©゙’ doubtnut

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA

PHYSICS (GUJRATI ENGLISH)

LAW OF MOTION

Section A Try Yourself Vsqs

1. Define force

2. What is contact force?

D Watch Video Solution

3. Write two example of field force.
(D) Watch Video Solution
4. Write similarity and difference between contact force and field force.
5. Out of contact force and field force which force is conservative and which force is n o n conservative?

- Watch Video Solution

6. Write Aristotle's law regarding motion.

- Watch Video Solution

7. What was mistake in Aristotle's idea regarding motion ?

- Watch Video Solution

8. What is called inertia

D Watch Video Solution

9. What is inertia?

D Watch Video Solution
10. What do mass of body measure
(Watch Video Solution
11. Ns is unit of which quantity?

D Watch Video Solution

12. Write dimensional formula of momentum

D Watch Video Solution
13. Which parameter is used to determine effect of force on body?

D Watch Video Solution

14. Write Newton's second law of motion.
(Watch Video Solution
15. Define SI unit of force N.

Watch Video Solution

16. Define CGS unit of force dyne.

D Watch Video Solution

17. Explain the following $\left(A S_{1}\right)$
(a) Static Inertia
(ii) Inertia of motion
(c) momentum
(d) impulse (e) impulsive force
18. Time derivative of momentum gives which physical quantity?

D Watch Video Solution

19. What is impulsive force

D Watch Video Solution
20. Write Newton's third law of motion
21. Resultant of action and reaction is zero.
(True or False)

- Watch Video Solution

22. Which force act on body first action or reaction
23. In Newtonian mechanics which parameter apply external force ?

- Watch Video Solution

24. Write the law of conservation of linear momentum.
(Watch Video Solution
25. Law of conservation of linear momentum is derived by using Newton's which laws ?

D Watch Video Solution

26. Why law of conservation of linear momentum is universal and fundamental law?

- Watch Video Solution

27. What are concurrent forces?

- Watch Video Solution

28. Write condition for equilibrium when two force act on a particle.

- Watch Video Solution

29. Write condition of equilibrium when three
force act on a particle.

D Watch Video Solution

30. Write condition of translational equilibrium of particle.

- Watch Video Solution

31. What is friction ?

- Watch Video Solution

32. What is impending motion
33. How do static friction oppose motion

- Watch Video Solution

34. Write unit of coefficient of static friction.

D Watch Video Solution

35. Value of coefficient of friction depend on

 which factors36. What is kinetic friction ?

- Watch Video Solution

37. What is rolling friction
(Watch Video Solution
38. Write relation between coefficient of static friction, kinetic friction and rolling friction.

D Watch Video Solution

39. Impending relative motion is opposed by which type of friction?

D Watch Video Solution
40. For a given mass rolling friction is how many times static friction and kinetic friction

D Watch Video Solution

41. Write equation of centripetal acceleration and centripetal force for uniform circular motion.

D Watch Video Solution
42. How centripetal is provided while taking turn on level circular track?

D Watch Video Solution
43. Do motion of vehicle on level circular path depend on mass of vehicle ?

- Watch Video Solution

44. What is optimum speed ? Write its equation.

D Watch Video Solution
45. Write condition that vehicle can be parked on circular road with slope.

- Watch Video Solution

46. On which road we get maximum speed ?

Circular road with slope or level circular road

D Watch Video Solution
47. How centripetal is provided while taking turn on level circular track?

- Watch Video Solution

48. What is Free body diagram ?

- Watch Video Solution

49. How can we draw a two objects FBD according to Newton's third law?

D Watch Video Solution

Section A Question Paper

1. What is dynamics?

- Watch Video Solution

2. Write day to day life example in which motion is controlled.

D Watch Video Solution

3. Explain primary concept of force.

- Watch Video Solution

4. Explain main type of force with suitable example.

- Watch Video Solution

5. Write similarity and difference between contact force and field force.

- Watch Video Solution

6. What was mistake in Aristotle's idea regarding motion?

- Watch Video Solution

7. Describe Galileo's experiment of inclined plane regarding motion.
8. Why state of body and body at rest and body moving with constant velocity are equal ? What is inertia ?

D Watch Video Solution

9. Write and explain Newton's first law of motion

D Watch Video Solution
10. When body is at rest or it is in uniform motion, no force act on it.

- Watch Video Solution

11. Explain -For car moving with constant (uniform) velocity resultant force is zero".

12. We are standing in a stationary bus. When
bus suddenly start why we are thrown in
backward direction ?

D Watch Video Solution

13. We are standing in a bus moving with constant velocity. When brakes are applied to bus we are thrown in forward direction ? Why ?
14. What is linear momentum ? Write its SI unit

D Watch Video Solution

15. Explain "Momentum gives more
information than velocity alone"

- Watch Video Solution

16. Write Newton's second law of motion.

D Watch Video Solution

17. Write Newton's second law of motion.

D Watch Video Solution
18. What is impulse of force ? Write its unit and dimension.
19. "A seasoned (experienced) cricketer catches
a cricket ball coming in with great speed where as a novice (unexperienced) can hurt his
hand in same act" - Explain

D Watch Video Solution

20. Explain - product of mass and velocity is important in producing effect of force.
21. "Momentum and changes in momentum are not always in same direction". Explain by suitable example.

- Watch Video Solution

22. Write Newton's third law of motion

- Watch Video Solution

23. Write important points of Newton's third law of motion.

D Watch Video Solution
24. Explain conservation of linear momentum by suitable example.
(D) Watch Video Solution
25. What are concurrent forces?

D Watch Video Solution

26. Write different type of common forces.

D Watch Video Solution

27. What is friction ? Explain static frictional
force is caused due to roughness of force at microscopic level.
28. Explain Kinetic friction. Write laws of kinetic friction. Define coefficient of kinetic friction.

- Watch Video Solution

29. Explain - "Static friction force opposes
impending motion"
(D) Watch Video Solution
30. What is rolling friction ? Write laws of rolling friction. Define coefficient of rolling friction.

D Watch Video Solution

31. Write advantages and disadvantages of

friction

D Watch Video Solution
32. Write remedies to reduce friction.

- Watch Video Solution

33. Write equation of centripetal acceleration
and centripetal force for uniform circular motion.

D Watch Video Solution
34. Obtain the formula for the maximum safe speed $\left(v_{\text {max }}\right)$ of a vehicle on a level curved road

D Watch Video Solution

35. For a vehicle moving on a banked curved road, using free body diagram (FBD), obtain the formula for the maximum safe speed $v_{\text {max }}$.
36. Write the formula for the maximum permissible speed of a vehicle moving on smooth circular balanced tracks.
(Watch Video Solution
37. What is optimum speed ? Write its equation.

- Watch Video Solution

38. Write condition that vehicle can be parked on circular road with slope.

D Watch Video Solution

39. Write important guidance for solving problems in mechanics
(D) Watch Video Solution

Section B Numerical From Textual Illustration

1. An astronaut accidentally gets separated out of his small spaceship accelerating in inter stellar space at a constant rate of $100 \mathrm{~ms}^{-2}$. What is the acceleration of the astronaut the instant after he is outside the spaceship ? (Assume that there are no nearby stars to exert gravitational force on him.)

- Watch Video Solution

2. A bullet of mass 0.04 kg moving with a speed of $90 \mathrm{~ms}^{-1}$ enters a heavy wooden
block and is stopped after a distance of 60 cm .

What is the average resistive force exerted by the block on the bullet?

D Watch Video Solution

3. The motion of a particle of mass m is described by $y=u t+\frac{1}{2} \mathrm{gt}^{2}$. Find the force acting on the particle.
4. A batsman hits back a ball straight in the direction of the bowler without changing its initial speed of $12 m s^{-1}$. If the mass of the ball is 0.15 kg , determine the impulse imparted to the ball. (Assume linear motion of the ball)

D Watch Video Solution

5. Two identical billiard balls strike a rigid wall with the same speed but at different angles, and get reflected without any change in speed,
as shown in figure. What is (i) the direction of the force on the wall due to each ball? (ii) the ratio of the magnitudes of impulses imparted to the balls by the wall ?

D Watch Video Solution

6. A mass of 6 kg is suspended by a rope of
length 2 m from the ceiling. A force of 50 N in
the horizontal direction is applied at the midpoint P of the rope, as shown. What is the angle the rope makes with the vertical in equilibrium ? (Take $g=10 \mathrm{~ms}-2$). Neglect the mass of the rope.

D Watch Video Solution
7. Determine the maximum acceleration of the train in which a box lying on its floor will remain stationary, given that the co-efficient of static friction between the box and the train's floor is 0.15 .

- Watch Video Solution

8. A mass of 4 kg rests on a horizontal plane.

The plane is gradually inclined until at an angle $0=15^{\circ}$ with the horizontal, the mass
just begins to slide. What is the coefficient of static friction between the block and the surface

D Watch Video Solution

9. What is the acceleration of the block and trolley system show n in a figure, if the coefficient of kinetic friction betw een the trolley and the surface is 0.04 ? What is the tension in the string ? (Take $\mathrm{g}=10 m s^{2}$).

Neglect the mass of the string.

30 N

- Watch Video Solution

10. A cyclist speeding at $18 \mathrm{~km} / \mathrm{h}$ on a level road takes a sharp circular turn of radius 3 m without reducing the speed. The co-efficient of
static friction between the tyres and the road
is 0.1. Will the cyclist slip while taking the turn?

D Watch Video Solution

11. A circular racetrack of radius 300 m is banked at an angle of 15°. If the coefficient of friction between the wheels of a race-car and the road is 0.2 , what is the (a) optimum speed of the race- car to avoid wear and tear on its tyres, and (b) maximum permissible speed to avoid slipping ?

Watch Video Solution

12. A wooden block of mass 2 kg rests on a soft
horizontal floor. When an iron cylinder of mass
25 kg is placed on top of the block, the floor yields steadily and the block and the cylinder together go down with an acceleration of $0.1 \mathrm{~ms}^{-2}$. What is the action of the block on the floor (a) before and (b) after the floor yields ? Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$. Identify the actionreaction pairs in the problem.

Section B Numerical From Textual Exercise

1. Give the magnitude and direction of the net
force acting on (a) a drop of rain falling down with a constant speed, (b) a cork of mass 10 g
floating on water, (c) a kite skillfully held stationary in the sky, (d) a car moving with a constant velocity of $30 \mathrm{~km} / \mathrm{h}$ on a rough road,
(e) a high-speed electron in space far from all material objects, and free of electric and magnetic fields.

- Watch Video Solution

2. A pebble of mass 0.05 kg is thrown vertically upwards. Give the direction and magnitude of the net force on the pebble, (a) during its upward motion, (b) during its downward motion, (c) at the highest point where it is momentarily at rest. Do your answers change
if the pebble was thrown at an angle of 45° with the horizontal direction? Ignore air resistance.
3. Give the magnitude and direction of the net force acting on a stone of mass 0.1 kg , (a) just after it is dropped from the window of a stationary train, (b) just after it is dropped from the window of a train running at a constant velocity of $36 \mathrm{~km} / \mathrm{h}$, (c) just after it is dropped from the window of a train accelerating with $1 \mathrm{~ms}^{-2}$, (d) lying on the floor of a train which is accelerating with $1 m s^{-2}$ the stone being at rest relative to the train.

Neglect air resistance throughout.

- Watch Video Solution

4. One end of a string of length I is connected to a particle of mass m and the other to a small peg on a smooth horizontal table. If the particle moves in a circle with speed v the net force on the particle (directed towards the centre) is :
${ }^{(i) T,}(i i) T-\frac{m v^{2}}{l},(i i i) T+\frac{m v^{2}}{l},(i v) 0$
T is the tension in the string. [Choose the correct alternative].
5. A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially with a speed of $15 m s^{-1}$. How long does the body take to stop?

D Watch Video Solution

6. A constant force acting on a body of mass
3.0 kg changes its speed from $2.0 \mathrm{~ms}^{-1}$ to
$3.5 \mathrm{~ms}^{-1}$ in 25 s . The direction of the motion
of the body remains unchanged. What is the magnitude and direction of the force?

D Watch Video Solution

7. A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N . Give the magnitude and direction of the acceleration of the body.
8. The driver of a three-wheeler moving with a speed of $36 \mathrm{~km} / \mathrm{h}$ sees a child standing in the middle of the road and brings his vehicle to rest in 4.0 s just in time to save the child.

What is the average retarding force on the
vehicle ? The mass of the three-wheeler is 400 kg and the mass of the driver is 65 kg .

D Watch Video Solution

9. A rocket with a lift-off mass $20,000 \mathrm{~kg}$ is
blasted upwards with an initial acceleration of
$5.0 \mathrm{~ms}^{2}$. Calculate the initial thrust (force) of the blast.

- Watch Video Solution

10. A body of mass 0.40 kg moving initially with a constant speed of $10 \mathrm{~ms}^{-1}$ to the north is subject to a constant force of 8.0 N directed towards the south for 30 s . Take the instant
the force is applied to be $t=0$, the position of
the body at that time to be $x=0$, and predict its position at $\mathrm{t}=-5 \mathrm{~s}, 25 \mathrm{~s}, 100 \mathrm{~s}$.

D Watch Video Solution

11. A truck starts from rest and accelerates
uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is dropped by a person standing on the top of the truck (6 m high from the ground). What are the (a) velocity, and (b) acceleration of the stone at $\mathrm{t}=11 \mathrm{~s}$? (Neglect air resistance.)
12. A bob of mass 0.1 kg hung from the ceiling of a room by a string 2 m long is set into oscillation. The speed of the bob at its mean position is $1 \mathrm{~ms}^{-1}$. What is the trajectory of the bob if the string is cut when the bob is (a) at one of its extreme positions, (b) at its mean position.
13. A man of mass 70 kg stands on a weighing
scale in a lift which is moving
(a) upwards with a uniform speed of 10 ms 1 ,
(b) downwards with a uniform acceleration of $5 m s^{2}$,
(c) upwards with a uniform acceleration of 5
$m s^{2}$. What would be the readings on the scale in each case?
(d) What would be the reading if the lift mechanism failed and it hurtled down freely under gravity?
14. Shows the position-time graph of a particle of mass 4 kg . What is the (a) force on the particle for $t<0, t>4 s, 0<t<4 \mathrm{~s}$?
impulse at $\mathrm{t}=0$ and $\mathrm{t}=4 \mathrm{~s}$? (Consider onedimensional motion only).

15. Two bodies of m asses 10 kg and 20 kg respectively kept on a smooth, horizontal
surface are tied to the ends of a light string, a horizontal force $\mathrm{F}=600 \mathrm{~N}$ is applied to (i) A,
(ii) B along the direction of string. What is the tension in the string in each case ?
16. Two masses 8 kg and 12 kg are connected at
the two ends of a light inextensible string that goes over a frictionless pulley. Find the acceleration of the masses and the tension in the string when the masses are released.

D Watch Video Solution

17. A nucleus is at rest in the laboratory frame of reference. Show that if it disintegrates into
two smaller nuclei the products must move in opposite directions.

D Watch Video Solution

18. Two billiard balls each of mass 0.05 kg moving in opposite directions with speed 6 ms-1 collide and rebound with the same speed.

What is the impulse imparted to each ball due to the other?

- Watch Video Solution

19. A shell of mass 0.020 kg is fired by a gun of mass 100 kg . If the muzzle speed of the shell is $80 \mathrm{~ms}^{-1}$, what is the recoil speed of the gun?

- Watch Video Solution

20. A batsman deflects a ball by an angle of 45° without changing its initial speed which is equal to $54 \mathrm{~km} / \mathrm{h}$. What is the impulse imparted to the ball ? (Mass of the ball is 0.15 kg.)
21. A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius 1.5 m with a speed of $40 \mathrm{rev} . / \mathrm{min}$ in a horizontal
plane. What is the tension in the string ? What is the maximum speed with which the stone can be whirled around if the string can withstand a maximum tension of 200 N ?

- Watch Video Solution

22. If, in , the speed of the stone is increased
beyond the maximum permissible value, and
the string breaks suddenly, which of the
following correctly describes the trajectory of the stone after the string breaks :
(a) the stone moves radially outwards,
(b) the stone flies off tangentially from the instant the string breaks,
(c) the stone flies off at an angle with the
tangent whose magnitude depends on the speed of the particle?
23. Explain why
(a) a horse cannot pull a cart and run in empty space,
(b) passengers are thrown forward from their seats when a speeding bus stops suddenly,
(c) it is easier to pull a lawn mower than to
push it,
(d) a cricketer moves his hands backwards
while holding a catch.
24. The position-time graph of a body of mass
0.04 kg. Suggest a suitable physical context for this motion. What is the time between two consecutive impulses received by the body?

What is the magnitude of each impulse ?

- Watch Video Solution

2. A man standing stationary with respect to a horizontal conveyor belt that is accelerating with $1 \mathrm{~ms}-2$. What is the net force on the m an ? If the coefficient of static friction between the man's shoes and the belt is 0.2 up to what acceleration of the belt can the man continue to be stationary relative to the belt ? (Mass of the $\operatorname{man}=65 \mathrm{~kg}$).

3. A stone of m ass m tied to the end of a string revolves in a vertical circle of radius R.

The net force at the lowest and highest points of the circle d irected vertically dow nw ards are : [Choose the correct alternative]

Lowest Point (a) mg - T_{1}
(b) $m g+T_{1}$
(c) $m g+T_{1}-\left(m v_{1}^{2}\right) / R$
(d) $m g-T_{1}-\left(m v_{1}^{2}\right) / R \quad$ Highest Point $m g+T_{2}$
$\mathrm{mg}-T_{2}$
$m g-T_{2}+\left(m v_{1}^{2}\right) / R$
$m g+T_{2}+\frac{m v_{1}^{2}}{R}$
T_{1} and denote the tension and speed at the lowest point. T_{2} and v_{2} denote corresponding values at the highest point.

D Watch Video Solution

4. A helicopter of m ass 1000 kg rises with a vertical a c c ele ra tion of $15 m s-{ }^{2}$. The crew an d th e passengers weigh 300 kg . Give
the magnitude and direction of the,
(a) Force on th e floor by th e crew and passengers.
(b) Action of the rotor of the helicopter on the surrounding air.
(c) Force on the helicopter due to the surrounding air.

D Watch Video Solution

5. A stream of water flowing horizontally with
a speed of 15 m s'1 gushes out of a tube of
cross-sectional area 10-2 m_{2} and hits a vertical
wall nearby. What is the force exerted on the
wall by the impact of water assum ing it does not rebound ?

D Watch Video Solution

6. Ten one-rupee coins are put on top of each other on a table. Each coin has a mass m. Give
the magnitude and direction of (a) the force
on the 7 th coin (counted from the bottom) due to all the coins on its top, (b) the force on
the 7 th coin by the eighth coin, (c) the reaction of the 6th coin on the 7th coin

D Watch Video Solution

7. An aircraft executes a horizontal loop at a speed of $720 \mathrm{~km} / \mathrm{h}$ with its wings banked at 15°. What is the radius of the loop

D Watch Video Solution
8. A train runs along an unbanked circular track of radius 30 m at a speed of $54 \mathrm{~km} / \mathrm{h}$. The mass of the train is $10^{6} \mathrm{~kg}$. What provides the centripetal force required for this purpose -

The engine or the rails ? What is the angle of banking required to prevent wearing out of the rail ?

- Watch Video Solution

9. A block of mass 25 kg is raised by a 50 kg man in two different ways as shown in figure.

What is the action on the floor by the man in
the two cases ? If the floor yields to a normal
force of 700 N , which mode should the man
adopt to lift the block without the floor

yielding?

D Watch Video Solution
10. A monkey of mass 40 kg climbs on a rope
as shown in figure which can stand a
maximum tension of 600 N . In which of the
following cases will the rope break the monkey.

(a) Climbs up with an acceleration of $6 m s^{2}$.
(b)Climbs down with an acceleration of $4 m s^{2}$.
(c)Climbs up with a uniform speed of $5 m s^{1}$.
(d)Falls down the rope nearly freely under gravity ? (Ignore the mass of the rope).

D Watch Video Solution

11. Two bodies A and B of masses 5 kg and 10
kg in contact with each other rest on a table against a rigid wall as shown in figure. The coefficient of friction between the bodies and
the table is 0.15 . A force of 200 N is applied horizontally to A. What are (a) the reaction of
the partition, (b) The action-reaction forces between A and B ? What happens when the wall is removed ? Does the answer to (b) change, when the bodies are in motion ? Ignore the difference between p_{s} and p_{k}.

12. A block of mass 15 kg is placed on a long trolley. The coefficien t of static friction between the block and the trolley is 0.18 . The trolley accelerates from rest with $0.5 m s^{2}$ for 20 s and then moves with uniform velocity. Discuss the motion of the block as viewed by
(a) a stationary observer on the ground, (b) an observer moving with the trolley.

D Watch Video Solution

13. The rear side of a truck is open and a box of

40 kg mass is placed 5 m away from the open
end as shown in figure. The coefficient of friction between the box and the surface below it is 0.15 . On a straight road, the truck starts from rest and accelerates with $2 m s^{2}$.

At what distance from the starting point does
the box fall off the truck ? (Ignore the size of
the box)

- Watch Video Solution

14. A disc revolves with a speed of $33 \frac{1}{3}$ $\mathrm{rev} / \mathrm{min} .3$ and has radius of 15 cm . Two coins are placed at 4 cm and 14 cm away from the centre of the record. If the co-efficient of friction between the coins and the record is 0.15 which of the coins will revolve with the record?

- Watch Video Solution

15. You may have seen in a circus a motorcyclist driving in vertical loops inside a
'deathwell' (a hollow spherical chamber with holes, so the spectators can watch from outside). Explain clearly why the motorcyclist does not drop down when he is at the uppermost point with no support from below.

What is the minimum speed required at the uppermost position to perform a vertical loop if the radius of the chamber is 25 m
16. A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of radius 3 m rotating about its vertical axis with $200 \mathrm{rev} / \mathrm{min}$. The coefficient of friction between the wall and his clothing is 0.15 . What is the minimum rotational speed of the cylinder to enable the man to remain stuck to the wall (without falling) when the floor is suddenly removed?

- Watch Video Solution

17. A circular coil of radius 8.0 cm and 20 turns
is rotated about its vertical diameter with an
angular speed of $50 \mathrm{rad} s^{-1}$ in a uniform horizontal magnetic field of magnitude
$3.0 \times 10^{-2} \quad$ T. Obtain the maximum and
average emf induced in the coil. If the coil forms a closed loop of resistance 10Ω, calculate the maximum value of current in the coil. Calculate the average power loss due to Joule heating. Where does this power come from?

Section B Numerical From Darpan Based On Textbook

1. A soldier fires bullets, each of mass 50 g ,
from his automatic rifle with a velocity of 1000
m / s. If he can bear a maximum force of 200 N
on his shoulder, find the number of bullets
which he can fire in a second.

D Watch Video Solution
2. A block of mass 15 kg is lying on an inclined plane of angle 20°. In order to make it move upward along the slope with an acceleration of $25 \mathrm{~cm} / \mathrm{s}^{2}$ a horizontal force of 200 N is required to be applied on it. Calculate (i) frictional force on the block and (ii) co-efficient of kinetic friction.

- Watch Video Solution

3. As , unequal forces F_{1} and $F_{2}\left(F_{2}<F_{1}\right)$ act on a rod of length L. Calculate the tension at a point situated at a distance y from end A .

- Watch Video Solution

4. The energy of hydrogen atom in the nth orbit is En, then the energy in the nth orbit of single ionised helium atom is

- Watch Video Solution

5. Two blocks of m asses 6 kg and 2 kg are placed in contact on a horizontal frictionless surface. If a horizontal force of 2 N is applied to m ass 6 kg to move them together, what will be the acceleration of 2 kg block? What will be the force on this block?

-
 Watch Video Solution

6. Two balls, each of m ass 80 g , moving towards each other with a velocity $5 \mathrm{~ms} A^{1}$, collide and rebound with the sam e speed.

What will be the im pulse of force on each ball due to the oth er ? W hat is th e valu e of mom entum of each ball

D Watch Video Solution

7. Three blocks of m asses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg are placed in contact w ith each other on a
horizontal frictionless surface, as show n in
figure. A force of 12 N is applied as shown in the figure. Calculate (i) the acceleration of the system of these three blocks, (ii) the contact force acting on 2 kg block by first block of 1 kg and (iii) the contact force on 3 kg block.

D Watch Video Solution
8. An object starting from rest slide on slope with 45°. If co-efficient of friction between object and surface is 0.3 x where x is distance covered then at what distance speed will be maximum ?

- Watch Video Solution

Section C Objective Questions Vsqs

1. Area of $F \rightarrow t$ graph gives which physical quantity?

D Watch Video Solution
2. Momentum of two object with different mass is equal. Which object have more speed ?

D Watch Video Solution

3. Why athlete taking long jump run for some distance before taking jump

- Watch Video Solution

4. When mass of person is doubled, what will change in coefficient of friction?
5. If co-efficient of friction is $\sqrt{3}$ then what will be the angle between two surface ?

- Watch Video Solution

6. What is angle between instantaneous
velocity and frictional force for object moving on rough surface?

- Watch Video Solution

7. A bus of mass 1000 kg is standing stationary

 on bus station what is its linear momentum ?
- Watch Video Solution

8. When direction of object moving on circular path is changed what will be change in direction of motion

- Watch Video Solution

9. How friction force is provided on vehicle taking turn on level circular path ?

- Watch Video Solution

10. On which place on the surface of the earth, centripetal force is maximum ?
(D) Watch Video Solution
11. On which place on the surface of the earth, centripetal force is maximum ?

D Watch Video Solution
12. Why curved road are provided with slope?

D Watch Video Solution

13. An object is subjected to num ber of external forces. Can this object remain

- Watch Video Solution

14. Why more force is needed to bring heavier mass in motion with definite acceleration?

D Watch Video Solution

15. An object of 18 gram mass is lying on slope of 60°. If 36 dyne force act on it what will be its acceleration in horizontal direction ?

- Watch Video Solution

16. A 10 kg wooden block is lying stationary on rough horizontal surface. To pull this block 49

N force is req u ired. Find value of co-efficient of friction and angle of friction.

- Watch Video Solution

17. What is the acceleration of train moving with speed of $50 \mathrm{~ms}^{-1}$ on circular path of
radius 250 m ?

- Watch Video Solution

18. A stone is tied at end of string and whirled in horizontal plane with circular path of radius

20 cm . If its acceleration is $980 \mathrm{cms}^{-2}$, then what will be its angular speed?

- Watch Video Solution

19. Because of which property of the object it tries to oppose the change?

D Watch Video Solution
20. W hen body is said to be in equilibrium
condition?

- Watch Video Solution

21. Momentum is product of velocity and magnitude of velocity". True or False?

D Watch Video Solution
22. "If a body do not have kinetic energy, then
it do not have momentum also". Agree or disagree?

D Watch Video Solution
23. Give dimensional formula of impulse of force.

- Watch Video Solution

24. Time rate of change of momentum gives
which physical quantity

- Watch Video Solution

25. Which physical quantity represents the differentiation of linear momentum ?

D Watch Video Solution

26. How we can find impulse of force when very
small force act on body for very small time
interval ?

D Watch Video Solution
27. Explain - "To hit sixer the cricketer hit the ball by whirling the bat".

- Watch Video Solution

28. While catching the ball, the cricketer takes
his hand in backward direction

- Watch Video Solution

29. Velocity of body of 50 gram is $20 \mathrm{~cm} / \mathrm{s}$.

When 50 dyne force act on it what will be its
velocity at end of 5 sec .

D Watch Video Solution

30. Write condition for equilibrium of a particle when more than one force act on it.

D Watch Video Solution
31. What is magnitude of normal force on a body lying stationary on slope with angle θ

D Watch Video Solution

32. What is magnitude of normal force on a body lying stationary on slope with angle θ

D Watch Video Solution

33. What can be said from $f s<\mu_{s} N$?

- Watch Video Solution

34. Write equation of maximum safe speed on level circular track

- Watch Video Solution

35. Write equation of maximum safe speed on smooth banked road with angle θ
36. Write value of safe speed on frictionless level circular track.

D Watch Video Solution

37. For a vehicle moving on a banked curved road, using free body diagram (FBD), obtain the formula for the maximum safe speed $v_{\text {max }}$.

D Watch Video Solution

38. What is level of wear and tear for vehicle moving on banked curved road with optimum speed ?

D Watch Video Solution

39. Write condition that vehicle can be parked on circular road with slope.

D Watch Video Solution

40. If vehicle is moving on banked curved road and $v<v_{0}$, then what will be direction of frictional force?

D Watch Video Solution

41. Which component of force provide centripetal force to vehicle moving with optimum speed?
42. Why isolated (single) force does not exist in nature?

- Watch Video Solution

43. Can we get out of smooth surface by taking jump on it ?

D Watch Video Solution

44. "When a person walk on rough surface then frictional force act in opposite direction of motion" - True or false?

D Watch Video Solution

45. Radius of level circular track is 20 m . If coefficient of friction is 0.25 , then what will be maximum safe speed $?\left(\mathrm{~g}=9.8 m s^{2}\right)$

- Watch Video Solution

46. Area enclosed by $F \rightarrow t$ graph for given body in 1 sec . interval is 100 Ns . What will be magnitude of force ?

- Watch Video Solution

47. A vehicle of 100 kg is moving with velocity of $5 \mathrm{~m} / \mathrm{s}$. How much force will be required to
stop in $\frac{1}{10} \mathrm{sec} ?$
48. Is equation $\vec{f}=m a$ valid in each and every case ? Why?

D Watch Video Solution

49. A ball of mass 0.2 kg is thrown in the vertical direction with a velocity of $2 \mathrm{~m} / \mathrm{s}$. At the top of its path.
(1) What is the value of its velocity?
(2) What is the value of its acceleration?
(3) What is the value of the force acting on it ?
50. What is similar from the dynamics point of
view between a book lying stationary on the horizontal table and a raindrop falling downward with constant speed

- Watch Video Solution

51. $F \rightarrow t$ graph for a body is shown in the .

What is the change in the value of momentum

in the intital tie interval of 0.03 sec .

D Watch Video Solution

52. Give dimensional formula of impulse of force.
53. As per Bohr model, the minimum energy (in eV) required to remove an electron from the ground state of double ionized Li atom ($Z=3$) is

D Watch Video Solution

54. In uniform circular motion

(i) only the value of velocity is constant.
(ii) velocity vector is constant.
(iii) direction of velocity is constant. Select the correct one.

D Watch Video Solution

55. Which out of
(i) value of velocity,
(ii) value of acceleration,
(iii) value of force,
(iv) the momentum vector of the body is not constant during uniform circular motion ?

D Watch Video Solution

Section D Ncert Exemplar Solutions

1. A ball is moving with uniform translatory motion. This means that
A. it is at rest
B. the path can be a straight line or circular and the ball travels with uniform speed
C. all parts of the ball have the same
velocity and the velocity is constatn
D. the cnetre of the ball moves with constant velcoity and the ball spins about its centre uniformly

Answer: C

D Watch Video Solution

2. A metre scale is moving with uniform velocity. This implies
A. the force acting on the scale is zero, but
a torque about the centre of mass can
act on the scale.
B. the force acting on the scale is zero and
the torque acting about centre of mass of the scale is also zero.
C. the total force acting on it need not be
zero but the torque on it is zero.
D. neither the force nor the torque need to
be zero.

Answer: B

- Watch Video Solution

3. A cricket ball of mass 150 g has an initial velocity $\mu=(3 \hat{i}+4 \hat{j}) m s^{-1}$ and a final velocity $v=-(3 \hat{i}+4 \hat{j}) m s^{-1}$, after being hit. The change in momentum (final momentuminitial momentum) is (in kgms^{-1})
A. zero

$$
\text { B. }-(0.5 \vec{i}+0.6 \vec{j})
$$

$$
\begin{aligned}
& \text { C. }-(0.9 \vec{i}+1.2 \vec{j}) \\
& \text { D. }-5(\vec{i}+\vec{j}) \vec{i}
\end{aligned}
$$

Answer: C

D Watch Video Solution

4. In the previous problem (3), the magnitude of the momentum transferred during the hit is
A. zero
B. $0.75 \mathrm{~kg}-m s^{-1}$

$$
\begin{aligned}
& \text { C. } 1.5 \mathrm{~kg}-m s^{-1} \\
& \text { D. } 14 \mathrm{~kg}-m s^{-1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

5. Conservation of momentum in a collision between particles can be understood from
A. conservation of energy
B. Newton's first law only
C. Newton's second law only
D. both Newton's second and third law

Answer: D

D Watch Video Solution

6. A hockey player is moving northward and suddenly turns westward with the same speed to avoid an opponent. The force that acts on the player is
A. frictional force along westward
B. muscle force along southward
C. frictional force along south-west
D. muscle force along south-wes

Answer: C

D Watch Video Solution

7. A body of mass 2 kg travels according to the
law $\mathrm{x} \quad(\mathrm{t})=p t+q t^{2}+r t^{3} \quad$ where,
$q=4 m s^{-2}, p-3 m s^{-1}$ and $\mathrm{r}=5 m s^{-3}$. The
force acting on the body at $t=2 s$ is
A. 136 n
B. 134 n
C. 158 n
D. 68 n

Answer: A
(Watch Video Solution
8. A body with mass 5 kg is acted upon by a force $F=(3 i+4 \hat{j}) \mathrm{N}$. If its initial velocity at $\mathrm{t}=0$ is $v=6 i-12 \hat{j} m s^{-1}$, the time at which it will just have a velocity along the Y -axis is
A. never
B. 10 s
C. 2 s
D. 15 s

Answer: B
9. A car of mass m starts from rest and acquires a velocity along east, $v-v \hat{i}(v>0)$ in two seconds. Assuming the car moves with uniform acceleration, the force exerted on the car is
A. $\frac{m v}{2}$ eastward and is exerted by the car engine.
B. $\frac{m v}{2}$ eastward and is due to the friction on the tyres exerted by the road.
C. more than $\frac{m v}{2}$ eastward exerted due to
the engine and overcomes the friction of the road.
D. $\frac{m v}{2}$ exerted by the engine

Answer: B

D Watch Video Solution
10. The motion of a particle of mass m is given

$$
\text { by } \mathrm{x}=0 \text { for } t<0 \mathrm{~s}, \mathrm{x}(\mathrm{t})=A \sin 4 \pi t \text { for }
$$

$0<t<\left(\frac{1}{4}\right) s(A>0) \quad$ and $\quad \mathrm{x} \quad=0 \quad$ for
$t>\left(\frac{1}{4}\right) \mathrm{s}$ which of the following statements is true?
A. The force at $t=\left(\frac{1}{8}\right)$ on the particle is
$-16 \pi^{2} A-m$
B. The particle is acted upon by on impulse
of magnitude $4 \pi^{2} \mathrm{~A}-\mathrm{m}$ at $\mathrm{t}=0 \mathrm{~s}$ and

$$
t=\left(\frac{1}{4}\right) s
$$

C. The particle is not acted upon by any
force
D. The particle is not acted upon by a constant force

Answer: A::B::D

D Watch Video Solution

11. In the coefficient of friction between the
floor and the body B is 0.1. The coefficient of friction between the bodies B and A is 0.2 . A force F is applied as shown on B. The mass of mA is $\frac{1}{2}$ and of B is m. Which of the following
statements are true?

A. The bodies will move together if $F=0.25$
mg
B. The body A will slip with respect to B if F

$$
=0.5 \mathrm{mg}
$$

C. The bodies will move together if $F=0.5$
mg

D. The bodies will be at rest if $\mathrm{F}=0.1 \mathrm{mg}$

Answer: A::B::D

D Watch Video Solution

12. Mass moves on a slope making an angle 9
with the horizontal and is attached to mass
m_{2} by a string passing over a frictionless
pulley. The coefficient of friction between nq
and the sloping surface is μ. Which of the
following statements are true?

A. If $m_{2}>m_{1} \sin \theta$, the body will move up
the plane
B. If $m_{2}>m_{1}(\sin \theta+\mu \cos \theta)$, the body
will move up the plane
C. If $m_{2}<m_{1}(\sin \theta+\mu \cos \theta)$, the body
will move up the plane

D. If $m_{2}<m_{1}(\sin \theta-\mu \cos \theta)$, the body

will move down the plane

Answer: B::D

D Watch Video Solution

13. In a body A of mass $t n$ slides on plane inclined at angle θ_{1}, to the horizontal and p is the coefficent of friction between A and the plane. A is connected by a light string passing over a frictionless pulley to another body B,
also of mass m, sliding on a frictionless plane inclined at an angle θ_{2} to the horizontal. Which of the following statements are true?

A. a will never move up the plane
B. a will just start moving up the plane when
C.for a to move up the plane θ_{2} must always be greater than θ_{1}
D. b will always slide down with constant speed

Answer: B::C

D Watch Video Solution

14. Two billiard balls A and B, each of mass 50 g and moving in opposite directions with speed of $5 \mathrm{~ms}^{1}$ each, collide and rebound with the
same speed. If the collision lasts for $10^{-3} \mathrm{~s}$,
which of the following statements are true?
A. The impulse imparted to each ball is 0.25
$\mathrm{kg}-m s^{-1}$ and the force on each ball is

250 N
B. The impulse imparted to each ball is 0.25
$\mathrm{kg}-m s^{-1}$ and the force exerted on each
ball is $25 \times 10^{-5} \mathrm{~N}$
C. The impulse imparted to each ball is 0.5

N-s

D. The impulse and the force on each ball

are equal in m agnitude and opposite in directions.

Answer: C::D

D Watch Video Solution

15. A body of mass 10 kg is acted upon by two perpendicular forces, 6 N and 8 N . The resultant acceleration of the body is
A. $1 m s^{-2}$ at an angle of $\tan ^{-1}\left(\frac{4}{3}\right)$ w.r.t
bn force
B. $0.2 \mathrm{~ms}^{-2}$ at an angle of $\tan ^{-1}\left(\frac{4}{3}\right)$
w.r.t 6n force
C. $1 m s^{-2}$ at an angle of $\tan ^{-1}\left(\frac{4}{3}\right)$ w.r.t
bn force
D. $0.2 \mathrm{~ms}^{-2}$ at an angle of $\tan ^{-1}\left(\frac{4}{3}\right)$
w.r.t in force

Answer: A: : C
16. A girl riding a bicycle along a straight road with a speed of $5 \mathrm{~ms}^{-1}$ throws a stone of mass 0.5 kg which has a speed of $15 \mathrm{~ms}^{-1}$ with respect to the ground along her direction of motion. The mass of the girl and bicycle is

50 kg . Does the speed of the bicycle change after the stone is thrown ? What is the change in speed, if so

- Watch Video Solution

17. A person of mass 50 kg stands on a weighing scale on a lift. If the lift is descending with a downward acceleration of $9 \mathrm{~ms}^{-2}$, what would be the reading of the weighing scale ? $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

D Watch Video Solution

18. The position-time graph of a body of mass

2 kg is as given in figure. What is the impulse
on the body at $\mathrm{t}=0 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$.

- Watch Video Solution

19. A person driving a car suddenly applies the
brakes on seeing a child on the road ahead. If
he is not wearing seat belt, he falls forward
and hits his head against the steering wheel.

Why

D Watch Video Solution

20. The velocity of a body of mass 2 kg as a
function of t is given by $v(t)=2 t \hat{i}+t^{2} \hat{j}$.
Find the momentum and the force acting on
it, at time $t=2 s$.

D Watch Video Solution
21. A block placed on a rough horizontal surface is pulled by a horizontal force F. Let f be the force applied by the rough surface on the block. Plot a graph of f versus F.

- Watch Video Solution

22. Why are porcelain objects wrapped in
paper or straw before packing for transportation ?
23. Why does a child feel more pain when she
falls down on a hard cement floor, than when
she falls on the soft muddy ground in the garden ?

- Watch Video Solution

24. A women throws an object of mass 500 g with a speed of $25 \mathrm{~ms}-1$.
(a) W hat is the im pulse im parted to the object?
(b) If the object hits a wall and rebounds with
half the original speed, what is the change in momentum of the object ?

- Watch Video Solution

25. Why are mountain roads generally made winding upwards rather than going straight up?

- Watch Video Solution

26. A mass of 2 kg suspended with thread $A B$
(figure). Thread CD of the same type is attached to the other end of 2 kg mass. Lower thread is pulled gradually, harder and harder in the downward direction, so as to apply force on $A B$.

Which of the threads will break and why?

$H A H A K A K A$

D Watch Video Solution
27. In the above given problem if the lower
thread is pulled with a jerk, what happens
28. Two masses of 5 kg and 3 kg are suspended
with help of massless inextensible strings as
shown in figure. Calculate T_{1} and T_{2} when
whole system is going upwards with
acceleration $=2 \frac{m}{s^{2}} 2\left(\right.$ use $\left.g=9.8 m s^{-2}\right)$.

3 kg

- Watch Video Solution

29. Block A of weight 100 N rests on a frictionless inclined plane of slope angle 30°.

A flexible cord attached to A passes over a frictionless pulley and is connected to block B of weight w. Find the weight w for which the system is in equilibrium

30. A block of mass M is held against a rough
vertical well by pressing it with a finger. If the coefficient of friction between the block and
the wall is jx and acceleration due to gravity is
g, calculate the m inim um force required to be applied by the finger to hold the block against the wall.

D Watch Video Solution

31. A 100 kg gun fires a ball of 1 kg horizontally
from a cliff of height 500 m . It falls on the
ground at a distance of 400 m from bottom of the cliff. Find the recoil velocity of the gun. (acceleration due to gravity $=10 m s^{-2}$)

D Watch Video Solution

32. $(x, t),(y, t)$ diagram of a particle moving in

2-dimensions

(a)

(b)

If the
particle has a mass of 500 g , find the force
(direction and magnitude) acting on the particle.

D Watch Video Solution

33. A person in an elevator accelerating upwards with an acceleration of $2 \frac{m}{s^{2}}$, tosses a coin vertically upwards with a speed of $20 \mathrm{~ms}^{-1}$. After how much time will the coin fall back into his hand ? $\left(\mathrm{g}=10 m s^{2}\right)$
34. There are three forces $F_{1} F_{2}$ and F_{3} acting on a body, all acting on a point P on the body.

The body is found to move with uniform speed.
(a) Show that the forces are coplanar.
(b) Show that the torque acting on the body about any point due to these three forces is zero.

- Watch Video Solution

35. When a body slides down from rest along a smooth inclined plane making an angle of 45°
with the horizontal, it takes time T. When the
same body slides down from rest along a rough inclined plane making the same angle and through the same distance, it is seen to
take time pT , where p is some number greater
than 1. Calculate the coefficient of friction between the body and the rough plane.
36. $\left(v_{x}, t\right)$, and $\left(v_{y} t\right)$ diagram for a body of unit mass. Find the force as a function of time.

D Watch Video Solution

37. A racing car travels on a track (without banking) ABCDEFA. $A B C$ is a circular arc of radius 2 R. CD and FA are straight paths of length R and DEF is a circular arc of radius $R=$

100 m . The coefficient of friction on the road is
$\mu=0.1$. The maximum speed of the car is
$50 \mathrm{~ms}^{-1}$. Find the minimum time for completing one round.

- Watch Video Solution

38. The displacement vector of a particle of mass m is given by $\mathrm{r}(\mathrm{t})=\hat{i} A \cos \omega t+\hat{j} B \sin \omega t$
(a) Show that the trajectory is an ellipse.
(b) Show that $F=m \omega^{2} r$

D Watch Video Solution

39. A cricket bowler releases the ball in two different ways (a) giving it only horizontal velocity, and (b) giving it horizontal velocity and a small downward velocity.

The speed Vs at the
time of release is the same.

Both are released at a height H from the ground.

Which one will have greater speed when the ball hits the ground ? Neglect air resistance

D Watch Video Solution

40. There are four forces acting at a point P produced by strings as shown in figure. Which
is at rest ? Find the forces F_{1} and F_{2}.

- Watch Video Solution

41. A rectangular box lies on a rough inclined
surface. The coefficient of friction between the
surface and the box is μ. Let the mass of the box be m.
(a) At what angle of inclination 0 of the plane to the horizontal will the box just start to slide down the plane?
(b) What is the force acting on the box down
the plane, if the angle of inclination of the plane is increased to $a>\theta$
(c) What is the force needed to be applied
upwards along the plane to make the box either remain stationary or just move up with uniform speed?
(d) What is the force needed to be applied
upwards along the plane to make the box move up the plane with acceleration a ?

D Watch Video Solution

42. A helicopter of m ass 1000 kg rises with a vertical a c c ele ra tion of $15 m s-{ }^{2}$. The crew an d th e passengers weigh 300 kg . Give the magnitude and direction of the,
(a) Force on th e floor by th e crew and passengers.
(b) Action of the rotor of the helicopter on the
surrounding air.
(c) Force on the helicopter due to the surrounding air.

D Watch Video Solution

Section E Multiple Choice Questions Mcqs

1. The position (x) \rightarrow time (t) graph of one dimensional motion of a body of mass 0.4 kg .

What is the magnitude of impulse of force

A. 1.6 Ns
B. 0.8 Ns
C. 0.4 Ns
D. 0.2 Ns

D Watch Video Solution

2. What is time period of a simple pendulum in

a freely falling lift ?
A. zero
B. infinite
C. 2s
D. none of the given

Answer: B

- Watch Video Solution

3. Arrangem ent in which the pulley are smooth and strings are of negligible mass. For the system to remain in equilibrium, the angle 0 should be

A. 30°
B. 45°
C. 0°
D. 60°

Answer: B

D Watch Video Solution
4. A circular racetrack of radius 300 m is banked at an angle of 20°. If the coefficient of
friction between the wheels of the race car
and the road is 0.2 , what is the approximate maximum permissible speed of the race car ? `
A. $88.2 m s^{-1}$
B. $86.4 m s^{-1}$
C. $42.3 m s^{-1}$
D. none of the given

Answer: C
(Watch Video Solution
5. When 20 N force is applied on a body of mass m , acceleration $8.0 \mathrm{~ms}^{2}$ is produced in it.

The same force when applied on a body of mass m^{\prime}, acceleration of $24 m s^{2}$ is produced.

What will be acceleration produced by the
same force applied on these two bodies tied togather......
A. $2 m s^{-2}$
B. $8 m s^{-2}$
C. $6 m s^{-2}$

D. $4 m s^{-2}$

Answer: C

D Watch Video Solution

6. A bomb in the steady state explodes into
three fragments. Two fragments of equal masses move with velocity $15 m s^{-1}$ in mutually perpendicular directions. The mass of
the third fragment is equal to three times the mass of each of these two fragments. The
magnitude of velocity of third fragment is $m s^{-1}$.
A. 20
B. $10 \sqrt{2}$
C. $5 \sqrt{2}$
D. none of these

Answer: C

- Watch Video Solution

7. 6 bullets are fired in a second from a machine gun with velocity of $400 \mathrm{~ms}^{-1}$. The mass of machine gun and bullet are 10 kg and 30 g respectively. What is the value of force is to be exerted on machine gun to keep it stationary ?
A. 72 N
B. 7200 N
C. 2 N
D. 12 N

Answer: A

D Watch Video Solution

8. A ball of mass of 150 g and velocity $12 \mathrm{~ms}^{-1}$
coming towards a batsman is hit by him with a
force in such a way that the ball moves with velocity $30 \mathrm{~ms}^{-1}$ in the direction opposite to
its original one. The time of contact between the ball and the bat is 0.01 s . Then the force applied on it by the batsman is

A. 63000 N

B. 480 N
C. 270 N
D. 630 N

Answer: D

- Watch Video Solution

9. A block of mass 15 kg is lying on an inclined plane of angle 30°. In order to make it move upward along the slope with an acceleration
$25 \mathrm{cms}^{2}$, a horizontal force of 200 N is required to be applied on it. Then the frictional force on the block is ($\mathrm{g}=9.8 \mathrm{~ms} 2$)
A. 95.95 n
B. 134 n
C. 99.70 n
D. $90 n$

Answer: C

D Watch Video Solution
10. If P, v and E denotes the momentum, velocity and K.E. of a particle then

$$
\begin{aligned}
& \text { A. } p=\frac{d^{2} E}{d t^{2}} \\
& \text { B. } p=\frac{d v}{d t} \\
& \text { C. } p=\frac{d E}{d v} \\
& \text { D. } P=\frac{d E}{d t}
\end{aligned}
$$

Answer: D

- Watch Video Solution

11. A block (A) of mass 20 kg is put on a frictionless surface and another object (B) of mass 2 kg is placed over it. The coefficient of friction between the surface of A and B is 0.25 .

If a horizontal force of 10 N applied on B , then
acceleration of A and B are respectively......

A. $5 m / s^{2}$ and $0.91 m / s^{2}$
B. $5 m / s^{2}$ and $0.5 m / s^{2}$
C. $2.5 m / s^{2}$ and $0.2 m / s^{2}$
D. $2.5 m / s^{2}$ and $0.25 m / s^{2}$

Answer: C

D View Text Solution

12. force $F=100 \mathrm{~N}$ is applied horizontally on a block of mass 4 kg . Which is in contact with a wall. Such that it does not fall. The coefficient of friction between the block and the wall is
A. 0.8
B. 0.5
C. 0.4
D. 0.3

Answer: A

D Watch Video Solution

13. The SI unit of time rate of change of momentum is
A. $m s^{-2}$
B. N
C. dyne
D. $k g m s^{-1}$

Answer: C

D Watch Video Solution

14. A stationary bomb explodes into three fragments. If the linear momentum of two A
pieces are $4 \hat{i}$ and $3 \hat{J}$ unit respectively, then what is the value of the third fragment?
A. 7 unit
B. $\sqrt{13}$ unit
C. 5 unit
D. 6 unit

Answer: B
(Watch Video Solution
15. The linear momentum of a particle at time t
is given by the equation $\mathrm{P}=\mathrm{x}+y t^{2}$, where x
and y are constants. The instantaneous force acting on the particle during its motion is
A. inversely proportioal to t^{2}
B. inversely proportioal to t
C. directly proportioal to t
D. directly proportioal to t^{2}

Answer: B
16. If linear momentum of a body is increased by 0.5% its kinetic energy increases by..
A. 0.1
B. 0.01
C. 0.02
D. 0

Answer: B

- Watch Video Solution

17. $F \rightarrow t$ graph for a body is shown in figure.

The change in value of momentum of the body in the interval 0.02 s to 0.06 s is ..

A. $1.2 \mathrm{~kg} \mathrm{~ms}{ }^{-1}$
B. $0.3 \mathrm{~kg} \mathrm{~ms}{ }^{-1}$

C. $0.8 \mathrm{~kg} \mathrm{~ms}{ }^{-1}$
 D. $0.4 \mathrm{~kg} \mathrm{~ms}{ }^{-1}$

Answer: C

D Watch Video Solution

18. When a force acts on a body of mass 200 gram the change in its velocity is 15 cm s per second. The magnitude of this force is Newton.
A. 0.3
B. 0.003
C. 0.03
D. 3

Answer: C

D Watch Video Solution
19. A car of mass 1000 kg is moving with a velocity $20 \mathrm{~m} / \mathrm{s}$ on a horizontal straight road.

If the driver applies brakes to produce a
constant breaking force of 5000 Newton, the acceleration of the car is m / s^{2}.
A. -5
B. 50
C. 5
D. none

Answer: A
(Watch Video Solution
20. The value of co-efficient of static friction $\left(\mu_{s}\right)$ is in the range between.
A. 0.01 to 1.5
B. 0.01 to 0.15
C. 0.1 to 1.5
D. 0.01 to 15

Answer: A

D Watch Video Solution
21. A force acts on an object of mass 2 kg at rest, for 0.5 s . After the force stops acting, the object travels a distance of 5 m in 2 s . Hence the magnitude of the force will be ...
A. 5 N
B. 10 N
C. 7.5 N
D. 12.5 N

Answer: B
22. A person of mass 60 kg is standing on a raft of mass 40 kg in a lake. The distance of the person from the bank is 30 m . If the person starts running towards the bank with
velocity $15 \mathrm{~m} / \mathrm{s}$, then what will his distance be from the bank after two second
A. 26 m
B. 18 m
C. 21m
D. 12 m

Answer: B

- Watch Video Solution

23. A block of 50 kg on a smooth plane inclined
at 60° and another block of 30 kg on a smooth plane inclined at 30° with horizontal are connected by a light string passing over a frictionless pully as shown in the figure. Take g $=10 \mathrm{~ms}^{-2}, \sqrt{3}=1.7$. The acceleration of the blocks and tension in the string are.
A. $3.437 m s^{-2}$ and $25.311 N$
B. $34.37 \mathrm{~ms}^{-2}$ and 253.11 N
C. $3.437 \mathrm{cms}^{-2}$ and $25.311 d y \neq$
D. $3.437 \mathrm{~ms}^{-2}$ and 253.11 N

Answer: D

D Watch Video Solution

24. If the speed of a vehicle become 3 times for
a given deceleration its stopping distance become
A. two
B. three
C. nine
D. four

Answer: C

- Watch Video Solution

25. If vectors are $\vec{A}=2 \hat{i}+3 \widehat{J}-\hat{k}$ and
$\widehat{B}=4 \hat{i}+6 \widehat{J}-2 \hat{k}$, then they are
A. equal
B. perpendicualr
C. anti parallel
D. parallel

Answer: D

D Watch Video Solution

26.

$$
\vec{A}=2 \hat{i}+3 \widehat{J}+4 \hat{k}
$$

$\vec{B}=4 \hat{i}+5 \hat{j}+3 \hat{k}$, then the magnitudes of
$\vec{A}-\vec{B}$...unit
A. 21
B. 8.9
C. 3
D. 12.2

Answer: C

- Watch Video Solution

27. Find the vector product of vectors
$\vec{A}=4 \hat{i}+2 \widehat{J}-\hat{k}, \vec{B}=\hat{i}+3 \widehat{J}+4 \hat{k}$
A. $3 \hat{i}-h t j-5 \hat{k}$
B. $11 \hat{i}-17 h t j+10 \hat{k}$
C. $4 \hat{i}+6 h t j-4 \hat{k}$
D. $5 \hat{i}+5 h t j+3 \hat{k}$

Answer: B

D Watch Video Solution

28. A body of mass 20 kg at one end and another of 60 kg at the other end of a string passing over a frictionless pully are suspended
as shown in the figure. Acceleration of this
system is $\frac{m}{s^{2}}$.

A. 4.44
B. 2.5
C. 3
D. 5

Answer: D

- Watch Video Solution

29. If vector $\vec{A}=4 \hat{i}-6 \widehat{J}+2 \hat{k}$ and
$\vec{B}=6 \hat{i}+8 \hat{j}+m \hat{k}$ are m utually
perpendicular, $\mathrm{m}=$....
A. 24
B. 12
C. 20
D. 36

Answer: B

- Watch Video Solution

30. Ramesh with mass of 65 kg stands on a spring balance in a lift. If the lift moves in upward direction with an acceleration of $3 \mathrm{~m} /$ s^{2}, then the weight of Ramesh will becom e........
A. 195 N
B. 845 N
C. 480 N

D. 720 N

Answer: B

D Watch Video Solution

31. The potential energy of a projectile at its highest point is $\frac{3}{4}$ of the value of its initial kinetic energy. Therefore its angle of projection is
A. 45°
B. 30°
C. 75°
D. 60°

Answer: D

- Watch Video Solution

32. A block of mass 20 kg is lying on an inclined plane of angle 30°. In order to make it move upward along the slope with an acceleration of $25 \mathrm{~cm} / \mathrm{s}^{2}$, a horizontal force of

400 N is required to be applied on it. (i)

Frictional force on the block is \qquad N. (ii) Coefficient of kinetic friction is
A. $134,0.56$
B. 207,1.52
C. 243.41, 0.66
D. $400,0.42$

Answer: C

D Watch Video Solution
33. $M=5 \mathrm{~kg}$. The co-efficient of static friction between the block and the surface

A. 0.7
B. 0.27
C. 0.35
D. 0.47

Answer: A

D View Text Solution

34. A body of mass 10 kg at rest is applied with

 perpendicular force of 4 N and 3 N at the same time, then at the end of 10 seconds its kinetic energy =A. 25 j
B. 250 j
C. 125 j

D. 400 j

Answer: C

D Watch Video Solution

35. The angle between $\vec{F}=(1,-3,1)$ and $\vec{d}=(2,-3,-11)$ will b e rad.
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$

D. π

Answer: C

D Watch Video Solution

36. A disc is rotatin g aro $u n d$ its cen tre in a
horizontal plane at the rate of 60 rotation/ minute. A coin $\left(1 A^{s t}\right)$ is placed at a distance of 18 cm and $2^{\text {nd }}$ similar coin 20 cm from its centre. The co-efficient of static friction between the disc and the coins is 0.2 . Which
coin will be thrown away from the disc ? Which
coin will keep rotating with the disc ?
A. both coins thrown away
B. 2nd coin keep rotating 1st coin thrown
away
C. both coins keep rotating
D. 1st coin keep rotating 2 nd coin thrown
away

Answer: A

37. A bomb in the steady state explodes into
three fragments. Two fragm ents of equal masses move w ith velocity $30 \mathrm{~m} / \mathrm{s}$ in m utually perpendicular direction. The mass of the third fragment is equal to five times the mass of each of these two fragm ents. Find the magnitude and direction of the velocity of this third fragment.

$$
\text { A. } 6 \sqrt{2} m / s, \theta=45^{\circ} \quad \text { with } \quad-x \quad \text { and } \quad-y
$$

B. $5 \sqrt{2} m / s, \theta=45^{\circ}$ with +x and +y

direction

C. $6 \sqrt{2} m / s, \theta=45^{\circ} \quad$ with $\quad+x \quad$ and $\quad-y$
direction
D. $5 \sqrt{2} m / s, \theta=45^{\circ} \quad$ with $\quad-x \quad$ and $\quad-y$
direction

Answer: A

D Watch Video Solution

38. Block of mass m is placed on frictionless
slope with angle 0 . Normal force acting on block due to surface will be
A. $m g$
B. $\frac{m g}{\cos \theta}$
C. $m g \cos \theta$
D. $m g \sin \theta$

Answer: C

D Watch Video Solution
39. The upper half of an in clin ed plane of inclination 30° is perfectly smooth, while the
lower half is rough. A block starts from rest from the top of the plane and if it comes back to rest at the bottom, what is the co-efficient of kinetic friction between the surface of block and the rough surface of the inclined plane?
A. 2
B. $2 \sqrt{3}$
C. $\frac{2}{\sqrt{3}}$

D. $\sqrt{3}$

Answer: C

D Watch Video Solution

40. When a force acts on a body of mass 0.1 kg ,
the change in its velocity is $20 \mathrm{~cm} \mathrm{~s} s^{-1}$ per second. The magnitude of this force is N
A. 0.02
B. 0.002
C. 20
D. 0.2

Answer: A

D Watch Video Solution

41. A force of 8 N acts on abject of mass 2 kg in X -direction and another force of 6 N acts on it in Y-direction. Hence, the magnitude of acceleration of the object will be
A. $7.0 m s^{-2}$
B. $5 m s^{-2}$
C. $1 m s^{-2}$
D. $2.5 m s^{-2}$

Answer: B

D Watch Video Solution

42. Three blocks with masses $m, 2 m$ and $3 m$ are connected by strings as shown in the figure. After an upward force F is applied on
block m, the masses move upward at constant
speed v. What is the net force on the block of
mass 2 m
A. 6 mg
B. zero
C. 2 mg
D. 3 mg

Answer: B

D Watch Video Solution
43. A rod $P Q$ of mass M and length L is hinged at end P. The rod is kept horizontal by a massless string tied to point Q as shown in
figure. When string is cut, the initial angular acceleration of the rod is

A. $\frac{2 g}{3 L}$
B. $\frac{3 g}{2 L}$
C. $\frac{g}{L}$
D. $\frac{2 g}{L}$

Answer: B

D Watch Video Solution

44. An explosion breaks a rock into three parts
in a horizontal plane. Two of them go off at right angles to each other. The first part of mass 1 kg moves with a speed of $12 \mathrm{~ms}^{-1}$ and the second part of mass 2 kg moves with 8
$m s^{-1}$ speed. If the third part flies off with 4 $m s^{-1}$ speed, then its mass is
A. 17 kg
B. 3 kg
C. 5 kg
D. 7 kg

Answer: C
(Watch Video Solution
45. The $u p p$ er half of an in clin ed p lane of inclination θ is perfectly smooth while lower half is rough. A block starting from rest at the top of the plane will again come to rest at the bottom, if the coefficient of friction between the block and lower half of the plane is given by
A. $\mu=\tan \theta$

$$
\begin{aligned}
& \text { B. } \mu=\frac{1}{\tan \theta} \\
& \text { C. } \mu=\frac{2}{2 \tan \theta}
\end{aligned}
$$

D. $\mu=2 \tan \theta$

Answer: D

D Watch Video Solution

46. A system consists of three masses $m_{1} m_{2}$
and m_{3} connected by a string passing over a
pulley P. The mass m_{1} hangs freely and m_{2}
and m_{3} are on a rough horizontal table (the
co efficient of fircition $=p$). The pulley is
frictionless and of negligible mass. The

$$
\left.m_{1}-m_{2}=m_{3}=m\right)
$$

A. $\frac{g(1-g \mu)}{g}$
B. $\frac{2 g \mu}{3}$
C. $\frac{g(1-2 \mu)}{3}$
D. $\frac{g(1-2 \mu)}{2}$

Answer: C

D Watch Video Solution

47. The force ' F ' acting on a particle of mass
' m ' is indicated by the force-time graph shown
below.

The change in momentum of the particle over the time interval from zero to 8 s is
A. 24 ns
B. 20 ns
C. 12 ns
D. 6 ns

Answer: C

D Watch Video Solution

48. A ballon with mass ' m ' is descending down
with an acceleration 'a' (where $a \leq g$). How
much mass should be removed from it so that is starts moving up with an acceleration 'a'?
A. $\frac{2 m a}{g+a}$
B. $\frac{2 m a}{g-a}$
C. $\frac{m a}{g+a}$
D. $\frac{m a}{g-a}$

Answer: A

- Watch Video Solution

49. A body of m ass ($4 m$) is lying $x-y p$ lan e at rest. It su d d en ly explodes in to th re e pieces. Two pieces, each of m ass (m) m ove p
erp en d icu lar to each o th er w ith equal speeds (p). The total kinetic energy g en erated due to explosion is
A. $m v^{2}$
B. $\frac{3}{2} m v^{2}$
C. $2 m v^{2}$
D. $4 m v^{2}$

Answer: B

D Watch Video Solution
50. Three blocks A, B and C of m asses $4 \mathrm{~kg}, 2 \mathrm{~kg}$
and lkg respectively are in con tact on a frictionless surface, as show n. If a force of 14

N is applied o n the 4 kg b lock, thentheco n ta $c t$ fo rce betw een A and B is
A. 2 n
B. $6 n$
C. 8 n
D. 18 n

Watch Video Solution

51. A block A of m ass rests on a horizontal table. A lig $h t$ strin g connected to it passesover a frictionless pulley at the edge of table an d from its other end another block B of mass m_{2} is su sp en $d e d$. The co efficien t of k in eticfriction between the block and the table is μ_{k} hen the block A is sliding on the table, the ten sio n in the string is:

$$
\text { A. } \frac{m_{2}-\mu_{k} m_{1} g}{m_{1}+m_{2}}
$$

$$
\begin{aligned}
& \text { B. } \frac{m_{1} \mu_{2} m\left(1+\mu_{k}\right) g}{m_{1}+m_{2}} \\
& \text { C. } \frac{m_{1} \mu_{2} m\left(1-\mu_{k}\right) g}{m_{1}+m_{2}} \\
& \text { D. } \frac{m_{2}+\mu_{k} m_{1} g}{m_{1}+m_{2}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

52. A plank w ith a box on it atone end is gradually raised about the other end. As the ang le of in clin ation with the horizontal reaches 30°, the box starts to slip and slides
4.0 m down the plan k in 4.0 s . The coefficients of static and k inetic friction between the box and the plank will be, respectively:

A. 0.4 and 0.3
B. 0.6 and 0.6
C. 0.6 and 0.5
D. 0.5 and 0.6

Answer: C

D Watch Video Solution

53. A particle moves so th at its p o sitio n
vector is ω Where is a constant which of the
following is true
A. velcocity and acceleration both are perpendicular to \vec{r}
B. velocity and acceleration both are parallel to \vec{r}
C. velocity is perpendicualr to \vec{r} and acceleratio is directed towards the origin
D. velcocity is perpendicular to \vec{r} and acceleration is directed away from the origin

Answer: B

D Watch Video Solution

54. What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop
A. $s q r T(2 g R)$
B. $\sqrt{3 g R}$
C. $\sqrt{5 g R}$
D. $\sqrt{g R}$

Answer: C

- Watch Video Solution

55. A rigid ball of mass m strikes a rigid wall at
60° and gets reflected without speed shown in
the figure below .The value of impulse imparted by the wall on the ball will be
A. $\frac{m v}{2}$
B. $\frac{m v}{3}$
C. mv
D. 2 mv

Answer: C

56. A bullet of m ass 10 g m oving horizontal w
ith a velocity of $400 \mathrm{~ms}^{-1}$ strikes a wood block of m a ss 2 kg wh ich is $\mathrm{s} u \mathrm{~s} p \mathrm{end} \mathrm{d} \mathrm{d}$ by lig $h \mathrm{t}$ inex ten sib le strin g of length 5 m .

As resu It the centre of gravity of the block fo und to rise a vertical distan ce of 10 cm .

The $s p$ eed of the bullet after it em erges on horizontally from the block will be......
A. $120 m s^{-1}$
B. $160 m s^{-1}$

C. $100 m s^{-1}$

D. $80 m s^{-1}$

Answer: A

- Watch Video Solution

57. A stationary object is divided into two fragment of mass 2 M and 3 M . Total energy of both fragment is E. Find energy of fragment with mass 2 M .
A. $\frac{2 E}{5}$
B. $\frac{E}{2}$
C. $\frac{E}{5}$
D. $\frac{3 E}{5}$

Answer: D

D Watch Video Solution

58. A cyclist on a level road takes a sharp circular tu rn of rad iu s $3 \mathrm{~m}\left(\mathrm{~g}=10 \mathrm{~ms}^{-2}\right)$. If
th e coefficient of static friction between the
cycle tyres and the road is 0.2 , at which of the
following speeds will the cyclist not skid while taking the turn ?
A. $14.4 \mathrm{~km} h^{-1}$
B. $7.2 \mathrm{~km} h^{-1}$
C. $9 \mathrm{~km} h^{-1}$
D. $10.8 \mathrm{~km} h^{-1}$

Answer: C

D Watch Video Solution
59. When forces F_{1}, F_{2} and F_{3} are acting on a particle of mass m such that F_{2} and F_{3} are m utually perpendicular, then the particle remains stationary. If the force $F x$ is now removed, then the acceleration of the particle is

$$
\begin{aligned}
& \text { A. } \frac{f_{1}}{m} \\
& \text { B. } \frac{f_{2} f_{3}}{m f_{1}} \\
& \text { C. } \frac{f_{2}-f_{3}}{m} \\
& \text { D. } \frac{f_{2}}{m}
\end{aligned}
$$

Answer: A

D Watch Video Solution

60. When forces F_{1}, F_{2} and F_{3} are acting on a
particle of mass m such that F_{2} and F_{3} are m
utually perpendicular, then the particle remains stationary. If the force $F x$ is now removed, then the acceleration of the particle is

$$
\text { A. } \frac{R_{3}}{m}
$$

B. $\frac{R_{1}+R_{2}}{m}$
C. $\frac{R_{1}-R_{2}}{m}$
D. $\frac{R_{1}}{m}$

Answer: A

D Watch Video Solution

61. Two masses $m_{1}=4.8 \mathrm{~kg}$ and $m_{2}=5 \mathrm{~kg}$ tied to a string are hanging over a light frictionless pully. What is the acceleration of masses when they are free to move?
A. $0.2 m / s^{2}$
B. $9.8 m / s^{2}$
C. $5 m / s^{2}$
D. $4.8 \mathrm{~m} / \mathrm{s}^{2}$

Answer: A

D Watch Video Solution

62. A block rests on a rough inclined plane making an angle of 30° with the horizontal.

The coefficient of static friction between the
block and the plane is 0.8 . If the frictional force on the block is 10 N , the mass of the block ((in kg) is (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 2.0 kg
B. 4.0 kg
C. 1.6 kg
D. 2.5 kg

Answer: A

- Watch Video Solution

63. A person fire bullet of 40 g w ith speed of
$1200 \mathrm{~m} / \mathrm{s}$ from his rifle. If rifle can w ithstant maximum recoil force of 144 N . How many bullet he can fire every second ?
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution
64. A player caught a cricket ball of m ass 150 g moving at a rate of $20 \mathrm{~m} / \mathrm{s}^{-1}$. If the catching process is com pleted in 0.1 s , the force of the blow exerted by the ball on the hand of the player is equal to
A. 0.3 N
B. 3 N
C. 30 N
D. 300 N

Answer: C

D Watch Video Solution

65. A mass ' m ' is supported by a massless
string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what
acceleration will the mass fall on release?

A. $\frac{5 g}{6}$
B. g
C. $\frac{2 g}{3}$

D. $\frac{g}{2}$

Answer: D

D Watch Video Solution

66. Given in the figure are two blocks A and B of weight 20 N and 100 N respectively. These are being pressed against a wall by a force F as shown. If the coefficient of friction between
the blocks is 0.1 and between block B and the wall is 0.15 , the frictional force applied by the
wall on block B is

A. 100 N
B. 80 N
C. 120 N
D. 150 N

Answer: C

- Watch Video Solution

67. Two masses $m_{1}=5 \mathrm{~kg}$ and $m_{2}=10 \mathrm{~kg}$,
connected by an inextensible string over a
frictionless pulley are moving as shown in the
figure. The coefficient of friction of horiztonal
surface is 0.15 . The minimum height m that
should be put on top of m_{2} to stop the
motion is

A. 18.3 kg
B. 27.3 kg
C. 43.3 kg
D. 10.3 kg

Answer: C

- Watch Video Solution

68. Which one of the following statem ents is
incorrect?
A. rolling fricition is smaller than sliding
friction
B. limiting value of static friction is directly
C. frictional force oppose the relative

motion

D. coefficient of sliding friction has

dimensions of length

Answer: A

D Watch Video Solution

69. A block of mass m is place on a sm ooth inclined wedge $A B C$ of inclination 0 as shown in figure. The wedge is given an acceleration ' a '
towards the right. The relation between a and
θ for the block to rem ain stationary on the wedge is

A. $a=g \tan \theta$
B. $a=\frac{g}{\operatorname{cosec} \theta}$
C. $a=g \cos \theta$

$$
\text { D. } a=\frac{g}{\sin \theta}
$$

Answer: A

- Watch Video Solution

Section F Questions From Module

1. A block rests on a rough inclined plane making an angle of 30° with the horizontal.

The coefficient of static friction between the block and the plane is 0.8 . If the frictional force
on the block is 10 N , the mass of the block ((in kg) is (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 2.0 kg
B. 4.0 kg
C. 1.6 kg
D. 2.5 kg

Answer: A
(Watch Video Solution
2. A player caught a cricket ball of mass 150 g moving at a rate of $20 \mathrm{~m} / \mathrm{s}$. If the catching process is completed in 0.1 s , the force of the blow exerted by the ball on the hand of the player is equal to
A. 0.3 N
B. 3 N
C. 30 N
D. 300 N

Answer: C
3. A water jet sprinkle water around it. If speed of water is v , then maximum area covered by water jet will be
A. $\frac{\pi v^{2}}{g^{4}}$
B. $\frac{\pi v^{2}}{2 g^{2}}$
C. $\frac{\pi v^{4}}{g^{2}}$
D. $\frac{\pi v^{2}}{g}$
4. A cyclist moving on level circular path of radius 4 m with speed of $4.9 \mathrm{~m} / \mathrm{s}$ takes sharp turn. Co-efficient of friction between tyre and road will be
A. 0.51
B. 0.41
C. 0.71
D. 0.61

Answer: D

D Watch Video Solution

5. Two spring balances each of mass 2 kg are connected to ceiling of a lift. To the lowest
spring a mass of 10 kg is attached. What will be reading of upper spring if lift is moving with g downward acceleration $\frac{g}{6}$?
A. 12 kg
B. 6 kg
C. 14 kg
D. 10 kg

Answer: D

D Watch Video Solution

6. The coefficient of static friction $\mu \mathrm{s}$, between
block A of mass 2 kg and the table as shown in
the figure is 0.2 . What would be the maximum mass value of block B, so that two blocks do not move ? The string and the pully are
assumed to be smooth and massless.

A. 4.0 kg
B. 0.2 kg
C. 0.4 kg
D. 2.0 kg

Answer: C

D Watch Video Solution

7. A block B is pushed momentarily along a
horizontal surface with an initial velocity V . If
mu is the coefficient of sliding friction between B and the surface, block B will come to rest after a time ?
A. $\frac{g \mu}{v}$
B. $\frac{g}{v}$

C. $\frac{v}{g}$
 D. $\frac{v}{g \mu}$

Answer: D

D Watch Video Solution

8. A ball of mass of 150 g and velocity $12 \mathrm{~m} / \mathrm{s}$ coming towards a batsman is hit by him with a
force in such a way that the ball moves with velocity $20 \mathrm{~m} / \mathrm{s}$ in the direction opposite to its original one. The time of contact between the
ball and the bat is 0.01 s . Then the force applied on it by the batsman is
A. 120 n
B. 480 n
C. 240 n
D. 680 n

Answer: B

D Watch Video Solution

9. A stationary bomb of mass 10 kg suddenly

explode in two fragment of 4 kg and 6 kg .
Ratio of their velocity will be.....
A. $3: 2$
B. $2: 5$
C. $3: 5$
D. $12: 5$

Answer: A

- Watch Video Solution

10. A car of mass 1000 kg moves on horizontal
road with velocity of $30 \mathrm{~m} / \mathrm{s}$. When driver applies brake, constant retarding force of 40 kN is applied, retardation of car will be.....
A. $2 m / s^{2}$
B. $-2 m / s^{2}$
C. $4 m / s^{2}$
D. $-4 m / s^{2}$

Answer: D

11. As, block of mass 5 kg is attached to spring balance reading of spring balance will be

A. 50 n
B. 25 n
C. 500 n

D. 10 n

Answer: B

D Watch Video Solution

12. Periodic time of a simple pendulum suspended in stationary lift is T . Now when lift moves in upward direction with acceleration $\frac{g}{3}$. New periodic time will be

$$
\text { A. } \sqrt{3 T}
$$

B. $\frac{\sqrt{3}}{2}$
C. $\frac{T}{\sqrt{3}}$
D. $\frac{T}{3}$

Answer: B

- Watch Video Solution

13. A block of mass m is placed on a smooth
slope of angle θ. The whole system (slope +
block) is moved horizontally with acceleration
a in such a way that the block does not slip on
the slope. Hence, $a=.$.
A. $g \tan \theta$
B. $g \sin \theta$
C. $g \cos \theta$
D. $\frac{g}{\sin \theta}$

Answer: A
(Watch Video Solution
14. What is the value of the force \vec{F} to be applied horizontally on a block of mass 5 kg which is in contact with a wall, as shown in the
figure. (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) such that it does
not fall down. The coefficient of friction between the block and the wall is 0.4 .
A. 200 n
B. 20 n
C. 12.5 n
D. 125 n

Answer: D

D Watch Video Solution
15. A block of mass 100 g is lying on an inclined
plane of angle 30°. The frictional force on this
block
A. 4.9×10^{2}
B. 4.9×10^{-1}
C. 4.9×10^{-1}
D. 4.9×10^{1}

Answer: B

D Watch Video Solution

16. The u p p er half of an in clin ed p lane of inclination θ is perfectly smooth while lower half is rough. A block starting from rest at the
top of the plane will again come to rest at the bottom, if the coefficient of friction between
the block and lower half of the plane is given by
A. $2 \tan \phi$
B. $\tan \phi$
C. $2 \sin \phi$
D. $2 \cos \phi$

Answer: A

17. Linear momentum of a particle given by
relation $p=a+b t^{2}$, where a, b are constant and t is time, then force acting on particle is
A. propotional to t
B. propotional to t^{2}
C. zero
D. constant
18. A boy while catching a ball experiences
impulse of 6 Ns . If mass of ball is 200 gram,
then what will be speed of ball during catch
A. $10 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $30 \mathrm{~m} / \mathrm{s}$
D. $40 \mathrm{~m} / \mathrm{s}$
19. Mass of a rocket is 100 kg . When 0.1 kg fuel
is burnt every second, velocity of exhaust gas
coming out of it is $1 \mathrm{Km} / \mathrm{s}$.Acceleration of rocket will be
A. $1000 \mathrm{~m} / \mathrm{s}^{2}$
B. $100 \mathrm{~m} / \mathrm{s}^{2}$
C. $10 \mathrm{~m} / \mathrm{s}^{2}$
D. $1 m / s^{2}$

Answer:

- Watch Video Solution

20. The coefficient of static friction $\mu \mathrm{s}$, between block A of mass 2 kg and the table as
shown in the figure is 0.2 . What would be the maximum mass value of block B, so that two
blocks do not move ? The string and the pully

A. 4.0 kg
B. 0.2 kg
C. 0.4 kg
D. 2.0 kg

Answer: D

D Watch Video Solution

21. Three masses $1 \mathrm{~kg}, 6 \mathrm{~kg}$ and 3 kg are of connected to each other with thread and are placed on a table as shown in figure. If g-10 m / s^{2}, the acceleration with which the system
is moving is m / s^{2}.

A. 0
B. 1
C. 2
D. 3

Answer: C
22. A string of negligible mass passing over a
clamped pulley of mass m supports a block of mass M as shown in figure. The force on the pulley by the clamp is given by

A. $\sqrt{2} \mathrm{mg}$
B. $\sqrt{2} \mathrm{mg}$
C. $\sqrt{(M+m)^{2}+m^{2} g}$
D. $\sqrt{(M+m)^{2}+M^{2} g}$

Answer: C

- Watch Video Solution

Question Paper Section A

1. What is dynamics?

D Watch Video Solution

2. Define inertia.

D Watch Video Solution
3. Give dimensional formula of impulse of force.
4. What is similar from the dynamics point of view between a book lying stationary on the horizontal table and a raindrop falling downward with constant speed

- Watch Video Solution

5. During uniform circular motion of object out of (i) magnitude of velocity (ii) magnitude
of force (iii) acceleration (iv) momentum vector is not constant.
(Watch Video Solution

Question Paper Section B

1. What are concurrent forces?
2. Write equation of maximum safe speed on level circular track

D Watch Video Solution

Question Paper Section C

1. The driver of a three-wheeler moving with a speed of $36 \mathrm{~km} / \mathrm{h}$ sees a child standing in the middle of the road and brings his vehicle to rest in 4.0 s just in time to save the child.

What is the average retarding force on the vehicle ? The mass of the three-wheeler is 400 kg and the mass of the driver is 65 kg .

D Watch Video Solution

2. A truck starts from rest and accelerates
uniformly at $2.0 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is
dropped by a person standing on the top of
the truck (6 m high from the ground). What are the (a) velocity, and (b) acceleration of the stone at $\mathrm{t}=11 \mathrm{~s}$? (Neglect air resistance.)

Watch Video Solution

Question Paper Section D

1. A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of radius 3 m rotating about its vertical axis with $200 \mathrm{rev} / \mathrm{min}$. The coefficient of friction between the wall and his clothing is 0.15 . What
is the minimum rotational speed of the cylinder to enable the man to remain stuck to
the wall (without falling) when the floor is
suddenly removed?

- Watch Video Solution

