© ${ }^{\text {T doubtnut }}$

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA PHYSICS (GUJRATI ENGLISH)

QUESTIONS ASKED IN JEE - 2020

Question

1. A non-isotropic solid metal cube has
coefficient of linear expansion as
$5 \times 10^{-5} /{ }^{\circ} C \quad$ along the x-axis and $5 \times 10^{-6} /{ }^{\circ} C$ along y-axis and z-axis. If the coefficient of volumetric expansion of the solid is $n \times 10^{-6} /{ }^{\circ} C$ then the value of n is.... A. 5.5
B. 6.5
C. 60
D. 55

Answer: C

2. An ideal fluid flows (laminar flow) through a
pipe of non-uniform diameter. The maximum
and minimum diameters of the pipes are
6.4 cm and 4.8 cm , respectively. The ratio of
minimum and maximum velocities of fluid in
this pipe is
A. $\frac{81}{256}$
B. $\frac{9}{16}$
C. $\frac{3}{4}$
D. $\frac{3}{16}$

Answer: B

D Watch Video Solution

3. A cylinder of height 1 m is floating in water at
$0^{\circ} C$ with 20 cm height in air. Now the temperature of water is raised to $4^{\circ} C$, the height of the cylinder in air becomes 21 cm . The ratio of density of water at $4^{\circ} C$ to that at $0^{\circ} C$ is (Consider expansion of the cylinder is negligible)
A. 1.01
B. 1.03
C. 1.04
D. 2.01

Answer: A

D Watch Video Solution

4. A solid sphere of density
$\rho=\rho_{0}\left(1-\frac{r^{2}}{R^{2}}\right), 0<r \leq R$ just floats in a
liquid, then the density of the liquid is (r is the distance from the centre of the sphere)
A. ρ_{0}
B. $\frac{2}{5} \rho_{0}$
C. $\frac{5}{2} \rho_{0}$
D. $\frac{3}{5} \rho_{0}$

Answer: B
(Watch Video Solution
5. Two moles of an ideal gas with $\frac{C_{P}}{C_{V}}=\frac{5}{3}$ are mixed with 3 moles of another ideal gas
with $\frac{C_{P}}{C_{V}}=\frac{4}{3}$. The value of $\frac{C_{P}}{C_{V}}$ for the mixture is
A. 1.38
B. 1.42
C. 1.5
D. 1.7

Answer: B
6. M grams of steam at $100^{\circ} \mathrm{C}$ is mixed with 200 g of ice at its melting point in a thermally insulated container. If it produces liquid water at $40^{\circ} \mathrm{C}$ [heat of vaporization of water is $540 \mathrm{cal} / \mathrm{g}$ and heat of fusion of ice is $80 \mathrm{cal} / \mathrm{gl}$, the value of M is
A. 30
B. 40
C. 50

D. 60

Answer: B

D Watch Video Solution

7. 1 liter dry air at STP expands adiabatically to
a volume of 3 L . If $\gamma=1.4$, the work done by air
is $\left(3^{1.4}=4.655\right)$ (Take air to be an ideal gas)
A. 18J
B. 45 J
C. 90.5J
D. 100.8J

Answer: C

D Watch Video Solution

8. A carnot engine opeates between two reservoirs of temperature 900 K and 300 K . The engine performs 1200J of work per cycle. The heat energy in (J) delivered by the engine to the low temperature reservoir in a cycle is
A. 800 J
B. 600J
C. 1800J
D. 900J

Answer: B

D Watch Video Solution
9. Choose the correct P-V graph of an ideal gas
for the given V-T graph

A.

C.

Answer: A

D Watch Video Solution

10. Two ideal Carnot engines opeate in cascade
(all heat given up by one engine is used by the other engine to produce work) between temperatures T_{1} and T_{2}. The temperature of
the hot reservoir of the first engine is T_{1} and
the temperature of the cold reservoir of the second engine is T_{2}. T is the temperature of the sink of first engine which isi also the source for the second engine. How is T related to T_{1} and T_{2} if both the engines perform equal amount of work?

$$
\begin{aligned}
& \text { A. } \frac{2 T_{1} T_{2}}{T_{1}+T_{2}} \\
& \text { B. } \frac{T_{1}+T_{2}}{2}
\end{aligned}
$$

C. 0

$$
\text { D. } \sqrt{T_{1} T_{2}}
$$

- Watch Video Solution

11. Under an adiabatic process, the volume of an ideal gas gets doubled. Consequently, the mean collision time between the gas molecules changes from τ_{1} to τ_{2}. If $\frac{C_{P}}{C_{V}}=\gamma$ for this gas, then a good estimate for $\frac{\tau_{2}}{\tau_{1}}$ is given by
A. $\frac{1}{2}$
B. 2
C. $\left(\frac{1}{2}\right)^{\gamma}$
D. $\left(\frac{1}{2}\right)^{\frac{\gamma}{2}+1}$

Answer:

D Watch Video Solution

12. Which graph correctly represents the variation between relaxation time (τ) of gas molecules with absolute temperature (T) of the gas?
A.

C.

Answer: A
13. A LCR circuit behaves like a damped harmonic oscillator. Comparing it with a physical spring- mass damped oscillator having damping constant b, mass m and oscillating with a force constant k, the correct equivalence will be
A. $L \leftrightarrow k, C \leftrightarrow b, R \leftrightarrow m$
B. $L \leftrightarrow m, C \leftrightarrow \frac{1}{k}, R \leftrightarrow b$
C. $L \leftrightarrow \frac{1}{b}, C \leftrightarrow \frac{1}{m}, R \leftrightarrow \frac{1}{k}$
D. $L \leftrightarrow m, C \leftrightarrow k, R \leftrightarrow b$

Answer: B

D Watch Video Solution

14. Speed of transwerse wave of a straight wire
having mass 6.0 g length 60 cm and area of cross- section $1.0 \mathrm{~mm}^{2}$ is $90 \mathrm{~m} / \mathrm{s}$. If the Young's modulus of wire is $1.6 \times 10^{11} \mathrm{Nm}^{-2}$, the extension of wire over its natural length is
A. 0.1 mm
B. 0.2 mm

C. 0.3 mm

D. 0.4 mm

Answer: C

D Watch Video Solution

15. A stationary observer receives sound from
two identical tuning forks, one of which approaches and the other one receded with
the same speed (much less than the speed of sound). The observer hears 2 beats/sec. The
oscillation frequency of each tuning fork is
$v_{0}=1400 \mathrm{~Hz}$ and the velocity of sound in air
is $350 \mathrm{~m} / \mathrm{s}$. The speed of each tuning fork is
close to
A. $\frac{1}{4}$
B. 4
C. 2
D. $\frac{1}{2}$

Answer: A

16. An open organ pipe of length $1 m$ contains a gas whose density is twice the density of the atmosphere at STP. Find the difference between its fundamental and second harmonic frequencies if the speed of sound in atmosphere is $300 \mathrm{~m} / \mathrm{s}$.
A. 150.75 Hz
B. 106.08 Hz
C. 105.75 Hz
D. 212.16 Hz

Answer: B
(D) Watch Video Solution

