mathrm{C}_{3} \mathrm{H}_{8}$
D. $\mathrm{C}_{4} \mathrm{H}_{8}$

Answer: C

- View Text Solution

21. The equilibrium constant at 298 K for a reaction $\mathrm{A}+\mathrm{B} \Leftrightarrow \mathrm{C}+\mathrm{D}$ is 100 . If the initial concentration of all the four species were $1 M$ each, then equilibrium concentration of D (in mol L^{-1}) will be:
A. 1.182
B. 0.182
C. 0.818
D. 1.818

Answer: D

- View Text Solution

22. The $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{AgCl}, \mathrm{AgBr}$ and AgI are respectively, $1.1 \times 10^{-12}, 1.8 \times 10^{-10}, 5.0 \times 10^{-13}, 8.3 \times 10^{-17}$, Which one of the following salts will precipitate last if AgNO_{3} solution is added to the solution containing equal moles of $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{NaI}$ and $\mathrm{Na}_{2} \mathrm{CrO}_{4}$?
A. Ag I
B. AgCl
C. AgBr
D. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$

Answer: D

- View Text Solution

23. If the value of an equilibrium constant for a particular reaction is
1.6×10^{12}, then at equilibrium the system will contain:
A. all reactants.
B. mostly reactants.
C. mostly products.
D. similar amounts of reactants and products

Answer: C

24. Which of the following statements is correct for a reversible process in a state of equilibrium ?
A. $\Delta G=-2.30 \mathrm{RT} \log \mathrm{K}$
B. $\Delta G=2.30 \mathrm{RT} \log \mathrm{K}$
C. $\Delta G^{\circ}=-2.30$ RT $\log \mathrm{K}$
D. $\Delta G^{\circ}=2.30 \mathrm{RT} \log \mathrm{K}$

Answer: C

- View Text Solution

25. If the equilibrium constant for $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$ is K , the equilibrium constant for $\frac{1}{2} N_{2(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow N O_{(g)}$ will be :
A. K
B. K^{2}
C. $K^{1 / 2}$
D. $\frac{1}{2} K$

Answer: C

- View Text Solution

26. Which one of the following pairs of solution is not an acidic buffer ?
A. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$
C. HClO_{4} and NaClO_{4}
D. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$

Answer: C

27. Aqueous solution of which of the following compounds is the best conductor of electric current ?
A. Ammonia, NH_{3}
B. Fructose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. Acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
D. Hydrochloric acid, HCl

Answer: D

- View Text Solution

28. What is the mole fraction of the solute in a 1.00 m aqueous solution ?
A. 0.0354
B. 0.0177
C. 0.177
D. 1.77

D View Text Solution

29. What is the pH of the resulting solution when equal volumes of 0.1 M NaOH and 0.01 M HCl are mixed ?
A. 7.0
B. 1.04
C. 12.65
D. 2.0

Answer: C

D View Text Solution

30. The addition of a catalyst during a chemical reaction alters which of the following quantities?
A. Internal energy
B. Enthalpy
C. Activation energy
D. Entropy

Answer: C

- View Text Solution

31. MY and $N Y_{3}$ two nearly insoluble salts, have the same $K_{S P}$ values of 6.2×10^{-13} at room temperature. Which statement would be true in regard to MY and NY_{3} ?
A. The molar solubility of MY in water is less than that of NY_{3}
B. The salts MY and $N Y_{3}$ are more soluble in 0.5 M KY than in pure water.
C. The addition of the salt of KY to solution of MY and NY_{3} will have no effect on their solubilities.
D. The molar solubilities of MY and $N Y_{3}$ in water are identical.

Answer: A

- View Text Solution

32. Consider the following liquid - vapour equilibrium.

Liquid \Leftrightarrow Vapour
Which of the following relations is correct ?
A. $\frac{d \ln P}{d T}=-\frac{\Delta H_{V}}{R T}$
B. $\frac{d \ln P}{d T^{2}}=-\frac{\Delta H_{V}}{T^{2}}$
C. $\frac{d \ln P}{d T}=\frac{\Delta H_{V}}{R T^{2}}$
D. $\frac{d \ln G}{d T^{2}}=\frac{\Delta H_{V}}{R T^{2}}$

Answer: C

33. The percentage of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ that forms pyridinium ion $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{H}\right)$ in a 0.1 M aqueous pyridine solution $\left(K_{b}\right.$ for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=1.7 \times 10^{-9}$) is
A. 0.77%
B. 1.6 \%
C. 0.006%
D. 0.013%

Answer: D

- View Text Solution

34. The solubility of $\mathrm{AgCl}(\mathrm{s})$ with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be
A. $1.6 \times 10^{-11} \mathrm{M}$
B. 0
C. $1.26 \times 10^{-5} \mathrm{M}$
D. $1.6 \times 10^{-9} \mathrm{M}$

Answer: D

- View Text Solution

35. Which of the following fluoro-compounds is most likely to behave as a

Lewis base?

A. $C F_{4}$
B. SiF_{4}
C. $B F_{3}$
D. $P F_{3}$

Answer: D

36. For the reaction $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$, the standard equilibrium constant K_{P} is 5.8×10^{5} at 298 K temperature. If the concentration of gases indicate by $\mathrm{mol} L^{-1}$ then find the value of standard equilibrium constant from the following.
($\mathrm{R}=0.08314 \mathrm{~L}^{\text {bar }} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$)
A. 3.5×10^{6}
B. 3.8×10^{7}
C. $3.56 \times 10^{+8}$
D. 3.99×10^{9}

Answer: C

- View Text Solution

37. Take the following reaction in consederation. In which enthalpy change is positive. $2 A_{(g)} \Leftrightarrow C_{(g)}+D_{(g)}$. Which of the following will not affect on equilibrium ?
A. Change in concentration of reactants
B. Change in pressure
C. Change in temperature
D. Change in catalyst

Answer: D

- View Text Solution

38. The $\frac{K_{p}}{K_{c}}$ is equal to which of the following in given reaction ? Reaction
$C O_{(g)}+\mathrm{Cl}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{COCl}_{2(\mathrm{~g})}$
A. $\frac{1}{R T}$
B. RT
C. $\sqrt{R T}$
D. $(R T)^{2}$

View Text Solution

39. The $p K_{a}$ and $p K_{b}$ of one weak acid (HA) and weak base (BOH) are 3.2 and 3.4 respectively. Find pH of its salt AB .
A. 7.2
B. 6.9
C. 7.9
D. 1

Answer: B

- View Text Solution

Section C Mcqs Mcqs Asked In Board Exam

1. Which mixture of solution will have $\mathrm{pH}>7$?
A. $\mathrm{HCl}+\mathrm{NaOH}$
B. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$

Answer: B

- View Text Solution

2. For a equilibrium mixture in a closed vessel.
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
the value of equilibrium on constant depends.
A. Temperature
B. Total pressure of the system
C. Initial concentration of N_{2} and H_{2}
D. Volume of reaction vessel

D View Text Solution

3. Which of the following is sparingly soluble salt?
A. BaSO_{4}
B. $C d S$
C. PbS
D. NaCl

Answer: D

- View Text Solution

4. If Hydrogen Chloride gas is passed through saturated solution of sodium chloride which precipitate will be obtained?
A. HCl
B. NaCl
C. (A) and (B) Both
D. None of these

Answer: B

- View Text Solution

5. For equilibrium mixture $\mathrm{PCl}_{3(\mathrm{~g})}+C l_{2(\mathrm{~g})} \Leftrightarrow P C l_{5(\mathrm{~g})}$. The value of K_{c} at $250^{\circ} \mathrm{C}$ is 26 . The value of K_{p} at this temperature is \qquad
A. 0.20
B. 0.50
C. 0.81
D. 0.61
6. Mention conjugate base of acid $\mathrm{H}_{2} \mathrm{PO}_{4}^{1-}$
A. HPO_{4}^{1-}
B. HPO_{4}^{2-}
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. PO_{4}^{3-}

Answer: B

- View Text Solution

7. For the given equation in closed vessel.
dissociation
$\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \rightarrow \leftarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
What will be the value of K_{p} ? ($\mathrm{P}=$ total pressure)
A. $\frac{P^{3}}{27}$
B. $\frac{P}{2}$
C. $\frac{P^{2}}{2}$
D. $\frac{P^{2}}{4}$

Answer: D

D View Text Solution

8. What will be the molarity of 200 ml solution of sulphuric acid having
$\mathrm{pH}=1$?
A. 0.5 M
B. 0.1 M
C. 0.05 M
D. 1 M

Answer: C

9. The reagent $\mathrm{NH}_{4} \mathrm{Cl}$ and aq. NH_{3} will precipitate ions of group
A. Group III-A ions
B. Group III-B ions
C. Group I ions
D. Group II ions

Answer: A

D View Text Solution

10. Which solutions, when mixed, forms acidic buffer ?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $\mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
D. $\mathrm{NH}_{4} \mathrm{Cl}$ and HCl

Answer: C

- View Text Solution

11. Arrange the following acids in decreasing order of acidity :
(I) $\mathrm{H}_{2} \mathrm{SO}_{4}$, (II) $\mathrm{H}_{3} \mathrm{PO}_{4}$, (III) HClO_{4}
A. $I>$ II $>$ III
B. III $>$ I $>$ II
C. III > II > I
D. I > III > II

Answer: B

- View Text Solution

12. Which will show the highest pH ?
A. 0.1 M NaOH
B. 1 N NaOH
C. 1 N HCl
D. $0.1 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: B

- View Text Solution

13. The solubility of PbCl_{2} will be given by the equation
A. $\left(K_{s p}\right)^{\frac{1}{3}}$
B. $\sqrt[3]{\frac{K_{s p}}{4}}$
C. $\left(8 K_{s p}\right)^{\frac{1}{2}}$
D. $\sqrt{K_{s p}}$

Answer: B

14. If at 550 K temperature, Hydrogen gas and Oxygen gas reacts to form water vapour in presence of catalyst, calculate the total pressure of vessel, if the partial pressure of Hydrogen gas is 2 bar and that of Oxygen gas is 1 bar at 550 K in a closed vessel.
A. 4 bar
B. Less than 3 bar
C. 5 bar
D. 3 bar

Answer: B

- View Text Solution

15. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3(\mathrm{~s})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

If the total pressure is P at equilibrium then what will be the volume of

equilibrium constant, K_{p} in a closed vessel ?

A. $\frac{P^{4}}{64}$
B. $\frac{P^{3}}{32}$
C. $\frac{4 P^{3}}{27}$
D. $\frac{P^{3}}{64}$

Answer: A

- View Text Solution

16. What will happen if the equilibrium system is kept in ice bath ?
$2 \mathrm{NO}_{2(\mathrm{~g})}$ brown $\Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ colourless, $\Delta H=-v e$
A. Colour intensity increases.
B. Colour intensity does not change.
C. Colour intensity increases and than remains constant.
D. Colour intensity decreases.

- View Text Solution

17. Which of the following is not a Lewis Acid ?
A. AlCl_{3}
B. SnCl_{4}
C. CCl_{4}
D. BCl_{3}

Answer: C

- View Text Solution

18. In which of the following cases does reaction go the farthest for completion ?
A. $K=10^{-2}$
B. $K=10$
C. $\mathrm{K}=1$
D. $K=10^{3}$

Answer: D

(D) View Text Solution

19. Which oxide is acidic ?
A. $\mathrm{K}_{2} \mathrm{O}$
B. $\mathrm{B}_{2} \mathrm{O}_{3}$
C. $\mathrm{Na}_{2} \mathrm{O}$
D. $\mathrm{Al}_{2} \mathrm{O}_{3}$

Answer: B

20. Equilibrium existing in the hydrolysis of an ester is
A. Gaseous homogeneous
B. Heterogeneous
C. Ionic homogeneous
D. Homogeneous

Answer: C

- View Text Solution

21. The reaction $2 \mathrm{NO}_{(2)} g \Leftrightarrow N_{2} O_{4}(g) \Delta H=$ negative occurring in a closed vessel attains equilibrium. If this vessel is kept in ice then which of the following change will be observed ?
A. Equilibrium state will remain constant.
B. Increase in brown colour intensity in vessel.
C. The decrease in the concentration of product.
D. Decrease in brown colour intensity in vessel.

Answer: D

- View Text Solution

22. According to Arrhenius acid-base theory, the strength of acid and base depends on
A. magnitude of accepting electron.
B. magnitude of accepting proton.
C. magnitude of donating proton.
D. ionization in aqueous solution.

Answer: D

- View Text Solution

23. AgCl is a sparingly soluble salt and
A. It is completely insoluble in water
B. Its solubility in water is 1 M
C. Its solubility in water is less than 0.01 M
D. Its solubility in water is greater than 0.1 M

Answer: C

- View Text Solution

24. For precipitation of sparingly soluble salt if, $I_{p}<K_{s p}$, then
A. nothing can be predicted
B. sparingly soluble salt will not get precipitated.
C. solution will remain in saturated state.
D. sparingly soluble salt gets precipitated.

Answer: B

- View Text Solution

25. BF_{3} and NH_{3} are $\ldots . .$. In the reaction $\mathrm{BF}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{BF}_{3} \leftarrow \mathrm{NH}_{3}$.
A. Conjugate Acid Base
B. Lewis Base - Lewis Acid
C. Acid conjugate Base
D. Lewis Acid Lewis Base

Answer: D

- View Text Solution

26. Equation for $K_{s p}$ and its unit for the sparingly soluble salt $\mathrm{Al}(\mathrm{OH})_{3}$ are
A. $4 S^{4}, M^{3}$
B. $4 S^{3}, M^{3}$
C. $27 S^{4}, M^{4}$
D. S^{2}, M^{2}

Answer: C

- View Text Solution

27. Which is the correct increasing order of acidic strength from the following of Methan, Ammonia, Water and Hydrogen flouride.
A. $\mathrm{HF} \gg \mathrm{H}_{2} \mathrm{O} \gg \mathrm{NH}_{3} \gg \mathrm{CH}_{4}$
B. $\mathrm{CH}_{4} \ll \mathrm{NH}_{3} \ll \mathrm{H}_{2} \mathrm{O} \ll \mathrm{HF}$
C. $\mathrm{HF} \ll \mathrm{H}_{2} \mathrm{O} \ll \mathrm{NH}_{3} \ll \mathrm{CH}_{4}$
D. $\mathrm{CH}_{4} \ll \mathrm{HF} \ll \mathrm{H}_{2} \mathrm{O} \ll \mathrm{NH}_{3}$
28. Which of the following properties of the aqueous solution of AlCl_{3} ?
A. Amphoteric
B. Basic
C. Neutral
D. Acidic

Answer: D

- View Text Solution

29. What is the relation between the value of K_{c} for the forward reaction and value of K_{c}^{\prime} for the reverse reaction in the reaction $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H_{(g)}$ at equilibrium ?

$$
\text { A. } K_{c}^{\prime}{ }_{c}=2 K_{c}
$$

B. $K_{c}=2 K^{\prime}{ }_{c}$
C. $K c=K^{\prime}{ }_{c}$
D. $K_{c}{ }_{c}=\frac{1}{K_{c}}$

Answer: D

- View Text Solution

30. For a reversible reaction at 298 K , if the concentration of reactants is doubled, the value of equilibrium constant will be \qquad
A. Doubled
B. One fourth
C. Same
D. Halved

Answer: C

31. Which among the following is the strongest base ?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \quad K_{b}=5.6 \times 10^{-4}$
B. $C_{9} H_{7} \mathrm{~N} \quad K_{b}=6.3 \times 10^{-10}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \quad K_{b}=3.8 \times 10^{-10}$
D. $\mathrm{NH}_{4} \mathrm{OH} \quad K_{b}=1.6 \times 10^{-5}$

Answer: A

- View Text Solution

32. Which among the following factors decreases the activation energy of a chemical reaction ?
A. Pressure
B. Catalyst
C. Temperature
D. Concentration

Answer: B

- View Text Solution

33. What will be the pH of a equimolar mixture of $\mathrm{CH}_{3} \mathrm{COOH}$ and NaOH solution?
A. $\mathrm{pH}=7$
B. $\mathrm{pH}=0$
C. $\mathrm{pH}<7$
D. $\mathrm{pH}>7$

Answer: D

- View Text Solution

34. The equilibrium constant for the reaction $2 A_{(g)}+B_{(g)} \rightarrow A_{2} B_{(g)}$ is 5.8×10^{-3} at 1000 K . In the presence of a catalyst, equilibrium is attained 10 times faster Therefore, the equilibrium constant at 1000 K in the presence of catalyst will be \qquad
A. 5.8×10^{-3}
B. 5.8×10^{-5}
C. 5.8×10^{-4}
D. 5.8×10^{-2}

Answer: A

- View Text Solution

35. Which of the following statement is true ?
A. The conjugate base of HPO_{4}^{2-} is $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
B. When H^{+}ion concentration increases, its pH value decreases.
C. pH of $1.0 \times 10^{-8} \mathrm{M} \mathrm{HNO} 3$ is 8 .
D. AlCl_{3} is a Lewis base.

Answer: B

- View Text Solution

36. The optimum pressure and temperature for the production of NH_{3} by Haber's process is \qquad
A. 350 bar, 760 K
B. 350 bar, 773 K
C. 200 bar, 773 K
D. $800 \mathrm{bar}, 773 \mathrm{~K}$

Answer: C

37. The solubility product of CaCl_{2} in water is 4.2×10^{-12}. The concentration of Ca^{2+} in an aqueous solution of CaCl_{2} is M.
A. $1.01 \times 10^{-4} \mathrm{M}$
B. $2.0 \times 10^{-6} \mathrm{M}$
C. $4.0 \times 10^{-10} \mathrm{M}$
D. $1.6 \times 10^{-4} \mathrm{M}$

Answer: A

- View Text Solution

Section D Ncert Exemplar Problems Mcqs

1. The relationship between K_{c} and K_{p} is $K_{p}=K_{c}(R T)^{\Delta n}$, What would be the value of Δn for the reaction ?
$\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \Leftrightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HI}_{(\mathrm{g})}$
A. 1
B. 0.5
C. 1.5
D. 2

Answer: D

- View Text Solution

2. For the reaction $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$, the standard free energy is $\Delta G^{\theta}>0$. The equilibrium constant (K) would be
A. $K=0$
B. K > 1
C. $\mathrm{K}=1$
D. $K<1$

Answer: D

3. Which of the following is not a general characteristic of equilibria involving physical processes ?
A. Equilibrium is possible only in a closed system at a given temperature.
B. All measurable properties of the system remain constant.
C. All physical processes stop at equilibrium.
D. The opposing processes occur at the same rate and there is dynamic stable condition.

Answer: C

- View Text Solution

4. $P C l_{5}, P C l_{3}$ and $C l_{2}$ are at equilibrium at 500 K in a closed container and their concentrations are $0.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}, 1.2 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ and
$1.2 \times 10 \mathrm{~mol} \mathrm{~L}^{-1}$, respectively. The value of K_{c} for the reaction $P C l_{5(\mathrm{~g})} \Leftrightarrow P \mathrm{Pl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ will be
A. $1.8 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$
B. 1.8×10^{-3}
C. $1.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
D. 0.55×10^{4}

Answer: B

- View Text Solution

5. Which of the following statements is incorrect?
A. In equilibrium mixture of ice and water kept in perfectly insulated
flask mass of ice and water does not change with time.
B. The intensity of red colour increased when oxalic acid is added to a solution containing iron (III) nitrate and potassium thiocyanate.
C. On addition of catalyst the equilibrium constant value is not affected.
D. Equilibrium constant with negative ΔH value decreases as temperature increases.

Answer: B

- View Text Solution

6. When hydrochloric acid is added to cobalt nitrate solution at room temperature, the following reaction takes place and the reaction mixture becomes blue. On cooling the mixture it becomes pink. On the basis of this information, mark the correct answer.
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]_{(a q)}^{3+}+4 \mathrm{Cl}_{(a q)}^{-} \Leftrightarrow\left[\mathrm{CoCl}_{4}\right]_{(a q)}^{2}($ blue $)+6 \mathrm{H}_{2} \mathrm{O}_{(l)}($ pink $)$
A. $\Delta H>0$ for the reaction
B. $\Delta H<0$ for the reaction
C. $\Delta H=0$ for the reaction
D. The sign of ΔH cannot be predicted on the basis of this information.

Answer: A

- View Text Solution

7. The pH of neutral water at $25^{\circ} \mathrm{C}$ is 7.0 . As the temperature increases, ionisation of water increases, however, the concentration of H ions and OH^{-}ions are equal. What will be the pH of pure water at $60^{\circ} \mathrm{C}$?
A. Equal to 7.0
B. Greater than 7.0
C. Less than 7.0
D. Equal to zero

Answer: C

8. The ionisation constant of an acid, K_{a} is the measure of strength of an acid. The K_{a} values of acetic acid, hypochlorous acid and formic acid are $1.74 \times 10^{-5}, 3.0 \times 10^{-8}$ and 1.8×10^{-4} respectively. Which of the following orders of pH of $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solutions of these acids is correct ?
A. acetic acid > hypochlorous acid > formic acid
B. hypochlorous acid > acetic acid > formic acid
C.formic acid > hypochlorous acid > acetic acid
D.formic acid > acetic acid > hypochlorous acid

Answer: D

- View Text Solution

9. $K_{a_{1}}, K_{a_{2}}$ and $K_{a_{3}}$, are the respective ionisation constants for the following reactions.
$H_{2} S \Leftrightarrow H^{+}+H S^{-}$
$H S^{-} \Leftrightarrow H^{+}+S^{2-}$
$H_{2} S \Leftrightarrow 2 H^{+}+S^{2-}$
The correct relationship between $K_{a_{1}}, K_{a_{2}}, K_{a_{3}}$ is
A. $K_{a_{3}}=K_{a_{1}} \times K_{a_{2}}$
B. $K_{a_{3}}=K_{a_{1}}+K_{a_{2}}$
C. $K_{a_{3}}=K_{a_{1}}-K_{a_{2}}$
D. $K_{a_{3}}=K_{a_{1}} / K_{a_{2}}$

Answer: A

- View Text Solution

10. Acidity of BF_{3} can be explained on the basis of which of the following concepts?
A. Arrhenius concept
B. Bronsted Lowry concept
C. Lewis concept
D. Bronsted Lowry as well as Lewis concept.

Answer: C

- View Text Solution

11. Which of the following will produce a buffer solution when mixed in equal volumes?
A. $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
B. $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
C. $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
D. $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{CH}_{4} \mathrm{COONa}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$

Answer: C

- View Text Solution

12. In which of following solvents is silver chloride most soluble ?
A. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{AgNO}_{3}$, solution
B. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ solution
C. $\mathrm{H}_{2} \mathrm{O}$
D. Aqueous ammonia

Answer: D

- View Text Solution

13. What will be the value of pH of $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}$ ($\left.K_{a}=1.74 \times 10^{-5}\right) ?$
A. 3.4
B. 3.6
C. 3.9
D. 3.0

D View Text Solution

14. K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5} and K_{b} for $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5}. The pH of ammonium acetate will be
A. 7.005
B. 4.75
C. 7.0
D. Between 6 and 7

Answer: C

D View Text Solution

15. Which of the following options will be correct for the stage of half completion of the reaction $A \Leftrightarrow B$.
A. $\Delta H^{\ominus}=0$
B. $\Delta G^{\Theta}>0$
C. $\Delta G^{\ominus}<0$
D. $\Delta G^{\ominus}=-\mathrm{RT} \ln \mathrm{K}$

Answer: A

- View Text Solution

16. On increasing the pressure, in which direction will the gas phase reaction proceed to reestablish equilibrium, is predicted by applying the Le-Chatelier's principle. Consider the reaction.
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
Which of the following is correct, if the total pressure at which the equilibrium is established, is increased without changing the temperature ?
A. K will remain same
B. K will decrease
C. K will increase
D. K will increase initially and decrease when pressure is very high

Answer: A

- View Text Solution

17. What will be the correct order of vapour pressure of water, acetone and ether at $30^{\circ} \mathrm{C}$. Given that among these compounds, water has maximum boiling point and ether has minimum boiling point ?
A. Water < Ether < Acetone
B. Water < Acetone < Ether
C. Ether < Acetone < Water
D. Acetone < Ether < Water

Answer: B

18. At 500 K , equilibrium constant, K_{c} for the following reaction is 5 .
$\frac{1}{2} H_{2(g)}+\frac{1}{2} I_{2(g)} \Leftrightarrow H I_{(g)}$
What would be the equilibrium constant K_{c} for the reaction :
$2 H I_{(g)} \Leftrightarrow H_{2(g)}+I_{2(g)}$
A. 0.04
B. 0.4
C. 25
D. 2.5

Answer: A

- View Text Solution

19. In which of the following reactions, the equilibrium remains unaffected on addition of small amount of argon at constant volume ?
A. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
B. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
C. $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
D. The equilibrium will remain unaffected in all the three cases.

Answer: D

D View Text Solution

Section D Ncert Exemplar Problems Mcqs More Than One Options

1. For the reaction $N_{2} O_{4(g)} \Leftrightarrow 2 \mathrm{NO}_{2(g)}$, the value of K is 50 at 400 K and 1700 at 500 K . Which of the following options is/are correct ?
A. The reaction is endothermic
B. The reaction is exothermic
C. If $\mathrm{NO}_{2(\mathrm{~g})}$ and $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ are mixed at 400 K at partial pressures 20 bar and 2 bar respectively, more $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ will be formed.
D. The entropy of the system increases.

Answer: A::C::D

- View Text Solution

2. At a particular temperature and atmospheric pressure, the solid and liquid phases of a pure substance can exist in equilibrium. Which of the following term defines this temperature ?
A. Normal melting point
B. Equilibrium temperature
C. Boiling point
D. Freezing point

Answer: A: D

- View Text Solution

1. The ionisation of hydrochloric in water is given below: $\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}$Label two conjugate acid-base pairs in this ionisation.

- View Text Solution

2. The aqueous solution of sugar does not conduct electricity. However, when sodium chloride is added to water, it conducts electricity. How will you explain this statement on the basis of ionisation and how is it affected by concentration of sodium chloride ?

- View Text Solution

3. $B F_{3}$ does not have proton but still acts as an acid and reacts with NH_{3} Why is it so ? What type of bond is formed between the two ?
4. Ionisation constant of a weak base MOH, is given by the expression
$K_{b}=\frac{\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{MOH}]}$
Values of ionisation constant of some weak bases at a particular temperature are given below:

Base	Dimethylamine	Urea	Pyridine	Ammonia
K_{b}	5.4×10^{-4}	1.3×10^{-14}	1.77×10^{-9}	1.77×10^{-5}

Arrange the bases in decreasing order of the extent of their ionisation at equilibrium. Which of the above base is the strongest?

- View Text Solution

5. Conjugate acid of a weak base is always stronger. What will be the decreasing order of basic strength of the following conjugate bases ? $\mathrm{OH}^{-}, \mathrm{RO}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{Cl}^{-}$

- View Text Solution

6. Arrange the following in increasing order of pH .
$\mathrm{KNO}_{3(a q)}, \mathrm{CH}_{3} \mathrm{COONa}(a q), \mathrm{NH}_{4} \mathrm{Cl}_{(a q)}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONH}_{4(a q)}$

- View Text Solution

7. The value of K_{c} for the reaction
$2 H I_{(\mathrm{g})} \Leftrightarrow H_{2(\mathrm{~g})}+I_{2(\mathrm{~g})}$ is 1×10^{-4}
At a given time, the composition of reaction mixture is $(\mathrm{HI}]=2 \times 10^{-5} \mathrm{~mol}$, $\left[H_{2}\right]=1 \times 10^{-5} \mathrm{~mol}$ and $\left[I_{2}\right]=1 \times 10^{-5} \mathrm{~mol}$ In which direction will the reaction proceed ?

- View Text Solution

8. On the basis of this equation $p H=-\log \left[H^{+}\right]$, the pH of $10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HCl should be 8 . However, it is observed to be less than 7.0. Explain the reason.

D View Text Solution

9. pH of a solution of a strong acid is 5.0 . What would be the pH of the solution obtained after diluting the given solution a 100 times ?

- View Text Solution

10. A sparingly soluble salt gets precipitated only when the product of concentration of its ions in the solution $Q_{(s p)}$ becomes greater than its solubility product. If the solubility of BaSO_{4} in water is $8 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate its solubility in $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- View Text Solution

11. pH of $0.08 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HOCl}$ solution is 2.85 . Calculate its ionisation constant.

- View Text Solution

12. Calculate the pH of a solution formed by mixing equal volumes of two solutions A and B of a strong acid having $\mathrm{pH}=6$ and $\mathrm{pH}=4$ respectively.

- View Text Solution

13. The solubility product of $\mathrm{Al}(\mathrm{OH})_{3}$ is 2.7×10^{-11}. Calculate the solubility in $\mathrm{g} L^{-1}$ and also find pH of this solution. (Atomic mass of $\mathrm{Al}=27 \mathrm{u}$).

- View Text Solution

14. Calculate, volume of water required to dissolve 0.1 g lead (II) chloride to get a saturated solution. [$K_{\text {sp }}$ of $\mathrm{PbCl}_{2}=3.2 \times 10^{-8}$, atomic mass of Pb $=207 \mathrm{u}$).

- View Text Solution

15. A reaction between ammonia and boron trifluoride is given below:
$\mathrm{NH}_{3}+\mathrm{BF}_{3} \rightarrow \mathrm{H}_{3} \mathrm{~N}: \mathrm{BF}_{3}$
Identify the acid and base in the given reaction. Which theory explains it?
What is the hybridisation of B and N in the reactants ?

- View Text Solution

16. Following data is given for the reaction:
$\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$\Delta_{f} H^{\ominus}\left[C a O_{(s)}\right]=-635.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\Theta}\left[\mathrm{CO}_{2(\mathrm{~g})}\right]=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\Theta}\left[\mathrm{CaCO}_{3(s)}\right]=-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Predict the effect of temperature on the equilibrium constant of the above reaction.
17. Match the following equilibria with the corresponding condition

(A) Liquid \rightleftharpoons Vapour	(1)	Saturated solution
(B) Solid \rightleftharpoons Liquid	(2)	Boiling point
(D) Solid \rightleftharpoons Vapour	(3)	Sublimation point
(D) Solute(s) \rightleftharpoons Solute	(4)	Melting point
	(solution)	(5) Unsaturated solution

- View Text Solution

2. For the given reaction: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\left[\mathrm{NH}_{3}\right]^{2}
$$

Equilibrium constant $K_{c}=$

$$
\left(\left[N_{2}\right]\left[H_{2}\right]\right)^{3}
$$

Some reactions are written below in Column-I and their equilibrium constants in terms of K_{c} are written in Column-II. Match the following
reactions with the corresponding equilibrium constant

Column-I (Reaction)	Column-II (Equilibrium constant)
(A) $2 \mathrm{~N}_{2(\mathrm{~g})}+6 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 4 \mathrm{NH}_{3(\mathrm{~g})}$	(1) $2 \mathrm{~K}_{c}$
(B) $2 \mathrm{NH}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$	(2) $\quad \mathrm{K}_{c}^{1 / 2}$
(C) $\frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\frac{3}{2} \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{NH}_{3(\mathrm{~g})}$	(3) $\frac{1}{\mathrm{~K}_{c}}$
	(4) K_{c}^{2}

- View Text Solution

3. Match standard free energy of the reaction with the corresponding equilibrium constant

(A) $\Delta G^{0}>0$	(1) $K>1$
(B) $\Delta G^{9}<0$	(2) $K=1$
(C) $\Delta G^{9}=0$	(3) $K=0$
	(4) $K<1$

4. Match the following species with the corresponding conjugate acid.

Species		Conjugate acid	
(A) NH_{3}	(1)	CO_{2}^{2-}	
(B)	HCO_{3}^{-}	(2)	
NH_{4}^{+}			
(C) $\mathrm{H}_{2} \mathrm{O}$	(3)	$\mathrm{H}_{3} \mathrm{O}^{+}$	
(D) HSO_{4}^{-}	(4)	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
	(5)	$\mathrm{H}_{2} \mathrm{CO}_{3}$	

5. Match the following graphical variation with their description.

View Text Solution
6. Match Column (I) with Column (II).

- View Text Solution

Section D Ncert Exemplar Problems Assertions And Reason

1. Assertion (A) : Increasing order of acidity of hydrogen halides is
$\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
Reason (R) : While comparing acids formed by the elements belonging to the same group of periodic table, H - A bond strength is a more important factor in determining acidity of an acid than the polar nature of the bond.
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. Assertion is true but Reason is false.
D. Both Assertion and Reason are false.

Answer: A

- View Text Solution

2. Assertion (A): A solution containing a mixture of acetic acid and sodium acetate maintains a constant value of pH on addition of small amounts of acid or alkali.

Reason (R) : A solution containing a mixture of acetic acid and sodium acetate acts as a buffer solution around pH 4.75 .
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. Assertion is true but Reason is false.
D. Both Assertion and Reason are false.

Answer: A

- View Text Solution

3. Assertion (A) : The ionisation of hydrogen sulphide in water is low in the presence of hydrochloric acid.

Reason (R) : Hydrogen sulphide is a weak acid.
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. Assertion is true but Reason is false.
D. Both Assertion and Reason are false.

Answer: B

- View Text Solution

4. Assertion : For any chemical reaction at a particular temperature, the equilibrium constant is fixed and is a characteristic property.
(R) : Equilibrium constant is independent of temperature.
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. Assertion is true but Reason is false.
D. Both Assertion and Reason are false.

Answer: C

- View Text Solution

5. Assertion (A): Aqueous solution of ammonium carbonate is basic.

Reason (R) : Acidic/basic nature of a salt solution of a salt of weak acid and weak base depends on K_{a} and K_{b} value of the acid and the base forming it.
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. Assertion is true but Reason is false.
D. Both Assertion and Reason are false.

Answer: A

D View Text Solution

6. Assertion (A): An aqueous solution of ammonium acetate can act as a buffer.

Reason (R) : Acetic acid is a weak acid and $\mathrm{NH}_{4} \mathrm{OH}$ is a weak base.
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. Assertion is true but Reason is false.
D. Both Assertion and Reason are false.

Answer: B

7. Assertion (A): In the dissociation of PCl_{5} at constant pressure and temperature addition of helium at equilibrium increases the dissociation of PCl .

Reason (R) : Helium removes Cl_{2} from the field of action.
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. Assertion is true but Reason is false.
D. Both Assertion and Reason are false.

Answer: C

- View Text Solution

1. How can you predict the following stages of a reaction by comparing the value of K_{c} and Q_{c} ? (i) Net reaction proceeds in the forward direction,
(ii) Net reaction proceeds in the backward direction,
(iii) No net reaction occurs.

- View Text Solution

2. On basis of Le-Chatelier principle explain how can the temperature and pressure be adjusted to increase the yield of ammonia in the following reaction.

$$
N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}, \Delta H=-92.38 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

What will be the effect of addition of argon to the above reaction mixture at constant volume?
3. A sparingly soluble salt having general formula $A_{x}^{p+} B_{y}^{q-}$ and molar solubility S is in equilibrium with its saturated solution. Derive a relationship between solubility and the solubility product for such salt.

- View Text Solution

4. Write a relation between ΔG and Q and define the meaning of each term and answer the following:
(a)Why a reaction proceeds forward when $\mathrm{Q}<\mathrm{K}$ and no net reaction occurs when $Q=K$.
(b) Explain the effect of increase in pressure in terms of reaction quotient
Q.

For the reaction :
$\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

- View Text Solution

1. At $60^{\circ} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \leftarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ in this equilibrium the value of K_{p} ? At $60^{\circ} \mathrm{C}$ upper pressure of water is 0.185 bar.

View Text Solution

2. At definite temp if the volume of system decrease than what will be change in concentration of CO ?
$2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \leftarrow 2 \mathrm{CO}_{2(\mathrm{~g})}$

- View Text Solution

3. $3 \mathrm{Fe}_{(\mathrm{s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \leftarrow 3 \mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ formula of K_{P} and K_{C} is \qquad
4. For $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)$ give formula of $K_{s p}$.
5. Arrange according to increase order $\mathrm{pHCH}_{3} \mathrm{COONa}, \mathrm{KI}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{HNO}_{3}$

- View Text Solution

6. State conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{3}^{-}$and conjugate acid of HCO_{3}^{-}

- View Text Solution

7. Weak Acid HA $\left(K_{a}=1.4 \times 10^{-5}\right) 0.1 \mathrm{M}$ so in dissow in 2 lit. Find percentage of ionization and pH of solution.

- View Text Solution

