びdoubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - KUMAR PRAKASHAN KENDRA CHEMISTRY
 (GUJRATI ENGLISH)

THERMODYNAMICS

Section A Questions 61 Thermodynamic Terms

1. Explain the difference between the system and surrounding.

- Watch Video Solution

2. What is system ? Explain types of system.
3. Explain the internal energy as a state function.

- View Text Solution

4. Explain a change in internal energy on the base of work.

- View Text Solution

Section A Questions 62 Applications

1. Explain mechanical work. OR

Explain pressure volume work.

- View Text Solution

2. Explain free expansion.
3. Which of the following is correct for free expansion of ideal gas under isothermal condition :-

- Watch Video Solution

4. Explain : Enthalpy : state function. OR $\Delta H=q_{p}$ Or Prove : "The change in enthalpy of the system in which chemical reaction occurs is equal to value of heat gain by system."

- View Text Solution

5. Explain the relation of change in heat at constant pressure and constant temperature.
6. Explain extensive property and intensive property.

- Watch Video Solution

7. Explain Heat Capacity.

- View Text Solution

8. Prove the relationship between C_{p} and C_{p} for an ideal gas.

- View Text Solution

Section A Questions 63 Measurement Of Delta U And Delta H Calorimetry

1. Explain the measurement of ΔU and ΔH by calorimetry.
2. Explain the measurement of ΔU calorimetery

- View Text Solution

3. Explain the measurement of ΔH calorimetetry

- View Text Solution

Section A Questions 64 Enthalpy Change Delta R H Of Reaction Reaction Enthalpy

1. Explain change in enthalpy related to reaction.

- View Text Solution

2. Explain the standard enthalpy of reactions.
3. Explain enthalpy changes during phase transformations.

- View Text Solution

4. Explain standard enthalpy of formation

- View Text Solution

5. Thermochemical equations.

- View Text Solution

6. Prove Hess.s law of constant heat summation.

- View Text Solution

1. Explain the standard enthalpy of combustion $\Delta_{C} H^{\Theta}$.

- View Text Solution

2. Explain Enthalpy of atomization $\left(\Delta_{a} H^{\Theta}\right)$.

- View Text Solution

3. Write the notes on diatomic molecules and polyatomic molecules.

OR
Explain the bond enthalpy.

- View Text Solution

4. Explain Enthalpy of Solution $\left(\Delta_{\text {sol }} H^{\Theta}\right)$.
5. Explain the Born-Haber Cycle. OR

Lattice Enthalpy.

- View Text Solution

6. Explain the enthalpy of dilution.

- View Text Solution

Section A Questions 66 Spontaneity

1. Explain entropy and spontaneity of reactions.

OR

Explain entropy and spontaneity.
2. What is entropy ? Explain its spontaneity.

- Watch Video Solution

3. Describe Gibbs energy and spontaneity.

- View Text Solution

4. Describe the absolute entropy and third law of thermodynamics.

- View Text Solution

Section A Questions 67 Gibbs Energy Change And Equilibrium

1. Describe about Gibbs energy change and equilibrium.
2. Express the change in internal energy of a system when
(i) No heat is absorbed by the system from the surroundings, but work (w) is done on the system. What type of wall does the system have?
(ii) No work is done on the system, but q amount of heat is taken out from the system and given to the surroundings. What type of wall does the system have?.
(iii) w amount of work is done by the system and q amount of heat is supplied to the system. What type of system would it be ?

- Watch Video Solution

2. In a process, 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process
3. Two liters of an ideal gas at a pressure of 10 atm. expands isothermally into a vacuum until its total volume is 10 liters. How much heat is absorbed and how much work is done in the expansion?

- View Text Solution

4. Consider the same expansion, but this time against a constant external pressure of 1 atm.

- View Text Solution

5. Consider the same expansion, to a final volume of 10 liters conducted reversibly.

- View Text Solution

6. If water vapour is assumed to be a perfect gas, molar enthalpy change for vapourisation of 1 mol of water at 1 bar and $100^{\circ} \mathrm{C}$ is $41 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Calculate the internal energy change, when
(i) 1 mol of water is vaporised at 1 bar pressure and $100^{\circ} \mathrm{C}$.
(ii) 1 mol of water is converted into ice.

- Watch Video Solution

7.1 g of graphite is burnt in a bomb calorimeter in excess of oxygen at 298 K and 1 atmospheric pressure according to the equation
$C_{(\text {graphite })}+O_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$
During the reaction, temperature rises from 298 K to 299 K . If the heat capacity of the bomb calorimeter is $20.7 \mathrm{~kJ} / \mathrm{K}$, what is the enthalpy change for the above reaction at 298 K and 1 atm ?

- View Text Solution

8. Calculate the number of kJ of heat necessary to raise the temperature of 60.0 g of aluminium from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Molar heat capacity of Al is 24 J $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$
9. A swimmer coming out from a pool is covered with a film of water weighing about 18g. How much heat must be supplied to evaporate this water at 298 K ? Calculate the internal energy of vaporization at $100^{\circ} \mathrm{C}$.
$\Delta_{\text {vap }} H^{\Theta}$ for water at $373 K=40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- View Text Solution

10. The reaction of cyanamlde, $\mathrm{NH}_{2} \mathrm{CN}_{(s)}$, with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be $-742.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K. Calculate enthalpy change for the reaction at 298 K .
$\mathrm{NH}_{2} \mathrm{CN}_{(g)}+\frac{3}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{N}_{2(g)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

- View Text Solution

11. The combustion of one mole of benzene takes place at 298 K and 1 atm. After combustion, $\mathrm{CO}_{2(\mathrm{~g})}$ and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ are produced and 3267.0 kJ
of heat is liberated. Calculate the standard enthalpy of formation, $\Delta_{r} H^{\Theta}$ of benzene. Standard enthalpies of formation of $\mathrm{CO}_{2(\mathrm{~g})}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are -393.5 kJ "mol"^(-1) and -285.83 kJ mol "^(-1$)^{\text {' respectively. }}$

- View Text Solution

12. Calculate the enthalpy change on freezing of 1.0 mol of water at $10.0^{\circ} \mathrm{C}$ to ice at $-10.0^{\circ} \mathrm{C}$.
$\Delta_{\text {fus }} H=6 .-03 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $0^{\circ} \mathrm{C}$
$C_{p}\left[H_{2} O_{(l)}\right]=75.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}$
$C_{p}\left[H_{2} O_{(s)}\right]=36.8 \mathrm{~J} \mathrm{~mol}^{-1} K$

- View Text Solution

13. Enthalpy of combustion of carbon to CO_{2} is $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the heat released upon formation of 35.2 g of CO_{2} from carbon and dioxygen gas.
14. Enthalpies of formation of $\mathrm{CO}_{(g)}, \mathrm{CO}_{2(g)}, \mathrm{N}_{2} \mathrm{O}_{(g)}$ and $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ are $-100,-393,81$ and $9.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Find the value of
$\Delta_{r} H$ for the reaction :
$\mathrm{N}_{2} \mathrm{O}_{4(g)}, 3 \mathrm{CO}_{(g)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4(g)}+3 \mathrm{CO}_{2(g)}$

- View Text Solution

15. Given $N_{2(g)}+3 H_{2(g)} \rightarrow 2 \mathrm{NH}_{3(g)}, \Delta_{r} H^{\circ}=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$

What is the standard enthalpy of formation of NH_{3} gas ?

- View Text Solution

16. Calculate the standard enthalpy of formation of $\mathrm{CH}_{3} \mathrm{OH}_{(l)}$ from the following data :
$\mathrm{CH}_{3} \mathrm{OH}_{(l)}+\frac{3}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$,
$\Delta_{r} H^{\Theta}=-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$C_{(\text {graphite })}+O_{2(g)} \rightarrow C O_{2(g)}, \Delta_{r} H^{\Theta}=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$H_{2(g)}+\frac{1}{2} O_{(g)} \rightarrow H_{2} O_{(l)}, \Delta_{f} H^{\Theta}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$

D View Text Solution

17. Comment on the thermodynamic stability of $N O_{(g)}$, given:
$\frac{1}{2} N_{2(g)},+\frac{1}{2} O_{2(g)} \rightarrow N O_{(g)}, \Delta_{r} H^{\Theta}=90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$N O_{(g)}+\frac{1}{2} O_{2(g)} \rightarrow N O_{2(g)}, \Delta_{r} H^{\Theta}=-74 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- Watch Video Solution

18. Predict in which of the following, entropy increases/decreases:
(i) A liquid crystallizes into a solid.
(ii) Temperature of a crystalline solid is raised from 0 K to 115 K .
(iii) $2 \mathrm{NaHCO}_{3(s)} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3(s)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}$
(iv) $H_{2(g)} \rightarrow 2 H_{(g)}$

- View Text Solution

19. For oxidation of iron, $4 \mathrm{Fe}(s)+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3(s)}$
entropy change is $-549.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 298 K . Inspite of negative entropy change of this reaction, why is the reaction spontaneous ? $\Delta_{r} H^{\Theta}$ for this reaction is $1648 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$

- Watch Video Solution

20. Calculate the enthalpy change for the process $\mathrm{CCI} I_{(g)}+C_{(g)}+4 C I_{(g)}$ and calculate bond enthalpy of $C-C I$ in $\mathrm{CC}_{4}(\mathrm{~g})$
$\Delta_{\text {vap }} H^{\Theta}\left(\mathrm{CCI}_{4}\right)=30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\Theta}\left(\mathrm{CCI}_{4}\right)=-135.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{a} H^{\Theta}(C)=715.0 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
where $\Delta_{a} H^{\Theta}$ is enthalpy of atomisation $\Delta_{a} H^{\Theta}\left(C I_{2}\right)=242 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$

- View Text Solution

21. For an isolated system, $\Delta U=0$, what will be ΔS ?
22. For the reaction at 298 K, $2 A+B \rightarrow C \Delta H=400 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=0.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad$ At what temperature will the reaction become spontaneous considering ΔH and ΔS to be constant over the temperature range.

- Watch Video Solution

23. For the reaction
$2 C I_{(g)} \rightarrow C I_{2(g)}$
What are the sign of ΔH and ΔS ?

Watch Video Solution

24. Calculate the entropy change in surroundings when 1.00 mol of $\mathrm{H}_{2} \mathrm{O}_{(l)}$ is formed under standard conditions.
$\Delta_{f} H^{\Theta}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Watch Video Solution

25. Calculate ΔG^{Θ} for conversion of oxygen to ozone, $\frac{3}{2} O_{2(g)} \rightarrow O_{3(g)}$ at 298 K . If K_{p} for this conversion is 2.47×10^{-29}.

- Watch Video Solution

26. Find out the value of equilibrium constant for the following reaction at 298 K .
$2 \mathrm{NH}_{3(g)}+\mathrm{CO}_{2(g)} \Leftrightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
Standard Gibbs energy change, $\Delta_{r} G^{\Theta}$ at the given temperature is $-13.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Watch Video Solution

27. At $60^{\circ} \mathrm{C}$, dinitrogen tetroxide is fifty percent dissociated. Calculate the standard free energy change at this temperature and at one atmosphere.
28. For the reaction $2 A_{(g)}+B_{(g)} \rightarrow 2 D_{(g)}$
$\Delta U^{\Theta}=-10.5 \mathrm{~kJ}$ and $S^{\Theta}=-44.1 \mathrm{JK}^{-1}$ Calculate ΔG^{Θ} for the reaction, and predict whether the reaction may occur spontaneously.

- View Text Solution

29. The equilibrium constant for a reaction is 10 . What will be the value of $\Delta G^{\Theta} ? R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, T=300 K$

- Watch Video Solution

Section A Try Your Self 1

1. A system receives 224 Joule heat and does work of 156 Joule. Calculate the change in internal energy.
2. A system receives 100 calory heat at that time 50 calory work is done by system. Calculate the change in internal energy.

- Watch Video Solution

Section A Try Your Self 2

1. At the one bar pressure the volume of gas is 0.6 litre. If the gas receives 122 Joule of heat at 1 atmosphere pressure, the volume become .2 liter the calculate its internal energy. (1 litre bar $=101.32$ Joule $)$

- View Text Solution

2. Volume of 100 liter gas increases to 120 liter at constant temperature and 10 bar external pressure. Calculate the work done by the system [1 liter bar = 24.21 calory $]$
3. At 1 bar pressure a gas having volume 0.6 lit. If this gas gained 122 Joule heat at 1 bar pressure its volume become 2 lit. Then calculate the its internal heat change. [1 lit. bar= 101.32 Joule]

- View Text Solution

4. The heat associated with combustion of liquid benzene, at constant volume is -3268 kilo Joule/mole ${ }^{-1}$ calculate the change in enthalpy, when this reaction occurs at 300 K , temperature ($\mathrm{R}=8.314$ Joule)

- View Text Solution

Section A Try Your Self 3

1.20 calory heat is needed to increase the temperature from $25^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ of Al metal piece having 15 gram weight. Final the heat capacity, specific
heat capacity and molar heat capacity for the Al piece. (Al = 27 gram/mole)

- View Text Solution

Section A Try Your Self 4

1. Find the difference between the values of ΔH and $\Delta U f$ for the combustion n - octane at $25^{\circ} \mathrm{C}$.

- View Text Solution

2. If the ratio of enthalpy of formation of CO_{2} and SO_{2} is $4: 3$ and enthalpy of formation of $C S_{2}$ is $26 \mathrm{~K} . \mathrm{cal} / \mathrm{mol}$. Find the enthalpy of formation of $\mathrm{SO}_{2(\mathrm{~g})}$ on the basis of above reaction

$$
\mathrm{CS}_{2(l)}+3 \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{SO}_{2(g)}
$$

- View Text Solution

1. The value of bond enthalpy of $H_{2}, C I_{2}$ and $H C I$ are 104,58 and 103 kilogram respectively. Than find the enthalpy of formation of $H C I_{(g)}$.
reaction: $\frac{1}{2} H_{2(g)}+\frac{1}{2} C I_{2(g)} \rightarrow H C I_{(g)}$

- View Text Solution

2. $\mathrm{C}_{6} \mathrm{H}_{6(\mathrm{l})}+7.5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(g)}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Delta \mathrm{H}=-326.7 \mathrm{kj}$ In this reaction, the standard enthalpy of formation of $\mathrm{CO}_{2(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{(g)}$ are -393.5 and -285.85 kilo Joule\mole ${ }^{-1}$ respectively calculate the standard heat of formation of benzene.

- View Text Solution

3. Calculate the formation heat for propen from given equations.
(i) $C_{(s)}+O_{2(g)} \rightarrow C O_{2(g)}, \Delta H_{1}=-94.05 \mathrm{k} . \mathrm{cal} / \mathrm{mole}$
(ii) $\mathrm{H}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta H_{2}=-68.32 \mathrm{k} . \mathrm{cal} / \mathrm{mole}$
(iii) $\mathrm{C}_{3} \mathrm{H}_{8(g)}+5 \mathrm{O}_{2(g)} \rightarrow 3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta \mathrm{H}_{3}=-530.61$ k.cal/mole

- View Text Solution

4. Formation heat of $\mathrm{H}_{2} \mathrm{O}$ is $-68 \mathrm{k} . c \mathrm{cal} / \mathrm{mole}$ then, find the formation heat of OH^{-}

D View Text Solution

5. Find the formation enthalpy of SO_{3} from the enthalpy of given reactions.
$S_{8(s)}+8 O_{2(g)} \rightarrow 8 S O_{2(g)}, \Delta H=-2775 \mathrm{kj} / \mathrm{mol}$
$2 S_{2(g)}+O_{2(g)} \rightarrow 2 S O_{3(g)}, \Delta H=-198 \mathrm{kj} / \mathrm{mol}$

- View Text Solution

1. The enthalpy of vaporizations of benzene is $30.779 \mathrm{KJ} / \mathrm{mol}$. and its boiling point is 353 K . Find the change in entropy for the conversion of liquid benzene to its vapour at that temperature.

- View Text Solution

2. 3 moles of water is boiled at 373 K and is changed to vapour state having the same temperature. What will be the change in entropy of the system ? [The molecules heat of vaporizations of water is $40.668 \mathrm{KJ} / \mathrm{mol}$]

- View Text Solution

3. $\Delta U=-10.5 \mathrm{Kj}$ and $\Delta S^{\circ}=-44.2 \mathrm{~J} /$ Kelvin for the reaction $2 x_{(g)}+y_{(g)} \rightarrow 2 z_{(g)}$ at 298 K temperature. Find the $\Delta_{f} G^{\circ}$ for the reaction. Reaction will be spontaneous or not ? Why ?

- View Text Solution

4. $A B, A_{2}$ and B_{2} are diatomic molecule. Enthalpies of $\mathrm{AB} A_{2}$ and B_{2} are in the ratio of 1:1:0.5 the value. Enthalpy of formation of $A B, \Delta_{f} H-100 \mathrm{KJ}$ mol-1. Find the dissociation enthalpy of A_{2} ?
Reaction : $\frac{1}{2} A_{2}+\frac{1}{2} B_{2} \rightarrow A B$

- View Text Solution

5. Will ice having temperature 273 K placed in a surrounding having temperature 298 K will give water having temperature 273 K ? Prove this statement. The molecular enthalpy of fusing of ice is 6.025

- View Text Solution

6. Find the bond enthalpy of $\mathrm{N}-\mathrm{H}$ bond in ammonia by using the change in enthalpy for the reaction given below.

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightarrow 2 \mathrm{NH}_{3(g)}, \Delta H=-23 \mathrm{k} . \mathrm{cal}
$$

Bond energy $N \equiv N=226, H-H=103$ k.cal

Section A Try Your Self 7

1. The equilibrium constant of the following given reaction is $K_{p}=6.022 \times 10^{-5} \quad$ at $\quad 298 \quad \mathrm{~K} \quad$ temperature.
$P C I_{5(g)} \Leftrightarrow P C I_{3(g)}+C I_{2(g)}$
Calculate the value of $\Delta_{f} G^{\Theta}$.

- View Text Solution

2. Find the equilibrium constant for below reaction at 25°
$H_{2(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow H_{2} O_{(g)}\left[\Delta G^{\circ}=-54.64 \mathrm{~K} . c a l\right]$

D View Text Solution

3. The equilibrium constant for the following reaction is $K_{p}=3.44 \times 10^{24}$ at $25^{\circ} \mathrm{C}$. Calculate the value of $\Delta G_{f}^{\circ}\left(S O_{2}\right)$. If the
value of $\Delta G_{f}^{\circ}\left(\mathrm{SO}_{3}\right)$ is $-88.52 \mathrm{Kcal} / \mathrm{mol}$.
$2 \mathrm{SO}_{2(\mathrm{~g})}+O_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$

- View Text Solution

4. Find the equilibrium constant for below reaction at 298 K temperature.
$2 \mathrm{NOCI}_{(g)} \Leftrightarrow 2 N O_{(g)}+C I_{(g)}$
$\left[\Delta H^{\circ}=18.4512 \mathrm{Kcal}, \Delta S^{\circ}=29.16 \mathrm{Cal}\right]$

- View Text Solution

Section B Objective Questions

1. What is system ? Explain types of system.

- Watch Video Solution

2. When will the total heat absorbed by system during the process is completely used up in work?

- View Text Solution

3. Calculate ΔS for ice at 275 K temperature.

- Watch Video Solution

4. If $\Delta H<T \Delta S$ at $298 K$ temperature, what will be the value of equilibrium constant ?

- View Text Solution

5. What is free expansion?
6. Which of the following is an extensive property?

- Watch Video Solution

7. What is calorimerty ?

- View Text Solution

8. When will $\Delta H=\Delta u$ for chemical reaction?

- View Text Solution

9. What is heat capacity ?

- Watch Video Solution

10. Mention the equation of entropy change for the expansion of an ideal gas in vacuum.

- View Text Solution

11. Mention the limitations of second Law of thermodynamics.

- Watch Video Solution

12. Write the symbolic equation of first law of thermodynamics.

- Watch Video Solution

13. What is standard state ?

- Watch Video Solution

14. Mention the units of specific heat capacity and molar heat capacity.

- View Text Solution

15. Which functions are needed to understand the second law of thermodynamics ?

- View Text Solution

16. Write the mathematical formula for change in entropy.

- View Text Solution

17. What is molar enthalpy of vaporization?

- Watch Video Solution

18. What is entropy ? Explain its spontaneity.

- Watch Video Solution

19. Mention the third law of thermodynamics.

- Watch Video Solution

20. State the criteria of ΔG for spontaneity at constant temperature and pressure.

- Watch Video Solution

21. On which factors the enthalpy of dilution is depended?

- Watch Video Solution

22. Mention the characteristics of entropy.

- View Text Solution

23. Mention the relation between free energy change in entropy and change in enthalpy.

- View Text Solution

24. What is absolute entropy?

- Watch Video Solution

25. Write the formula of relation between equilibrium constant K and ΔG°.
26. Calculate the value of ΔG for the system of water in atmosphere having 100 K temperature.

- View Text Solution

27. State Hess.s Law of constant heat summation.

- Watch Video Solution

28. Which law of thermodynamics is known as a defination of temperature ?

- Watch Video Solution

29. Entropy increases with the increase of temperature. Why ?

- Watch Video Solution

30. Give examples of specific heat capacity.

- View Text Solution

Section C Multiple Choice Questions Mcqs Mcqs From Textual Exercise

1. Choose the correct answer. A thermodynamic state function is a quantity....
A. used to determine heat changes.
B. whose value is independent of path.
C. used to determine pressure volume work.
D. whose value depends on temperature only.

Answer: B

2. For the process to occur under adiabatic conditions, the correct condition is :
A. $\Delta T=0$
B. $\Delta p=0$
C. $q=0$
D. $w=0$

Answer: C

- Watch Video Solution

3. The enthalpies of all elements in their standard states are :
A. unity
B. zero
C. <0
D. different for each element

Answer: B

- Watch Video Solution

4. ΔU° of combustoin of methane is $-X K \operatorname{Jmol}^{-1}$ The value of ΔH° is :-
A. $=\Delta U^{\Theta}$
B. $>\Delta U^{\Theta}$
C. $<\Delta U^{\Theta}$
D. $=0$

Answer: C

- Watch Video Solution

5. The enthalpy of combustion of methane, graphite and dihydrogen at $298 \mathrm{~K}^{2}$ are, $-890.3 \mathrm{kj} \mathrm{mol}^{-1}-393.5 \mathrm{kj} \mathrm{mol}^{-1}$, and $-285.8 \mathrm{kj} \mathrm{mol}^{-1}$
respectively. Enthalpy of formation of $\mathrm{CH}_{4(\mathrm{~g})}$ will be.....
A. $-74.8 \mathrm{kj} \mathrm{mol}^{-1}$
B. $-52.27 \mathrm{kj} \mathrm{mol}^{-1}$
C. $+74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+52.26 \mathrm{~kJ} \mathrm{~mol}{ }^{\wedge}(-1)^{`}$

Answer: A

- Watch Video Solution

6. A reaction, $A+B \rightarrow C+D+q$ is found to have a positive entropy change. The reaction will be
A. possible at high temperature.
B. possible only at low temperature.
C. not possible at any temperature.
D. possible at any temperature.

Answer: D

D Watch Video Solution

7. Water is bounded in liquid state because of . \qquad bond of water in liquid state.
A. van-der-Walls attraction force
B. H-bond
C. Ionic bond
D. Covalent bond

Answer: B

D View Text Solution

8. Enthalpy for the reaction $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ is....
A. $+v e$
B. $-v e$
C. zero
D. none of above

Answer: B

- Watch Video Solution

9. Which equation from the following is right ?
A. $\Delta U=q-w$
B. $w=\Delta U+q$
C. $\Delta U=w+q$
D. none of above

Answer: C

10. Change in heat at constant volume $\left(q_{v}\right)=\ldots$.
A. ΔU
B. ΔH
C. $R T$
D. ΔG

Answer: A

D View Text Solution

11. For isothermal process
A. $q=0$ and $\Delta E=0$
B. $q \neq 0$ and $\Delta E=0$
C. $q=0$ and $\Delta E \neq 0$
D. $q \neq 0$ and $\Delta E \neq 0$

Answer: B

- View Text Solution

12. For the reaction $2 C l_{(g)} \rightarrow C l_{2(g)}$, the signs of ΔH and ΔS respectively are
A.,$+ \quad-$
B.,++
C.,--
D.,-+

Answer: C

13. If the enthalpy of water is 386 kJ , entropy of water is \qquad
A. $0.5 k J$
B. $1.3 k J$
C. $1.5 k J$
D. $22.05 k J$

Answer: B

- Watch Video Solution

14. Which of the following reaction has maximum ΔS value?
A. $C a_{(s)}+\frac{1}{2} O_{2(g)} \rightarrow C a O_{(s)}$
B. $\mathrm{CaCO}_{3(s)} \rightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}$
C. $C_{(s)}+O_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$
D. $N_{2(g)}+O_{2(g)} \rightarrow 2 \mathrm{NO}_{(g)}$

Answer: B

- View Text Solution

15. Enthalpy of vaporization of water is $186.5 \mathrm{~kJ} / \mathrm{mol}$. What will be the entropy of vaporization of water?
A. $0.5 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
B. $1.0 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
C. $1.5 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
D. $2.0 \mathrm{~J} / \mathrm{K} \mathrm{mol}$

Answer: A

D Watch Video Solution

16. What is the correct from the following for the reaction $\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(g)}$ at $100^{\circ} \mathrm{C}$ and 1 atm. Pressure ?
A. $\Delta E=0$
B. $\Delta H=0$
C. $\Delta H=\Delta E$
D. $\Delta H=T \Delta S$

Answer: D

- Watch Video Solution

17. Given $C_{s}+O_{2(g)} \rightarrow \mathrm{CO}_{2(g)}, \Delta H=-94.2 \mathrm{Kcal}$
$\mathrm{H}_{2(g)}+{ }^{1 / 2} \mathrm{O}_{2(g)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(g)}, \Delta=-68.3 \mathrm{Kcal}$
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}=-210.8 \mathrm{Kcal}$ what will be heat of formation of CH_{4} in (Kcal) ?
A. 47.3 K.Cal
B. 20.0 K. Cal
C. 45.9 K. Cal
D. $-47.3 \mathrm{~K} . \mathrm{Cal}$

- Watch Video Solution

18. Which of the following reaction is endothermic reaction ?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{Fe} S$
C. $\mathrm{NaOH}+\mathrm{HCI} \rightarrow \mathrm{NaCI}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: A

19. Enthalpy of formation of SO_{2} is 298 kJ calculate combustion enthalpy of 4 gm S .
A. +37 kJ
B. -37.25 kJ
C. +298 kJ
D. 18.6 kJ

Answer: B

- View Text Solution

20. $\mathrm{H}^{+}+\mathrm{OH}^{-1} \rightarrow \mathrm{H}_{2} \mathrm{O}+13.7 \mathrm{~K}$ Cal calculate the enthalpy of neutrilisation reaction of 1 mole $\mathrm{H}_{2} \mathrm{SO}_{4}$ with base.
A. 13.7 K. Cal
B. 27.4 K. Cal
C. 6.85 K. Cal
D. $3.425 \mathrm{~K} . \mathrm{Cal}$

Answer: B

21. Fermentation reaction is \qquad
A. Exothermic
B. Endothermic
C. Isothermic
D. Reversible

Answer: A

- Watch Video Solution

22. How many moles of water is produced during combustion of 8 gm of CH_{4} ?
A. 0.5
B. 1
C. 2
D. 18

Answer: B

- Watch Video Solution

23. Which of the following has maximum neutralization enthalpy ?
A. NH_{4} and $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{NH}_{4} \mathrm{OH}$ and HCI
C. KOH and $\mathrm{CH}_{3} \mathrm{COOH}$
D. $K O H$ and $H C I$

Answer: D

24. Which of the following gas has maximum heat of combustion?
A. Methane
B. Ethane
C. Ethelene
D. Acetytene

Answer: B

- Watch Video Solution

25. Calculate the heat produced during neutrilisation reaction of 36.5 gm HCl and 40 gm NaOH .
A. 13.7 K. Cal
B. 108 K. Cal
C. 713.7 K. Cal
D. $76.5 \mathrm{~K} . \mathrm{Cal}$

D Watch Video Solution

26. For which of the following reaction $\Delta H \neq \Delta E$?
A. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
B. $C_{(s)}+O_{2(g)} \Leftrightarrow C O_{2(g)}$
C. $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}$
D. $H C I_{(a q)}+N a O H_{(a q)} \Leftrightarrow N a C I_{(a q)}+H_{2} O_{(l)}$

Answer: C

27. State the unit of molar entropy.
A. Joule/ Kelvin
B. KJ / kelvin mole
C. Joule/Kelvin mole
D. Calory / Kelvin

Answer: C

- View Text Solution

28. Work is not done during the expansion of ideal gas in vacuum. Why ?
A. $q=0$
B. $p=0$
C. $\Delta U=0$
D. $\Delta S=0$

Answer: B

29. $\mathrm{S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+y \mathrm{~kJ}$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+2 x \mathrm{~kJ}$ calculate the enthalpy of formation SO_{2}.
A. $2 x+y$
B. $x+y$
C. $y-2 x$
D. $\frac{y}{2 x}$

Answer: C

- View Text Solution

30. Calculate the enthalpy of formation of CO from the given information.
$C_{(s)}+O_{2(g)} \rightarrow C O_{2(g)}, \Delta H^{\circ}=-x \mathrm{~kJ}$
$2 C O_{(g)}+O_{2(g)} \rightarrow 2 C O_{2(g)}, \Delta H^{\circ}=-y \mathrm{~kJ}$
A. $\frac{2 x-y}{2}$
B. $\frac{y-2 x}{2}$
C. $2 x-y$
D. $y-2 x$

Answer: B

- View Text Solution

31. If $\Delta H>\Delta G$ for the given process, then
A. $q_{\mathrm{rev}}>0$
B. $q_{\mathrm{rev}}=0$
C. $q_{\mathrm{rev}}<0$
D. $q_{\mathrm{rev}} \leq 0$

Answer: A

32. If the system does not lose heat or does not receive heat, then the process is called \qquad
A. Isobaric process
B. Adiabatic process
C. Isothermic process
D. reversible process

Answer: B

- Watch Video Solution

33. Value of ΔG is -ve for ice to water system at \qquad temperature.
A. 260 K
B. 280 K
C. 270 K
D. 250 K

Answer: B

D View Text Solution

34. In which of the following reaction, entropy is decreasing ?
A. Melting of ice
B. Crystalisation of sucrose from solution
C. Vaporisation of camphor
D. Rusting of iron

Answer: B

- Watch Video Solution

35. Conversation of graphite into diamond is reaction.
A. Endothermic
B. Exothermic
C. Heat conductor
D. Electric

Answer: A

D Watch Video Solution

36. Value of C_{v} for mono atomic and diatomic gas are respectively
A. $\frac{1}{2} R, \frac{3}{2} R$
B. $\frac{3}{2} R, \frac{5}{2} R$
C. $\frac{5}{2} R, \frac{7}{2} R$
D. $\frac{3}{2} R, \frac{3}{2} R$

Answer: B

1. is correct for endothermic reaction.
A. $\Delta H<0$
B. $\Delta H>0$
C. $\Delta H=0$
D. $\Delta H \ll 0$

Answer: B

- Watch Video Solution

2. Change in entropy for the expansion of 1 mole ideal gas in vacuum is
A. 1 Joule
B. 2 Joule
C. 10 Joule
D. Zero

Answer: D

- View Text Solution

3. is net state function.
A. Work
B. Enthalpy
C. Internal energy
D. Entropy

Answer: A

4. For the spontaneous reactions
A. $\Delta H=-v e, \Delta S=+v e$
B. $\Delta H=+v e, \Delta S=-v e$
C. $\Delta H=+v e, \Delta S=-v e$
D. $\Delta H=-v e, \Delta S=+v e$

Answer: A

- View Text Solution

5. Standard enthalpy of \qquad is not zero.
A. graphite
B. $N a_{(s)}$
C. $N_{2(l)}$
D. Rhombic sulphur

Answer: C

- View Text Solution

6. For adiabatic change \qquad
A. $\Delta U \neq w_{a d}$
B. $\Delta U>w_{a d}$
C. $\Delta U=w_{a d}$
D. $\Delta U<w_{a d}$

Answer: C

Watch Video Solution

7. Choose the correct option for the reaction given below.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(s)}+6 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}$
A. $\Delta H<\Delta U$
B. $\Delta H>\Delta U$
C. $\Delta H=\Delta U$
D. $\Delta H \leq \Delta U$

Answer: C

- View Text Solution

8. Find the ΔH for the reaction given below.
$P C I_{5(g)} \rightarrow P C I_{3(g)}+C I_{2(g)}$
A. $\Delta U-R T$
B. $\Delta U+2 R T$
C. $\Delta U+R T$
D. $\Delta U-2 R T$
9. The instrument measuring heat changes at constant pressure
A. pH meter
B. calorie meter
C. galvano meter
D. hydro meter

Answer: B

- View Text Solution

10. From below, \qquad is not intensive property.
A. Heat capacity
B. Density
C. Mass

D. Volume

Answer: B

- Watch Video Solution

Section C Multiple Choice Questions Mcqs Mcqs Asked In Competitive Exam

1. is correct for endothermic reaction.
A. Zero
B. $-v e$
C. $+v e$
D. B and C both

Answer: C

2. Which of the following has maximum neutralization enthalpy?
A. NH_{4} and $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{NH}_{4} \mathrm{OH}$ and HCI
C. NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$
D. $N a O H$ and $H C I$

Answer: D

- View Text Solution

3. Combustion enthalpy of carbon, Hydrogen and Methane at $25^{\circ} \mathrm{C}$ temperature are $395.5 \quad \mathrm{KJ} \mathrm{mol}^{1-},-284.8 \quad \mathrm{~kJ} \mathrm{~mol}$ -1 and $-890.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate the standard enthalpy of formation of methane for the same temperature.
A. $890.4 \mathrm{Kj} \mathrm{mol}^{-1}$
B. $-298.8 \mathrm{KJ} \mathrm{mol}^{-1}$
C. $-74.7 \mathrm{KJ} \mathrm{mol}^{-1}$
D. $-107.7 \mathrm{KJ} \mathrm{mol}^{-1}$

Answer: C

- Watch Video Solution

4. Change in entropy for one mole water from liquid from to vapour at 373 K is Joule/ Kelvin. $\left(\Delta H_{\text {vap }}=2.257 \mathrm{KJ} / \mathrm{gm}\right)$
A. 105.9
B. 107.9
C. 108.9
D. 109.9

Answer: C

5. Which of the following is an extensive property?
A. mass
B. volume
C. $\frac{\text { mass }}{\text { volume }}$
D. Enthalpy

Answer: C

6.

For
the
reaction
$C_{3} H_{8(g)}+5 O_{2(g)} \rightarrow 3 C I_{2(g)}+4 H_{2} O_{(l)}, \Delta H-\Delta K=\ldots \ldots$.
A. $R T$
B. $-3 R T$
C. $3 R T$
D. $-R T$

D View Text Solution

7. has given $\Delta G=\Delta H-T \Delta S$.
A. Faraday
B. Kirchof
C. Einstein
D. Gibs helm holtz

Answer: D

- Watch Video Solution

8. Change in entropy during adsorption of gas on the solid substance is \qquad
A. Increasing
B. decreasing
C. constant
D. infinite

Answer: B

- Watch Video Solution

9. When 1 mole Zn powder is reacted with 1 mole sulphuric acid in bomb calorimeter (closed isolated system),
A. $\Delta U<0, w=0$
B. $\Delta U>0, w=0$
C. $\Delta U<0, w<0$
D. $\Delta U>0, w>0$
10. Change in enthalpy during neutralization reaction of one mole HCl with dilute KOH at 298 K is KJ
A. 68
B. 56
C. 50
D. 65

Answer: B

- View Text Solution

11. If $K<1, \Delta G^{\circ}=\ldots \ldots$.
A. $+v e$
B. $-v e$
C. Zero
D. 1

Answer: A

D View Text Solution

12. Which of the following statement is correct for the spontaneous reaction?
A. Entropy of the system is always increased.
B. Free energy of the system is always increased.
C. Total entropy change is always negative.
D. Total entropy change is always positive

Answer: D

13. $723 \mathrm{KJ} \mathrm{mol}^{-1}$ heat is released when 1 molemethanol combustions in present of O_{2}. What amount of heat is enlisted of one mole of O_{2} is used?
A. 241 kJ
B. 723 kJ
C. 482 kJ
D. 924 KJ

Answer: C

- Watch Video Solution

14. Hess.s Law of integrate enthalpy is related to.
A. change in enthalpy of reaction.
B. rate of reaction.
C. equilibriums constant.
D. effect of pressure an the volume of gas.

Answer: A

- Watch Video Solution

15. For a reaction $\Delta H=3 \mathrm{KJ}$ and $\Delta S=10 \mathrm{~J} / \mathrm{Kelvin}$ at what temperature the reaction will be spontaneous?
A. 300 K
B. 200 K
C. 273 K
D. 373 K

Answer: D

- Watch Video Solution

16. Which one of the following is related to thermodynamic equilibrium ?
A. All of above
B. Thermal equilibrium
C. equilibriums. of pressure
D. Chemical equilibrium

Answer: B

- View Text Solution

17. Which one of the following is the isobaric process?
A. $\Delta H=0$
B. $\Delta E=0$
C. $\Delta P=0$
D. $\Delta Q=0$

Answer: C

- Watch Video Solution

18. For the spontaneous reaction at each temperature \qquad
A. $\Delta G-v e, \Delta H+v e$ and $\Delta S+v e$
B. $\Delta G+v e, \Delta H-v e$ and $\Delta S+v e$
C. $\Delta G-v e, \Delta H-v e$ and $\Delta S-v e$
D. $\Delta G-v e, \Delta H-v e$ and $\Delta S+v e$

Answer: D

- Watch Video Solution

19. Combustion enthalpy of carbon is .-x. kJ, Enthalpy of formation of water is .-y. kJ and combustion enthalpy of methane is .-z. kJ calculate the enthalpy of formation of methane.
A. $(-x-y+z)$ kJ
B. $(-z+2 y-x) \mathrm{kJ}$
C. $(-x-2 y+z)$ kJ
D. ${ }^{\prime}(-x-2 y-z) k J$

Answer: C

- Watch Video Solution

20. Which one of the following has maximum entropy?
A. Hg
B. Diamond
C. $N_{2(l)}$
D. $H_{2(g)}$

Answer: D

21. An exothermic reaction is spontaneous reaction \qquad is correct from the following.
A. $\Delta G>0$
B. $\Delta S<0$
C. $\Delta S>0$
D. $\Delta H<0$

Answer: C

- View Text Solution

22. What will be the value of ΔG for the ice at $8^{\circ} \mathrm{C}$ temperature?
A. zero
B. $+v e$
C. $-v e$
D. one

Answer: C

- View Text Solution

23. Ice cube is melting at the room temperature this reaction belongs to which law of ?
A. Zero ${ }^{\text {th }}$ Law
B. Third Law
C. First Law
D. Second Law

Answer: C

24. Combustion enthalpies of methane and ethane are $-210 k . \mathrm{cal} \mathrm{mol}^{-1}$ and $-368 k . \mathrm{cal} \mathrm{mol}^{-1}$. Combustion enthalpy of Decane is \qquad .
A. -158 k . cal
B. $-1632 \mathrm{k} . \mathrm{cal}$
C. $-1700 \mathrm{k} . \mathrm{cal}$
D. given mettre is not complete

Answer: B

- Watch Video Solution

25. For the gaseous reaction, at 300 K temperature, value of
$\Delta H-\Delta U=-4.98 \mathrm{KJ} .$, Then $\Delta n_{(g)}=\ldots .$.
A. 1
B. 2
C. -2
D. 0

- Watch Video Solution

26. For the reaction $298 \mathrm{~K} \quad A_{(g)}+B_{(g)} \rightarrow C_{(g)} \quad$ at $298 K, \Delta U=-5 \mathrm{cal}$ and $\Delta S=-10 \mathrm{cal} K^{-1}$. Delta $\mathrm{G}=\ldots$. "cal".
A. 2612
B. 2379
C. 261.2
D. -2612

Answer: B

27. According to the first law of thermodynamics, which of the following shows change in state function?
A. q_{rev}
B. $q_{\mathrm{rev}}-w_{\mathrm{rev}}$
C. $q_{\mathrm{rev}} / w_{\mathrm{rev}}$
D. w_{rev}

Answer:

- View Text Solution

28. Standard entropies of x_{2}, y_{2} and $x y_{3}$ are 60,40 and $50 \mathrm{~J} / \mathrm{K} \mathrm{mol}^{-1}$ respectively for the reaction $\frac{1}{2} x_{2}+\frac{3}{2} y_{2} \rightarrow x y_{3}, \Delta H=-30 \mathrm{~kJ}$ to be at equilibrium the temperature should be.
A. 500 K
B. 750 K
C. 1000 K
D. 1250 K

Answer: B

- Watch Video Solution

29. When water freezed to ice, entropy \qquad
A. Increases
B. Decreases
C. Constant
D. Zero

Answer: B

- Watch Video Solution

30. Standard enthalpy of formation is zero for from following
A. $F_{2(g)}$
B. $F_{(g)}$
C. $H F_{(a q)}$
D. $F_{(q)}^{-}$

Answer: A

- View Text Solution

31. Thermodynamically stable form of C is \qquad
A. Graphite
B. Diamond
C. Fulerenl
D. Cock

D View Text Solution

32. $N H_{3}+3 C I_{2} \Leftrightarrow N C I_{3}+3 H C I,-\Delta H_{1}$
$N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3},-\Delta H_{2}$

$$
H_{2}+C I_{2} \Leftrightarrow r 2 H C I, \Delta H_{3}
$$

Calculate the enthalpy of formation of NCI_{3}
A. $\Delta H_{f}=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=-\Delta H_{2}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
C. $\Delta H_{f}=-\Delta H_{2}+\frac{-\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
D. none of above

Answer: D

- View Text Solution

33. Work done is when 3 moles of ideal gas is expand in vacuum.
A. $+v e$
B. $-v e$
C. zero
D. can not cecide

Answer: C

D View Text Solution

34. Which of the following is an extensive property?
A. Molar conductivily
B. Electro motive force
C. Resistance
D. Heat capacity

D Watch Video Solution

35. Calculate the work, when 1 mole ideal gas defuse to 1 atm from 10 atm at 300. K temperature.
A. 5744.1 J
B. 6257.2 J
C. 4938.8 J
D. 4138.8 J

Answer: A

D Watch Video Solution

36. At 300 K one mole ideal gas is expand freely to 100 liter from 10 liter. If $\Delta U=0$, then $\Delta H=\ldots \ldots$.
A. 20 kJ
B. 200 KJ
C. -200 KJ
D. 0

Answer: D

- View Text Solution

37. Dissociation enthalpy of diatomic molecules $X Y, X_{2}$ and Y_{2} are too in the ratio of $1: 1: 0.5$ the value. Enthalpy of formation of $X Y . \Delta_{f} H=-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Final the dissociation enthalpy of X_{2} ?
A. $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: D

D Watch Video Solution

38. Which of the following is not correct ?
A. $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T$
B. $w_{\text {rev. }}=-n R T \ln \frac{V_{f}}{V_{i}}$
c. $\ln K=\frac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}$
D. $K=e^{-\Delta G^{\circ} / R T}$

Answer: C

- View Text Solution

39. Standard enthalpy of formation of $H_{2(g)}, C I_{2(g)}$ and $H C I_{(g)}$ are 218, 121.68 and $-92.31 \mathrm{KJ} /$ mole respectively. Calculate the change in
standard enthalpy for the reaction
$\frac{1}{2} H_{2(g)}+\frac{1}{2} C I_{(g)} \rightarrow H C I_{(g)}$
A. +431.99 kJ
B. -262.14 kJ
C. -431.99 kJ
D. +247.37 kJ

Answer: B

- Watch Video Solution

40. is done, when 50 gm of Fe is reacted with HCl in open vessel at $25^{\circ} \mathrm{C}$ temperature.
A. zero
B. -2.2 kJ
C. 2.2 kJ

Answer: B

- View Text Solution

41. Bond enthalpy of $\mathrm{C}-\mathrm{H}$ bond is $350 \mathrm{~kJ} / \mathrm{mol}$. Calculate the bond enthalpy of $C \equiv C$ bond in $C_{2} H_{2}$.
$2 C_{(s)}+H_{2(g)} \rightarrow C_{2} H_{2(g)}, \Delta H=225 \mathrm{~kJ} / \mathrm{mol}$
$2 C_{(s)} \rightarrow 2 C_{(g)}, \quad \Delta H=1410 \mathrm{~kJ} / \mathrm{mol}$
$H_{2(g)} \rightarrow 2 H_{(g)}, \quad \Delta H=330 \mathrm{~kJ} / \mathrm{mol}$
A. $1165 \mathrm{~kJ} / \mathrm{mol}$
B. $837 \mathrm{~kJ} / \mathrm{mol}$
C. $865 \mathrm{~kJ} / \mathrm{mol}$
D. $815 \mathrm{~kJ} / \mathrm{mol}$

Answer: D

42. Same volume of two monoatomic gases A and B is mixed at same temperature. Is $\frac{C_{p}}{C_{v}}=\ldots \ldots \ldots$.
A. 0.83
B. 1.67
C. 3.3
D. 3.30

Answer: B

- Watch Video Solution

43. Statements and reasons are given. Choose the correct option form the following. (Q.43, 44, 45)

Statement : Enthalpy of formation of gaseous oxygen molecule is zero at 1 atm pressure and 298 K .

Reason : Enthalpy of formation of oxygen molecule is zero for the same situation.
A. Statement and reason both are correct and correct explanation of statement is given by reason.
B. Statement and reason both are correct but correct explanation of statement is not given by reason.
C. Statement is correct but reason is wrong.
D. Statement and reason both are wrong.

Answer: C

- View Text Solution

44. Statements and reasons are given. Choose the correct option form the following. (Q.43, 44, 45)

Statement : Chlorine gas become solid at absolute zero temperature but
its entropy will be zero.

Reason : Chlorine has strong small and its difficult to correct it into solid.
A. Statement and reason both are correct and correct explanation of statement is given by reason.
B. Statement and reason both are correct but correct explanation of statement is not given by reason.
C. Statement is correct but reason is wrong.
D. Statement and reason both are wrong.

Answer: B

- View Text Solution

45. Statements and reasons are given. Choose the correct option form the following. ($\mathrm{Q} .43,44,45$)

Statement : Absorbed energy becomes zero when ideal gas is expand in
vacuum. in isothermic process.

Reason : Volume occupied by molecules is zero.
A. Statement and reason both are correct and correct explanation of statement is given by reason.
B. Statement and reason both are correct but correct explanation of statement is not given by reason.
C. Statement is correct but reason is wrong.
D. Statement and reason both are wrong.

Answer: C

- View Text Solution

Section C Multiple Choice Questions Mcqs Mcqs Asked In Jee Neet Aiee

1. Given that bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{Cl}-\mathrm{Cl}$ are $430 \mathrm{~kJ} / \mathrm{mol}^{-1}$ and $240 \mathrm{~kJ} / \mathrm{mol}^{-1}$ respectively and ΔH_{f} for $H C I$ is
$-90 \mathrm{~kJ} / \mathrm{mol}^{-1}$, bond enthalpy of HCl is
A. $380 \mathrm{~kJ} / \mathrm{mol}$
B. $425 \mathrm{~kJ} / \mathrm{mol}$
C. $245 \mathrm{~kJ} / \mathrm{mol}$
D. $290 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- View Text Solution

2. Which of the following is not a state functions?
A. (i) and (iv)
B. (ii), (iii) and (iv)
C. (i), (ii) and (iii)
D. (ii) and (iii)

Answer: D

Watch Video Solution

3. For the gas phase reaction,
$P C I_{5(g)} \Leftrightarrow P C I_{3(g)}+C I_{2(g)}$
Which of the following conditions are correct ?
A. $\Delta H=0$ and $\Delta S<0$
B. $\Delta H>0$ and $\Delta S>0$
C. $\Delta h<0$ and $\Delta S<0$
D. $\Delta H>0$ and $\Delta S<$

Answer: B

- Watch Video Solution

4. Bond dissociation enthalpy of $\mathrm{H}_{2}, \mathrm{CI}_{2}$ and HCI are 434,242 and $431 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Enthalpy of formation of HCl is
A. $93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $245 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- View Text Solution

5. The values of ΔH and ΔS for the reaction,
$C_{\text {(graphite) }}+\mathrm{CO}_{2(g)} \rightarrow 2 \mathrm{CO}_{(g)}$ are 170 kJ and $170 \mathrm{JK}^{-1}$, respectively. This reaction will be spontaneous at
A. 910 K
B. 1110 K
C. 510 K
D. 710 K

Answer: B

- Watch Video Solution

6. Standard entropies of x_{2}, y_{2} and $x y_{3}$ are 60,40 and $50 \mathrm{~J} / \mathrm{K} \mathrm{mol}^{-1}$ respectively for the reaction $\frac{1}{2} x_{2}+\frac{3}{2} y_{2} \rightarrow x y_{3}, \Delta H=-30 \mathrm{~kJ}$ to be at equilibrium the temperature should be.
A. 750 K
B. 1000 K
C. 1250 K
D. 500 K

Answer: A

7. For vapourisation of water at 1 atm,values of $\Delta H \& \Delta S$ are $40.6 \mathrm{Kjmol}^{-1}$ and $108 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively will be. The temperature when 'DeltaG for this transition zero is :-
A. 293.4 K
B. 273.4 K
C. 393.4 K
D. 373.4 K

Answer: D

- Watch Video Solution

8. The following two reactions are known :
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(g)} \rightarrow \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(g)}, \Delta H==-26.8 \mathrm{~kJ}$
$\mathrm{FeO}_{(s)}+\mathrm{CO}_{(g)} \rightarrow \mathrm{Fe}_{(s)}+\mathrm{CO}_{2(g)}, \Delta H=-16.5 \mathrm{~kJ}$
The value ΔH for the following reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{CO}_{(g)} \rightarrow 2 \mathrm{FeO} \mathrm{O}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$ is
A. +6.2 kJ
B. +10.3 kJ
C. -43.3 kJ
D. -10.3 kJ

Answer: A

D Watch Video Solution

9. If the enthalpy change for the transition of liquid water to steam is 30 $\mathrm{kJ} / \mathrm{mol}{ }^{-1}$ at $27^{\circ} \mathrm{C}$, the entropy change for the process would be :
A. $10 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
B. $1.0 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
C. $0.1 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
D. $100 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
10. For complete combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}+3 \mathrm{O}_{2(g)} \rightarrow 2 \mathrm{CO}_{2(g)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)}$, the amount of heat produced as measured in bomb calorimeter is $1364.47 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$. Assuming ideality the Enthalpy of combustion, $\Delta_{C} H$, for the reaction will be :
$\left(R=8.314 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
A. $-1460.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-1350.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-1366.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-1361.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

11. The following reaction is performed at 298 K .

$$
2 N O_{(g)}+O_{2(g)} \Leftrightarrow 2 N O_{2(g)}
$$

The standard free energy of formation of $N O_{(g)}$ is $86.6 \mathrm{~kJ} / \mathrm{mol}$ at 298 K . What is the standard free energy of formation of $\mathrm{NO}_{2(\mathrm{~g})}$ at 298 K ?

$$
\left(K_{p}=1.6 \times 10^{12}\right)
$$

A. $R(298) \operatorname{In}\left(1.6 \times 10^{12}\right)-86600$
B. $86600+R(298) \operatorname{In}\left(1.6 \times 10^{12}\right)$
C. $86600-\frac{\operatorname{In}\left(1.6 \times 10^{12}\right)}{R(298)}$
D. $0.5\left[2 \times 86600-R(298) \operatorname{In}\left(1.6 \times 10^{12}\right)\right.$

Answer: D

- View Text Solution

12. The standard Gibbs energy change at 300 K for the reaction $2 A \Leftrightarrow B+C$ is 2494.2 J . At a given time, the composition of the reaction
mixture is $[A]=\frac{1}{2},[B]=2$ and $[C]=\frac{1}{2}$. The reaction proceeds in the
$:[R=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}, e=2.718]$
A. forward direction because $Q>K_{C}$
B. reverse direction because $Q>K_{C}$
C. forward direction because $Q<K_{C}$
D. reverse direction because $Q<K_{C}$

Answer: B

- Watch Video Solution

13. Which of the following statements is correct for a reversible process in a state of equilibrium ?
A. $\Delta G=-2.303 \mathrm{RT} \log \mathrm{K}$
B. $\Delta G=2.30 \mathrm{RT} \log \mathrm{K}$
C. $\Delta G^{\circ}=-2.30 \mathrm{RT} \log \mathrm{K}$
D. $\Delta G^{\circ}=2.30 \mathrm{RT} \log \mathrm{K}$

Answer: C

- Watch Video Solution

14. Which of the following species contains equal number of $\sigma-$ and $\pi-$ bonds?
A. HCO_{3}^{-}
B. XeO_{4}
C. $(C N)_{2}$
D. $\mathrm{CH}_{2}(\mathrm{CN})_{2}$

Answer: B

- Watch Video Solution

15. The heat of combustion of carbon to CO_{2} is $-393.5 \mathrm{~kJ} / \mathrm{mol}$. The heat released upon formation of 35.2 g of CO_{2} from carbon and oxygen gas is
A. -630 kJ
B. $-3.15 k J$
C. -315 KJ
D. $+315 k J$

Answer: D

- View Text Solution

16. For the spontaneous reaction at each temperature \qquad
A. $\Delta H>O$ and $\Delta S<O$
B. $\Delta H<O$ and $\Delta S>O$
C. $\Delta H<O$ and $\Delta S<O$
D. $\Delta H<O$ and $\Delta S=O$

Answer: B::D

- Watch Video Solution

17. For a sample of perfect gas when its pressure is changed isothermally from P_{i} to P_{f} the entropy change is given by
A. $\Delta S=n R T \operatorname{In}\left(\frac{P_{f}}{P_{i}}\right)$
B. $\Delta S=R T \operatorname{In}\left(\frac{P_{i}}{P_{f}}\right)$
C. $\Delta S=n R \operatorname{In}\left(\frac{P_{f}}{P_{i}}\right)$
D. $\Delta S=n R \operatorname{In}\left(\frac{P_{i}}{P_{f}}\right)$

Answer: D

- Watch Video Solution

18. If the $E_{\text {cell }}^{\circ}$ for a given reaction has a negative value, which of the following gives the correct relationships for the values of ΔG° and $K_{e q}$?
A. $\Delta G^{\circ}<0, K_{e q}>1$
B. $\Delta G^{\circ}<0, K_{e q}<1$
C. $\Delta G^{\circ}>0, K_{e q}<1$
D. $\Delta G^{\circ}>0, K_{e q}>1$

Answer: C

- View Text Solution

19. If $\Delta H=35.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta S=83.6 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. At what temperature the reaction will be spontaneous?
A. $T>425 K$
B. Each temperature
C. $T<298 \mathrm{~K}$
D. $T<425 K$

Answer: A

- Watch Video Solution

Section C Multiple Choice Questions Mcqs Mcqs Asked In Board Exam

1. Which of the following reaction is incorrect according to thermodynamics ?
A. $\Delta G^{\circ}=-n F E^{\circ}$
B. $\Delta H=\Delta E+P \Delta V$
C. $K=e^{-\Delta G / R T}$
D. $\Delta G=\Delta H+T \Delta S$

Answer: D

2. What will be value of ΔG° for ice at 298 K temperature?
A. $-v e$
B. 0
C. none of these
D. $+v e$

Answer: A

- View Text Solution

3. Which of the following option is correct for the given equation ?
$4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
A. $\Delta H=\Delta U$
B. $\Delta H<\Delta U$
C. $\Delta U>\Delta U$
D. $\Delta H \neq \Delta U$

Answer: C

- View Text Solution

4. If the change in entropy at 353 K is $0.087 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for benzene. Then calculate the heat of vapourisation.
A. $-6.96 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $6.96 \mathrm{kJmol}^{-1}$
C. $-30.711 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $30.711 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: D

- View Text Solution

5. The change in free energy during working of pencil cell is -1372.58 cal.

Calculate the equilibrium constant of the cell under standard condition $\left(R=2 \mathrm{cal} \mathrm{mol}^{-1} K^{-1}\right)$
A. 1.00×10^{5}
B. 1.00×10^{2}
C. 1.00×10^{10}
D. 1.00×10^{1}

Answer: B

- View Text Solution

6. For which reaction ΔS can be maximum if it is occuring at constant volume?
A. $N_{2(g)}+O_{2(g)} \rightarrow 2 N O_{(g)}$
B. $\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
C. $C_{(s)}+O_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$
D. $M g_{(s)}+\frac{1}{2} O_{2(g)} \rightarrow M g O_{(s)}$

Answer: B

- View Text Solution

7. There is change in volume of an ideal gas when pressure is changed at constant temperature. The change in free energy associated with this can be calculated by which of the following equation ?
A. $\Delta G=R T \operatorname{In} \frac{P_{2}}{P_{1}}$
B. $\Delta G=-2.303 R T \log \frac{P_{2}}{P_{1}}$
C. $\Delta G=n R T \operatorname{In} \frac{V_{2}}{V_{1}}$
D. $\Delta G=n R T \operatorname{In} \frac{P_{2}}{P_{1}}$

Answer: D

8. A system receives 100 calory heat at that time 50 calory work is done by
system. Calculate the change in internal energy.
A. -150 Joule
B. 50 Joule
C. -50 Joule
D. 150 Joule

Answer: B

- Watch Video Solution

9. In which phenomenon Entropy decreases ?
A. Melting of ice
B. Crystallisation of salt
C. Evaporation of liquid
D. Diffusion

Answer: B

- View Text Solution

10. If substance is completely pure crystalline at 273 K , which of the following state function will be zero at 273 K ?
A. Free energy
B. Entropy
C. Enthalpy
D. All the given

Answer: B

- Watch Video Solution

11. Which of the following is an extensive property?
A. Boiling point
B. Elevation in boiling point
C. Density
D. Fluidity

Answer: B

- Watch Video Solution

12. For a reaction value of K_{c} is 7.105×10^{-5}, what will be the change in free energy?
A. $\Delta G>0$
B. $\Delta G<0$
C. $\Delta G=0$
D. $\Delta G=1$

D View Text Solution

13. Joule $K^{-1} \mathrm{gm}^{-1}$ is the unit of
A. Entropy
B. Enthalpy
C. Specific heat capacity
D. All the given

Answer: C

- View Text Solution

14. For the given equation
$4 \mathrm{NH}_{3(g)}+50_{2(g)} \Leftrightarrow 4 N O_{(g)}+6 \mathrm{H}_{2} O_{(l)}$
Select the correct option for change in Enthalpy.
A. $\Delta U+R T$
B. $\Delta U+5 R T$
C. $\Delta U-R T$
D. $\Delta U-5 R T$

Answer: D

- Watch Video Solution

15. By mixing aqueous solutions of silver nitrate and ammonium chloride in a test tube, white precipitates are formed. In this process, test tube is
A. universe
B. surrounding
C. borderline of the system
D. system

Answer: C

D View Text Solution

16. What will be the value of K and ΔG° for the process of transformation of ice into water at room temperature ?
A. $K=1, \Delta G^{\circ}$ Zero
B. $K<1, \Delta G^{\circ}$ positive
C. $K>1, \Delta G^{\circ}$ positive
D. $K>1, \Delta G^{\circ}$ negative

Answer: D

D View Text Solution

17. Which law of thermodynamics gives information about exact entropy of a substance ?
A. Zeroth Law
B. Second Law
C. Third Law
D. First Law

Answer: B

- View Text Solution

18. The level of thermal energy in a substance is known as
A. Entropy
B. Temperature
C. Heat energy
D. Quantity of Heat

Answer: B

19. Which of the following statements is correct for absolute entropy of a substance?
A. It is shown as S°.
B. It is the entropy of 1 mole of substance at constant temperature and standard state.
C. Its unit is Joule Kelvin Mole ${ }^{-1}$.
D. It is the entropy of 1 mole of substance.

Answer: B

- View Text Solution

20. Water always flows from higher level to lower level on its own. Which of the following statement is correct for this phenomena?
A. Free energy increases
B. Entropy decreases
C. Free energy decreases
D. Entropy increases

Answer: C

- View Text Solution

21. If the values of $\Delta_{f} H^{\circ}$ for $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ are -188 and $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$, then the value of $\Delta H^{\circ}=\ldots \mathrm{kJ} / \mathrm{mol}$ for the following reaction - $2 \mathrm{H}_{2} \mathrm{O}_{2(l)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2(g)}$
A. -494
B. -196
C. -98
D. +196

Answer: B

22. What will be the work done by the system when one mole of an ideal gas expands in vacuum ?
A. Zero
B. 1 Joule
C. 2 Joule
D. 3 Joule

Answer: A

- View Text Solution

23. During adiabatic process, the system \qquad
A. gains energy
B. loses energy
C. loses mass
D. neither gains nor loses energy

Answer: D

- View Text Solution

24. Which of the following has standard Enthalpy value not equal to zero ?
A. Rhombic Sulphur
B. Graphite
C. $O_{2(l)}$
D. $N a_{(s)}$

Answer: C

- View Text Solution

25. The reaction $A \rightarrow B$ is impossible, if.
A. ΔH positive, ΔS positive but $\Delta H<T \Delta S$
B. ΔH positive, ΔS negative but $\Delta H>T \Delta S$
C. ΔH negative, ΔS positive.
D. ΔH positive, ΔS negative, $\Delta G=\Delta H-T \Delta S$

Answer: B::D

- View Text Solution

26. Heat of vaporization of benzene is $7350 \mathrm{cal}^{-1} \mathrm{~mol}^{-1}$. Calculate the change in entropy for converting 1 mole gaseous benzene to liquid benzene at $77^{\circ} \mathrm{C}$.
A. 21 calorie $K^{-1} \mathrm{~mol}^{-1}$
B. -21 calorie $K^{-1} \mathrm{~mol}^{-1}$
C. -21 calorie K^{-1}
D. 21calorie K^{-1}

Answer: B

- Watch Video Solution

Section D Solutions Of Ncert Exemplar Problems Multiple Choice Questions Mcqs

1. Thermodynamics is not concerned about
A. change in energy involved in a chemical reaction.
B. the extent to which a chemical reaction proceeds.
C. the rate at which a reaction proceeds.
D. the feasibility of a chemical reaction.

Answer: C

2. Which of the following statements is correct ?
A. The presence of reacting species in a covered beaker is an example of open system.
B. There is an exchange of energy as well as matter between the system and the surroundings in a closed system.
C. The presence of reactants in a closed vessel made up of copper is an example of a closed system.
D. The presence of reactants in a thermos flask or any other closed insulated vessel is an example of a closed system.

Answer: C

- Watch Video Solution

3. The state of a gas can be described by quoting the relationship between
A. pressure, volume, temperature
B. temperature, amount, pressure
C. amount, volume, temperature
D. pressure, volume, temperature, amount

Answer: D

- Watch Video Solution

4. The volume of gas is reduced to half from its original volume. The specific heat will be
A. reduce to half
B. be doubled
C. remain constant
D. increase four times

Answer: C

5. During complete combustion of one mole of butane, 2658 kJ of heat is released. The thermochemical reaction for above change is
A.

$$
2 C_{4} H_{10(g)}+13 O_{2(g)} \rightarrow 8 \mathrm{CO}_{2(g)}+10 \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta_{c} H=-2658.0 \mathrm{~kJ}
$$

B.

$$
C_{4} H_{10(g)}+\frac{13}{2} O_{2(g)} \rightarrow 4 C_{2(g)}+5 \mathrm{H}_{2} O_{(l)}, \Delta_{c} H=-1329.0 \mathrm{~kJ}
$$

C.

$$
C_{4} H_{10(g)}+\frac{13}{2} O_{2(g)} \rightarrow 4 \mathrm{CO}_{2(g)}+5 \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta_{c} \mathrm{H}=-2658.0 \mathrm{~kJ}
$$

D.

$$
C_{4} H_{10(g)}+\frac{13}{2} O_{2(g)} \rightarrow 4 \mathrm{CO}_{2(g)}+5 \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta_{c} H=+2658.0 \mathrm{~kJ}
$$

Answer: C

6. $\Delta_{C} U^{\Theta}$ of formation of $C H_{4(g)}$ at certain temperature is $-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of $\Delta_{f} H^{\Theta}$ is
A. zero
B. $<\Delta_{f} U^{\Theta}$
C. $>\Delta_{f} U^{\Theta}$
D. equal to $\Delta_{f} U^{\Theta}$

Answer: B

- View Text Solution

7. In an adiabatic process, no transfer of heat takes place between the system and surroundings. Choose the correct option for free expansion of an ideal gas under adiabatic condition from the following.
A. $q=0, \Delta T \neq 0, W=0$
B. $q \neq 0, \Delta T=0, W=0$
C. $q=0, \Delta T=0, W=0$
D. $q=0, \Delta T<0, W \neq 0$

Answer: C

- View Text Solution

8. The pressure-volume work for an ideal gas can be calculated by using the expression $W=-\int_{V_{i}}^{V_{f}} P_{e x} d V$. The work can also be calculated from the pV - plot by using the area under the curve within the specified limits. When an ideal gas is compressed (A) reversibly or (B) irreversibly from volume V_{i} to V_{f}. choose the correct option.
A. W (reversible) = W (irreversible)
B. W (reversible) It W (irreversible)
C. W (reversible) gt W (irreversible)
D. W (reversible) $=\mathrm{W}$ (irreversible) $+P_{e x} . \Delta V$

Answer: B

D View Text Solution

9. The entropy change can be calculated by using the expression $\Delta S=\frac{q_{\mathrm{rev}}}{T}$. When water freezes in a glass beaker, choose the correct statement amongst the following :
A. ΔS (system) decreases but ΔS (surroundings) remains the same.
B. ΔS (system) increases but tiS (surroundings) decreases.
C. ΔS (system) decreases but ΔS (surroundings) increases.
D. ΔS (system) decreases and ΔS (surroundings) also decreases.

Answer: C

- Watch Video Solution

10. On the basis of thermochemical equations (1), (2) and (3), find out which of the algebraic relationships given in options (A) to (D) is correct.
(1) $C_{(\text {graphite })}+O_{2(g)} \rightarrow C O_{2(g)}, \Delta_{r} H=x \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $C_{(\text {graphite })}+\frac{1}{2} O_{2(g)} \rightarrow C O_{(g)}, \Delta_{r} H=y \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $\mathrm{CO}_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{(g)}, \Delta_{r} H=z \mathrm{~kJ} \mathrm{~mol}^{-1}$
A. $z=x+y$
B. $x=y-z$
C. $x=y+z$
D. $y=2 x-z$

Answer: C

- Watch Video Solution

11. Consider the reactions given below. On the basis of these reactions find out which of the algebraic relations given in options (A) to (D) is correct?
(1) $C_{(g)}+4 H_{(g)} \rightarrow C H_{4(g)}, \Delta_{r} H=x \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $C_{(\text {graphite })}+2 H_{2(g)} \rightarrow C H_{4(g)}, \Delta_{r} H=\mathrm{y} \mathrm{kJ} \mathrm{mol}^{-1}$
A. $x=y$
B. $x=2 y$
C. $x>y$
D. $x<y$

Answer: C

- View Text Solution

12. The enthalpies of elements in their standard states are taken as zero.

The enthalpy of formation of a compound
A. is always negative
B. is always positive
C. may be positive or negative
D. is never negative

Answer: C

- Watch Video Solution

13. Enthalpy of sublimation of a substance is equal to
A. enthalpy of fusion+ enthalpy of vaporisation
B. enthalpy of fusion
C. enthalpy of vaporisation
D. twice the enthalpy of vaporisation

Answer: A

- Watch Video Solution

14. Which of the following is not correct ?
A. ΔG is zero for a reversible reaction
B. ΔG is positive for a spontaneous reaction
C. ΔG is negative for a spontaneous reaction
D. ΔG is positive for a non-spontaneous reaction

Answer: B

- Watch Video Solution

Section D Solutions Of Ncert Exemplar Problems Mcqs More Than One Options

1. Thermodynamics mainly deals with
A. interrelation of various forms of energy and their transformation from one form to another.
B. energy changes in the processes which depend only on initial and final states of the microscopic systems containing a few molecules.
C. how and at what rate these energy transformations are carried out.
D. the system in equilibrium state or moving from one equilibrium state to another equilibrium state.

Answer: A: D

- Watch Video Solution

2. In an exothermic reaction, heat is evolved, and system loses heat to the surrounding. For such system
A. q_{p} will be negative
B. $\Delta_{r} H$ will be negative
C. q_{p} will be positive
D. $\Delta_{r} H$ will be positive

Answer: A::B

3. The spontaneity means, having the potential to proceed without the assistance of external agency. The processes which occur spontaneously are
A. flow of heat from colder to warmer body
B. gas in a container contracting into one corner.
C. gas expanding to fill the available volume
D. burning carbon in oxygen to give carbon dioxide.

Answer: C::D

- Watch Video Solution

4. For an ideal gas, the work of reversible expansion under isothermal condition can be calculated by using the expression $W=n R T \operatorname{L} n \frac{V_{f}}{V_{i}}$. A sample containing 1.0 mol of an ideal gas is expanded isothermally and reversibly to ten times of its original volume, in two separate
experiments. The expansion is carried out at 300 K and at 600 K respectively. Choose the correct option.
A. Work done at 600 K is 20 times the work done at 300 K .
B. Work done at 300 K is twice the work done at 600 K .
C. Work done at 600 K is twice the work done at 300 K .
D. $\Delta U=0$ in both cases.

Answer: C::D

- View Text Solution

5. Consider the following reaction between zinc and oxygen and choose the correct options out of the options given below :
$2 \mathrm{Zn}_{(s)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{ZnO}_{(s)}, \Delta H=-693.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
A. The enthalpy of two moles of ZnO is less than the total enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ .
B. The enthalpy of two moles of ZnO is more than the total enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ .
C. $693.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ energy is evolved in the reaction.
D. $693.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ energy is absorbed in the reaction.

Answer: A:C

- View Text Solution

Section D Solutions Of Ncert Exemplar Problems Short Answer Type Questions

1. 18.0 g of water completely vaporises at $100^{\circ} \mathrm{C}$ and 1 bar pressure and the enthalpy change in the process is $40.79 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What will be the enthalpy change for vapourising two moles of water under the same conditions ? What is the standard enthalpy of vapourisation for water ?
2. One mole of acetone requires less heat to vaporise than 1 mol of water.

Which of the two liquids has higher enthalpy of vaporisation?

- Watch Video Solution

3. Standard molar enthalpy of formation, $\Delta_{f} H^{\Theta}$ is just a special case of enthalpy of reaction, $\Delta_{r} H^{\Theta}$. Is the $\Delta_{r} H^{\Theta}$ for the following reaction same as $\Delta_{f} H^{\Theta}$? Give reason for your answer.
$\mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)} \rightarrow \mathrm{CaCO}_{3(s)}, \Delta_{f} H^{\Theta}=-178 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- View Text Solution

4. The value of $\Delta_{f} H^{\Theta}$ for $N H_{3}$ is $-91.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate enthalpy change for the following reaction:
$2 \mathrm{NH}_{3(g)} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$

- Watch Video Solution

5. Enthalpy is an extensive property. In general, if enthalpy of an overall reaction $A \rightarrow B$ along one route is $\Delta_{r} H$ and $\Delta_{r} H_{1}, \Delta_{r} H_{2}, \Delta_{r} H_{3} \ldots$. represent enthalpies of intermediate reactions leading to product B. What will be the relation between $\Delta_{r} H$ for overall reaction and $\Delta_{r} H_{1}, \Delta_{r} H_{2} \ldots \ldots$. etc. for intermediate reactions.

- View Text Solution

6. The enthalpy of atomisation for the reaction $C H_{4(g)} \rightarrow C_{(g)}+4 H_{(g)}$ is $1665 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the bond energy of $C-H$ bond?

- Watch Video Solution

7. Use the following data to calculate $\Delta_{\text {lattice }} H^{\Theta}$ for $N a B r . \Delta_{\text {sub }} H^{\Theta}$ for sodium metal $=108.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, ionization enthalpy of sodium $=496 \mathrm{~kJ} \mathrm{~mol}^{-1}$, electron gain enthalpy of bromine $=-325 \mathrm{~kJ} \mathrm{~mol}^{-1}$, bond dissociation enthalpy of bromine $=192 \mathrm{~kJ} \mathrm{~mol}^{-1} \Delta_{f} H^{\Theta}$ for $N a B r_{(s)}=-360.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- View Text Solution

8. Given that $\Delta H=0$ for mixing of two gases. Explain whether the diffusion of these gases into each other in a closed container is a spontaneous process or not?

- Watch Video Solution

9. Heat has randomising influence on a system and temperature is the measure of average chaotic motion of particles in the system. Write the mathematical relation which relates these three parameters.

- Watch Video Solution

10. Increase in enthalpy of the surroundings is equal to decrease in enthalpy of the system. Will the temperature of system and surroundings be the same when they are in thermal equilibrium ?
11. At $298 \mathrm{~K}, K_{p}$ for the reaction $\mathrm{NO}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ is 0.98 . Predict whether the reaction is spontaneous or not.

- Watch Video Solution

12. A sample of 1.0 mol of a monoatomic ideal gas is taken through a cyclic process of expansion and compression as shown in Fig. What will be the value of ΔH for the cycle as a whole ?

- View Text Solution

13. The standard molar entropy of $H_{2} O_{(l)}$ is $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Will the standard molar entropy of $\mathrm{H}_{2} \mathrm{O}_{(s)}$ be more, or less than $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
14. Which of the following is not a state functions?

- Watch Video Solution

15. The molar enthalpy of vapourisation of acetone is less than that of water. Why?

- Watch Video Solution

16. Which quantity out of $\Delta_{r} G$ and $\Delta_{r} G^{\Theta}$ will be zero at equilibrium ?

- Watch Video Solution

17. Predict the change in internal energy for an isolated system at constant volume.
18. Although heat is a path function but heat absorbed by the system under certain specific conditions is independent of path. What are those conditions ? Explain.

- View Text Solution

19. Expansion of a gas in vacuum is called free expansion. Calculate the work done and the change in internal energy when 1 litre of ideal gas expands isothermally into vacuum until its total volume is 5 litre?

- View Text Solution

20. Heat capacity $\left(C_{p}\right)$ is an extensive property but specific heat (c) is an intensive property. What will be the relation between C_{p} and c for 1 mol of water?
21. The difference between $C p$ and C_{v} can be can be $H=U+p V$. Calculate the difference C_{p} and C_{v} for 10 moles of an ideal gas.

- Watch Video Solution

22. If the combustion of 1 g of graphite produces -20.7 kJ of heat, what will be molar enthalpy change ? Give the significance of sign also.

- Watch Video Solution

23. The net enthalpy change of a reaction is the amount of energy required to break all the bonds in reactant molecules minus amount of energy required to form all the bonds in the product molecules. What will be the enthalpy change for the following reaction. $H_{2(g)}+B r_{2(g)} \rightarrow 2 \mathrm{HBr}_{(g)}$. Given that Bond energy of $\mathrm{H}_{2}, \mathrm{Br}_{2}$ and HBr is $435 \mathrm{~kJ} \mathrm{~mol}^{-1}, 192 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $368 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.
24. The enthalpy of vaporisation of CCI_{4} is $30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the heat required for the vaporisation of 284 g of CCI_{4} at constant pressure. (Molar mass of CCI $I_{4}=154 \mathrm{~g} \mathrm{~mol}^{-1}$).

- View Text Solution

25. The enthalpy of reaction for the reaction : $2 \mathrm{H}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}$ is $\Delta_{r} \mathrm{He}^{\Theta}=-572 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What will be he standard enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}_{(l)}$?

- View Text Solution

26. What will be the work done on an ideal gas enclosed in a cylinder, when it is compressed by a constant external pressure, $P_{\text {ext }}$ in a single step as shown in Fig. Explain graphically.
27. How will you calculate work done on an ideal gas in a compression, when change in pressure is carried out in infinite steps ?

- View Text Solution

28. Represent the potential energy / enthalpy change in the following processes graphically.
(a) Throwing a stone from the ground to roof.
(b) $\frac{1}{2} H_{2(g)}+\frac{1}{2} C I_{2(g)} \Leftrightarrow H C I_{(g)} \Delta_{r} H^{\Theta}-92.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$ In which of the processes potential energy/ enthalpy change is contributing factor to the spontaneity ?

- View Text Solution

29. Enthalpy diagram for a particular reaction is given in Fig. Is it possible to decide spontaneity of a reaction from given diagram. Explain.

- View Text Solution

30. 1.0 mol of a monoatomic ideal gas is expanded from state (1) to state
(2) as shown in Fig. 6.4. Calculate the work done for the expansion of gas from state (1) to state (2) at 298 K .

- View Text Solution

31. An ideal gas is allowed to expand against a constant pressure of 2 bar from 10 L to 50 L in one step. Calculate the amount of work done by the gas. If the same expansion were carried out reversibly, will the work done be higher or lower than the earlier case ? (Given that 1 L bar $=100 \mathrm{~J}$)

- Watch Video Solution

Section D Solutions Of Ncert Exemplar Problems Matching The Columns

1. Match the following :

- View Text Solution

2. Match the following processes with entropy change :

View Text Solution
3. Match the following parameters with description for spontaneity :
4. Match the following :

- View Text Solution

Section D Solutions Of Ncert Exemplar Problems Assertion And Reason

1. In the following questions a statement of Assertion (A) followed by a statement of Reason (R) is given. Choose the correct option out of the choices given below each question.

Assertion (A): Combustion of all organic compounds is an exothermic reaction.

Reason (R) : The enthalpies of all elements in their standard state are zero.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A.
C. A is true but R is false.
D. A is false but R is true.

Answer: B

- Watch Video Solution

2. In the following questions a statement of Assertion (A) followed by a statement of Reason (R) is given. Choose the correct option out of the choices given below each question.

Assertion (A) : Spontaneous process is an irreversible process and may be reversed by some external agency.

Reason (R) : Decrease in enthalpy is a contributory factor for spontaneity.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A.
C. A is true but R is false.
D. A is false but R is true.

- Watch Video Solution

3. In the following questions a statement of Assertion (A) followed by a statement of Reason (R) is given. Choose the correct option out of the choices given below each question.

Assertion (A) : A liquid crystallizes into a solid and is accompanied by decrease in entropy.

Reason (R) : In crystals, molecules organise in an ordered manner.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A.
C. A is true but R is false.
D. A is false but R is true.

Answer: A

- Watch Video Solution

1. Derive the relationship between ΔH and ΔU for an ideal gas. Explain each term involved in the equation.

- View Text Solution

2. Extensive properties depend on the quantity of matter but intensive properties do not. Explain whether the following properties are extensive or intensive.

Mass, internal energy, pressure, heat capacity, molar heat capacity, density, mole fraction, specific heat, temperature and molarity.

- View Text Solution

3. The lattice enthalpy of an ionic compound is the enthalpy when one mole of an ionic compound present in its gaseous state, dissociates into
its ions. It is impossible to determine it directly by experiment. Suggest and explain an indirect method to measure lattice enthalpy of $N a C I_{(s)}$.

- View Text Solution

4. ΔG is net energy available to do useful work and is thus a measure of "free energy". Show mathematically that ΔG is a measure of free energy. Find the unit of ΔG. If a reaction has positive enthalpy change and positive entropy change, under what condition will the reaction be spontaneous?

- View Text Solution

5. Graphically show the total work done in an expansion when the state of an ideal gas is changed reversibly and isothermally from $\left(p_{i}, V_{i}\right)$ to $\left(P_{f}, V_{f}\right)$. With the help of a $\mathrm{p} V$ plot compare the work done in the above case with that carried out against a constant external pressure p_{f}.

Question Paper From Module Section A Answer The Following Questions In

 Very Short1. Which is not state function ?

- Watch Video Solution

2. What type of the value will be of ΔG for ice poured in open vessel at 260 K temperature ?

- Watch Video Solution

3. What is the change in entropy for crystalline solid while it turns into liquid ?
