©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI

 ENGLISH)

 ENGLISH)}

PRINCIPLE OF MATHEMATICAL INDUCTION

Exercise 41

1. Prove the following by using the principle of mathematical induction for all $n \in N$
$1+3+3^{2}+\ldots \ldots \ldots \ldots+3^{n-1}=\frac{3^{n}-1}{2}$

- Watch Video Solution

2. Prove the following by using the principle of mathematical induction for all $n \in N$
$1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots \ldots \ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$

- Watch Video Solution

3. Prove the following by using the principle of mathematical induction for all $n \in N$
$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots \ldots+\frac{1}{1+2+3+\ldots . \cdot+n}=\frac{2 n}{n+1}$

(Watch Video Solution

4. Prove the following by using the principle of mathematical induction for all $n \in N$
1.2.3. $+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$

- Watch Video Solution

5. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.3+2.3^{2}+3.3^{3}+\ldots \ldots \ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$

- Watch Video Solution

6. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.2+2.3+3.4+\ldots . .+n .(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$

Watch Video Solution

7. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.3+3.5+5.7+\ldots \ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$
8. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.2+2.2^{2}+3.2^{3}+\ldots \ldots \ldots . .+n .2^{n}=(n-1) 2^{n+1}+2$

- Watch Video Solution

9. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$

- Watch Video Solution

10. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots \ldots .+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}$

- Watch Video Solution

11. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots \ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}
$$

- Watch Video Solution

12. Prove the following by using the principle of mathematical induction for all $n \in N$
$a+a r+a r^{2}+\ldots \ldots .+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

- Watch Video Solution

13. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}
$$

14. Prove the following by using the principle of mathematical induction for all $n \in N$
$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \ldots\left(1+\frac{1}{n}\right)=(n+1)$

- Watch Video Solution

15. Prove the following by using the principle of mathematical induction for all $n \in N$
$1^{2}+3^{2}+5^{2}+\ldots \ldots \ldots .+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$

- Watch Video Solution

16. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots \ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}
$$

- Watch Video Solution

17. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots \ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$

Watch Video Solution

18. Prove the following by using the principle of mathematical induction for all $n \in N$
$1+2+3+\ldots \ldots+n<\frac{1}{8}(2 n+1)^{2}$

- Watch Video Solution

19. Prove the following by using the principle of mathematical induction for all $n \in N$
$\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+5)$ is a multiple of 3

- Watch Video Solution

20. Prove the following by using the principle of mathematical induction for all $n \in N$
$10^{2 n-1}+1$ is divisible by 11 .

Watch Video Solution

21. Prove the following by using the principle of mathematical induction for all $n \in N$
$x^{2 n}-y^{2 n}$ is divisible by $\mathrm{x}+\mathrm{y}$.

(D) Watch Video Solution

22. Prove the following by using the principle of mathematical induction for all $n \in N$
$3^{2 n+2}-8 n-9$ is divisible by 8 .

- Watch Video Solution

23. Prove the following by using the principle of mathematical induction for all $n \in N$
$41^{n}-14^{n}$ is a multiple of 27.

- Watch Video Solution

24. Prove the following by using the principle of mathematical induction for all $n \in N$
$(2 n+7)<(n+3)^{2}$

- Watch Video Solution

Practice Work

1. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots \ldots \ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

2. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
1+2+2^{2}+\ldots . .+2^{n}=2^{n+1}-1
$$

- Watch Video Solution

3. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots \ldots .\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n} \quad n \geq 2
$$

- Watch Video Solution

4. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
3 \times 6+6 \times 9+9 \times 12+\ldots .+(3 n)(3 n+3)=3 n(n+1)(n+2)
$$

5. Prove the following by using the principle of mathematical induction for all $n \in N$
$a+(a+d)+(a+2 d)+\ldots \ldots+(a+(n-1) d)=\frac{n}{2}[2 a+(n-1) d]$

- Watch Video Solution

6. Prove the following by using the principle of mathematical induction for all $n \in N$
$4+8+12+\ldots \ldots+4 n=2 n(n+1)$

- Watch Video Solution

7. Prove the following by using the principle of mathematical induction for all $n \in N$
$7^{n}-3^{n}$ is divisible by 4.
8. Prove the following by using the principle of mathematical induction for all $n \in N$
$2^{3 n}-1$ is divisible by 7 .

- Watch Video Solution

9. Prove the following by using the principle of mathematical induction for all $n \in N$
$3^{2 n}$ when divided by 8 , the ramained is always 1 .

- Watch Video Solution

10. Prove the following by using the principle of mathematical induction for all $n \in N$
$10^{n}+3.4^{n+2}+5$ is divisible by 9 .
11. Prove the following by using the principle of mathematical induction for all $n \in N$

The sum of the cubes of three consecutive natural numbers is divisible by 9 .

- Watch Video Solution

12. Prove the following by using the principle of mathematical induction for all $n \in N$
$2.7^{n}+3.5^{n}-5$ is divisible by 24.

- Watch Video Solution

13. Prove the following by using the principle of mathematical induction for all $n \in N$
$11^{n+2}+12^{2 n+1}$ is divisible by 133.
14. Prove the following by using the principle of mathematical induction for all $n \in N$
$n(n+1)(2 n+1)$ is divisble by 6 .

- Watch Video Solution

15. Prove the following by using the principle of mathematical induction for all $n \in N$

$$
(2 n+1)<2^{n}, n \geq 3
$$

- Watch Video Solution

16. Prove the following by using the principle of mathematical induction for all $n \in N$
$3^{n}>2^{n}$
17. Prove the following by using the principle of mathematical induction for all $n \in N$
$(1+x)^{n} \leq(1+n x)$

Watch Video Solution

18. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{n+1}+\frac{1}{n+2}+\ldots . \frac{.1}{2 n}>\frac{13}{24}, n>1$

- Watch Video Solution

19. Prove the following by using the principle of mathematical induction for all $n \in N$
$\sqrt{n} \leq \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots \ldots+\frac{1}{\sqrt{n}}$
20. Prove the following by using the principle of mathematical induction for all $n \in N$
$1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots \ldots+\frac{1}{n^{2}}<2-\frac{1}{n}, n \geq 2$

- Watch Video Solution

Textbook Based Mcqs

1. For $P(n): 2^{n}<n!$!.......... Is true
A. $\mathrm{P}(1)$
B. P(2)
C. Any $\mathrm{P}(\mathrm{n}), n \in N$
D. $\mathrm{P}(4)$

Answer: D

2. For $P(n): 2^{n}=0$...........is true .
A. $P(1)$
B. P(3)
C. $\mathrm{P}(10)$
D. $P(k) \Rightarrow P(k+1), k \in N$

Answer: D

- Watch Video Solution

$3.1+2+3+\ldots \ldots+(n+1)=\frac{(n+1)(n+2)}{2}, n \in N$.
A. For $\mathrm{P}(1)$, L.H.S $=7=$ R.H.S.
B. For P(1) , L.H.S = 3 = R.H.S.
C. $P(k) \Rightarrow P(k+1), k \in N$ is not true
D. By the principle of mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$. Which is not true .

Answer: B

- Watch Video Solution

4. If.....is true and $\mathrm{P}(\mathrm{k})$ is true $\Rightarrow \mathrm{P}(\mathrm{k}+1)$ is true, $k \geq-1$, then for all $n \in N \cup\{0,-1\}, P(n)$ is true.
A. $P(-1)$
B. $P(0)$
C. $P(1)$
D. $P(2)$

Answer: A

5. $P(n): 2^{2^{n}}+1$ is a prime number . For $\mathrm{n}=\ldots$. , it is not true .
A. 1
B. 2
C. 0
D. 5

Answer: D

6. $P(n): 2^{n}-1$, for $\mathrm{n}=\ldots$. it is a prime number.
A. 1
B. 3
C. 4
D. 8

Answer: B

D Watch Video Solution

7. $P(n): n^{2}-n+41$, for $\mathrm{n}=\ldots$....., it is not prime number .
A. 1
B. 2
C. 3
D. 41

Answer: D

Watch Video Solution
8. $P(n): 2 n+1$, for $\mathrm{n}=\ldots$. it is not a prime number.
A. 1
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution

9. $P(n): 4 n+1$, for $\mathrm{n}=$ \qquad .it is not a prime number
A. 1
B. 3
C. 7
D. 11

Answer: D

10. $P(n): 2^{n}>n^{2}$, for $\mathrm{n}=\ldots$. it is true.
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

Textbook Illustrations For Pratice Work
1.
For
all
$n \geq 1$,
prove
that,
$1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots .+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
2. Prove that $2^{n}>n$ for all positive integers n.

(D) Watch Video Solution

3. For all $n \geq 1$, prove that,

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

Watch Video Solution

4. For every positive integer n , prove that $7^{n}-3^{n}$ is divisible by 4 .

- Watch Video Solution

5. Prove that $(1+x)^{n} \geq(1+n x), f$ or all natural number n , where $x>-1$

- Watch Video Solution

6. Prove the following by using the principle of mathematical induction for all $n \in N$
$2.7^{n}+3.5^{n}-5$ is divisible by 24.

- Watch Video Solution

7. Prove that, $1^{2}+2^{2}+\ldots .+n^{2}>\frac{n^{3}}{3}, n \in N$

- Watch Video Solution

8. Prove the rule of exponents $(a b)^{n}=a^{n} b^{n}$ by using principle of mathematical induction for every natural number.

- Watch Video Solution

Ncert Exemplar Problems Short Answer Type Questions

1. Give an example of a statement $\mathrm{P}(\mathrm{n})$ which is for all $n \geq 4$ but $\mathrm{P}(1), \mathrm{P}(2)$ and $P(3)$ are not true, justify your answer.

- Watch Video Solution

2. Give an example of a statement $\mathrm{P}(\mathrm{n})$ which is true for all n , justify your answer.

- Watch Video Solution

3. Prove the statement by the principle of mathematical induction :
$4^{n}-1$ is divisible by 3 , for each natural number n .

- Watch Video Solution

4. Prove the statement by the principle of mathematical induction :
$2^{3 n}-1$ is divisible by 7 , for all natural numbers n.
5. Prove the statement by the principle of mathematical induction : $n^{3}-7 n+3$ is divisible by 3 , for all natural number n .

- Watch Video Solution

6. Prove the statement by the principle of mathematical induction :
$3^{2 n}-1$ is divisible by 8 , for all natural number n.

- Watch Video Solution

7. Prove the statement by the principle of mathematical induction :

For any natural numbers $n, 7^{n}-2^{n}$ is divisible by 5 .

- Watch Video Solution

8. Prove the statement by the principle of mathematical induction :

For any natural numbers $\mathrm{n}, x^{n}-y^{n}$ is divisible by $\mathrm{x}-\mathrm{y}$, where x and y any integers with $x \neq y$

- Watch Video Solution

9. Prove each of the statements by the principle of mathematical induction :
$n^{3}-n$ is divisible by 6 , for each natural number $n \geq 2 . \forall n \geq 2$

- Watch Video Solution

10. Prove each of the statements by the principle of mathematical induction :
$n\left(n^{2}+5\right)$ is divisible by 6 , for each natural number n .
11. Prove each of the statements by the principle of mathematical induction :
$n^{2}<2^{n}$, for all natural numbers $n \geq 5$

- Watch Video Solution

12. Prove each of the statements by the principle of mathematical induction :
$2 n<(n+2)$! for all natural number n .

- Watch Video Solution

13. Prove each of the statements by the principle of mathematical induction :
$\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots .+\frac{1}{\sqrt{n}}$, for all natural numbers $n \geq 2$
14. Prove each of the statements by the principle of mathematical induction :
$2+4+6+\ldots+2 n=n^{2}+n$ for all natural numbers n .

- Watch Video Solution

15. Prove each of the statements by the principle of mathematical induction :

$$
1+2+2^{n}+\ldots \ldots+2^{n}=2^{n+1}-1 \text { for all natural numbers } \mathrm{n} .
$$

- Watch Video Solution

16. Prove each of the statements by the principle of mathematical induction :
$1+5+9+\ldots \ldots+(4 n-3)=n(2 n-1)$ for all natural numbers n.

Ncert Exemplar Problems Long Answer Type Questions

1. Use the principle of mathematical induction :

A sequence $a_{1}, a_{2}, a_{3}, \ldots \ldots$ is defined by letting $a_{1}=3$ and $a_{k}=7 a_{k-1}$, for all natural numbers $\mathrm{k}>2$. Show that $a_{n}=3.7^{n-1}$, for all natural numbers .

D Watch Video Solution

2. Use the principle of mathematical induction:

A sequence $b_{0}, b_{1}, b_{2}, \ldots .$. Is defined by letting $b_{0}=5$ and $b_{k}=4+b_{k-1}$, for all natural numbers k. show that $b_{-} n=5+4 n$ ', for all natural number n using mathematical induction.

- Watch Video Solution

3. Use the principle of mathematical induction :

A sequence $d_{1}, d_{2}, d_{3}, \ldots \ldots \ldots$ is defined by letting $d_{1}=2$ and $\mathrm{d}_{-} \mathrm{k}=$
$\left(\mathrm{d} _\mathrm{k}-1\right) /(\mathrm{k}), f$ or allnaturalעmbers, $\mathrm{k} \mathrm{gt}=2$. Showt ${ }^{\wedge} \mathrm{d}_{-} \mathrm{n}=(2) /(\mathrm{n}!)$, for all $n \in N$

- Watch Video Solution

4. Prove that $\cos \theta \cos 2 \theta \cos 2^{2} \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \cdot \sin \theta}$, for all $n \in N$

- Watch Video Solution

5. Prove that

$2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1=0$

- Watch Video Solution

6. Show that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number for all $n \in N$

- Watch Video Solution

7. Prove that,$\frac{1}{n+1}+\frac{1}{n+2}+\ldots \ldots \ldots \ldots+\frac{1}{2 n}>\frac{13}{24}$ for all natural numbers $\mathrm{n}>1$

- Watch Video Solution

8. Prove that number of subsets of a set containing n distinct elements is 2^{n}, for all $n \in N$

- Watch Video Solution

Ncert Exemplar Problems Objective Type Questions

1. If $10^{n}+3.4^{n+2}+k$ is divisible by 9 , for all $n \in N$, then the least positive integral value of k is
A. 5
B. 3
C. 7
D. 1

Answer: A

Watch Video Solution
2. For all $n \in N, 3.5^{2 n+1}+2^{3 n+1}$ is divisible by
A. 19
B. 17
C. 23
D. 25

Answer: B::C

3. if $x^{n}-1$ is divisible by $\mathrm{x}-\mathrm{k}$, then the least positive integral value of k is
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

Ncert Exemplar Problems Fillers

1. If $\mathrm{P}(\mathrm{n}): 2 n<n!, n \in N$, then $\mathrm{P}(\mathrm{n})$ is true for all $n \geq \ldots \ldots \ldots \ldots$.
2. Let $\mathrm{P}(\mathrm{n})$ be statement and let $\mathrm{P}(\mathrm{k}) \Rightarrow P(k+1)$,for some natural number k , then $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$

- Watch Video Solution

Ncert Exemplar Problems Question Of Module

1. By using the principle of mathematical induction , prove the follwing :

$$
P(n)+1+3+5+\ldots \ldots \ldots .+(2 n-1)=n^{2}, n \in N
$$

- Watch Video Solution

2. By using the principle of mathematical induction, prove the follwing :
$P(n): 1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots+n^{2}=\frac{n}{6}(n+1)(2 n+1), n \in N$
3. By using the principle of mathematical induction, prove the follwing :
$P(n): \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots \ldots . .+\frac{1}{n(n+1)}=\frac{n}{n+1}, n \in N$

- Watch Video Solution

4. By using the principle of mathematical induction, prove the follwing :
$P(n):(1+x)^{n} \geq 1+n x, x>(-1), n \in N$

- Watch Video Solution

5. Prove the following by using the principle of mathematical induction for all $n \in N$
$2.7^{n}+3.5^{n}-5$ is divisible by 24.

- Watch Video Solution

6. By using the principle of mathematical induction, prove the follwing :

$$
\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \ldots \ldots \ldots \ldots . .\left(1+\frac{1}{n}\right)=n+1, n \in N
$$

- Watch Video Solution

7. By using the principle of mathematical induction, prove the follwing :

$$
P(n): 2+4+6+\ldots .+2 n=n(n+1), n \in N
$$

- Watch Video Solution

8. By using the principle of mathematical induction, prove the follwing :
$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots .+\frac{1}{1+2+\ldots .+n}=\frac{2 n}{n+1}, n \in N$

- Watch Video Solution

9. By using the principle of mathematical induction, prove the follwing :
$P(n): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots \ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}, n \in N$
10. By using the principle of mathematical induction, prove the follwing :

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots \ldots \ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}, n \in N
$$

- Watch Video Solution

11. By using the principle of mathematical induction, prove the follwing :

$$
P(n):(2 n+7)<(n+3)^{2}, n \in N
$$

- Watch Video Solution

