

India's Number 1 Education App

MATHS

BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI ENGLISH)

ANNUAL EXAMINATION: SAMPLE PAPER

Part A

1. if
$$F\colon R o Rf(x)=\left(5-x^5
ight)^{rac{1}{5}}$$
 then $(fof)(x)=\ldots\ldots$

A. $x^{\frac{1}{5}}$

 $\mathbf{R} \ x^5$

C.x

D. $5-x^5$

Answer: D

2. IF $A=\{1,2,3\}$ then match following subsets of A imes A properly

	Part-A	Part-B
(1)	$R_1 = \{(1, 1) (1, 2), (2, 1)\}$	(A) only symmetric
(II)	$R_2 = \{(1, 1) (2, 2), (3, 3), (1, 2), (3, 1)\}$	(B) equivalence
(III)	$R_3 = \{(1, 1) (2, 2), (3, 3)\}$	(C) only reflexive

A.
$$(I)
ightarrow (B), (II)
ightarrow (A), (III)
ightarrow (C)$$

$$\mathtt{B.}\,(I) \rightarrow (A), (II) \rightarrow (C), (III) \rightarrow (B)$$

$$\mathsf{C}.\,(I)\to(C),(II)\to(B),(III)\to(A)$$

$$\mathtt{D.}\,(I) \rightarrow (A), (II) \rightarrow (B), (III) \rightarrow (C)$$

Answer: D

A. f is not one -one

B. f is onto

$$\mathsf{C.}\,f^{-1}(x)=\frac{x-3}{2}$$

D. f^{-1} not defined

Answer: D

Watch Video Solution

4.
$$\tan^{-1} \left(\frac{x}{y} \right) - \tan^{-1} \frac{x-y}{x+y}$$
 is equal to

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$

C. $\frac{\pi}{4}$

D. $\frac{-3\pi}{4}$

Answer: C

$$5.\sin\left\{\frac{\pi}{3}-\sin^{-1}\left(\frac{-1}{2}\right)\right\}=\ldots\ldots$$

- A. $\frac{1}{2}$
- $\mathsf{B.}\,\frac{1}{3}$
- $\mathsf{C.}\,\frac{1}{4}$
- D. 1

Answer: D

6. If
$$\cos^{-1}\Bigl(\frac{x}{5}\Bigr) + \operatorname{cosec}^{-1}\Bigl(\frac{5}{4}\Bigr) = p\frac{\pi}{2}$$
 then x=.....

- A. 1
- B. 3
- C. 5

Answer: D

Watch Video Solution

- 7. If $x=rac{1}{3}$, then the value of $\cos\left(2\cos^{-1}x+\sin^{-1}x\right)$ = ____
 - $\mathsf{A.}-\sqrt{\frac{8}{9}}$
 - $\mathsf{B.}-\sqrt{\frac{1}{3}}$
 - $\mathsf{C.}\,\sqrt{\frac{3}{2}}$
 - $\mathsf{D.}\,\frac{1}{2}$

Answer: A

A. 1

B. 2

C. -1

D.-2

Answer: C

View Text Solution

9. if $egin{bmatrix} \cos lpha & -\sin lpha \ \sin lpha & \cos lpha \end{bmatrix}$ and $A+A^1=I$ then $lpha=\ldots\ldots$

A. No solution

 $\mathsf{C}.\,\pi$

B. $\frac{\pi}{3}$

D. $\frac{3\pi}{2}$

Answer: B

10. If A is a square matrix such that $A^2=A$ then $\left(I+A\right)^2-7A$ =.....

A. I

B. I-A

 $\mathsf{C}.\,A$

 ${\rm D.}\,3A$

Answer: A

Watch Video Solution

11. If A and B are symmetric matrices of same order, then AB +BA is a

A. skew symetric matrix

B. symmetric matrix

C. Zero matrix

D. identify matrix

Answer: B

Watch Video Solution

- **12.** If the area of the triangle with vertices (-2,0)(0,4)(0,k) having 4 sq. units then K=
 - A. ± 2
 - B. ± 3
 - C. 2, 8
 - D. 0, 8

Answer: D

13. If
$$A=egin{bmatrix}1&\cos\theta&1\\-\cos\theta&1&\cos\theta\\-1&-\cos\theta&1\end{bmatrix}$$
 where $0\leq\theta\leq2\pi$ then

14. If $D = \begin{bmatrix} 0 & i-100 & i-500 \\ 100-i & 0 & 1000-i \\ 500-i & i-1000 & 0 \end{bmatrix}$ then $|D| = \ldots$

B. Det (A)
$$\in (2, \, \propto)$$

C. Det
$$(A) \in (2,4)$$

D. Det (A)
$$\,\in [2,4]$$

Answer: D

Answer: D

Watch Video Solution

15. If
$$f(x) = \left[\left(\frac{1-\cos kx}{x^2} \colon x \neq 0\right), (8, x = 0)\right]$$
 is continues at $x = 0$

, then K=.....

A.
$$\pm 1$$

$${\rm B.}\pm 2$$

$$\mathsf{C.}\pm3$$

D.
$$\pm 4$$

Answer: D

16. If
$$e^x+e^y=e^{x+y}$$
 then $\dfrac{dy}{dx}=\ldots\ldots$

A.
$$e^{x-y}$$

B.
$$e^{y-x}$$

$$\mathsf{C.}-e^{y-x}$$

$$\mathsf{D}.-e^{x-y}$$

Answer: D

17.
$$rac{d}{dx} \Big(e^{ an^{-1}x + \cot^{-1}x} \Big) = \ldots (x \in R)$$

- A. 0
- B. 1
- C. e
- D. $e^{rac{\pi}{2}}$

Answer: A

Watch Video Solution

18. The interval in which $y=x^2$. e^{-x} is increasing is ----

- A. $(-\infty,\infty)$
- B. (-2,0)
- $\mathsf{C}.\left(2,\infty\right)$
- D.(0,2)

Answer: C

Watch Video Solution

19. The line y=mx+1 is a tangent to the curve $y^2=4x$ if the value of m is

B. 2

C. 3

D. $\frac{1}{2}$

Answer: A

Watch Video Solution

20. The normal at the point (2,-2) on the curve $3x^2-y^2=8$ is _____

A.
$$x + y = 0$$

$$\mathsf{B.}\,x + 2y = \,-\,2$$

C.
$$x - 3y = 8$$

D.
$$3x + y = 4$$

Answer: D

21. Approximate value of
$$(31)^{\frac{1}{5}}$$
 is ____

A. 2.01

B. 2.1

C. 2.0125

D. 1.9875

Answer: D

Watch Video Solution

22. $\int_{-1}^{1} \log \left(\frac{2019 - x}{2019 + x} \right) dx = \dots$

A. 0

B. log 2019

C. 1

Answer: A

Watch Video Solution

23.
$$\int_0^1 \frac{dx}{x + \sqrt{x}} = \dots$$

 $A. \log 2$

 $B. \log 3$

 $C. - \log 2$

D. log 4

Answer: D

B.
$$rac{x}{2}[\sin(\log x)+\cos(\log x)]$$
C. $rac{x}{2}[\sin(\log x)-\cos(\log x)]$
D. $x[\sin(\log x)-\cos(\log x)]$

Watch Video Solution

25. $\int \sin(\log x) dx = \ldots + c$

A. $\frac{x}{2}[\cos(\log x) - \sin(\log x)]$

A. $\frac{32\sqrt{2}}{35}$

 $\mathsf{B.}\ \frac{54\sqrt{2}}{7}$

c. $\frac{35\sqrt{2}}{32}$

D. $\frac{1}{35\sqrt{2}}$

Answer: A

Watch Video Solution

Answer: C

26.
$$\int \frac{dx}{\sqrt{e^{2x}-1}} = \dots + c$$

A.
$$\sin^{-1}(e^x)$$

$$\mathsf{B.}\sec^{-1}(e^x)$$

$$\mathsf{C.}\tan^{-1}(e^x)$$

D.
$$\cot^{-1}(e^x)$$

Answer: B

27. Evaluate
$$\int_{rac{\pi}{a}}^{rac{\pi}{3}} rac{dx}{1+\sqrt{ an x}}$$

A.
$$\frac{\pi}{6}$$

$$\operatorname{B.}\frac{\pi}{3}$$

C.
$$\frac{\pi}{12}$$

Answer: C

Watch Video Solution

28. Choose the correct answers

The value of $\int_0^1 an^{-1} igg(rac{2x-1}{1+x-x^2} igg) dx$ is

- A. 1
- B. 0
- C. -1
- D. $\frac{\pi}{4}$

Answer: B

29.
$$\int_0^{rac{2\pi}{3}} \sqrt{1+\cos 2x} dx = \ldots$$

A.
$$-\sqrt{6}$$

$$\mathsf{B.}-\sqrt{3}$$

C.
$$\sqrt{rac{3}{2}}-2\sqrt{2}$$
D. $\frac{1}{\sqrt{2}ig(4-\sqrt{3}ig)}$

Answer: D

A Matab Midaa Calut

Watch Video Solution

30. Area of the region bounded by $rac{x^2}{16}+rac{y^2}{9}=4$

A.
$$12\pi$$

B.
$$24\pi$$

C.
$$48\pi$$

D.
$$64\pi$$

Answer: C

Watch Video Solution

31. Area of the region bounded by the curve $y = \sin x$ and x -axis

$$-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$$

A. 1

B. 2

C. 4

D. π

Answer: B

Watch Video Solution

32. Smaller area enclosed by the circle $x^2+y^2=4$ and the line

$$x+y=2$$
 is

A.
$$2(\pi - 2)$$

B. $\pi-2$

 $\mathsf{C}.\,\pi-1$

D. $2(\pi - 1)$

Answer: B

33.

Watch Video Solution

 $xyrac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^2-yigg(rac{dy}{dx}igg)^3=0$ is

order and degree of differential equation

A. 1 and 2

B. 1 and 3

The

C. 2 and 2

D. 2 and 1

Answer: D

34. Verify that the function $y=e^{-3x}$ is a solution of the differential equation

$$rac{d^2y}{dx^2}+rac{dy}{dx}-6y=0$$

A.
$$\frac{dy}{dx} - 3y = 0$$

B.
$$rac{d^2y}{dx^2}+rac{dy}{dx}-6y=0$$

C.
$$rac{d^2y}{dx^2}-9y=0$$

$$D. \frac{dy}{dx} - 9y = 0$$

Answer: C

Watch Video Solution

35. The number of arbitrary constants in the particular solution of a differential equation of third order are

- B. 2
- C. 1
- D. 0

Answer: A

36.

Watch Video Solution

Find angle θ between

the

vectors

$$\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k} ext{ and } \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}.$$

A.
$$\cos^{-1} \frac{1}{3}$$

B.
$$-\cos^{-1}\frac{1}{3}$$
C. $-\sin^{-1}\frac{2\sqrt{2}}{3}$

D.
$$\sin^{-1}\frac{1}{3}$$

Answer: C

37. Find
$$\left|\overrightarrow{a} - \overrightarrow{b}\right|$$
, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 4$.

A.
$$\sqrt{3}$$

$$\mathsf{B.}\,\sqrt{15}$$

D. $\sqrt{5}$

Answer: D

Watch Video Solution

38. The value of \hat{i} . $\left(\hat{j} imes\hat{k}
ight)+\hat{j}\cdot\left(\hat{i} imes\hat{k}
ight)+\hat{k}\cdot\left(\hat{i} imes\hat{j}
ight)$ is

A. 0

$$-1$$

B. - 1

C. 1

 $\mathsf{D.}\,3$

Answer: C

Watch Video Solution

39. If \overrightarrow{a} and \overrightarrow{b} , are two collinear vectors, then which of the following are incorrect :

(A)
$$\overset{
ightarrow}{b}=\lambda\overset{
ightarrow}{a}$$
 , for some scalar λ

(B)
$$\overrightarrow{a} = \pm \overrightarrow{b}$$

(C) the respective components of $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ are not proportional

(D) both the vectors \overrightarrow{a} and \overrightarrow{b} have same direction, but different magnitudes.

A.
$$\overrightarrow{b}
eq \lambda \overrightarrow{a}, \, orall \lambda \in R$$

B.
$$ar{a}=ar{b}=ar{0}$$

C. The respective components of $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ are in proportion .

D. both direction and magnitude of $\stackrel{
ightharpoonup}{a}$ and $\stackrel{
ightharpoonup}{b}$ are different .

Answer: C

Watch Video Solution

- scalar product of vectors \overrightarrow{a} with 40. vectors $3\hat{i}-5\hat{k},2\hat{i}+7\hat{j} \; ext{and} \; \hat{i}+\hat{j}+\hat{k}$ are respectively -1,6,5 then \overrightarrow{a} =......
 - A. $3\hat{i}+2\hat{k}$
 - B. $3\hat{i}+\hat{j}+2\hat{k}$
 - C. $\hat{i}+3\hat{j}+2\hat{k}$
 - D. $\hat{i} + \hat{j} + \hat{k}$

Answer: A

41. For two non - zero vectors
$$\overrightarrow{a}$$
 and $\overrightarrow{b} \begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} \end{vmatrix} = \begin{vmatrix} \overrightarrow{a} \end{vmatrix}$ then vectors $2\overrightarrow{a} + \overrightarrow{b}$ and \overrightarrow{b} are

B. perpendicular

C. co-llinear

D. Equal

Answer: B

42. The coordinates of the foot of the perpendicular drawn from the origin to the plane 2x - 3y + 4z - 6 = 0 are

A.
$$\left(\frac{12}{29}, \frac{-18}{29}, \frac{24}{29}\right)$$

B.
$$\left(\frac{12}{\sqrt{29}}, \frac{-18}{\sqrt{29}}, \frac{24}{\sqrt{29}}\right)$$

$$\mathsf{C.}\left(\frac{6}{29}, \frac{-9}{29}, \frac{12}{29}\right)$$

D.
$$\left(\frac{6}{\sqrt{29}}, \frac{-9}{\sqrt{29}}, \frac{12}{\sqrt{29}}\right)$$

Answer: A

Watch Video Solution

43. The angle
$$\det^n$$
 two line $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{4-y}{-1}=\frac{z-5}{2}$ is

A.
$$\cos^{-1}\left(\frac{8\sqrt{3}}{13}\right)$$

B.
$$\cos^{-1}\left(\frac{8}{5\sqrt{3}}\right)$$
C. $\sin^{-1}\left(\frac{8\sqrt{3}}{15}\right)$

D. $\frac{\pi}{2}$

Answer: B

44. Distance between the two planes 2x+3y+4z-4=0 and

$$4x + 6y + 8z = 12$$
 is

- A. 2 units
- B. 4 units
- C. 8 unit
- D. $\frac{2}{\sqrt{29}}$ unit

Answer: D

Watch Video Solution

45. The objective function of a linear programming problem is

A. a constant

B. a function to be optimized

C. an inequality

D. a quadratic equation

Answer: B

Watch Video Solution

46. In the question of maximum value of z = 800 x + 12000 y subject to constraints

 $9x + 12y \le 180, 3x + 4y \le 60, x + 3y \le 30, x \ge 30, x \ge 0, y \ge 0.....$

is not a point of feasible region .

A.(20,0)

B.(12,6)

C.(12,0)

D.(0, 15)

Answer: B

47. in solving the L.P problem " minimize z=6x+10y subject to $x\geq 6, y\geq 2, 2x+y\geq 10, x\geq 0y\geq 0$ redundant constraints are

A.
$$x \geq 6, y \geq 2$$

B.
$$2x + y \ge 10, x \ge 0, \ge 0$$

$$\mathsf{C}.\,x\geq 6$$

$$\mathsf{D}.\,x\geq 6,y\leq 0$$

Answer: D

Watch Video Solution

48. Choose the correct answer

The mean of the numbers obtained on throwing a die having written 1 on three faces, 2 on two faces and 5 on one face is

- A. 1
- B. 2

D. $\frac{8}{3}$

Answer: B

Watch Video Solution

49. E,F are independent events and P(E) $\neq O, P(F) \neq O,$ then Is false .

A.
$$P(E/F) = 1 - P(E)$$

B.
$$P(F^1/E) = 1 - P(F/E)$$

$$\mathsf{C.}\,P\big(E^1/F^1\big)=1-P(E)$$

D.
$$Pig(E^1/F^1ig)=1-P(E/F)$$

Answer: A

50. when four letters are inserted in to four covers (one in each)

A = event that only one letters goes to the proper cover .

 $\ensuremath{\mathsf{B}}$ = event that exactly three letters go to the proper covers .

C= event that II letters go to proper covers and

Part-X	Part-Y
(p) P(A)	(a) O
(q) P(B)	(b) $\frac{1}{24}$
(r) P(C)	(c) $\frac{1}{3}$

then is

true

A.
$$p o A, q o c, r o b$$

B.
$$p
ightarrow c, q
ightarrow a, r
ightarrow b$$

$$\mathsf{C}.\, p o c, q o a, r o a$$

D.
$$p
ightarrow b, q
ightarrow a, r
ightarrow c$$

51. if
$$F\colon R o Rf(x)=\left(5-x^5
ight)^{rac{1}{5}}$$
 then $(fof)(x)=\ldots\ldots$

A.
$$x^{rac{1}{5}}$$

B.
$$x^5$$

$$\mathsf{C}.\,x$$

D.
$$5-x^5$$

Answer: D

Watch Video Solution

52. IF $A=\{1,2,3\}$ then match following subsets of A imes A properly

Part-A	Part-B
(I) $R_1 = \{(1, 1) (1, 2), (2, 1)\}$ (II) $R_2 = \{(1, 1) (2, 2), (3, 3), (1, 2), (3, 1)\}$	(A) only symmetric
(II) $R_2 = \{(1, 1), (2, 2), (3, 3),$	(B) equivalence
(1, 2), (3, 1)}	
(III) $R_3 = \{(1, 1), (2, 2), (3, 3)\}$	(C) only reflexive

 $\mathtt{B.}\,(I) \rightarrow (A), (II) \rightarrow (C), (III) \rightarrow (B)$

 $\mathsf{C}.\left(I
ight)
ightarrow \left(C
ight), \left(II
ight)
ightarrow \left(B
ight), \left(III
ight)
ightarrow \left(A
ight)$

D. (I)
ightarrow (A), (II)
ightarrow (B), (III)
ightarrow (C)

 $A.(I) \rightarrow (B), (II) \rightarrow (A), (III) \rightarrow (C)$

Answer: B

53. If $f\colon N o N,$ f(x)=2x+3 then

A. f is not one -one

B. f is onto

 $\mathsf{C.}\,f^{-1}(x) = \frac{x-3}{2}$

D. $f^{\,-1}$ not defined

Answer: D

54.
$$\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\frac{x-y}{x+y}$$
 is equal to

A.
$$\frac{\pi}{2}$$

$$\mathsf{B.}\,\frac{\pi}{3}$$

$$\mathsf{C.}\,\frac{\pi}{4}$$

D.
$$\frac{-3\pi}{4}$$

Answer: C

55.
$$\sin\left\{\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right\}$$
 is ____

A.
$$\frac{1}{2}$$

$$\mathsf{B.}\,\frac{1}{3}$$

$$\mathsf{C.}\,\frac{1}{4}$$

Answer: D

Watch Video Solution

56. If
$$\cos^{-1}\Bigl(rac{x}{5}\Bigr) + \mathrm{cosec}^{-1}\Bigl(rac{5}{4}\Bigr) = prac{\pi}{2}$$
 then x=.....

A. 1

B. 3

C. 5

D. 4

Answer: D

$$\mathsf{C.}-1$$
 $\mathsf{D.}-2$ Answer: C

View Text Solution

Answer: A

58. equal to =......

A. 1

B. 2

59. if
$$egin{bmatrix} \cos lpha & -\sin lpha \\ \sin lpha & \cos lpha \end{bmatrix}$$
 and $A+A^1=I$ then $lpha=\ldots\ldots$

A. $\frac{\pi}{6}$

 $\mathsf{B.}\,\frac{\pi}{3}$

 $\mathsf{C.}\,\pi$

D. $\frac{3\pi}{2}$

Answer: B

Watch Video Solution

60. If A is a square matrix such that $A^2=A$ then $\left(I+A\right)^2-7A$ =.....

A. I

 $\operatorname{B.}I-A$

 $\mathsf{C}.\,A$

Answer: A

Watch Video Solution

- **61.** If A, B are symmetric matrices of same order, then AB-BA is a
 - A. skew symetric matrix
 - B. symmetric matrix
 - C. Zero matrix
 - D. identify matrix

Answer: B

62. If the area of the triangle with vertices (-2,0)(0,4)(0,k) having 4 sq. units then K=

63. If $A=egin{bmatrix}1&\cos\theta&1\\-\cos\theta&1&\cos\theta\\-1&-\cos\theta&1\end{bmatrix}$ where $0\leq\theta\leq2\pi$ then

A.
$$\pm 2$$

 $B.\pm3$

Answer: D

B. Det (A)
$$\in (2, \; \propto \,)$$

C. Det
$$(A) \in (2,4)$$

D. Det (A)
$$\,\in [2,4]$$

Answer: D

Watch Video Solution

64. If
$$D = egin{bmatrix} 0 & i-100 & i-500 \\ 100-i & 0 & 1000-i \\ 500-i & i-1000 & 0 \end{bmatrix}$$
 then $|D| = \ldots \ldots$

A. 100

B. 500

C. 1000

D. 0

Answer: D

65. If
$$f(x)=\left[\left(\frac{1-\cos kx}{x^2}\colon x\neq 0\right), (8,x=0)\right]$$
 is continues at $x=0$, then K=.....

A.
$$\pm 1$$

B.
$$\pm 2$$

$$\mathsf{C}.\pm3$$

D. ± 4

Watch Video Solution

66. If $e^x + e^y = e^{x+y}$ then $\frac{dy}{dx} = \dots$

A.
$$e^{x-y}$$

B.
$$e^{y-x}$$

$$\mathsf{C.}-e^{y-x}$$

$$D. -e^{x-y}$$

Answer: D

Watch Video Solution

67.
$$rac{d}{dx}\Big(e^{ an^{-1}x+\cot^{-1}x}\Big)=\ldots\ldots(x\in R)$$

A. 0

B. 1

C. e

D. $e^{rac{\pi}{2}}$

Answer: A

A.
$$(-\infty,\infty)$$

B.
$$(-2,0)$$

C.
$$(2,\infty)$$

$$\mathsf{D}.\,(0,2)$$

Answer: C

Watch Video Solution

69. If the line y = mx + 1 is tangent to the parabola $y^2=4x$ then find the value of m.

- A. 1
- B. 2
- C. 3
- D. $\frac{1}{2}$

Answer: A

70. The normal at the point (2,-2) on the curve $3x^2-y^2=8$ is _____

A.
$$x + y = 0$$

B.
$$x + 2y = -2$$

C.
$$x - 3y = 8$$

D.
$$3x + y = 4$$

Answer: D

Watch Video Solution

71. Approximate value of $(31)^{\frac{1}{5}}$ is ____

A. 2.01

B. 2.1

C. 2.0125

D. 1.9875

Answer: D

Watch Video Solution

72. $\int_{-1}^{1} \log \left(\frac{2019 - x}{2019 + x} \right) dx = \dots$

A. 0

B. log 2019

C. 1

D. 2. log (2019)

Answer: A

73.
$$\int_0^1 \frac{dx}{x + \sqrt{x}} = \dots$$

A.
$$\log 2$$

 $B.\log 3$

 $\mathsf{C.} - \log 2$

D. log 4

Answer: D

Watch Video Solution

74. $\int_0^2 x(2-x)^{\frac{3}{2}} dx = \dots$

$$J_0$$
 A. $\frac{32\sqrt{2}}{35}$

$$\frac{2\sqrt{2}}{35}$$

B.
$$\frac{54\sqrt{2}}{7}$$
C.
$$\frac{35\sqrt{2}}{32}$$

D.
$$\frac{1}{35\sqrt{2}}$$

Answer: A

Watch Video Solution

75. $\int \sin(\log x) dx = \ldots + c$

A.
$$\frac{x}{2}[\cos(\log x) - \sin(\log x)]$$

$$\mathsf{B.}\,\frac{x}{2}[\sin(\log x)+\cos(\log x)]$$

C.
$$\frac{x}{2}[\sin(\log x) - \cos(\log x)]$$

D.
$$x[\sin(\log x) - \cos(\log x)]$$

Answer: C

76.
$$\int \frac{dx}{\sqrt{e^{2x}-1}} = \ldots + c$$

A.
$$\sin^{-1}(e^x)$$

 $B. \sec^{-1}(e^x)$

 $\mathsf{C.} an^{-1}(e^x)$

D. $\cot^{-1}(e^x)$

Answer: B

Watch Video Solution

77. Evaluate $\int_{rac{\pi}{6}}^{rac{\pi}{3}} rac{dx}{1+\sqrt{ an x}}$

A. $\frac{\pi}{6}$

B. $\frac{\pi}{3}$

 $\mathsf{C.}\,\frac{\pi}{12}$

D. 0

Answer: C

78. Choose the correct answers

The value of $\displaystyle \int_0^1 an^{-1} igg(rac{2x-1}{1+x-x^2} igg) dx$ is

- A. 1
- В. О
- $\mathsf{C.}-1$
- D. $\frac{\pi}{4}$

Answer: B

79.
$$\int_0^{rac{2\pi}{3}}\sqrt{1+\cos 2x}dx=\ldots\ldots$$

A.
$$-\sqrt{6}$$

B.
$$-\sqrt{3}$$

C.
$$\sqrt{rac{3}{2}}-2\sqrt{2}$$

D.
$$\frac{1}{\sqrt{2}\Big(4-\sqrt{3}\Big)}$$

Answer: D

Watch Video Solution

- **80.** Area of the region bounded by $rac{x^2}{16}+rac{y^2}{9}=4$
 - A. 12π
 - B. 24π
 - $\mathsf{C.}\,48\pi$
 - D. 64π

Answer: C

81. Area of the region bounded by the curve $y = \sin x$ and x -axis

82. Smaller area enclosed by the circle $x^2+y^2=4$ and the line

$$-\frac{\pi}{2} \le x \le \frac{\pi}{2} \dots$$

B. 2

D. π

Answer: B

Watch Video Solution

x+y=2 is

A.
$$2(\pi-2)$$

B.
$$\pi-2$$

 $\mathsf{C}.\,\pi-1$

D.
$$2(\pi - 1)$$

Answer: B

Watch Video Solution

- **83.** The order and degree of differential equation $xy\frac{d^2y}{dx^2}+\left(\frac{dy}{dx}\right)^2-y\left(\frac{dy}{dx}\right)^3=0 \text{ is}$
 - A. 1 and 2
 - B. 1 and 3
 - C. 2 and 2
 - D. 2 and 1

Answer: D

84. Verify that the function $y=e^{-3x}$ is a solution of the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$$

A.
$$\frac{dy}{dx} - 3y = 0$$

B.
$$rac{d^2y}{dx^2}+rac{dy}{dx}-6y=0$$

C.
$$rac{d^2y}{dx^2}-9y=0$$

D.
$$\frac{dy}{dx} - 9y = 0$$

Answer: C

Watch Video Solution

85. The number of arbitrary constants in the particular solution of a differential equation of third order are

A. 3

B. 2

C. 1

D. 0

Answer: A

Watch Video Solution

86. Find angle θ between

$$\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k} \text{ and } \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}.$$

the

vectors

A.
$$\cos^{-1} \frac{1}{3}$$

$$B.-\cos^{-1}\frac{1}{3}$$

$$\mathsf{C.}-\sin^{-1}\frac{2\sqrt{2}}{3}$$

D.
$$\sin^{-1} \frac{1}{3}$$

Answer: C

87. Find
$$\left|\overrightarrow{a} - \overrightarrow{b}\right|$$
, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 4$.

A.
$$\sqrt{3}$$

B.
$$\sqrt{15}$$

D.
$$\sqrt{5}$$

Answer: D

Watch Video Solution

88. The value of \hat{i} . $\left(\hat{j} imes\hat{k}
ight)+\hat{j}\cdot\left(\hat{i} imes\hat{k}
ight)+\hat{k}\cdot\left(\hat{i} imes\hat{j}
ight)$ is

B.
$$-1$$

Answer: C

Watch Video Solution

89. If \overrightarrow{a} and \overrightarrow{b} are two non-zero collinear vectors then is correct .

- A. $\overrightarrow{b}
 eq \lambda \overrightarrow{a}, \, orall \lambda \in R$
- B. $ar{a}=ar{b}=ar{0}$
- C. The respective components of \overrightarrow{a} and \overrightarrow{b} are in proportion .
- D. both direction and magnitude of $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ are different .

Answer: C

- **90.** If scalar product of vectors \overrightarrow{a} with vectors
- $3\hat{i}-5\hat{k},2\hat{i}+7\hat{j} \; ext{and} \; \hat{i}+\hat{j}+\hat{k}$ are respectively -1,6,5 then \overrightarrow{a} =......

A.
$$3\hat{i}+2\hat{k}$$

B.
$$3\hat{i}+\hat{j}+2\hat{k}$$

C.
$$\hat{i}+3\hat{j}+2\hat{k}$$

D.
$$\hat{i}+\hat{j}+\hat{k}$$

Answer: A

Watch Video Solution

91. For two non - zero vectors
$$\overrightarrow{a}$$
 and $\overrightarrow{b} | \overrightarrow{a} + \overrightarrow{b} | = |\overrightarrow{a}|$ then vectors $2\overrightarrow{a} + \overrightarrow{b}$ and \overrightarrow{b} are

Answer: B

92. The coordinates of the foot of the perpendicular drawn from the origin to the plane 2x - 3y + 4z - 6 = 0 are

A.
$$\left(\frac{12}{29}, \frac{-18}{29}, \frac{24}{29}\right)$$
B. $\left(\frac{12}{\sqrt{29}}, \frac{-18}{\sqrt{29}}, \frac{24}{\sqrt{29}}\right)$
C. $\left(\frac{6}{29}, \frac{-9}{29}, \frac{12}{29}\right)$

D.
$$\left(\frac{6}{\sqrt{29}}, \frac{-9}{\sqrt{29}}, \frac{12}{\sqrt{29}}\right)$$

Answer: A

93.

Watch Video Solution

$$\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4}$$
 and $\frac{x+1}{1} = \frac{4-y}{-1} = \frac{z-5}{2}$ is

 bet^n

two

line

angle

The

C. 8 unit
$$D. \, \frac{2}{\sqrt{29}} \, \, \text{unit}$$

Answer: B

D. $\frac{\pi}{2}$

Watch Video Solution

 $\mathsf{B.}\cos^{-1}\left(\frac{8}{5\sqrt{3}}\right)$

 $\mathsf{C.}\sin^{-1}\left(\frac{8\sqrt{3}}{15}\right)$

94. Distance between the two planes 2x + 3y + 4z - 4 = 0 and

A. 2 units

4x + 6y + 8z = 12 is

B. 4 units

Answer: D

95. The objective function of a linear programming problem is

A. a constant

B. a function to be optimized

C. an inequality

D. a quadratic equation

Answer: B

Watch Video Solution

96. In the question of maximum value of z = 800 x + 12000 y subject to

constraints

 $9x + 12y \le 180, 3x + 4y \le 60, x + 3y \le 30, x \ge 30, x \ge 0, y \ge 0.....$

is not a point of feasible region .

A. (20, 0)

B. (12, 6)

C.(0, 10)

D.(0, 15)

Answer: D

Watch Video Solution

97. in solving the L.P problem " minimize z=6x+10y subject to $x \geq 6, y \geq 2, 2x + y \geq 10, x \geq 0$ redundant constraints are

A. $x \ge 6, y \ge 2$

B. $2x + y \ge 10, x \ge 0, \ge 0$

 $\mathsf{C}.\,x\geq 6$

 $\mathsf{D}.\,x\geq 6,y\leq 0$

Answer: D

98. The mean of the numbers obtained on throwing a die having written

,1 on three faces , 2 on two faces and 5 on one face is

- A. 1
- B. 2
- C. 5
- D. $\frac{8}{3}$

Answer: B

Watch Video Solution

99. E,F are independent events and P(E) $\neq O, P(F) \neq O,$ then Is false .

A.
$$P(E/F) = P(E)$$

$$\mathsf{B.}\,P\big(F^1/E\big)=1-P(F/E)$$

$$\text{C.}\,Pig(E^1/F^1ig) = 1 - P(E)$$

D.
$$Pig(E^1/F^1ig)=1-P(E/F)$$

Answer: A

Watch Video Solution

100. when four letters are inserted in to four covers (one in each)

A = event that only on letters goes to the proper cover .

B = event that exactly three letters go to the proper covers .

C= event that II letters go to proper covers and

Part-X	Part-Y
(p) P(A)	(a) O
(q) P(B)	(b) $\frac{1}{24}$
(r) P (C)	(c) $\frac{1}{3}$

then is

true

A.
$$p
ightarrow A, q
ightarrow c, r
ightarrow b$$

B.
$$p o c, q o a, r o b$$

C.
$$p
ightarrow c, q
ightarrow a, r
ightarrow a$$

D.
$$p
ightarrow b, q
ightarrow a, r
ightarrow c$$

Answer: D

View Text Solution

Part B Section A

1. Prove that:

Watch Video Solution

2. Differentiate $\frac{\sqrt{(x-3)(x^2+4)}}{\sqrt{(3x^2+4x+5)}}$ w.r.t x.

 $an^{-1}\sqrt{x} = rac{1}{2}\cos^{-1}igg(rac{1-x}{1+x}igg), x \in [0,1]$

3. find
$$\int \frac{(x+1)(x+\log x)^2}{x} dx$$

4. find the area of the region bounded by the two parabolas $y=x^2$ and $y^2=x$.

5. Find the area bounded by the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the cordinates x=0 and x=ae, where $b^2=a^2\big(1-e^2\big)$ and e<1.

6. Find the area of the region bounded by curve $y=4x^2$ and lines

$$y = 1, y = 4.$$

7. If a unit vector \overrightarrow{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle

$$heta$$
 with \hat{k} then find $heta$ and hence , the components of \overrightarrow{a} .

8. Find the coordinates of the point where the line through the points A (3, 4, 1) and B (5, 1, 6) crosses the XY-plane.

9. Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are

kings and the third card drawn is an ace?

Watch Video Solution

10. Events A and B are such that $P(A) = \frac{1}{2}$, $P(B) = \frac{7}{12}$ and $P(\text{not A or not B}) = \frac{1}{4}$. State whether A and B are independent?

Watch Video Solution

11. Prove that:

$$an^{-1}\sqrt{x} = rac{1}{2} \cos^{-1}igg(rac{1-x}{1+x}igg), x \in [0,1]$$

Watch Video Solution

12. Differentiate $\frac{\sqrt{(x-3)(x^2+4)}}{\sqrt{(2x^2+4x+5)}}$ w.r.t x.

13. find
$$\int \frac{(x+1)(x+\log x)^2}{x} dx$$

14. find the area of the region bounded by the two parabolas $y=x^2$ and $y^2=x$

15. Find the area bounded by the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the cordinates x=0 and x=ae, where $b^2=a^2\big(1-e^2\big)$ and e<1.

16. Find the area of the region bounded by curve $y=4x^2$ and st. line y=1,y=4.

17. If a unit vector \overrightarrow{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence , the components of \overrightarrow{a} .

18. Find the coordinates of the point where the line through the points A (3, 4, 1) and B (5, 1, 6) crosses the XY-plane.

19. Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and the third card drawn is an ace?

20. Events A and B are such that $P(A) = \frac{1}{2}$, $P(B) = \frac{7}{12}$ and $P(\text{not A or not B}) = \frac{1}{4}$. State whether A and B are independent?

Part B Section B

- **1.** Consider $f\colon R^+ \to [4,\infty]$ given by $f(x)=x^2+4$ show that f is f invertible with the inverse f^{-1} of given by $f^{-1}(y)=\sqrt{y-4}$ where R^+ is set of all non negative real numbers .
 - Watch Video Solution

2. Solve following system using matrix

$$x-y+2z=1, 2y-3z=1, 3x-2y+4z=2$$

3. if $A=\begin{bmatrix}3&-4\\1&-1\end{bmatrix}$ then prove that $A^n=\begin{bmatrix}1+2n&-4n\\n&1-2n\end{bmatrix}$ where n is any positive integer .

- **4.** If $x\sqrt{1+y}+y\sqrt{1+x}=0$, for -1< x<1, prove that $\frac{dy}{dx}=-\frac{-1}{(1+x)^2}$
 - Watch Video Solution

5. Find the vector equation of the plane passing through the intersection of the planes

$$\overrightarrow{r}\cdot\left(\hat{i}+\hat{j}+\hat{k}
ight)=6 ext{ and } \overrightarrow{r}\cdot\left(2\hat{i}+3\hat{j}+\hat{k}
ight)=-5 ext{ and the point} \ (1,1,1).$$

- 6. Find the vector equation of the line passing through the point
- (1,2,-4) and perpendicular to the two lines x-8 y+19 z-10 x-15 y-29 z-5

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$$
 and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$

Watch Video Solution

7. The corner points of the bounded feasible region for L.P problem are A (0,4) ,B (0,5) , C(3,5) , D(5,3) , E(5,0) ,F(4,0)` . Obtain the maximum and minimum value of the objective function $z=10 \times -7y +1900$.

- 8. If a fair coin is tossed 10 times, find the probability of
- (i) exactly six heads
- (ii) at least six heads
- (iii) at most six heads
 - Watch Video Solution

9. Consider $f\colon R^+\to [4,\infty]$ given by $f(x)=x^2+4$ show that f is f invertible with the inverse f^{-1} of given by $f^{-1}(y)=\sqrt{y-4}$ where R^+ is set of all non - negative real numbers .

10. Solve following system using matrix

$$x - y + 2z = 1, 2y - 3z = 1, 3x - 2y + 4z = 2$$

Watch Video Solution

11. if $A=\begin{bmatrix}3&-4\\1&-1\end{bmatrix}$ then prove that $A^n=\begin{bmatrix}1+2n&-4n\\n&1-2n\end{bmatrix}$ where n is any positive integer .

12. If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, for -1 < x < 1, prove that

$$\frac{dy}{dx} = -\frac{-1}{(1+x)^2}$$

13. Find the vector equation of the plane passing through the intersection of the planes \overrightarrow{r} . $\left(\hat{i}+\hat{j}+\hat{k}\right)=6$ and \overrightarrow{r} . $\left(2\hat{i}+3\hat{j}+4\hat{k}\right)=-5$ and the points (1,1,1).

14. Find the vector equation of the line passing through the point (1,2,-4) and perpendicular to the two lines

$$rac{x-8}{3} = rac{y+19}{-16} = rac{z-10}{7}$$
 and $rac{x-15}{3} = rac{y-29}{8} = rac{z-5}{-5}$

15. The corner points of the bounded feasible region for L.P problem are A (0,4) ,B (0,5) , C(3,5) , D(5,3) , E(5,0) ,F(4,0) . Obtain the maximum and minimum value of the objective function $z=10 \times -7y +1900$

Watch Video Solution

- 16. If a fair coin is tossed 10 times, find the probability of
- (i) exactly six heads
- (ii) at least six heads
- (iii) at most six heads

Watch Video Solution

Part B Section C

1. show that

$$egin{bmatrix} \left(x+y
ight)^2 & zx & zy \ zx & \left(z+y
ight)^2 & xy \ zy & xy & \left(z+x
ight)^2 \end{bmatrix} = 2xyz(x+y+z)^3$$

- **2.** An open topped box is to be constructed by removing equal squares from each corner of a 3 metre by 8 metre reactangular sheet of aluminimum and folding up the sides . Find the volume of the largest such box .
 - Watch Video Solution

- **3.** Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$. Also find the maximum volume.
 - Watch Video Solution

4. Evaluate $\int_0^{\frac{\pi}{2}} \log \sin x dx$

Watch Video Solution

5. The temperature of a body in a a room is 80° C After five minutes the temperature of the body becomes $64^\circ C$ and 10 minutes the temperature becomes $52^\circ C$. What is the temperature of surrounding ? (Newton's law of cooling)

Watch Video Solution

6. show that

$$egin{bmatrix} \left[egin{array}{ccc} (x+y)^2 & zx & zy \ zx & (z+y)^2 & xy \ zy & xy & (z+x)^2 \ \end{array}
ight] = 2xyz(x+y+z)^3 \ \end{array}$$

7. An open topped box is to be constructed by removing equal squares from each corner of a 3 metre by 8 metre reactangular sheet of aluminimum and folding up the sides . Find the volume of the largest such box .

8. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$. Also find the maximum volume.

- **9.** Evaluate $\int_0^{rac{\pi}{2}} \log \sin x dx$
 - Watch Video Solution

10. The temperature of a body in a a room is 80° F After five minutes the temperature of the body becomes $60^\circ F$. After another 5 minutes the temperature becomes $50^\circ F$. What is the temperature of surrounding ? (Newton's law of cooling)

