

MATHS

BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI ENGLISH)

BINOMIAL THEOREM

Exercise 8 1

1. Expand the expression

$$(1-2x)^5$$

2. Expand the expression

$$\left(rac{2}{x}-rac{x}{2}
ight)^5$$

Watch Video Solution

3. Expand the expression

$$(2x-3)^6$$

Watch Video Solution

4. Expand the expression

$$\left(\frac{x}{3} + \frac{1}{x}\right)^5$$

5. Expand the expression

$$\left(x+rac{1}{x}
ight)^6$$

6. Using binomial theorem, evaluate $:\left(96\right)^3$

7. Using binomial theorem ,Evaluate each of the following $\left(102\right)^{5}$

8. Using binomial theorem, evaluate $\left(101\right)^4$

9. Using binomial theorem, evaluate $(99)^5$

10. Using Binomial Theorem, indicate which number is larger $\left(1.1\right)^{10000}$ or 1000.

11. Find $(a+b)^4$ - $(a-b)^4$. Hence, evaluate $\left(\sqrt{3}+\sqrt{2}\right)^4$ - $\left(\sqrt{3}-\sqrt{2}\right)^4$.

12. Find $(x+1)^6+(x-1)^6$. Hence or otherwise evaluate $(\sqrt{2}+1)^6+(\sqrt{2}-1)^6$.

13. Show that 9^{n+1} - 8n - 9 is divisible by 64, whenever n is a positive interger.

14. Prove that $\sum_{r=0}^{n} 3^{r} n C_{r} = 4^{n}$.

1. Find the coefficient of x^5 in $(x+3)^8$

Watch Video Solution

2. Find the coefficient of a^5b^7 in $(a-2b)^{12}$.

Watch Video Solution

3. Write the general term in the expansion of $(x^2-y)^6$

4. Write the general term in the expansion of $\left(x^2-yx\right)^{12}. \ x
eq 0.$

5. Find the 4^th term in the expansion of $(x-2y)^{12}$.

6. Find the $13t^th$ term in the expansion of $\left(9x-\frac{1}{3}\sqrt{x}\right)^{18}$, x !=0.

8. Find the middle terms in the expansions of $\left(\frac{x}{3}+9Y\right)^{10}$.

9. In the expansion of $\left(1+a\right)^m+n$, prove that coefficients of a^m and a^n are equal.

10. The coeffcients of the $(r-1)^t h$, $r^t h$ and $(r+1)^t h$ terms in the expansion of $(x+1)^n$ are in the ration 1 : 3: 5 Find n and r.

11. Prove that the coefficient of x^n in the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$.

12. Find a positive value of m for which the coefficient of x^2 in the expansion $\left(1+x\right)^m$ is 6.

Miscellaneous Exercise 8

1. Find a,b and n in the exapnsion of $(a+b)^n$ if the first three terms of the expansion are 729 , 7290 and 30375 , respectively .

2. Find a if the coefficients of x^2 and x^3 in the expansion of $3+ax\big)^9$ are equal.

3. Find the confficient of x^5 in the product $\left(1+2x\right)^6$ $\left(1-x\right)^7$ using binomial theoram.

4. If a and b are distinct integers, prove that a-b is a factor of a^n - b^n , whenever n is a positive integer.

5. Evaluate : $\left(\sqrt{3}+\sqrt{2}\right)^6-\left(\sqrt{3}-\sqrt{2}\right)^6$

6. Find the value of ($a^2+\sqrt{a}^2-1$) $^4+\left(a^2-\sqrt{a}^2-1\right)^4$.

7. Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

8. Find n, if the ratio of the fifth term from beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ id $\sqrt{6}$: 1.

9. Expand using Binomial Theorem $\left(1+\frac{x}{2}-\frac{2}{x}\right)^4$, x!= 0.

10. Find the expansion of $\left(3x^2-2ax+3a^2\right)^3$ using binomial theorem.

Practice Work

1. Expand the following expressions :

$$(2x+3y)^5$$

2. Expand the following expressions:

$$\left(x-rac{1}{2x}
ight)^5$$

Watch Video Solution

3. Expand the following expressions :

$$\left(ax-\frac{b}{x}\right)^6$$

Watch Video Solution

4. Expand the following expressions :

$$(1-x+x^2)^4$$

5. Expand using Binomial Theorem $\left(1+rac{x}{2}-rac{2}{x}
ight)^4$, x!= 0.

Watch Video Solution

6. Expand the following expressions :

$$(1-2x+x^2)^3$$

Watch Video Solution

7. Expand the following expressions :

$$\left(1-2x+x^2\right)^3$$

8. Find the number of terms in the expansion of the following:

$$\left(x+rac{y}{x}
ight)^7$$

Watch Video Solution

9. Find the number of terms in the expansion of the following:

$$(x^2 + 1 - 2x)^8$$

Watch Video Solution

10. Find the number of terms in the expansion of the following:

$$(x+2a)^{10} + (x-2a)^{10}$$

Watch Video Solution

11. Find the number of terms in the expansion of the following:

$$\left(2x+rac{1}{y}
ight)^7+\left(2x-rac{1}{y}
ight)^7$$

Watch Video Solution

12. Find the number of terms in the expansion of the following:

$$(z+3y)^8-(z-3y)^8$$

13. Find the number of terms in the expansion of the following:

$$(2a+5b)^9-(2a-5b)^9$$

14. Using binomial theorem , Evaluate the following : $\left(0.99\right)^5$

Watch Video Solution

15. Using binomial theorem ,Evaluate each of the following $\left(101\right)^4$

16. Using binomial theorem, Evaluate the following:

$$(98)^5$$

17. Find $(x+y)^5+(x-y)^5$. Hence evaluate $\left(\sqrt{2}+1\right)^5+\left(\sqrt{2}-1\right)^5$

18. Using binomial theorem , Prove that $2^{3n}-7n-1$ is divisible by 49.

19. Using binomial theorem ,Prove that $3^{3n}-26n-1$ is divisible by 676.

Watch Video Solution

20. Using binomial theorem , Prove that a^n-b^n is divisible by (a-b)

21. Prove that , $\left(101\right)^{50}>100^{50}+99^{50}$

22. Evaluate : $(1.01)^{10} + (1 - 0.01)^{10}$

Watch Video Solution

23. Find the coefficient of :

 x^4 in $(2x+5)^8$

Watch Video Solution

24. Find the coefficient of :

$$y^5$$
 in $\left(3y^2+rac{1}{3y}
ight)^{10}$

25. Find the coefficient of:

$$x^{10}$$
 in $(x^2-2)^{11}$

Watch Video Solution

26. Find the coefficient of :

$$x^{40}$$
 in $\left(1^2 + 2x\right)^{20}$

27. Find the coefficient of :

$$x^{11}$$
 in $\left(x^3 - \frac{2}{x^2}\right)^{12}$

28. Find the general term in the expansion of

$$(5x-3)^{12}$$

Watch Video Solution

29. Find the general term in the expansion of

$$\left(z^2-\frac{3}{z^2}\right)^{35}$$

Watch Video Solution

30. Find the general term in the expansion of

$$(x+3y)^{10}$$

31. Find the general term in the expansion of

$$\left(y^2+6y+9\right)^{20}$$

Watch Video Solution

32. Find the general term in the expansion of

$$(3y+6z)^9$$

33. Find the 6^{th} term in expansion of $\left(\frac{x^3}{2} - \frac{2}{x^2}\right)^9$

34. Find the 7^{th} term in the expansion of $\left(x+3y\right)^8$

Watch Video Solution

35. Find the 7^{th} term in the expansion of $\left(3x-\frac{2y}{3}\right)^{10}$

Watch Video Solution

36. Find the 6^{th} term in expansion of $\left(z^2 + \frac{2z}{3} + \frac{1}{9}\right)^3$

Watch Video Solution

37. Find the middle term in expansion of:

 $(2x+3y)^9$

38. Find the middle term in expansion of :

$$\left(rac{a}{x}+bx
ight)^{12}$$

39. Find the middle term in expansion of :

40. Find the middle term in expansion of :

$$\left(x^2+a^2\right)^5$$

$$\left(1-2x+x^2\right)^n$$

41. Find the middle term in expansion of :

$$\left(2ax-rac{b}{x^2}
ight)^{12}$$

42. If the coefficients of 4^{th} and 13^{th} terms in the expansion of $\left(a+b\right)^n$ are equal then find n .

- **43.** If 4^{th} term of $\left(ax+\frac{1}{x}\right)^n$ is $\frac{5}{2}$ then find a and n .
 - **Watch Video Solution**

44. Prove that there is no term involving x^6 in the expansion

of
$$\left(2x^2-rac{3}{x}
ight)^{11}, (x
eq 0)$$

Watch Video Solution

45. Find the constant term of $\left(3x^2-\frac{1}{2x^3}\right)^{10}$

Watch Video Solution

46. The coefficients of three consecutive terms in the expansion of $(1+a)^n$ are are in the ratio 1: 7: 42 Find n.

47. Find the $13t^th$ term in the expansion of $\left(9x-rac{1}{3}\sqrt{x}
ight)^{10}$, x !=0.

Watch Video Solution

48. The sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^2}\right)^m$, x != 0. m being a natural number, is 559. Find the term of the expansion containing x^3 .

Watch Video Solution

49. If the coefficient of x^7 in the expansion of $\left(ax^2+rac{1}{bx}
ight)^{11}$ is equal to the coefficient of x^{-7} in the expansion of $\left(ax-\frac{1}{bx^2}\right)^{11}$ are equal then prove that ab = 1.

50. If the coefficients of a^r-1 , a^r and a^r+1 in the expansion of $\left(1+a\right)^n$ are in arithmetic progression, prove that n^2 - n(4r+1)+4 r^2 - 2 =0.

51. The 3rd , 4th and 5th terms in the expansion of $\left(x+a\right)^n$ are respectively 84,280 and 560, find the values of x, a and n .

52. How many terms are free from radical signs in the expansion of $\left(x^{\frac{1}{5}}+y^{\frac{1}{10}}\right)^{55}$.

Watch Video Solution

53. Find the coefficient of a^4 in the product $(1+2a)^4(2-a)^5$ using binomial theorem .

Watch Video Solution

54.
$$\binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n-1} =$$

55. Prove that $\left(2+\sqrt{3}\right)^7+\left(2-\sqrt{3}\right)^7=10084$ Hence show that $10083<\left(2+\sqrt{3}\right)^7<10084$.

Watch Video Solution

56. Show that the ratio of the coefficient of x^{10} in $\left(1-x^2\right)$ and the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is $1\!:\!32$

Watch Video Solution

57. Find the coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3\right)^{11}$

58. If the constant term in expansion of $\left(\sqrt{x}-\frac{k}{x^2}\right)^{10}$ is 405 then find the value of k .

Watch Video Solution

Textbook Based Mcqs

1. If the middle term in $(a+b)^{10}$ is T_{r-1} then $r = \ldots$

A. 6

C. 7

B. 5

D. 8

Answer: C

2. The constant term in the expansion of
$$\left(2x^2-\frac{1}{x}\right)^{12}$$
 is

$$C. - 7920$$

$$D.-495$$

Answer: A

3. The coefficient of the x^{21} in the expansion of $\left(x+x^2\right)^{20}$

is

A.
$$\binom{20}{1}$$

$$\operatorname{B.}\left(\begin{array}{c} 20 \\ 0 \end{array} \right)$$

$$\mathsf{C.}\left(\frac{20}{2}\right)$$

D.
$$\binom{20}{12}$$

Answer: A

Watch Video Solution

4. The value of $\left(\sqrt{5}+1\right)^5-\left(\sqrt{5}-1\right)^5$ is $\ldots\ldots$

A. 252

B. 352

C. 452

D. 532

Answer: B

Watch Video Solution

5.
$$(1+x)^{10}=a_0+a_1x+a_2x^2+\ldots +a_{10}x^{10}$$
 then the value of $(a_0-a_2+a_4-a_6+a_8-a_{10})^2+(a_1-a_3+a_5-a_7+a_9)^2$ is \ldots

 ${\rm B.}\ 2^{10}$

A. 3^{10}

 $C. 2^9$

D. 0

Answer: B

Watch Video Solution

6. The sum of the coefficient in the expansion $\left(1+x-3x^2\right)^{4331}$ is \dots

A. 1

B. - 1

C. 0

 $D. 2^{4330}$

Answer: B

Watch Video Solution

- **7.** In the expansion of $\left(2\sqrt{2}+\sqrt[4]{7}\right)^{100}$ the number of the term free from radical sign is
 - A. 24
 - B. 26
 - C. 28
 - D. 0

Answer: B

8. Dividing 5^{99} by 13 , the remainder is

A. 8

B. 9

C. 10

D. 0

Answer: A

Watch Video Solution

9. 9^7+7^9 is divisible by \dots

A. 6

B. 24

C. 64

D. 72

Answer: C

Watch Video Solution

10.
$$\sum_{r=0}^{n} .^{n} C_{r} 4^{r} =$$

A. 4^n

 $B.5^n$

 $\mathsf{C.}\,5^{\,-\,n}$

D. 4^{-n}

Answer: B

11. If
$$\left(1+2x-3x^2\right)^5=1+a_1x+a_2x^2+\ldots +a_{10}x^{10}$$

then the value of $a_2+a_4+\ldots\ldots+a_{10}$ is $\ldots\ldots$

A. 1024

B. 511

C. - 511

D. 31

Answer: C

View Text Solution

12.
$$(2+\sqrt{3})^4+(2-\sqrt{3})^4=x+y\sqrt{3}$$
 then y =

B. 56

C. 112

D. 97

Answer: A

Watch Video Solution

13. In the expansion of $(1+x)^n$ if the coefficients of the terms 5^{th} and 19^{th} are equal then n =

- A. 18
- B. 24
- C. 22
- D. 20

Answer: C

- **14.** The constant term in the expansion of $\left(x-\frac{1}{3x^2}\right)^9$ is the \dots term .
 - A. T_3
 - B. T_4
 - $\mathsf{C}.\,T_5$

D. None of these

Answer: B

Watch Video Solution

15. In the expansion of $(1+x)^{21}+(1+x)^{22}+\ldots\ldots+(1+x)^{30}$, the coefficient of x^5 is $\ldots\ldots$

A. $51C_5$

B. $9C_5$

 $\mathsf{C.}\,31C_6-21C_6$

D. $30C_5-20C_5$

Answer: C

Watch Video Solution

- **16.** In the expansion of $(x+a)^{100}+(x-a)^{100}$, there are $\dots\dots$ terms
 - A. 202
 - B. 51
 - C. 50
 - D. None of these

Answer: B

17. The middle term in the expansion $\left(x^2-\frac{1}{2x}\right)^{20}$ is r than $\left(r+3\right)^{th}$ term is \dots

A.
$$20C_{14}igg(rac{x}{2^{14}}igg)$$

B.
$$20C_{12}x^22^{-12}$$

$$\mathsf{C.} - 20 C_7 x.2^{-13}$$

D. None of these

Answer: C

Watch Video Solution

18. In the expansion of $\left(x^4-\frac{1}{x^3}\right)^{15}$ if in the r^{th} temr , there is x^{-17} then r

- A. 10
- B. 11
- C. 12
- D. 13

Answer: C

- **19.** If 5^{th} , 6^{th} and 7^{th} terms in the expansion of $(1+y)^n$ are in A.P . Then the value of n is
 - A. 7,11
 - B. 7,14
 - C. 8,16

D. None of these

Answer: B

Watch Video Solution

- **20.** If in the expansion of $(a+b)^n$, $\frac{T_2}{T_3}$ is equal to $\frac{T_3}{T_4}$ in the expansion of $(a+b)^{n+3}$ then n =
 - **A.** 3
 - B. 4
 - C. 5
 - D. 6

Answer: C

21. The constant term in the expansion of
$$\left(\frac{1}{2}x^{\frac{1}{3}}+x^{-\frac{1}{5}}\right)^8$$
 is term .

A.
$$T_5$$

B.
$$T_6$$

$$\mathsf{C}.\,T_7$$

D.
$$T_8$$

Answer: B

22. The coeficient of $\left(x^7y^3\right)$ in

the expansion of $\left(x-y\right)^{10}-$

the coefficient of $\left(x^3y^7\right)$ in

the expansion of $(x-y)^{10}$ is

A. $10C_7$

B. $210C_7$

 $\mathsf{C.}\ 10C_7+10C_1$

D. 0

Answer: D

23.
$$\left[\left(\sqrt{3}+1\right)^6\right]=\ldots\ldots$$

Where [] is a greatest integar function .

- A. 415
- B. 416
- C. 417
- D. 418

Answer: A

Watch Video Solution

24.
$$10C_1 + 10C_3 + 10C_5 + 10C_7 + 10C_9 = \dots$$

A. 2^9

 $\mathsf{B.}\ 2^{10}$

C. 2^{10-1}

D. None of these

Answer: A

Watch Video Solution

25.
$$\left(1+x-2x^2\right)^6=1+a_1, x+a_2x^2+\ldots +a_{12}^{12}$$
 then the value of $a_2+a_4+a_6+\ldots +a_{12}=\ldots \ldots$

A. 32

B. 63

C. 64

D. 31

Answer: D

Watch Video Solution

26. In the expansion of $\left(1+x^2\right)^5 \left(1+x\right)^4$, the coefficient of x^5 is

A. 30

B. 60

C. 40

D. None of thee

Answer: B

27. In the expansion of $(a+b)^n$, the sum of the coefficient of x^5 is \dots

A. 1594

B. 792

C. 924

D. 2924

Answer: C

View Text Solution

28. The coefficient of x in expansion of $\left(x^2 + \frac{a}{x}\right)^5$ is

- A. $9a^{2}$
- B. $10a^{3}$
- C. $10a^2$
- D. 0.4166666666667

Answer: B

- - A. 33
 - B. 34
 - C. 35

Answer: A

View Text Solution

- **30.** If the 3^{rd} term in expansion $\left(x+x^{\log}10^x\right)^5$ is 10^6 then the value of x is
 - A. 10
 - B. 11
 - C. 12
 - D. 20

Answer: A

Latest Exam Mcqs

$$A. - 1$$

Answer: D

Textbook Illustrations For Practice Work

1. Expand
$$\left(X^2 + \frac{3}{x}\right)^4$$
 , x != 0

Watch Video Solution

2. Using binomial theorem, Evaluate the following:

 $(98)^{5}$

Watch Video Solution

3. Which is larger $(1.01)^{1000000}$ or 10,000?

4. Using binomial theorem. Prove that 6^n -5n always leaves remainder 1 when divided by 25.

Watch Video Solution

5. Find a if the 17^th and 18^th terms of the expansin $\left(2+a\right)^{50}$ are equal.

Watch Video Solution

6. Show that the middle term in the expansion of $(1+x)^2n$ is 1.3.5...(2n-1)/n! 2n. x^n , where n is a positive integer.

7. Find the coefficient of $x^6\ y^3$ in the expansion of $\left(x+2y
ight)^9$

8. The second, third and fourth terms in the binomial expansion $\left(x+a\right)^n$ are 240, 720 and 1080, respectively. Find x,a and n.

9. The coefficients of three consecutive terms in the expansion of $\left(1+a\right)^n$ are are in the ratio 1: 7: 42 Find n.

10. Find the term independent of x in the expansion of $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^6$.

11. If the coefficients of a^r-1 , a^r and a^r+1 in the expansion of $(1+a)^n$ are in arithmetic progression, prove that n^2 - n(4r+1)+4 r^2 - 2 =0.

12. Find the coefficient of a^4 in the product $\left(1+2a\right)^4(2-a)^5$ using binomial theorem .

13. Find the r^th term from the end in the expansion of $(x+a)^n$.

Watch Video Solution

14. in the expansion of $\left(\sqrt[3]{x}+rac{1}{2\sqrt[3]{x}}
ight)^{1\circ}, x>0$

View Text Solution

15. The sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^2}\right)^m$, x = 0. m being a natural number, is 559. Find the term of the expansion containing x^3 .

16. If the coefficients of $(r-5)^th$ and $(2r-1)^th$ terms in the expansion of $(1+x)^{34}$ are equal, find r.

Watch Video Solution

Solution Of Ncert Exemplar Problems Short Answer Type Questions

1. Find the term independent of x in the expansion of $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^6.$

2. If the constant term in expansion of $\left(\sqrt{x} - \frac{k}{x^2}\right)^{10}$ is

Watch Video Solution

3. Find the coefficient of x in the expansion of $(1-3x+7x^2)(1-x)^{16}$

Watch Video Solution

4. Find the term independent of x in the expansion of $\left(3x - \frac{2}{x^2}\right)^{15}$

5. Find the middle term (terms) in the expansion of

$$\left(\frac{x}{a} = \frac{a}{x}\right)^{10}$$

Watch Video Solution

6. Find the middle term (terms) in the expansion of

$$\left(3x-rac{x^3}{6}
ight)^9$$

Watch Video Solution

7. Find the coefficient of x^{15} in the expansion $\left(x-x^2\right)^{10}$

8. Find the coefficient of
$$\frac{1}{x^{17}}$$
 in the expansion $\left(x^4-\frac{1}{x^3}\right)^{15}$

Watch Video Solution

9. Find the sixth term of the expansion $\left(y^{\frac{1}{2}}+x^{\frac{1}{3}}\right)^n$, if the Binomial coefficient of the third term from the end is 45.

Watch Video Solution

10. Find the value of r , if the coefficients of (2r+4)th and (r-2) th terms in the expansion of $(1+x)^{18}$ are equal .

11. If the coefficient of second, third and fourth terns in the expansion of $\left(1+x\right)^{2n}$ are in AP, then show that $2n^2 - 9n + 7 = 0$

Watch Video Solution

12. Find the coefficient of x^4 in the expansion of $(1+x+x^2+x^3)^{11}$

Watch Video Solution

Solution Of Ncert Exemplar Problems Long Answer Type Questions

1. If p is real number and the middle term in the expansion of $\left(\frac{p}{2}+2\right)^8$ is 1120 , then find the value of p .

Watch Video Solution

2. Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2n}$ is $\frac{1\times 3\times 5\times\times (2n-1)}{n!}\times (-2)^n$

Watch Video Solution

3. Find n in the Binomial $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$, if the ratio of 7th term from the beginning to the 7th term from the end is $\frac{1}{6}$.

4. In the expansion $\left(x+a\right)^n$, if the sum of odd terms is denoted by O and the sum of even term by E . Then ,prove that

$$O^2 - E^2 = \left(x^2 - a^2\right)^n$$

5. In the expansion $(x+a)^n$, if the sum of odd terms is denoted by O and the um of even term by E . Then ,prove that

$$4OE = (x+a)^{2n} - (x-a)^{2n}$$

6. If x^p occurs in the expansion of $\left(x^2 + \frac{1}{x}\right)^{2n}$ then prove that its coefficient is $\frac{2n!}{\left((4n-n)!\right)\left((2n+n)!\right)}$

Watch Video Solution

7. Find the term independent of x in the expansion of $\left(1+x+2x^3\right) \left(\frac{3}{2}x^2-\frac{1}{3x}\right)^9$

Solution Of Ncert Exemplar Problems Objective Type Questions

1. In the expansion of $(x+a)^{100}+(x-a)^{100}$, there are terms

A. 50

B. 202

C. 51

D. None of these

Answer: C

Watch Video Solution

2. If the integers $r>1,\,n>2$ and coefficients of (3)th and (r+2) nd terms in the Binomial expansion of $(1+x)^{2n}$ are equal ,then

$$A. n = 2r$$

B.
$$n = 3r$$

C.
$$n = 2r + 1$$

D. None of these

Answer: A

Watch Video Solution

3. The two successive terms in the expansion of $\left(1+x\right)^{24}$ whose coefficients are in the ratio 1:4 are

A. 3rd and 4th

B. 4th and 5th

C. 5th and 6th

D. 6th and 7th

Answer: C

Watch Video Solution

4. Prove that the coefficient of x^n in the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$.

A. 1:2

B. 1:3

C. 3:1

D.2:1

Answer: D

Watch Video Solution

- **5.** If the coefficient of 2nd , 3rd and the 4th terms in the expansion of $(1+x)^n$ are in AP, then the value of n is
 - A. 2
 - B. 7
 - C. 11
 - D. 14

Answer: B

6. If A and B are coefficient of x^n in the expansions of $\left(1+x\right)^{2n}$ and $\left(1+x\right)^{2n-1}$ respectively, then $\frac{A}{B}$ equals to

- **A.** 1
- B. 2
- c. $\frac{1}{2}$
- D. $\frac{1}{n}$

Answer: B

Watch Video Solution

7. If the middle term of $\left(\frac{1}{x}+x\in x\right)^{10}$ is equal to 7. $\frac{7}{8}$, then the value of x is .

A.
$$2n\pi+rac{\pi}{6}, n\in Z$$

B.
$$n\pi+rac{\pi}{6}, n\in Z$$

C.
$$n\pi+(\,-1)^n.\ rac{\Pi}{6}, n\in Z$$

D.
$$n\pi+(\,-1)^n.\ rac{\Pi}{3}, n\in Z$$

Answer: C

Solution Of Ncert Exemplar Problems Fillers

1. The largest coefficient in the expansion of $\left(1+x\right)^{30}$ is

The number of terms in the expansion of $(x+y+z)^n$

Watch Video Solution

3. In the expansion of $\left(x^2-\frac{1}{x^2}\right)^{16}$, the value of constant term is

Watch Video Solution

4. Find n, if the ratio of the fifth term from beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ id $\sqrt{6}$: 1.

5. The coefficient of $a^{-6}b^4$ in the expansion of $\left(\frac{1}{a}-\frac{2b}{3}\right)^{10}$ is

6. Middle term in the expansion of $\left(a^3+ba\right)^{28}$ is

7. The coefficient of x^m and x^n in the expansion of $(1+x)^{m+n}$ are

8. The term of the term independent of x in the expansion of

$$\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$$
 is

Watch Video Solution

- **9.** If $\left(25\right)^{15}$ is divided by 13 , then the remainder is $\dots \dots$
 - Watch Video Solution

Solution Of Ncert Exemplar Problems True False

- **1.** The sum of the series $\sum_{r=0}^{10}.^{20} C_r$, is $2^{19}+\left\{rac{.^{20} C_{10}}{2}
 ight\}$.
 - Watch Video Solution

2. $9^7 + 7^9$ is divisible by

Watch Video Solution

3. The number of terms in the expansion of $\left[\left(2x+y^3\right)^4\right]^7$ is 8 .

4. The sum of coefficients of the two middle terms in the expansion of $\left(1+x\right)^{2n-1}$ is equal to $(2n-1)C_n$

5. The last two digits of the numbers 3^{400} are 01.

Watch Video Solution

6. If the expansion of $\left(x-\frac{1}{x^2}\right)^{2n}$ contains a term independent of x , then n is a multiple of 2 .

Watch Video Solution

7. Sum of the power of a and b in expansion $\left(a+b\right)^n$ is n .

1. Expand each of expression in 1 to 5:

$$(1-2x)^5$$

Watch Video Solution

2. Find $(a+b)^4$ - $(a-b)^4$. Hence, evaluate $\left(\sqrt{3}+\sqrt{2}\right)^4$ - $\left(\sqrt{3}-\sqrt{2}\right)^4$.

3. Using binomial theorem. Prove that 6^n -5n always leaves remainder 1 when divided by 25.

4. Prove that $\sum_{n=0}^{\infty} 3^r n \ C_r = 4^n$.

Watch Video Solution

5. In the expansion $\left(2x^2+\frac{1}{x}\right)^{10}$, $x\neq 0$.Find (i) Fifth term (ii) Middle term (iii) If possible term containing x^9 (iv) If possible term containing x^{-4} (v) If possible constant term .

6. Find n, if the ratio of the fifth term from beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ id $\sqrt{6}$: 1.

7. Using binomial theorem , Prove that a^n-b^n is divisible by (a-b)

