©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - KUMAR PRAKASHAN KENDRA CHEMISTRY
 (GUJRATI ENGLISH)

REDOX REACTIONS

Section A Question

1. What is redox reaction ? Explain its uses.

- Watch Video Solution

2. What is oxidation reaction ? Explain it with example.
3. What is reduction reaction ? Give its examples.

- Watch Video Solution

4. What is oxidising agent and reducing agent ? Explain with examples.

- Watch Video Solution

5. Give reaction when Zn red kept in copper nitrate solution ?

- View Text Solution

6. Give reaction when a Cu rod is kept in AgNO_{3} solution.

- Watch Video Solution

7. What is oxidation number?
8. Give the rules for the calculation of oxidation number.

- View Text Solution

9. Assign oxidation number to the underlined elements in each of the following species:
(a) $\mathrm{NaH}_{2} \underline{\mathrm{P}} \mathrm{O}_{4}$
(b) $\mathrm{NaH} \underline{S O}_{4}$
(c) $H_{4} \underline{P}_{2} O_{7}$
(d) $\mathrm{K}_{2} \mathrm{MnO}_{4}$
(e) $\mathrm{CaO} \underline{O}_{2}$
(f) $\mathrm{Na} \underline{B} H_{4}$
(g) $H_{2} \underline{S}_{2} O_{7}$
(h) $\mathrm{KAl}\left(\mathrm{SSO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
10. What are the oxidation number of the underlined elements in each of the following and how do you rationalize your results ?
(a) $K \underline{I}_{3}$
(b) $H_{2} \underline{S}_{4} O_{6}$
(c) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(d) $\underline{\mathrm{CH}_{3}} \underline{\mathrm{CH}_{2} \mathrm{OH}}$
(e) $\underline{\mathrm{C}} \mathrm{H}_{3} \underline{\mathrm{COOH}}$

D View Text Solution

11. Calculate the oxidation number of sulphur, chromium and nitrogen in $\mathrm{H}_{2} \mathrm{SO}_{5}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and NO_{3}^{-}. Suggest structure of these compounds.

Count for the fallacy.

- View Text Solution

12. Suggest a list of the substances where carbon can exhibit oxidation
states from -4 to +4 and nitrogen from -3 to +5 .
13. Consider the elements :
$\mathrm{Cs}, \mathrm{Ne}, \mathrm{I}$ and F
(a) Identify the element that exhibits only negative oxidation state.
(b) Identify the element that exhibits only positive oxidation state.
(c) Identify the element that exhibits both positive and negative oxidation states.
(d) Identify the element which exhibits neither the negative nor does the positive oxidation state.

- Watch Video Solution

14. Explain stock notation theory with example.

- Watch Video Solution

15. Write formulas for the following compounds :
(a) Mercury (II) chloride
(b) Nickel (II) sulphate
(c) Tin (IV) oxide
(d) Thallium (I) sulphate
(e) Iron (III) sulphate
(f) Chromium (III) oxide

- Watch Video Solution

16. Sulphur dioxide and hydrogen peroxide can act as an oxidising as well as a reducing agents in their reactions, while ozone and nitric acid act only as an oxidants. Why?

- View Text Solution

17. Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the
reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. Justify this statement giving three illustrations.

- View Text Solution

18. How do you count for the following observations?
(a) Though alkaline potassium permanganate and acidic potassium permanganate both are used as oxidants, yet in the manufacture of benzoic acid from toluene we use alcoholic potassium permanganate as an oxidant. Why ? Write a balanced redox equation for the reaction.
(b) When concentrated sulphuric acid is added to an inorganic mixture containing chloride, we get colourless pungent smelling gas HCl , but if the mixture contains bromide then we get red vapour of bromine. Why?

- View Text Solution

19. Identify the substance oxidised reduced, oxidising agent and reducing agent for each of the following reactions :
(a) $2 \mathrm{AgBr}_{(s)}+\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2(a q)} \rightarrow 2 \mathrm{Ag}_{(S)}+2 \mathrm{HBr}_{(a q)}+\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2(a q)}$
(b)
$\mathrm{HCHO}_{(l)}+2\left[\mathrm{Ag}_{\left.\left(\mathrm{NH}_{3}\right)_{2}\right]_{(a q)}^{+}+3 \mathrm{OH}_{(a q)}^{-} \rightarrow 2 \mathrm{Ag}_{(s)}+\mathrm{HCOO}_{(a q)}^{+}+4.4 .4 .}\right.$
(
$\mathrm{HCHO}_{(l)}+2 \mathrm{Cu}_{(a q)}^{2+}+5 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{Cu}_{2} \mathrm{O}_{(s)}+\mathrm{HCOO}_{(a q)}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{(l)}$
(d) $\mathrm{N}_{2} \mathrm{H}_{4(l)}+2 \mathrm{H}_{2} \mathrm{O}_{2(l)} \rightarrow \mathrm{N}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}$
(e) $\mathrm{Pb}_{(s)}+\mathrm{PbO}_{2(s)}+2 \mathrm{H}_{2} \mathrm{SO}_{4(a q)} \rightarrow 2 \mathrm{PbSO}_{4(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$

D View Text Solution

20. Consider the reactions :
$2 S_{2} \mathrm{O}_{3(a q)}^{2-}+I_{2(s)} \rightarrow S_{4} O_{6(a q)}^{2-}+2 I_{(a q)}^{-}$
$2 \mathrm{~S}_{2} \mathrm{O}_{3(a q)}^{2-}+2 \mathrm{Br}_{2(l)}+5 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{SO}_{4(a q)}^{2-}+4 \mathrm{Br}_{(a q)}^{-}+10 \mathrm{H}_{(a q)}^{+}$

D View Text Solution

21. Justify giving reactions that among halogens, fluorine is the best oxidant and among hydrohalic compounds, hydroiodic acid is the best reductant.

- View Text Solution

22. Why does the following reaction occur ?
$\mathrm{XeO}_{6(a q)}^{4-}+2 \mathrm{~F}_{(a q)}^{-}+6 \mathrm{H}_{(a q)}^{+} \rightarrow \mathrm{XeO}_{3(g)}+\mathrm{F}_{2(g)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)}$
What conclusion about the compound $\mathrm{Na}_{4} \mathrm{XeO}_{6}$ (of which XeO_{6}^{4-} is a part) can be drawn from the reaction?

D View Text Solution

23. Consider the reactions :
(a)
$\mathrm{H}_{3} \mathrm{PO}_{2(a q)}+4 \mathrm{AgNO}_{3(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4(a q)}+4 \mathrm{Ag}_{(s)}+4 \mathrm{HNC}$
(b)
$\mathrm{H}_{3} \mathrm{PO}_{2(a q)}+2 \mathrm{CuSO}_{4(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4(a q)}+2 \mathrm{Cu}_{(s)}+\mathrm{H}_{2} \mathrm{SO}$
(
c)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}_{(l)}+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]_{(a q)}^{+}+3 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}_{(a q)}^{-}+2 \mathrm{Ag}_{(}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}_{(l)}+2 \mathrm{Cu}_{(a q)}^{2+}+5 \mathrm{OH}_{(a q)}^{-} \rightarrow$ No change observed.

What inference do you draw about the behaviour of Ag^{+}and Cu^{2+} from these reactions?

- View Text Solution

24. Give information of oxidation numbers of elements present in periodic table?

- View Text Solution

25. Discuss the types of redox reactions in detail ?

- View Text Solution

26. Justify that the following reactions are redox reactions:
(a) $\mathrm{CuO}{ }_{(s)}+\mathrm{H}_{2(g)} \rightarrow \mathrm{Cu}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(g)}$
(b) $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(g)}$
(c) $4 B C l_{3(g)}+3 \mathrm{LiAlH}_{4(s)} \rightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6(\mathrm{~g})}+3 \mathrm{LiCl}_{(s)}+3 \mathrm{AlCl}_{3(\mathrm{~s})}$
(d) $2 K_{(s)}+F_{2(g)} \rightarrow 2 K^{+} F_{(s)}^{-}$
(e) $4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$

- View Text Solution

27. Fluorine reacts with ice and results in the change :
$\mathrm{H}_{2} \mathrm{O}_{(s)}+\mathrm{F}_{2(g)} \rightarrow \mathrm{HF}_{(g)}+\mathrm{HOF}_{(g)}$
Justify that this reaction is a redox reaction.

- Watch Video Solution

28. What sorts of informations can you draw from the following reaction
?
$(\mathrm{CN})_{2(g)}+2 \mathrm{OH}_{(g)}^{-} \rightarrow \mathrm{CN}_{(a q)}^{-}+\mathrm{CNO}_{(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

- Watch Video Solution

29. Refer to the periodic table given in your book and now answer the following questions:
(a) Select the possible non metals that can show disproportionation reaction.
(b) Select three metals that can show disproportionation reaction.

- View Text Solution

30. Consider the reactions :
(a) $6 \mathrm{CO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(a q)}+6 \mathrm{O}_{2(g)}$
(b) $\mathrm{O}_{3(g)}+\mathrm{H}_{2} \mathrm{O}_{2(l)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+2 \mathrm{O}_{2(g)}$

Why it is more appropriate to write these reactions as :
(a) $6 \mathrm{CO}_{2(g)}+12 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(a q)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}+6 \mathrm{O}_{2(g)}$
(b) $O_{3(g)}+\mathrm{H}_{2} \mathrm{O}_{2(l)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2(\mathrm{~g})}$

Also suggest a technique to investigate the path of the above (a) and (b) redox reactions.
31. The compound AgF_{2} is unstable compound. However, if formed, the compound acts as a very strong oxidising agent. Why?

- Watch Video Solution

32. Explain balancing of redox reaction by oxidation number method.

- View Text Solution

33. Explain balancing of redox reaction by half reaction method with suitable example.

- View Text Solution

34. Fe^{+2} in acidic medium is convert $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ ion into Cr^{+3} ion by reduction Fe^{+3} is obtained balance these redox reaction with equation.
35. The $M n^{3+}$ ion is unstable in solution and undergoes disproportionation to give $\mathrm{Mn}^{2+}, \mathrm{MnO}_{2}$, and H^{+}ion. Write a balanced ionic equation for the reaction.

D View Text Solution

36. Balance the following redox reactions by ion electron method :
(a) $\mathrm{MnO}_{4(a q)}^{-}+I_{(a q)}^{-} \rightarrow \mathrm{MnO}_{2(s)}+\quad I_{2(s)}$ (in basic medium)
(b) $\mathrm{MnO}_{4(a q)}^{-}+\mathrm{SO}_{2(g)} \rightarrow \mathrm{Mn}_{(a q)}^{2+}+\mathrm{HSO}_{4(a q)}^{-}$ (in acidic solution)
(c) $\mathrm{H}_{2} \mathrm{O}_{2(a q)}+\mathrm{Fe}_{(a q)}^{2+} \rightarrow \mathrm{Fe}_{(a q)}^{3+}+\underset{\text { (in acidic solution })}{\mathrm{H}_{2} \mathrm{O}_{(l)}}$
(d) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{SO}_{2(g)} \rightarrow \mathrm{Cr}_{(a q)}^{3+}+\quad \mathrm{SO}_{4(a q)}^{2-}$
(in acidic solution)

- View Text Solution

37. Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent
and the reducing agent.
(a) $\mathrm{P}_{4(s)}+\mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{PH}_{3(g)}+\mathrm{HPO}_{2(a q)}^{-}$
(b) $\mathrm{N}_{2} \mathrm{H}_{4(l)}+\mathrm{ClO}_{3(a q)}^{-} \rightarrow \mathrm{NO}_{(g)}+\mathrm{Cl}_{(g)}^{-}$
(c) $\mathrm{Cl}_{2} \mathrm{O}_{7(g)}+\mathrm{H}_{2} \mathrm{O}_{2(a q)} \rightarrow \mathrm{ClO}_{2(a q)}^{-}+\mathrm{O}_{2(g)}+\mathrm{H}^{+}$

- View Text Solution

38. Chlorine is used to purify drinking water. Excess of chlorine is harmful.

The excess of chlorine is removed by treating with sulphur dioxide.

Present a balanced equation for this redox change taking place in water.

- View Text Solution

39. Explain uses of indicator in analysis of redox reaction.

- View Text Solution

40. Explain redox reaction of electrodes with example of denied cell.
41. In Ostwald.s process for the manufacture of nitric acid, the first step involves the oxidation of ammonia gas by oxygen gas to give nitric oxide gas and steam. What is the maximum weight of nitric oxide that can be obtained starting only with 10.00 g . of ammonia and 20.00 g of oxygen ?

- View Text Solution

42. Using the standard electrode potentials given in the Table-8.1, predict if the reaction between the following is feasible :
(a) $\mathrm{Fe}_{(a q)}^{3+}$ and $I_{(a q)}^{-}$
(b) $A g_{(a q)}^{+}$and $C u_{(s)}$
(c) $\mathrm{Fe}_{(a q)}^{3+}$ and $C u_{(s)}$
(d) $A g_{(s)}$ and $F e_{(a q)}^{3+}$
(e) $B r_{2(a q)}$ and $F e_{(a q)}^{2+}$
43. Predict the products of electrolysis in each of the following:
(i) An aqueous solution of AgNO_{3} with silver electrodes.
(ii) An aqueous solution AgNO_{3} with platinum electrodes.
(iii) A dilute solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with platinum electrodes.
(iv) An aqueous solution of CuCl_{2} with platinum electrodes.

- View Text Solution

44. Arrange the following metals in the order in which they displace each other from the solution of their salts. $\mathrm{Al}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}$ and Zn .

- Watch Video Solution

45. Given the standard electrode potentials,

$$
K^{+} / K=-2.93 V, A g^{+} / A g=0.80 \mathrm{~V}
$$

$$
H g^{2+} / \mathrm{Hg}=0.79 \mathrm{~V}
$$

$$
M g^{2+} / M g=-2.37 V, C r^{3+} / C r=-0.74 V
$$

arrange these metals in their increasing order of reducing power.

- View Text Solution

46. Depict the galvanic cell in which the reaction
$Z n_{(s)}+2 A g_{(a q)}^{+} \rightarrow Z n_{(a q)}^{2+}+2 A g_{(s)}$ takes place, Further show:
(i) Which of the electrode is negatively charged,
(ii) The carriers of the current in the cell, and
(iii) Individual reaction at each electrode.

- Watch Video Solution

Section A Try Your Self

1. From the given potential identify metal which can completely dissociate from all solutions.

$$
\begin{aligned}
& E^{\circ} \mathrm{Zn}^{+2} / \mathrm{Zn}=-0.76 \mathrm{volt}, E^{\circ} \mathrm{Cu}^{+2} / \mathrm{Cu}=+0.34 \mathrm{volt} \\
& E^{\circ} \mathrm{Ag}^{+} / \mathrm{Ag}=+0.80 \mathrm{volt}, E^{\circ} \mathrm{Co}^{+2} / \mathrm{Co}=-0.28 \mathrm{volt}
\end{aligned}
$$

- View Text Solution

2. From the given values which one is strong oxidising agent?

$$
\begin{aligned}
& {\left[F e(C N)_{6}\right]^{-4} \rightarrow\left[F e(C N)_{6}\right]^{-3}+e^{-} E^{\circ}=-0.35 \mathrm{volt}} \\
& F e^{+2} \rightarrow F e^{+3}+e^{-} E^{\circ}=-0.77 \mathrm{volt}
\end{aligned}
$$

- View Text Solution

Section A Questions

1. In the reactions given below, identify the species undergoing oxidation and reduction :
(i) $H_{2} S_{(g)}+C l_{2(g)} \rightarrow 2 H C l_{(g)}+S_{(s)}$
(ii) $3 \mathrm{Fe}_{3} \mathrm{O}_{4(s)}+8 \mathrm{Al} l_{(s)} \rightarrow 9 \mathrm{Fe} e_{(s)}+4 A l_{2} \mathrm{O}_{3(s)}$
(iii) $2 N a_{(s)}+H_{2(g)} \rightarrow 2 N a H_{(s)}$

D View Text Solution

2. Justify that the reaction :
$2 N a_{(s)}+H_{2(g)} \rightarrow 2 N a H_{(s)}$ is a redox reaction.

(D) Watch Video Solution

3. Using Stock notation, represent the following compounds : $\mathrm{HAuCl} \mathrm{l}_{4}, \mathrm{Tl}_{2} \mathrm{O}, \mathrm{FeO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CuI}, \mathrm{CuO}, \mathrm{MnO}$ and MnO_{2}

- View Text Solution

4. Justify that the reaction :
$2 \mathrm{Cu}_{2} \mathrm{O}_{(s)}+\mathrm{Cu}_{2} S_{(s)} \rightarrow 6 \mathrm{Cu} u_{(s)}+\mathrm{SO}_{2(g)}$ is a redox reaction. Identify the species oxidised/reduced, which acts as an oxidant and which acts as a reductant.

- Watch Video Solution

5. Which of the following species, do not show disproportionation reaction and why?
$\mathrm{CIO}^{-}, \mathrm{CIO}_{2}^{-}, \mathrm{CIO}_{3}^{-}$and CIO_{4}^{-}
Also write reaction for each of the species that disproportionates.

- View Text Solution

6. Suggest a scheme of classification of the following redox reactions.
(a) $\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{(g)}$
(b) $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2(s)} \rightarrow 2 \mathrm{PbO} O_{(s)}+2 \mathrm{NO}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)}$
(c) $\mathrm{NaH}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{NaOH}_{(a q)}+\mathrm{H}_{2(g)}$
(d) $2 \mathrm{NO}_{2(g)}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{NO}_{2(a q)}^{-}+\mathrm{NO}_{3(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

- View Text Solution

7. Why do the following reactions proceed differently?

$$
\mathrm{Pb}_{3} \mathrm{O}_{4}+8 \mathrm{HCl} \rightarrow 3 \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O} \text { and } \mathrm{Pb}_{3} \mathrm{O}_{4}+4 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{~Pb}(.
$$

- View Text Solution

8. Write the net ionic equation for the reaction of potassium dichromate (VI), $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ with sodium sulphite, $\mathrm{Na}_{2} \mathrm{SO}_{3}$, in an acid solution to give chromium (III) ion and the sulphate ion.
9. Permanganate ion reacts with bromide ion in basic medium to give manganese dioxide and bromate ion. Write the balanced ionic equation for the reaction.

- View Text Solution

10. Permanganate (VII) ion, MnO_{4}^{-}in basic solution oxidises iodide ion, I^{-}to produce molecular iodine $\left(I_{2}\right)$ and manganese (IV) oxide $\left(\mathrm{MnO}_{2}\right)$. Write a balanced ionic equation to represent this redox reaction.

D View Text Solution

Section B Short Questions

1. What is oxidising agent ?
2. What is reducing agent ?

- Watch Video Solution

3. Which metals follows stock notation method?

- View Text Solution

4. What is name of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ according to stock notation method ?

- Watch Video Solution

5. What is oxidation number of S in $\mathrm{H}_{2} \mathrm{SO}_{5}$?
6. Give reaction when a Cu rod is kept in AgNO_{3} solution.

- Watch Video Solution

7. Write redox reaction when zinc rod is kept in $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

- Watch Video Solution

8. What is oxidation number of .C. in HClO_{4} and HClO_{3} ?

- Watch Video Solution

9. In following reaction which is reducing agent substance?
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Ag}$

- Watch Video Solution

10. What is oxidation number of .C. in $C_{3} O_{2}$?

- Watch Video Solution

11. Calculate value of .n. in given reaction.
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+n \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

12. Arrange increasing order of oxidation number of S in molecules $\mathrm{SO}_{3}^{-2}, \mathrm{~S}_{2} \mathrm{O}_{4}^{-2}$ and $\mathrm{S}_{2} \mathrm{O}_{6}^{-2}$.

- Watch Video Solution

13. What is oxidation number of Pt in $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{4}\right]^{-}$?

- Watch Video Solution

14. Write name of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ according to stock notation.

- Watch Video Solution

15. Write name of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ according to stock notation method.

- Watch Video Solution

16. What is the molecular formula of Marshall's acid ?

- Watch Video Solution

17. What is oxidation number of N in HNO_{4} ?

- Watch Video Solution

18. What is oxidation number of Cl in bleacing powder?
19. Prove that reaction between fluorine and ice is disproportionation reaction :
$\mathrm{H}_{2} \mathrm{O}_{(s)}+\mathrm{F}_{2(g)} \rightarrow \mathrm{HF}_{(g)}+\mathrm{HOF}_{(g)}$

- View Text Solution

20. The compound AgF_{2} is unstable compound. However, if formed, the compound acts as a very strong oxidising agent. Why?

- Watch Video Solution

21. Write stock notation name of Sn (IV) O_{2}.

- View Text Solution

22. Which of the following element never shows disproportionation reaction ?

Watch Video Solution

23. Write oxidation number of .C. in acetic acid.

- Watch Video Solution

24. Find out equivalent mass of KIO_{3} in given reaction.
$2 \mathrm{Cr}(\mathrm{OH})_{3}+4 \mathrm{OH}^{-}+\mathrm{KIO}_{3} \rightarrow 2 \mathrm{CrO}_{4}^{-2}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{KI}$
KIO_{3} (Molecular Mass $=\mathrm{M}$)

- View Text Solution

25. Calculate equivalent weight of KMnO_{4} in Acidic, Basic and Neutral medium.
26. Write oxidation number of oxygen in KO_{3} and $\mathrm{Na}_{2} \mathrm{O}_{2}$.

- Watch Video Solution

27. Compound containing Xe and F having 63.8% of Xe then calculate oxidation number of Xe .

- Watch Video Solution

28. Calculate oxidation number of .C. in glucose.

- Watch Video Solution

29. Explain inter molecular redox reaction with example.
30. Calculate oxidation number of nitrogen and chlorine in NOClO_{4}.

- Watch Video Solution

31. Calculate oxidation number of Fe in $\mathrm{Fe}_{(0.94)} \mathrm{O}$.

- Watch Video Solution

32. How many peroxide group present in CrO_{2} ?

- Watch Video Solution

33. The number of electrons lost in the following change is :-
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}^{+}$

- Watch Video Solution

34. Calculate consecutive oxidation number of Br in $\mathrm{Br}_{3} \mathrm{O}_{8}$.

- Watch Video Solution

35. Calculate oxidation number of oxygen in potassium ozonide.

- Watch Video Solution

36. Metal ion M^{+3} loses three electrons than what will be its oxidation number?

- View Text Solution

37. Which method is used to produce nitric acid ?

- Watch Video Solution

38. How the ions transfer from solutions ?

D View Text Solution

39. What is standard electrode potential ?

D View Text Solution

40. Which solution is filled in salt bridge?

- View Text Solution

41. What is value of standard hydrogen potential ?

- View Text Solution

42. What is redox couple?

- View Text Solution

43. Reduction potential value of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $0.34 \mathrm{~V},-0.80 \mathrm{~V},-0.46 \mathrm{~V}$ respectively then what will be order of strength of reducing agent ?

- View Text Solution

44. Which metals are used as an anode and a cathode in Denial cell ?

- View Text Solution

45. What is the work of salt bridge in Denial cell ?

- View Text Solution

46. Oxidation potential of $\mathrm{Zn}, \mathrm{Cu}, \mathrm{Ag}$ are $0.76 \mathrm{~V},-0.34 \mathrm{~V},-0.80 \mathrm{~V}$, respectively then write down order of tendency of losing e^{-}.

Section B Match The Following

1.

- View Text Solution

2.

- View Text Solution

3.

Section B Fill In The Blanks

1. Oxidation number of oxygen in potassium ozonide is \qquad

D View Text Solution

2. During this reaction $\mathrm{CN}^{-} \rightarrow \mathrm{CNO}^{-}$ \qquad is added.

- View Text Solution

Section B State True Or False For The Following Statements

1. Oxidation number of .C. in methyl chloride is -3 .

- View Text Solution

2. In following reaction oxidation number of Br is convert into 0 to -5 :
$\mathrm{Br}_{2} \rightarrow \mathrm{BrO}_{3}^{-}$
3. $\mathrm{CrO}_{7}^{-2} \xrightarrow{\mathrm{H}^{+}} \mathrm{Cr}^{+3}$
in this reaction equivalent mass of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ is $\frac{\text { molecular mass }}{6}$.

- View Text Solution

4. $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}$

For this reaction select T (Ture) or F (False).
(1) This reaction occurs in basic medium.
(2) Oxidation and Reduction occurs for Cl_{2}.
(3) Products are obtained by dissoication of Cl_{2}.
(4) In ClO^{-}oxidation number of Cl^{-}is (+1).
A. TFTF
B. FFTT
C. TFFT
D. TTFF

Answer: C

D View Text Solution

Section B Assertion And Reason Type Questions

1. Statement : Concentration of $Z n_{(a q)}^{2+}$ increases cell potential increases $\left(E_{\text {cell }}\right)$. Reason : Concentration of $Z n_{(a q)}^{2+}$ increases with oxidation potential increases $\left(E_{O X}\right)$.
A. Statement and reason both are correct and reason gives proper explanation of statement.
B. Statement and reason both are right butt reason is not explanation of statement.
C. Statement is correct but reason is wrong.
D. Statement is wrong but reason is correct.

Answer: D

D View Text Solution

2. Statement : Oxygen has liberated on anode when electricity pass through aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in presence of it electrode.

Reason : $2 \mathrm{SO}_{4(a q)}^{2-} \Leftrightarrow S_{2} \mathrm{O}_{8(a q)}^{2-}+2 e^{-}$
$2 \mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{O}_{2(g)}+4 H_{(a q)}^{+}+4 e^{-}$
standard potential of equation.
A. Statement and reason both are correct and reason gives proper explanation of statement.
B. Statement and reason both are right butt reason is not explanation of statement.
C. Statement is correct but reason is wrong.
D. Statement is wrong but reason is correct.

- View Text Solution

3. Statement : Water is added to electrolyte of aqueous solution then molar conductivity increases.

Reason : Dissociation of electrolytic substance decreases when electrolyte is added to aqueous solution.
A. Statement and reason both are correct and reason gives proper explanation of statement.
B. Statement and reason both are right but reason is not explanation of statement.
C. Statement is correct but reason is wrong.
D. Statement is wrong but reason is correct.

Answer: C

- View Text Solution

1. From the following compounds $\mathrm{H}_{2} \mathrm{~S}, \mathrm{PH}_{3}, \mathrm{CaH}_{2}, \mathrm{BeH}_{2}$ which pair is having oxidation number same as hydrogen ?
A. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{CaH}_{2}$
B. $\mathrm{PH}_{3}, \mathrm{BeH}_{2}$
C. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{PH}_{3}$
D. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{BeH}_{2}$

Answer: C

- View Text Solution

2. From the following which pair is unfair ?
A. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Na} a_{2} \mathrm{O}_{2}$
B. $\mathrm{BaO}_{2}, \mathrm{~K}_{2} \mathrm{O}_{2}$
C. $H_{2} O_{2}, O_{2} F_{2}$
D. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: C

- View Text Solution

3. What is oxidation number of Cr and N in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$?
A. $+6,+5$
B. $-6,-3$
C. $+6,-3$
D. $-3,6$

Answer: C

4. Which compound is reducing agent in the following equation ? $\mathrm{CH}_{3} \mathrm{CHO}_{(s)}+\mathrm{Ag}_{2} \mathrm{O}_{(s)} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Ag}$
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{Ag}_{2} \mathrm{O}$
C. $\mathrm{CH}_{3} \mathrm{CHO}$
D. Ag

Answer: C

- View Text Solution

5. From the following reaction which element.s oxidation number is decreases?
$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{+2}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{+2}+5 \mathrm{Fe}^{+3}+4 \mathrm{H}_{2} \mathrm{O}$
A. Mn
B. Fe
C. 0
D. H_{2}

Answer: A

- View Text Solution

6. From the following reaction which element.s oxidation number is not change?
$3 \mathrm{MnO}_{2}+4 \mathrm{Fe} \rightarrow 3 \mathrm{Mn}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
A. Mn
B. Fe
C. 0
D. Mn and Fe both

Answer: C

7. Mention $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ by stock notation method.
A. Sodium dichromate (VI)
B. Sodium chromate (VI)
C. Chromium (VI) oxide
D. Sodium chromate (VI)

Answer: B

- View Text Solution

8. Which is half reduction reaction in the following reaction (Basic medium).
$\mathrm{P}_{4}+\mathrm{OH}^{-} \rightarrow \mathrm{PH}_{3}+\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
A. $\mathrm{P}_{4} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
B. $P_{4} \rightarrow P H_{3}$
C. $\mathrm{OH}^{-} \rightarrow \mathrm{PH}_{3}$
D. $\mathrm{PH}_{3} \rightarrow \mathrm{P}_{4}$

Answer: B

- View Text Solution

9. From the following which compound have -1 oxidation number of nitrogen ?
A. $\mathrm{NH}_{2}-\mathrm{NH}_{2}$
B. NH_{3}
C. $\mathrm{NH}_{2} \mathrm{OH}$
D. $\mathrm{NH}_{4} \mathrm{OH}$

Answer: C

10. How many \bar{e} added in reduction half reaction of the following redox reaction in basic medium?
$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{NO}+\mathrm{Cl}^{-}$
A. $8 \bar{e}$
B. $6 \bar{e}$
C. $5 \bar{e}$
D. $4 \bar{e}$

Answer: B

- View Text Solution

11. From the following which reaction is redox reaction ?
A. $\mathrm{NaOH}_{(a q)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
B. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{K}_{2} \mathrm{SO}_{4(a q)}+\mathrm{BaCl}_{2(a q)} \rightarrow 2 \mathrm{KCl}_{(a q)}+\mathrm{BaSO}_{4(l)}$
D. $\mathrm{H}_{2} \mathrm{~S}_{(a q)}+3 \mathrm{H}_{2} \mathrm{SO}_{4(a q)} \rightarrow 4 \mathrm{SO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}$

Answer: D

- View Text Solution

12. From the following compounds which two has oxidation number +1 and 0.5 of oxygen ?
$\mathrm{O}_{2} \mathrm{~F}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CsO}_{2}$
A. $\mathrm{H}_{2} \mathrm{O}, \mathrm{CsO}_{2}$
B. $\mathrm{O}_{2} \mathrm{~F}_{2}, \mathrm{CsO}_{2}$
C. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CsO}_{2}$

Answer: B

- View Text Solution

13. What is oxidation number of N in $\underline{\mathrm{N}} \mathrm{H}_{4} \underline{\mathrm{NO}} 3_{3}$ respectively ?
A. $-3,+3$
B. $+1,-1$
C. $-3,+5$
D. $+3,-5$

Answer: C

- View Text Solution

14. What is the value of x, y, z from the following reactions ?
xS+yHNO_(3)toxSO_(3)+yNO+zH_(2)O`
A. $3,4,2$
B. $4,3,3$
C. $2,4,3$
D. $2,1,3$

D View Text Solution

15. Which reaction is correct of oxidation half reaction in basic medium $P_{4} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$?
A. $\mathrm{P}_{4}+8 \mathrm{OH}^{-} \rightarrow 4 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}+4 \mathrm{OH}^{-}$
B. $\mathrm{P}_{4}+8 \mathrm{H}^{+} \rightarrow 4 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}+12 \mathrm{H}^{+}$
C. $\mathrm{P}_{4}+4 \mathrm{OH}^{-} \rightarrow 4 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
D. $\mathrm{P}_{4}+8 \mathrm{OH}^{-} \rightarrow 4 e^{-}+4 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$

Answer: D

D View Text Solution

16. From the redox reaction what is the value of x and y.
$\mathrm{As}_{2} s_{5}+x \mathrm{HNO}_{3} \rightarrow 5 \mathrm{H}_{2} \mathrm{SO}_{4}+y \mathrm{NO}_{2}+2 \mathrm{H}_{3} \mathrm{As} \mathrm{O}_{4}+12 \mathrm{H}_{2} \mathrm{O}$
A. 40,40
B. 10,10
C. 20, 20
D. 30, 30

Answer: A

- View Text Solution

17. $N_{2} H_{4}$ loses $10 \mathrm{~mol} e^{-}$and form new compound Y number of N does not change so what is the oxidation number of N in Y atom?
A. -1
B. -3
C. +3
D. +5

Answer: C

18. How many moles of KMnO_{4} required to oxidised acidic medium of 1 mole $\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$?
A. 0.6
B. 1.67
C. 0.2
D. 0.4

Answer: A

- View Text Solution

19. How many moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is reduced by 1 mole Sn^{+2} ?
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. 1

Answer: B

- View Text Solution

20. From which reaction $\mathrm{H}_{2} \mathrm{O}_{2}$ act as reducing agent?
A. $\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
B. $2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}$
C. $2 \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Answer: A

21. How many electrons required to received by oxidising agent KMnO_{4} to converted into $\mathrm{MnO}_{4}^{-2}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$ and Mn^{+2} ?
A. $4,3,1,5$
B. 1, 5, 3, 7
C. $1,3,4,5$
D. 3, 5, 7, 1

Answer: C

- View Text Solution

22. Order of oxidation number of S in $\mathrm{SO}_{3}^{-2}, \mathrm{~S}_{2} \mathrm{O}_{4}^{-2}$ and $\mathrm{S}_{2} \mathrm{O}_{6}^{-2}$.
A. $\mathrm{S}_{2} \mathrm{O}_{4}^{-2}<\mathrm{SO}_{3}^{-2}<\mathrm{S}_{2} \mathrm{O}_{6}^{-2}$
B. $\mathrm{SO}_{3}^{-2}<\mathrm{S}_{2} \mathrm{O}_{4}^{-2}<\mathrm{S}_{2} \mathrm{O}_{6}^{-2}$
C. $\mathrm{S}_{2} \mathrm{O}_{4}^{-2}<\mathrm{S}_{2} \mathrm{O}_{6}^{-2}<\mathrm{SO}_{3}^{-2}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{-2}<\mathrm{S}_{2} \mathrm{O}_{4}^{-2}<\mathrm{SO}_{3}^{-2}$

D View Text Solution

23. How many moles of KMnO_{4} required to react with $\left(\mathrm{SO}_{3}^{-2}\right)$ sulphite ion in acidic medium?
A. 1
B. $\frac{1}{5}$
C. $\frac{2}{5}$
D. $\frac{3}{5}$

Answer: C

D View Text Solution

24. Arrange increasing order of oxidation number of oxygen.
A. $O F_{2}<K O_{2}<\mathrm{BaO}_{2}<\mathrm{O}_{3}$
B. $\mathrm{BaO}_{2}<\mathrm{KO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}$
C. $\mathrm{KO}_{2}<\mathrm{OF}_{2}<\mathrm{O}_{3}<\mathrm{BaO}_{3}$
D. $\mathrm{BaO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}<\mathrm{KO}_{2}$

Answer: B

- View Text Solution

25. $\mathrm{NH}_{2} \mathrm{NH}_{2}$ compound loses 10 mole e^{-}and form new compound x then calculate oxidation number of N_{2} in x compound.
(Here oxidation number of H does not change.)
A. -3
B. +3
C. -1
D. +5

Answer: B

- View Text Solution

26. From the following which reaction is not redox reaction?
A. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
B. $C u^{++} Z n \rightarrow Z n^{++}+C u$
C. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
D. $\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \rightarrow 4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}+2 \mathrm{Cl}^{-}$

Answer: C

27. Oxidation number of P of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is similar with P of which compound
A. PH_{3}
B. $P_{2} O_{3}$
C. $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$
D. All of these

Answer: C

- View Text Solution

28. From the following reaction which substance act as reducing agent ?
$\mathrm{HCHO}+\mathrm{AgO} \rightarrow \mathrm{HCOOH}+2 \mathrm{Ag}$
A. HCHO
B. Ag
C. HCOOH
D. $\mathrm{Ag}_{2} \mathrm{O}$
29. From the following which compound shows different oxidation number of H ?

$\mathrm{LiAlH}_{4}, \mathrm{NaBH}_{4}, \mathrm{NaHCO}_{3}, \mathrm{MgH}_{2}$

A. MgH_{2}
B. NaHCO_{3}
C. LiAlH_{4}
D. NaBH_{4}

Answer: B

- View Text Solution

30. In which set from the following the oxidation number of oxygen is in increasing form ?
A. $\mathrm{RbO}_{2}<\mathrm{OF}_{2}<\mathrm{O}_{3}<\mathrm{BaO}_{2}$
B. $\mathrm{BaO} \mathrm{O}_{2}<\mathrm{RbO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}$
C. $\mathrm{BaO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}<\mathrm{RbO}_{2}$
D. $\mathrm{OF}_{2}<\mathrm{RbO} \mathrm{O}_{2}<\mathrm{BaO}_{2}<\mathrm{O}_{3}$

Answer: B

- View Text Solution

31. From following redox reaction co-efficient of (a), (b) and (c) are respectively \qquad
(a) $\mathrm{MnO}^{-}+(b) \mathrm{Br}^{-}+(c) \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$
A. $2,10,16$
B. $1,5,16$
C. $2,10,8$
D. 16, 5, 1

D View Text Solution

32. Balance the following redox equations.
$\mathrm{Br}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{BrO}_{3}^{-}+\mathrm{HBr}$ (Basic medium)
A. $3 \mathrm{Br}_{2}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Br}^{-}+5 \mathrm{BrO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O}$
B. $3 \mathrm{Br}_{2}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
C. $6 \mathrm{Br}_{2}+6 \mathrm{OH}^{-} \rightarrow 4 \mathrm{Br}^{-}+6 \mathrm{BrO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
D. $3 \mathrm{Br}_{2}+3 \mathrm{OH}^{-} \rightarrow 3 \mathrm{Br}^{-}+3 \mathrm{BrO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$

Answer: B

- View Text Solution

33. From the following which compound has less oxidation state of Fe ?
A. $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
B. $\mathrm{K}_{2}\left[\mathrm{FeO}_{4}\right]$
c. $\left[\mathrm{Fe}(\mathrm{OH})_{6}\right]^{-3}$
D. $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \cdot \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$

Answer: D

- View Text Solution

34. When pottassium permanganate acts as oxidising agent it is converted into $\mathrm{MnO}_{4}^{-2}, \mathrm{Mn}_{2} \mathrm{O}_{3}, \mathrm{MnO}_{2}$ and Mn^{+2} then calculate change in electrons.
A. $4,3,1,5$
B. $1,4,3,5$
C. $3,4,1,2$
D. $3,5,1,4$

Answer: B

- View Text Solution

35. Arrange decreasing order of compounds for oxidation number of .S..
A. $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
B. $H_{2} S_{2} O_{7}>N a_{2} S_{4} O_{6}>N a_{2} S_{2} O_{3}>S_{8}$
C. $\mathrm{SO}_{2}^{-}>\mathrm{SO}_{4}^{-2}>\mathrm{SO}_{3}^{-2}>\mathrm{HSO}_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{SO}_{5}>\mathrm{SCl}_{2}>\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{H}_{2} \mathrm{~S}$

Answer: B

View Text Solution

36. Give value of x, y, z of given redox reaction
$\mathrm{IO}_{3}^{-}+x \mathrm{I}^{-}+y \mathrm{H}^{+} \rightarrow \mathrm{ZH}_{2} \mathrm{O}+3 \mathrm{I}_{2}$
A. $5,6,3$
B. $5,3,6$
C. $5,3,3$
D. $3,5,3$

Answer: A

- View Text Solution

37. What is oxidation number of N in $L i_{3} N$?
A. -2
B. -1
C. -3
D. +3

Answer: C

38. Which reaction is redox reaction ?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_{2}$
D. $\mathrm{MnCl}_{3} \rightarrow \mathrm{MnCl}_{2}+\frac{1}{2} \mathrm{Cl}_{2}$

Answer: A

- View Text Solution

39. From the following redox reaction,
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{-2}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{-2}+2 \mathrm{I}^{-}$
A. $\mathrm{S}_{4} \mathrm{O}_{6}^{-2}$ is oxidation in $\mathrm{S}_{2} \mathrm{O}_{3}^{-2}$.
B. $\mathrm{S}_{4} \mathrm{O}_{6}^{-2}$ is redaction in $\mathrm{S}_{2} \mathrm{O}_{3}^{-2}$.
C. I_{2} is reduced to I^{-}.
D. I_{2} is oxidised in I^{-}.

Answer: A:C

- View Text Solution

40. The oxidation number of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)$ is \qquad
A. +3
B. +2
C. +1
D. -1

Answer: C

- View Text Solution

41. The oxidation state of chromium in $\mathrm{Cr}(\mathrm{CO})_{6}$ is
A. 0
B. +2
C. -2
D. +6

Answer: A

- View Text Solution

42. Which of the following is not a redox reaction ?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_{2}$
D. $M n C l_{3} \rightarrow M n C l_{2}+\frac{1}{2} C l_{2}$

Answer: A

43. A mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ loses ten moles of electrons to form a new compound X. Assuming that all the nitrogen appears in the new compound. What is the oxidation state of nitrogen in Y ? (There is no change in the oxidation number of hydrogen)
A. -1
B. -3
C. +3
D. +5

Answer: C

- View Text Solution

44. In which of the following pairs, there is greatest difference in the oxidation number of the underlined elements?
A. NO_{2} and $\underline{\mathrm{N}}_{2} \mathrm{O}_{4}$
B. $\underline{P}_{2} O_{5}$ and $\underline{P}_{4} O_{10}$
C. $\underline{N}_{2} \mathrm{O}$ and $\underline{\mathrm{N} O}$
D. $\underline{S} O_{2}$ and $\underline{S} O_{3}$

Answer: D

- View Text Solution

45. In the reaction,
$2 \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{S}$
A. FeCl_{3} acts as an oxidizing agent
B. Both $\mathrm{H}_{2} \mathrm{~S}$ and FeCl_{3} are oxidized
C. FeCl_{3} is oxidized while $\mathrm{H}_{2} \mathrm{~S}$ is reduced
D. $\mathrm{H}_{2} \mathrm{~S}$ acts as an oxidizing agent
46. Number of moles of KMnO_{4} required to oxidize one mole of $\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ in acidic medium is \qquad
A. 0.6
B. 1.67
C. 0.2
D. 0.4

Answer: C

D View Text Solution

47. In the reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}$
A. Bromine is oxidized and carbonate is reduce
B. Bromine is reduced and water is oxidized
C. Bromine is neither reduced nor oxidized
D. Bromine is both reduced and oxidized

Answer: D

- View Text Solution

48. The oxidation number of sulphur in $S_{8}, S_{2} F_{2}$, and $H_{2} S$ respectively, are \qquad
A. $0,+1$ and -2
B. $+2,+1$ and -2
C. $0,+1$ and +2
D. $-2,+1$ and -2

Answer: A

49. A metal ion M^{3+} loses 3 electrons, its oxidation number will become
A. +3
B. +6
C. 0
D. -3

Answer: B

- View Text Solution

50. Average oxidation state of Osmium (Os) in OsO_{4} is \qquad
A. +7
B. +6
C. +4
D. +8

Answer: D

- View Text Solution

51. Fluorine is the best oxidizing agent because it has \qquad
A. highest electron affinity
B. highest E° (reduction)
C. highest E° (oxidation)
D. lower electron affinity

Answer: B

52. Which will be the proper alternative in place of A in the following equation?
$2 \mathrm{Fe}^{+3}+\mathrm{Sn}^{+2} \rightarrow 2 \mathrm{Fe}^{+2}+\mathrm{A}$
A. $S n^{4+}$
B. Sn^{3+}
C. Sn^{2+}
D. Sn

Answer: A

D View Text Solution

53. Number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by 1 mole of Sn^{2+} is \qquad
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. 1

Answer: B

- View Text Solution

54. Which of the following is not a reducing agent ?
A. SO_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. CO_{2}
D. NO_{2}

Answer: C

- View Text Solution

55. Oxidation state of Cl in HOCl is
A. -1
B. +1
C. +3
D. +2

Answer: B

D View Text Solution

56. The oxidation state of chromium in

$$
\left[C r\left(P P h_{3}\right)_{3}(C O)_{3}\right] \text { is }
$$

A. +3
B. +8
C. zero
D. +5

Answer: C

57. Amongst the following, identify the species with an atom in +6 oxidation state \qquad
A. MnO_{4}^{-}
B. $C r(C N)_{6}^{2-}$
C. $N i F_{6}^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

Answer: D

- View Text Solution

58. In the standardization of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by eudiometry, the equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is \qquad
A. $\frac{\text { molecular weight }}{2}$
B. $\frac{\text { molecular weight }}{6}$
C. $\frac{\text { molecular weight }}{3}$
D. same as molecular weight.

Answer: B

- View Text Solution

59. The reaction, $3 \mathrm{CIO}_{(a q)}^{-} \rightarrow \mathrm{CIO}_{3(a q)}^{-}+2 \mathrm{CI}_{(a q)}^{-}$is an example of
A. oxidation reaction
B. reduction reaction
C. disproportionate reaction
D. decomposition reaction

Answer: C

60. Which of the following is a redox reaction?
A. $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaCO}+\mathrm{KCl}$
B. $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$
D. $Z n+2 A g C N \rightarrow Z n(C N)_{2}+2 A g C N$

Answer: D

- View Text Solution

61. Of the four oxyacids of chlorine the strongest oxidising agent in dilute aqueous solution is \qquad
A. HClO_{4}
B. HClO_{3}
C. HClO_{2}
D. HOCl

Answer: A

- View Text Solution

62. HNO_{2} acts both as reductant and oxidant, while HNO_{3} acts only as oxidant. It is due to their.
A. Solubility ability
B. Maximum oxidation number
C. Minimum oxidation number
D. Minimum number of valence electrons

Answer: B

- View Text Solution

63. Which of the following substances acts as an oxidising as well as a reducing agent
A. $\mathrm{Na}_{2} \mathrm{O}$
B. $S n C l_{2}$
C. $\mathrm{Na}_{2} \mathrm{O}_{2}$
D. NaNO_{2}

Answer: D

D View Text Solution

64. What is the oxidation number of O in $\mathrm{O}_{2} \mathrm{~F}_{2}$?
A. -2
B. -1
C. 1
D. +2

Answer: C

- View Text Solution

65. Which is the oxidation number of carbon underlined in $\mathrm{CH}_{3} \underline{\mathrm{COO}} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}$?
A. +1
B. +4
C. -3
D. +3

Answer: D

- View Text Solution

66. What is the oxidation number of underlined nitrogen in $\mathrm{NH}_{4} \underline{\mathrm{NO}_{3}}$?
A. -3
B. +3
C. +5
D. -1

Answer: C

- View Text Solution

67. Oxidation number of iodine in $\mathrm{IO}_{3}^{-}, \mathrm{IO}_{4}^{-}, \mathrm{KI}$ and I_{2} respectively are
A. $-1,-1,0,+1$
B. $+3,+5,+7,0$
C. $+5,+7,-1,0$
D. $-1,-5,-1,0$

Answer: C

68. Which of the following pairs of transition metal ions are the stronger oxidising agents in aqueous solutions ?
A. V^{2+} and $C r^{2+}$
B. Ti^{2+} and Cr^{2+}
C. Mn^{3+} and Co^{3+}
D. V^{2+} and F^{2+}

Answer: C

- View Text Solution

69. The compound that can work both as oxidising and reducing agent is
A. KMnO_{4}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. BaO_{2}
D. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Answer: B

- View Text Solution

70. Which of the following is the most powerful oxidizing agent ?
A. F_{2}
B. $C l_{2}$
C. $B r_{2}$
D. I_{2}

Answer: A

71. Which of the following acid processes oxidising reducing and complex forming properties?
A. HNO_{3}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. HCl
D. HNO_{2}

Answer: D

- View Text Solution

72. The average oxidation number of iron in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ (ferrousferic oxide) is
A. +2
B. +3
C. $\frac{8}{3}$
D. $\frac{2}{3}$

Answer: C

- View Text Solution

73. $\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ The number of Nitrogen atoms, water molecules and the total charge on the product side are respectively when above reaction is balanced ?
A. $6,3,0$
B. $4,2,2$
C. $4,2,0$
D. $3,2,0$

Answer: C

74. Which of the following statements are (T) and which are false (F) ?
(i) Stock notation nomenclature is used for all metallic compounds.
(ii) The oxidation state of fluorine (F) is always - 1 in its compounds
(iii) CrO_{5}, possesses peroxy rings, where oxidation number of Cr is +6 The oxidation number of .O. atom in HOF and HO_{2}^{-}is 0 and -1 respectively
A. FTFT
B. FTTT
C. FTTT
D. FTTF

Answer: B

D View Text Solution

75. $P_{4}+3 O_{2} F_{2} \rightarrow P_{4} F_{6}+3 O_{2}$

Which is the reducing agent in the above reactions ?
A. P_{4} and $O_{2} F_{2}$ both
B. $O_{2} F_{2}$
C. $P_{4} F_{6}$
D. P_{4}

Answer: D

- View Text Solution

76. What is the oxidation state of sulphur in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$?
A. 5
B. 6
C. 4
D. 7

Answer: B

77. $\mathrm{BrO}_{3}^{-}+\mathrm{Br}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$

When this reaction is balanced completely, than mention the total charge and number of Bromine atoms on product respectively.
A. 0,2
B. 0,6
C. $-1,6$
D. $-1,2$

Answer: B

- View Text Solution

78. The correct set of oxidation number of nitrogen atom in cyanide ion, ammonium ion, nitrite and nitrate ion, respectively is :

$$
\text { A. }-3,+3,-3,-5
$$

B. $-3,+5,-3,+4$
C. $+3,+1,-3,+5$
D. $-3,-3,+3,+5$

Answer: D

- View Text Solution

79. How many number of P, O and H respectively on L.H.S. and R.H.S in following redox reaction after balanced ?

$$
\mathrm{P}_{4}+\mathrm{OH}^{-} \rightarrow \mathrm{PH}_{3}+\mathrm{H}_{2} \mathrm{PO}_{2}^{-}
$$

A. $P=16, O=12, H=34$
B. $P=4, O=3, H=3$
C. $P=4, O=6, H=9$
D. $P=4,0=6, H=6$

Answer: C

80. What is the oxidation number of phosphorous in calcium phosphide ?
A. -5
B. -3
C. +5
D. +3

Answer: B

- View Text Solution

81. Which statement is correct for Caro.sacid ?
A. Oxidation number of two oxygen is (-1)
B. Oxidation number of S is +7
C. Oxidation number of two oxygen is -1
D. It.s formula is $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

Answer: C

- View Text Solution

82. In which substance oxidation number of oxygen is -1 ?
A. KO_{2}
B. HO_{2}^{-}
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. $O F_{2}$

Answer: B

- View Text Solution

83. Industrial production of caustic soda involved which reaction
A. Dehydration of brine solution
B. Only oxidation
C. Only reduction
D. Redox reaction

Answer: D

- View Text Solution

84. $I_{2}+2 S_{2} O_{3}^{2-} \rightarrow 2 I^{-}+S_{4} O_{6}^{2-}$

How many number of electron loss by 2 mole of $S_{2} \mathrm{O}_{3}^{2-}$ in given redox reaction?
A. 2.5
B. 1
C. 2
D. 0.5

Answer: C

- View Text Solution

85. Formula of iron (III) oxide according to stock notation nomenclature method is....
A. FeO_{2}
B. $\mathrm{Fe}_{3} \mathrm{O}_{4}$
C. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
D. FeO

Answer: C

- View Text Solution

86. Which of the following reaction is a redox reaction?
A. $4 \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}^{+} \rightarrow \mathrm{PH}_{4}^{+}+3 \mathrm{H}_{2} \mathrm{PO}_{3}$
B. $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{2-}$
C. $\mathrm{H}_{2} \mathrm{SO}_{3}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+3 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{HClO}_{4}+\mathrm{P}_{2} \mathrm{O}_{5} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Cl}_{2} \mathrm{O}_{7}$

Answer: C

- View Text Solution

87. How many electrons, electrical charge and hydrogen atom at left side balance half reduction reaction in following redox reaction respectively?
$\mathrm{Cr}^{3+}+\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{ClO}_{2}^{-}$(Acidic)
A. $6,+3,6$
B. $6,-2,6$
C. $6,-4,6$
D. $6,-3,6$

D View Text Solution

88. Which is the actual order of $\mathrm{N}, \mathrm{O}, \mathrm{F}$ and Cl as per oxidizing agent ?
A. $F>O>C l>N$
B. $F>C l>O>N$
C. $O>F>N>C l$
D. $C l>F>O>N$

Answer: A

89. Which of the following is redox reaction?
A. $\mathrm{NaOH} H_{(a q)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
B. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{H}_{2} \mathrm{~S}_{(a q)}+3 \mathrm{H}_{2} \mathrm{SO}_{4(a q)} \rightarrow 4 \mathrm{SO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}$
D. $\mathrm{K}_{2} \mathrm{SO}_{4(a q)}+\mathrm{BaCl}_{2(a q)} \rightarrow 2 \mathrm{KCl}_{(a q)}+\mathrm{BaSO}_{4(s)}$

Answer: C

- View Text Solution

90. State the total increase in the oxidation number of central atom of reducing agent in following reaction.

Reaction : $\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{Cu}(\mathrm{OH})_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{Cu}$
A. 2
B. 4
C. 0
D. 8
91. What is the change in oxidation number and electric charge in following balance redox reaction $\mathrm{CuS}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{CuO}+\mathrm{SO}_{2}$?
A. 4. -4
B. 2.0
C. $4,-6$
D. 6,0

Answer: D

- View Text Solution

92. How many change in electron and electric charge in balance half reduction reaction for following redox reaction on left hand side ?
$\mathrm{Cr}^{3+}+\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{ClO}_{2}^{-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
A. $6,-3$
B. $6,-2$
C. 6,3
D. $6,-4$

Answer: A

- View Text Solution

93. Following redox in balancing state has how many $\mathrm{P}, \mathrm{H}, \mathrm{O}$ and electric charge on left side respectively.
$\mathrm{P}_{4}+\mathrm{OH}^{1-} \rightarrow \mathrm{PH}_{3}+\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
A. $4,1,1,-1$
B. $2,9,6,0$
C. $4,6,9,-3$
D. $4,9,6,-3$

Answer: D

- View Text Solution

94. Which of the following compound contain nitrogen atom in its -1 oxidation state?
A. $\mathrm{NH}_{2}-\mathrm{NH}_{2}$
B. NH_{3}
C. $\mathrm{NH}_{4} \mathrm{OH}$
D. $\mathrm{NH}_{2} \mathrm{OH}$

Answer: D

D View Text Solution

95. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Ag}$. In this reaction, which is reductant (reducing agent)?
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{Ag}_{2} \mathrm{O}$
C. Ag
D. $\mathrm{CH}_{3} \mathrm{CHO}$

Answer: D

- View Text Solution

96. Arsenic sulphide $\left(A s_{2} S_{3}\right)$ reacts with sulphuric acid ($\mathrm{H}_{2} \mathrm{SO}_{4}$) to form $\mathrm{H}_{3} \mathrm{AsO}_{4}$ (Arsenic acid) and sulphur - dioxide $\left(\mathrm{SO}_{2}\right)$. What will be the coefficient of $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{AsO}_{4}$ and SO_{2} respectively in the balanced reaction?
A. 11,2 and 14
B. 2, 2 and 4
C. 11,2 and 11
D. 2, 2 and 3

D View Text Solution

97. In which of the following compound, oxydation number of oxygen is positive?
A. BaO_{2}
B. $K O_{2}$
C. FeO
D. $F_{2} O$

Answer: D

- View Text Solution

98. The molecular formula of Iron (III) Sulphate is \qquad .
A. $F e_{3}\left(S O_{4}\right)_{2}$
B. $\mathrm{Fe}_{3} \mathrm{SO}_{4}$
C. FeSO_{4}
D. $F e_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: D

- View Text Solution

99. What is the Oxidation number of sulphur in Perdisulphuric acid ?
A. +4
B. +6
C. -2
D. -1

Answer: B

100. On keeping Ag rod in CuSO_{4}
A. No change in colour intensity of CuSO_{4} is observed.
B. Intensity of blue colour of CuSO_{4} increases first and then decreases.
C. Intensity of blue colour of CuSO_{4} decreases.
D. Intensity of blue colour of CuSO_{4} increases.

Answer: A

- View Text Solution

101. $2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2}(\mathrm{O})_{(l)}$ This reaction is \qquad
A. Redox
B. Decomposition
C. Oxidation
D. Reduction

Answer: A

- View Text Solution

102. In which of the following pair of compounds, oxidation number of P atoms are same?
A. $\mathrm{H}_{3} \mathrm{PO}_{2}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
C. $\mathrm{H}_{3} \mathrm{PO}_{2}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$
D. $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$

Answer: B

D View Text Solution

103. Antimony Sulphide $\left(\mathrm{Sb}_{2} \mathrm{~S}_{3}\right)$ reacts with sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ to form Antimonic $\left(\mathrm{H}_{3} \mathrm{SbO}_{4}\right)$ and sulphur dioxide $\left(\mathrm{SO}_{2}\right)$. What are the coefficients of $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{SbO}_{4}, \mathrm{SO}_{2}$ respectively in the balanced redox reaction.
A. $11,2,11$
B. $2,4,4$
C. 2, 2, 11
D. $11,2,14$

Answer: D

- View Text Solution

104. Match the oxidation number of 0 -atoms of moles of compounds given in column-I with oxidation number values given in column-II and select the correct option:
A. $(i) \rightarrow s,(i i) \rightarrow t,(i i i) \rightarrow p,(i v) \rightarrow t$
B. $(i) \rightarrow r,(i i) \rightarrow t,(i i i) \rightarrow s,(i v) \rightarrow p$
C. $(i) \rightarrow q,(i i) \rightarrow r,(i i i) \rightarrow p,(i v) \rightarrow s$
D. $(i) \rightarrow s,(i i) \rightarrow r,(i i i) \rightarrow p,(i v) \rightarrow q$

Answer: D

- View Text Solution

105. $2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \rightarrow 2 \mathrm{MnCl}_{2}+2 \mathrm{KCl}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

How many moles of HCl undergo oxidative in the above reaction?
A. 14
B. 10
C. 5
D. 16
106. What is the oxidation number of carbon in diamond ?
A. +2
B. +3
C. +4
D. 0

Answer: D

- View Text Solution

107. What is the name of TiO_{2} according to stock notation nomenclature
A. Titanium oxide (IV)
B. Titanium (IV) Oxide
C. Titanium (V) Oxide
D. Titanium (II) Oxide

Answer: B

- View Text Solution

108. How many electrons are required for the reduction of 1 mole of MnO_{4}^{-}to Mn^{2+} ?
A. 3.011×10^{24}
B. 6.022×10^{24}
C. 1.2044×10^{24}
D. 1.8066×10^{24}

Answer: A

109. The number of peroxy rings in CrO_{5} is \qquad
A. 2
B. 3
C. 4
D. 1

Answer: A

- View Text Solution

110. In which of the following reactions $\mathrm{H}_{2} \mathrm{O}_{2}$ does not act as a reducing agent ?
A. $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
B. $\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
C. $2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{MnO}_{2}+2 \mathrm{KOH}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2}$
D. $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$

Answer: B

- View Text Solution

111. When copper is treated with a certain concentration of nitric acid, nitric oxide and nitrogen dioxide are liberatel in equal volumes according to the equation,
$x \mathrm{Cu}+y \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

The coefficients x and y are \qquad
A. 2 and 3
B. 2 and 6
C. 1 and 3
D. 3 and 8

Answer: B

112. Which of the following is a redox reaction?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ with NaOH
B. In atmosphere, formation of O_{3} from O_{2} by lightning.
C. Formation of Nitrogen oxides from nitrogen and oxygen by lightning.
D. Evaporation of $\mathrm{H}_{2} \mathrm{O}$

Answer: C

- View Text Solution

113. Without losing its concentration, $Z n C l_{2}$ solution cannot be kept in contact with \qquad
A. Au
B. Al
C. Pb

D. Ag

Answer: B

- View Text Solution

114. When KMnO_{4} acts as an oxidizing agent and ultimately forms $\mathrm{MnO}_{4}^{-2}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$ and Mn^{+2}, then number of electrons transfered in each case respectively is \qquad
A. $4,3,1,5$
B. $1,5,3,7$
C. $1,3,4,5$
D. $3,5,7,1$

Answer: C

115. Excess of KI reacts with CuSO_{4} solution if $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution is added in it. Which of the statements is incorrect for the reaction ?
A. Evolved I_{2} is reduced
B. $\mathrm{Cu} I_{2}$ is formed
C. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is oxidized
D. $C u_{2} F_{2}$ is formed

Answer: B

- View Text Solution

116. Which is the best description of the behavior of bromine in the reaction given below ?
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}$
A. Proton acceptor only
B. Both oxidized and reduced
C. Oxidized only
D. Reduced only

Answer: B

- View Text Solution

117. The oxidant which is used as an antiseptic is \qquad
A. KBrO_{3}
B. KMnO_{4}
C. CrO_{3}
D. KNO_{3}

Answer: B

118. What is the oxidising agent in chlorine water ?
A. HCl
B. $\mathrm{HClO} \mathrm{O}_{2}$
C. HOCl
D. None of these

Answer: C

- View Text Solution

119. In organic reaction, metalic lithium in liquid ammonia behaves as
A. Oxidising agent
B. Reducing agent
C. Bleaching agent
D. Dehydrating agent

D View Text Solution

120. The pair of compounds that can exist together is:
A. $F e C l_{3}, S n C l_{2}$
B. $\mathrm{HgCl}_{2}, \mathrm{SnCl}_{2}$
C. $F e C l_{2}, S n C l_{2}$
D. $F e C l_{3}, K I$

Answer: C

121. Consider the following reaction :
$x \mathrm{MnO}_{4}^{-}+y \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow x \mathrm{Mn}^{2+}+2 y \mathrm{CO}_{2}+\frac{z}{2} \mathrm{H}_{2} \mathrm{O}$
The values of x, y and z in the reaction are, respectively :
A. 5, 2 and 16
B. 2, 5 and 8
C. 2, 5 and 16
D. 5, 2 and 8

Answer: C

- View Text Solution

122. Which of the following reactions is an example of a redox reaction ?
A. $\mathrm{XeF}_{4}+\mathrm{O}_{2} \mathrm{~F}_{2} \rightarrow \mathrm{XeF}_{6}+\mathrm{O}_{2}$
B. $X e F_{2}+P F_{5} \rightarrow[X e F]^{+} P F_{6}^{-}$
C. $\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF}$
D. $\mathrm{XeF}_{6}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeO}_{2} \mathrm{~F}_{2}+4 \mathrm{HF}$

Answer: A

123. For the redox reaction

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

the correct coefficients of the reactants for the balanced equation are
A. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$

5	16	2

B. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
$16 \quad 5 \quad 2$
C. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$

D. | 2 | 16 | 5 |
| :--- | :--- | :--- |
| MnO_{4}^{-} | $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ | H^{+} |
| 2 | 5 | 16 |

Answer: D

- View Text Solution

124. In the reaction of oxalate with permanganate in acidic medium, the number of electrons involved in producing one molecule of CO_{2} is \qquad
A. 10
B. 1
C. 5
D. 2

Answer: B

- View Text Solution

125. The oxidation number of K in $\mathrm{K}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}_{2}$ and KO_{2} respectively is ...
A. $+0.5,+4,+1$
B. $+2,+1,+0.5$
C. $+1,+1,+1$
D. $+0.5,+1,+2$

Answer: C

1. Which of the following is not an example of redox reaction ?
A. $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+2 \mathrm{CO}_{2}$
C. $2 K+F_{2} \rightarrow 2 K F$
D. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}+2 \mathrm{HCl}$

Answer: D

- View Text Solution

2. The more positive the value of E^{\ominus}, the the greater is the tendency of the species to get reduced. Using the standard electrode potential of redox couples given below find out which of the following is the strongest oxidising agent ?
$E_{F e^{+3} / F e^{+2}}^{\Theta}=+0.77 \mathrm{volt}, E_{I^{2} / I^{-}}^{\Theta}=+0.54 \mathrm{volt}$
$E_{C u{ }^{+2} / C u}^{\ominus}=+0.34$ volt, $E_{A g+/ A g}^{\Theta}=+0.80$ volt
A. $F e^{+3}$
B. $I_{2(s)}$
C. $C u^{+2}$
D. $A g^{+}$

Answer: D

- View Text Solution

3. E^{\ominus} values of some redox couples are given below, On the basis of these values choose the correct option.
$E_{B r_{2} / B r^{-}}^{\Theta}=+1.90 \mathrm{volt}, E_{A g^{+} / A g_{(s)}}^{\Theta}=+0.80 \mathrm{volt}$
$E_{C u^{+2} / C u_{(s)}}^{\Theta}=+0.34 \mathrm{volt}, E_{I_{2(s)} / I_{-}}^{\Theta}=+0.54 \mathrm{volt}$
A. Cu will reduced $B r^{-}$
B. Cu will reduced Ag
C. Cu will reduced I^{-}
D. Cu will reduced $B r_{2}$

Answer: D

- View Text Solution

4. Using the standard electrode potential, find out the pair between which redox reactions is not possible ?
$E_{\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}}^{\ominus}=+0.77 \mathrm{volt}, E_{I_{2} / I^{-}}^{\ominus}=+0.54 \mathrm{volt}$
$E_{C u^{+2} / C u}^{\Theta}=+0.34 \mathrm{volt}, E_{A g^{+} / A g^{-}}^{\ominus}=+0.80 \mathrm{volt}$
A. $F e^{+3}$ and I^{-}
B. Ag^{+}and Cu
C. Fe^{+3} and Cu
D. $A g$ and $F e^{+3}$
5. Thiosulphate reacts differently with iodine and bromine in the reactions given below
$2 S_{2} O_{3}^{-2}+I_{2} \rightarrow S_{4} O_{6}^{-2}+2 I^{-}$
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{-2}+2 \mathrm{Br}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{4}^{-2}+2 \mathrm{Br}^{-}+10 \mathrm{H}^{+}$
Which of the following statements justifies the above dual behaviour of thiosulphate?
A. Bromine is stronger oxidants than iodine.
B. Bromine is weaker oxidant than iodine.
C. Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions.
D. Bromine undergoes oxidation and iodine undergoes reduction in these reactions.

Answer: A

6. The oxidation number of an element in a compound is evaluated on the basis of certain rules. Which of the following is incorrect in this respect ?
A. The oxidation number of hydrogen is always +1 .
B. The algebraic sum of the all the oxidation numbers in a compound is zero.
C. An element in the free or the uncombined state bears oxidation number zero.
D. In all its compounds, the oxidation number of fluorine is -1 .

Answer: A

D View Text Solution

7. In which of the following compounds, an element exhibits two different oxidation states?
A. $\mathrm{NH}_{4} \mathrm{OH}$
B. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. $\mathrm{N}_{2} \mathrm{H}_{4}$
D. $\mathrm{N}_{3} \mathrm{H}$

Answer: B

- View Text Solution

8. Which of the following arrangements represent increasing oxidation number of the central atom ?
A. $\mathrm{CrO}_{2}^{-}, \mathrm{CIO}_{3}^{-}, \mathrm{CrO}_{4}^{-2}, \mathrm{MnO}_{4}^{-}$
B. $\mathrm{CIO}_{3}^{-}, \mathrm{CrO}_{4}^{-2}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{2}^{-}$
C. $\mathrm{CrO}_{2}^{-}, \mathrm{CIO}_{3}^{-}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{4}^{-2}$
D. $\mathrm{CrO}_{4}^{-2}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{2}^{-}, \mathrm{CIO}_{3}^{-}$
9. The largest oxidation number exhibited by an element depends on its outer electronic configuration. With which of the following outer electronic configurations the element will exhibit largest oxidation number?
A. $3 d^{1} 4 s^{2}$
B. $3 d^{3} 4 s^{2}$
C. $3 d^{5} 4 s^{1}$
D. $3 d^{5} 4 s^{2}$

Answer: D

- View Text Solution

10. Identify disproportionation reaction.
A. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CH}_{4}+4 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}$
C. $2 \mathrm{~F}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{~F}^{-}+\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O}$
D. $2 \mathrm{NO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$

Answer: D

- View Text Solution

11. Which of the following elements does not show disproportionation tendency?
A. Cl
B. Br
C. F
D. 1

Answer: C

12. Which of the following statement(s) is/are not true about the following decomposition reaction ?
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
A. Potassium is undergoing oxidation.
B. Chlorine is undergoing oxidation.
C. Oxygen is reduced.
D. None of the species are undergoing oxidation or reduction.

Answer: A::B::C::D

- View Text Solution

13. Identify the correct statement(s) in relation to the following reaction ?
$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
A. Zinc is acting as an oxidant.
B. Chlorine is acting as a reductant
C. Hydrogen ion is acting as an oxidant.
D. Zinc is acting as a reductant.

Answer: C::D

- View Text Solution

14. The exhibition of various oxidation states by an element is also related to the outer orbital electronic configuration of its atom. Atom (S) having which of the following outermost electronic configurations will exhibit more than one oxidation state in its compounds ?
A. $3 s^{1}$
B. $3 d^{1} 4 s^{2}$
C. $3 d^{2} 4 s^{2}$
D. $3 s^{2} 3 p^{3}$

Answer: B::C::D

D View Text Solution

15. Identify the correct statements with reference to the given reaction
$\mathrm{P}_{4}+3 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PH}_{3}+3 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
A. Phosphorus is undergoing reduction only.
B. Phosphorus is undergoing oxidation only.
C. Phosphorus is undergoing oxidation as well as reduction.
D. Hydrogen is undergoing neither oxidation nor reduction.

Answer: C::D

D View Text Solution

16. Which of the following electrodes will act as anodes, which connected to Standard Hydrogen Electrode?
A. $A l / A l^{+3} \quad E^{\ominus}=-1.66$
B. $F e / F e^{+2} \quad E^{\ominus}=-0.44$
С. $C u / C u^{+2} \quad E^{\ominus}=+0.34$
D. $F_{2(g)} / 2 F_{(a q)}^{-} \quad E^{\ominus}=02.87$

Answer: A::B

- View Text Solution

Section D Ncert Exemplar Solution Short Answer Type

1. The reaction

$$
\mathrm{Cl}_{2(g)}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{ClO}_{(a q)}^{-}+\mathrm{Cl}_{(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

represents the process of bleaching. Identify and name the species that bleaches the substances due to its oxidising action.
2. MnO_{4}^{-2} undergoes disproportionation reaction in acidic medium but MnO_{4}^{-}does not. Give reason.

- View Text Solution

3. PbO and PbO_{2} react with HCl according to following chemical equations
(i) $2 \mathrm{PbO}+4 \mathrm{HCl} \rightarrow 2 \mathrm{PbCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{PbO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Why do these compounds differ in their reactivity ?

- View Text Solution

4. Nitric acid is an oxidising agent and reacts with PbO but it does not react with PbO_{2}. Explain why ?

- View Text Solution

5. Write balanced chemical equation for the following reaction.
(a) Permanganate ion $\left(\mathrm{MnO}_{4}^{-}\right)$reacts with sulphur dioxide gas in acidic medium to produce $M n^{+2}$ and hydrogen sulphate ion. (Balance by ion electron method)
(b) Reaction of liquid hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ with chlorate ion $\left(\mathrm{ClO}_{3}^{-}\right)$in basic medium Produces nitric oxide gas and chloride ion in gaseous state. (Balance by oxidation in the following species. number method)
(c) Dichlorine heptaoxide $\left(\mathrm{Cl}_{2} \mathrm{O}_{7}\right)$ in gaseous state combines with an aqueous solution of hydrogen peroxide in acidic medium to give chlorite ion $\left(\mathrm{ClO}_{2}^{-}\right)$and oxygen gas. (Balance by ion electron method)

- View Text Solution

6. Calculate the oxidation number of phosphorus in the following species.
(a) HPO_{3}^{-2}
(b) PO_{4}^{-3}

- View Text Solution

7. Calculate the oxidation number of each sulphur atom in the following compounds.
(a) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(b) $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
(c) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
(d) $\mathrm{Na}_{2} \mathrm{SO}_{4}$

- View Text Solution

8. Balance the following equations by the oxidation number method.
(a) $\mathrm{Fe}^{+2}+\mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2} \rightarrow \mathrm{Cr}^{+3}+\mathrm{Fe}^{+3}+\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{I}_{2}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{IO}_{3}^{-}$
(c) $\mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{-2} \rightarrow \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{-2}$
(d) $\mathrm{MnO}_{2}+\mathrm{C}_{2} \mathrm{O}_{4}^{-2} \rightarrow \mathrm{Mn}^{+2}+\mathrm{CO}_{2}$
9. Identify the redox reaction out of the following reactions and identify the oxidising and reducing agents in them.
(a) $3 \mathrm{HCl}_{(a q)}+\mathrm{HNO}_{3(a q)} \rightarrow \mathrm{Cl}_{2(g)}+\mathrm{NOCl}_{(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
(b) $\mathrm{HgCl}_{2(a q)}+2 K I_{(a q)} \rightarrow \mathrm{HgI}_{2(s)}+2 \mathrm{KCl}_{(a q)}$
(c) $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \xrightarrow{\Delta} 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~g})}$
(d) $\mathrm{PCl}_{(l)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 3 \mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{PO}_{3(a q)}$
(e) $4 \mathrm{NH}_{3(a q)}+3 \mathrm{O}_{2(g)} \rightarrow 2 \mathrm{~N}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$

- View Text Solution

10. Balance the following ionic equation.
(a) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{Cr}^{+3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+\mathrm{Fe}^{+2}+\mathrm{H}^{+} \rightarrow \mathrm{Cr}^{+3}+\mathrm{Fe}^{+3}+\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}^{-2}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{+2}+\mathrm{SO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{Mn}^{+2}+\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

1. Match the column-I with column-II for the oxidation states of the central atoms.

- View Text Solution

Section D Ncert Exemplar Solution Assertion And Reason Type

1. Assertion (A) : Among halogens fluorine is the best oxidant.

Reason (R): Fluorine is the most electronegative atom.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R true but R is not the correct explanation of A .
C. A is true but R is false.
D. Both A and R are false.

Answer: B

D View Text Solution

2. Assertion (A) : In the reaction between potassium permanganate and potassium iodide, permanganate ions act as oxidising agent.

Reason (R) : Oxidation state of manganese changes from +2 to +7 during the reaction.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R true but R is not the correct explanation of A.
C. A is true but R is false.
D. Both A and R are false.

Answer: C

- View Text Solution

3. Assertion (A) : The decomposition of hydrogen peroxide to form water and oxygen is an example of disproportionation reaction.

Reason (R) : The oxygen of peroxide is in -1 oxidation state and it is converted to zero oxidation state in O_{2} and -2 oxidation state in $\mathrm{H}_{2} \mathrm{O}$.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R true but R is not the correct explanation of A.
C. A is true but R is false.
D. Both A and R are false.

Answer: A

- View Text Solution

4. Assertion (A) : Redox couple is the combination of oxidised and reduced form of a substance involved in an oxidation or reduction half cell.
R) : In
the
representation
$E_{F e^{3+} / F e^{2+}}^{\Theta}$ and $E_{C u^{2+} / C u}^{\Theta}, F e^{3+} / F e^{2+}$ and $C u^{2+} / C u$ are redox couples.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R true but R is not the correct explanation of A.
C. A is true but R is false.
D. Both A and R are false.

Answer: A

D View Text Solution

Section D Ncert Exemplar Solution Long Answer Type

1. Explain redox reactions on the basic of electron transfer. Give suitable examples.
2. On the basis of standard electrode potential values, suggest which of the following reactions would take place ? (Consult the book for E^{\ominus} value)
(a) $\mathrm{Cu}+\mathrm{Zn}^{+2} \rightarrow \mathrm{Cu} u^{+2}+\mathrm{Zn}$
(b) $\mathrm{Mg}+\mathrm{Fe}^{+2} \rightarrow \mathrm{Mg}^{+2}+\mathrm{Fe}$
(c) $\mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{Br}^{-}$
(d) $\mathrm{Fe}+\mathrm{Cd}^{+2} \rightarrow \mathrm{Cd}+\mathrm{Fe}^{+2}$

- View Text Solution

3. Why does fluorine not show disproportionation reaction ?

- View Text Solution

4. Write redox couples involved in the reaction (a) to (d) given in que. No.
5.

$C u+Z n^{+2} \rightarrow C u^{+2}+Z n$
$\mathrm{Mg}+\mathrm{Fe}^{+2} \rightarrow \mathrm{Mg}^{+2}+\mathrm{Fe}$
$\mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{Br}^{-}$
$F e+\mathrm{Cd}^{+2} \rightarrow \mathrm{Cd}+\mathrm{Fe}^{+2}$

- View Text Solution

5. Find out the oxidation number of chlorine in the following compounds and arrange them in increasing order of oxidation number of chlorine.
$\mathrm{NaClO}_{4}, \mathrm{NaClO}_{3}, \mathrm{NaClO}, \mathrm{KClO}_{2}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{ClO}_{3}, \mathrm{Cl}_{2} \mathrm{O}, \mathrm{NaCl}, \mathrm{Cl}_{2}, \mathrm{ClO}_{2}$

Which oxidation state is not present in any of the above compounds ?

- View Text Solution

6. Which method can be used to find out strength of reductant/oxidant in a solution ? Explain with an example.

- View Text Solution

