©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA PHYSICS (GUJRATI ENGLISH)

OBJECTIVE QUESTIONS AS PER NEW PAPER STYLE

Chapter 2 Fill In The Blanks

1. $\frac{1 \mu m}{1 \mathrm{fm}}=\ldots .$.

- Watch Video Solution

2. Number of significant digit in 0.0060 are
3. For study of nanotechnology Microscope is developed.

Watch Video Solution
4.1 rad = Degree.

- Watch Video Solution

5. Light year is unit of

D Watch Video Solution

6. Solid angle subtended by hemisphere at centre is \qquad

- Watch Video Solution

7. To measure distance between rock Method is used.
8. For precise measurement of time clock is most accurate.

- Watch Video Solution

9. When 15.753 is round off to 3 significant digit Is obtained.

- Watch Video Solution

Chapter 2 Match Type Questions

1. Match Column-I with Column-II properly :
Column-I
Column-II
(1) Distance between the earth and stars
(2) Wavelength of infrared wave
(a) kilmeter
(b) Light year
(c) Angstrom

- Watch Video Solution

2. In Column-I quantity and Column-II their value are given. Match them properly :
Column-I Column-II
(1) 1 light year (a) $3.08 \times 10^{16} \mathrm{~m}$
(2) 1 Parsec
(b) $9.46 \times 10^{15} \mathrm{~m}$
(3) A.U.
(c) $1.496 \times 10^{11} \mathrm{~m}$

- Watch Video Solution

3. In Column-I instrument and in Column-II their least count is given.

Match them properly :

Column-I
(1) Microscope
(2) Micrometer screw gauge
(b) 0.001 cm
(c) 0.0001 cm

- Watch Video Solution

4. In Column-I physical quantity and in Column -II its dimensional formula is givne. Match them properly :

Column-I
Column-II
(1) Moment of force
(a) $M^{1} L^{1} T^{-1}$
(2) Angular momentum
(b) $M^{1} L^{2} T^{-1}$
(3) Linear momentum

- Watch Video Solution

5. In Column-I number and in Column-II their significant digit are given.

Match them properly :
Column-I Column-II
(1) $2.85 \times 10^{26} \mathrm{~kg} \quad$ (a) 1
(2) $0.009 \mathrm{~m}^{2}$
(b) 2
(3)0.060s
(c) 3

- Watch Video Solution

Chapter 3 Fill In The Blanks

1. Path length is always

- Watch Video Solution

2. Slope of $v \rightarrow t$ graph of body having accelerated motion is \qquad

- Watch Video Solution

3. If $v \rightarrow t$ graph is parallel to time axis, then object is

- Watch Video Solution

4. If distance travelled by particle is zero then its displacement is \qquad

- Watch Video Solution

5. For body moving with uniform acceleration a change in velocity of body in Δt time interval will be

- Watch Video Solution

6. Time rate of change in position of object is called \qquad

- Watch Video Solution

7. Average velocity Average speed.

- Watch Video Solution

8. A particle starting from initial velocity v_{0} moves on straight line with constant acceleration equation of distance travelled during $n^{\text {th }}$ second will be

- Watch Video Solution

9. Two objects are moving in same direction with velocity v_{A} and v_{B} velocity of A with respect to B will be
10. Ratio of diatance travelled by free falling object in first, second and third second time interval will be \qquad

- Watch Video Solution

Chapter 3 Match Type Questions

1. In Column-I relaion and in Column-II corresponding equation is given.

Match them properly :

Column-I

(1)Velocity \rightarrow relation
(2)Velocity \rightarrow displacement relation
(a) $v=v_{0}+a t$

$$
\begin{aligned}
& \text { (b) } S=v_{0} t+\frac{1}{2} a t^{2} \\
& (c) v^{2}=v_{0}^{2}+2 a s
\end{aligned}
$$

Column-II

- Watch Video Solution

2. The output of a two-input AND gate is high
A. Only if both the inputs are high
B. Only if both the inputs are low
C. Only if one input is high and the other is low
D. If at least one input is low

Answer: (1-c), (2-b), (3-a)

- Watch Video Solution

3. Match Column-I with Column-II :
Column-I
Column-II
(1) Positive acceleration
(a) Speed of particle decreases
(2) Negative acceleration
(b) Speed of particle increases
(c) Speed of particle keep on changing

Watch Video Solution

4. Match Column-I with Column-II:

Column-I
(1) If A and B are moving perpendicular to each other than velocity of w.r.
(2) Relative velocity of rain drop w.r.t to man

Chapter 4 Fill In The Blanks

1. If $\vec{A} \cdot \vec{B}=A B$, then angle between \vec{A} and \vec{B} will be

- Watch Video Solution

2. At highest point velocity of projectile is ($\theta=$ angle of projection).

- Watch Video Solution

3. Component of $\hat{i}-2 \hat{j}+4 \hat{k}$ on y-axis

- Watch Video Solution

4. When angle of projection is Range of projectile will be maximum.
5. For particle moving on circular path with constant speed angle between instantaneous velocity and instantaneous acceleration will be

- Watch Video Solution

6. If $\vec{A}=4 \hat{i}+3 \hat{j}$, then $|\vec{A}|=\ldots \ldots$.

- Watch Video Solution

7. $\vec{A}=3 \hat{i}+2 \hat{j}$ and $\vec{B}=\hat{i}+\hat{j}-2 \hat{k}$ in $\vec{A}-\vec{B}$ magnitude of $\mathrm{y}-$ component will be

- Watch Video Solution

8. When object is projected in vertically upward direction with velocity u, its time of flight will be \qquad

- Watch Video Solution

9. A particles is moving on circular path of radius R with constant angular velocity ω. Its centripetal acceleration will be

- Watch Video Solution

10. Component of given vector will be always

- Watch Video Solution

Chapter 4 Match Type Questions

1. Match Column-I with Column-II :
Column-I
Column-II
(1) Angular momentum
(a) Scalar
(2) Potential energy
(b) Vector
(c) Unit vector

- Watch Video Solution

2. Match Column-I with Column-II :

Column-I
(1) Combination of two vector is maximum.
(2) Combination of two vector is minimum.

Column-II
(a) 180°
(b) 90°
(c) 0°

- Watch Video Solution

3. Match Column-I with Column-II :

Column-I

(1) When body is projected horizontally with constant velocity its angle of
(2) Acceleration of body thrown horizontally with constant velocity.

- Watch Video Solution

4. Match Column-I with Column-II :

Column-I Column-II
(1) Resultant of two mutually perpendicular vector. (a) At angle bisector
(2) Direction of $\vec{A} \times \vec{B}$
(b) Plane
(c) Perpendicular to

- Watch Video Solution

Chapter 5 Fill In The Blanks

1. When 10 N force act on a body, $1 \mathrm{~ms}^{-2}$ acceleration is produced on it.

Mass of body will be \qquad

- Watch Video Solution

2. By newton's first law of motion to keep object in motion by Velocity no force is required.
3. When lift is moving in upward direction with constant acceleration pseudo weight of object will

Watch Video Solution

4. A mass of 3 kg is attached at end of rope with 6 kg mass. At upper end of rope tension will be \qquad

- Watch Video Solution

5. Impulse of force when F force act on body for Δt. Similar impulse will provided when $2 F$ force act on body for time.

- Watch Video Solution

6. When iron pressed heavily friction will
7. In moving bicycle frictional force on wheel will be in Direction.

- Watch Video Solution

8. Value of friction depend on and

- Watch Video Solution

9. Condition that body can be parked in circular road with slope is

- Watch Video Solution

10. Force means change in momentum.

- Watch Video Solution

1. Match Column-I with Column-II :
Column-I Column-II
(1) Definition of force.
(a) Newton's third law of motion.
(2) Magnitude of forec.
(b) Newton's second law of motion.
(c) Newton's first law of motion.

- Watch Video Solution

2. Match Column-I with Column-II:

Column-I

(1) Change in momentum
(2) Rate of change of momentum

Column-II
(a) Force
(b) Impulse of force
(c) Momentum

- Watch Video Solution

3. Match Column-I with Column-II :
Column-I
Column-II
(1) Newton's third law of motion
(a) $\vec{F}_{12}=-\vec{F}_{21}$
(2) Law of conservation of momentum.
(b) $\Delta \vec{p}=0$
(c) $\vec{F}_{12}=\vec{F}_{21}$
4. Match Column-I with Column-II:
Column-I
Column-II
(1) Static friction
(a) Boundary friction
(2) Rolling friction
(b) Ball-bearing
(c) Object moving on road

- Watch Video Solution

Chapter 6 Fill In The Blanks

1. When object is placed at a certain height from the ground, the work done by gravitational force is \qquad

- Watch Video Solution

2. When work done is zero, then speed of object is
3. For collision, restitution coefficient is 1.

- Watch Video Solution

4. If momentum of object becomes twice, then its kinetic energy would bexome times.

- Watch Video Solution

5. For complete inelastic collision, restitution coefficient $\mathrm{e}=$ $=. . . .$.

- Watch Video Solution

6. By the instrument of 1 kW power, 1 kWh energy is consumed in time.

- Watch Video Solution

7. In electricity consumption, 1 unit means J work.

- Watch Video Solution

8. Object fallen down on Earth from 10 m height lost 20% energy, then it will gain height.

- Watch Video Solution

9. If potential energy due to attractive force in circular path of radius r is $U=-\frac{k}{2 r^{2}}$, then its total energy $=\ldots$.

- Watch Video Solution

10. By conversion of $1 \mu g$ mass in energy, energy is obtained.

- Watch Video Solution

1. Match Column-I with Column-II:
Column-I
Column-II
(1) Conservative force
(a) Friction force
(2) Non-conservative force
(b) Gravitational force
(c) Internal force

- Watch Video Solution

2. Match Column-I with Column-II :
Column-I
Column-II
(1) Zero work done
(a) by gravitational force
(2) Positive work done
(b) opposite to gravitational force
(3) Negative work done
(c) by centripetal force

- Watch Video Solution

3. Match Column-I with Column-II:

Column-I Column-II

(1) $1 \mathrm{~kg} \mathrm{~m} \quad$ (a) $1 \mathrm{Js}^{-1}$
(2) $1 \mathrm{~g} \mathrm{~cm} \quad$ (b) $1 \mathrm{gf} \times 1 \mathrm{~cm}$
(c) $1 \mathrm{kgf} \times 1 \mathrm{~m}$

(D) Watch Video Solution

4. An Object is falling freely from height h due to gravitational field. Match the following :

Column-I

(1) Potential energy = kinetic energy
(2) Potential energy $=2$ (kinetic energy)

Column-II
(a) at $\frac{2 h}{3} h e i g h t$
(b) constant at all points
(c)at $\frac{h}{2} h e i g h t$

- Watch Video Solution

Chapter 7 Fill In The Blanks

1. If velocity of centre of mass $v_{c m}=0$ and angular speed $\omega=0$, then object is said to be in equilibrium.

- Watch Video Solution

2. Object has angular momentum if is applied on it.
3. If vessel is filled half by water, then its centre of gravity will go

- Watch Video Solution

4. The point at which whole mass of object is centred it is called \qquad

Watch Video Solution

5. The plays the same role in rotational motion as mass plays in lineat motion.

- Watch Video Solution

6. If angular velocity of a rIgld body at 10 cm distance from rotational axis is $10 \mathrm{rad} / \mathrm{s}$, then the linear velocity of particle is
7. $J s^{-1}$ is SI unit of physical quantity.

- Watch Video Solution

8. The condition for rolling without slipping on a slope having friction is

- Watch Video Solution

9. If $|\vec{A} \times \vec{B}|=\vec{A} \cdot \vec{B}$, then angle between \vec{A} and \vec{B} is $\theta=\ldots . . .$.

- Watch Video Solution

10. Angle between linear and angular momentum for particle performing rotational motion is
11. If $F \hat{k}$ force is acting on particle has position vector $(2 \hat{i}-2 \hat{j})$, then torque on it is

- Watch Video Solution

Chapter 7 Match Type Questions

1. Equtions of linear motion ae given in Column-I and equations of angular motion are given in Column-II. Match them properly :

Column - I Column - II
(1) $W=F \Delta x \quad$ (a) $P=\tau \omega$
(2) $P=F v$
(b) $W=\tau \Delta \theta$
(c) $L=I \omega$

- Watch Video Solution

2. Match Column-I with Column-II :

Column-I Column-II
(1) $\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ Reduced mass of a system of two particles
(2) $\frac{r_{1}+r_{2}}{2}$ (b) position vector of centre of mass of a system of two particle

- Watch Video Solution

3. Match Column-I with Column-II :

Column-I
Column-II
(1) SI unit of torque
(a) m
(2) SI unit of radius of gyration
(b) Nm
(C) $J s^{-2}$

- Watch Video Solution

4. Match Column-I with Column-II :

Column-I
Column-II
(1) Perpendicular axis theorem $\quad I=I_{C}+M d^{2}$
(2) Parallel axis theorem $\quad I_{z}=I_{x}+I_{y}$
where $d=$ distance between two prallel axes.
5. Match column-I with Column -II :

Column-I
(1) Moment of inertia of solid sphere about any diameter
(2) Moment of inertia of solid sphere about the tangent to its boundary

- Watch Video Solution

Chapter 8 Fill In The Blanks

1. Gravitational acceleration is proportional to the distance from centre inside the surface of earth.

- Watch Video Solution

2. If earth contracts such that its radius becomes half without change in mass, then wieght on earth becomes times.
3. Orbital speed if geo-stationary satellite of earth is approximately.

- Watch Video Solution

4. Gravitational intensity of centre of earth is \qquad

- Watch Video Solution

5. If potential energy of a satellite is $-8 \times 10^{9} \mathrm{~J}$, then its binding energy is

Watch Video Solution

6. Kepler's $2^{\text {nd }}$ law for constant areal velocity is result of law of conservation of
7. Time period of mars to revolve around Sun is 8 times greater than that of Mercury. If distance of Mercury from Sun is $5.79 \times 10^{10} \mathrm{~m}$ then that of Mars is approximately

- Watch Video Solution

8. If mass of object on earth is m kg , then its mass on Moon is

- Watch Video Solution

9. Geo-stationary satellite is at height from surface of Earth.

- Watch Video Solution

10. If distance between two objects $m_{1}=m_{2}=1 \mathrm{~kg} 1 \mathrm{~mm}$, then gravitational force between them is [$G=6.67 \times 10^{-11}$ SI unit]

Chapter 8 Match Type Questions

1. Type of satellites are given in Column-I and their uses are given in

Column-II. Match them properly :
Column-I
Column-II
(1) Polar satellite
(a) Tele communication
(2) Geo-stationary satellite
(b) Investigation
(c) For information about atmosphere

- Watch Video Solution

2. Match Column-I with Column-II:
Column-I
Column-II
(1) Kepler's $1^{\text {st }}$ law (a) Law of time period
(2) Kepler's $2^{\text {nd }}$ law
(b) Law of orbit
(3) Kepler's $3^{\text {rd }}$ law
(c) Law of area

- Watch Video Solution

3. Match Column-I with Column-II :
Column-I
Column-II
(1) Maximum value of g (a) At Earth's center
(2) Minimum value of g (b) At poles
(3) Zero value of g
(c) At equator

- Watch Video Solution

4. Match Column-I with Column-II :

Column-I

(1) The magnitude of escape speed of surface of Earth
(2) The magnitude of escape speed on surface of Moon

Column-II
(a) $2.38 \mathrm{~km}^{-1}$
(b) $7.92 \mathrm{kms}^{-1}$
(c) $11.2 \mathrm{~km}^{-1}$

- Watch Video Solution

5. Match Column-I with Column-II :

Column-I
Column-II
(1) It has never a positive value
(2) The reason of negative potential energy of galaxy is
(a) Escape speed
(b) Gravitational
(c) The type of for

