©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - KUMAR PRAKASHAN KENDRA
 MATHS (GUJRATI ENGLISH)

APPLICATION OF INTEGRALS

Practice Work

1. Find the area of the region bounded by the

$$
\begin{aligned}
& y=x^{2}-4 \quad, \mathrm{X}-\quad \text { axis and the lines } \\
& x=-1 \text { and } x=2 .
\end{aligned}
$$

- Watch Video Solution

2. Find the area of the region bounded by parabola
$y=\frac{x^{2}}{4}$ and the lines $y=x, y=1$ in the first quadrant.

- Watch Video Solution

3. Find the area of the region bounded by parabola $y=2 x^{2}+10$ and the line $y=4 x+16$.
4. Find the area of the region bounded by the circle $x^{2}+y^{2}=32, \mathrm{X}$ - axis and the line $y=x$ in the first quadrant.

D Watch Video Solution

5. Prove that the area of the circle with radius r is πr^{2}

D Watch Video Solution

6. Find the area of the region bounded by the curve

$$
y=2 x-x^{2} \text { and } x \text { - axis. }
$$

7. Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$

- Watch Video Solution

8. Find the area of the region bounded by the curve
$y=\sin x, x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$.
9. Find the area of the region by the curve $y=|x+3|, \mathrm{X}$ axis and the lines $x=-6$ and $\mathrm{x}=0$.

D Watch Video Solution

10. Find the area of the region bounded by the parabola $y=x^{2}+1$ and the lines $y=x, x=0$ and $\mathrm{x}=2$.

- Watch Video Solution

11. Find the area of the region bounded by the circles $x^{2}+y^{2}=16$ and $(x+4)^{2}+y^{2}=16$

D Watch Video Solution

12. Find the area of the region bounded by parabola $f(x)=4-x^{2}$ and $g(x)=x^{2}-4$.

- Watch Video Solution

13. Using integration find the area of the region bounded by the triangle whose vertices are
$(-1,1),(0,5)$ and $(2,3)$

- Watch Video Solution

14. Find the area of the region bounded by the curves $y=5-x^{2}, \mathrm{X}$ - axis and the lines $\mathrm{x}=2$ and $\mathrm{x}=3$.

D Watch Video Solution

15. Prove that the area of the region bounded by circle $x^{2}+y^{2}=16$ and $y^{2}=6 x$ is $\frac{4}{3}(4 \pi+\sqrt{3})$ sq . Units
16. Find the area of the region bounded by the curves $y=(x-1),(x-2)$ and X - axis.

- Watch Video Solution

17. Find the area of the region bounded by the curves $y^{2}=x+1$ and $y^{2}=-x+1$
18. Find the area of the region bounded by circle $x^{2}+y^{2}=8 x$ and parabola $y^{2}=4 x$.

- Watch Video Solution

19. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$
divide the area of the square bounded by $x=0, x=4 \mathrm{y}=4$ and $\mathrm{y}=0$ into three equal parts .
20. Find the area of the region enclosed by the curve $x^{2}=4 y$ and line $x=4 y-2$

- Watch Video Solution

21. Find the area of the region enclosed by

$$
\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}
$$

- Watch Video Solution

22. Find the area of the region bounded by the
parbola $y^{2}=x$ and line $x+y=2$
23. Find the area of the region
$\left\{(x, y) \mid x^{2} \leq y \leq x\right\}$.

- Watch Video Solution

24. Using integration, find the area of triangular region formed by
the lines
$x+2 y=2, y-x=1$ and $2 x+y=7$

25. Find the area of the region bounded by the circle

$x^{2}+y^{2}=32, \mathrm{X}$ - axis and the line $y=x$ in the first quadrant.

- Watch Video Solution

Exercise 81

1. Find the area of the region bounded by the curve
$y^{2}=x$ and the lines $x=1, x=4$ and the X - axis in
the first quadrant .
2. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the X - axis in the first quadrant.

D Watch Video Solution

3. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the Y -axis in the first quadrant.
4. Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

D Watch Video Solution

5. Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

D Watch Video Solution
6. Find the area of the region in the first quadrant enclosed by X - axis, line $x=\sqrt{3} y$ and the circle
$x^{2}+y^{2}=4$.

- Watch Video Solution

7. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

- Watch Video Solution

8. The area between $x=y^{2}$ and $x=4$ is divided into two equal by the line $x=a$ find the value of a.
9. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$

- Watch Video Solution

10. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.

D Watch Video Solution

11. Find the area of the region bounded by the curve
$y^{2}=4 x$ and the line $x=3$
12. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the line $x=0$ and $x=2$ is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: A

13. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer: B

- Watch Video Solution

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.

- Watch Video Solution

2. find the area bounded by the curve

$$
(x-1)^{2}+y^{2}=1 \text { and } x^{2}+y^{2}=1 .
$$

D Watch Video Solution

3. Using integration find the area of the region bounded by the triangle whose vertices are
$(-1,0),(1,3)$ and $(3,2)$

- Watch Video Solution

4. Using integration find the area of the triangular region whose sides have the equations $y=2 x+1, y=3 x$ +1 and $x=4$.

D Watch Video Solution

5. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

Answer: B

- Watch Video Solution

6. Area lying between the curves $y^{2}=4 x$ and $y=2 x$
is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

- Watch Video Solution

Miscellaneous Exercise 8

1. Find the area under the given curves and given
lines:

$$
y=x^{2}, x=1, x=2 \text { and } \mathrm{X} \text {-axis }
$$

2. Find the area under the given curves and given lines:
$y=x^{2}, x=1, x=2$ and X - axis

D Watch Video Solution

3. Find the area between the curves $\mathrm{y}=\mathrm{x}$ and $y=x^{2}$

- Watch Video Solution

4. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}, x=0, y=1$ and $\mathrm{y}=4$.

D Watch Video Solution

5. Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d x$.

- Watch Video Solution

6. Find the area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$.

- Watch Video Solution

7. Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$.

- Watch Video Solution

8. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.
9. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

- Watch Video Solution

10. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$.

- Watch Video Solution

11. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $\mathrm{y}=\mathrm{x}+2$ and the x -axis.

- Watch Video Solution

12. Using the method of integration find the area bounded by the curve $|x|+|y|=1$. [Hint: The required region is bounded by lines $x+y=1, x-y=1,-x+y=1$ and $-x-y=1]$.

- Watch Video Solution

13. Find the area bounded by curves
$\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$.

- Watch Video Solution

14. Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are
$A(2,0), B(4,5)$ and $C(6,3)$.

D Watch Video Solution
15. Using the method of integration find the area of
the region bounded by
lines
$: 2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$.

- Watch Video Solution

16. Find the area of the regaion enclosed by
$\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$.

- Watch Video Solution

17. Area bounded by the curve $y=x^{3}$ the x-axis and the ordinates $x=-2$ and $x=1$ is

$$
\begin{aligned}
& \text { A. }-9 \\
& \text { B. }-\frac{15}{4} \\
& \text { C. } \frac{15}{4} \\
& \text { D. } \frac{17}{4}
\end{aligned}
$$

Answer: D
18. The area bounded by the curve $y=x|x|, \mathrm{X}$-axis and the ordinates $x=-1$ and $\mathrm{x}=1$ is given by
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: C

- Watch Video Solution

19. The area of the circle $x^{2}+y^{2}=16$ exterior to
the parabola $y^{2}=6 x$ is
A. $\frac{4}{3}(4 \pi-\sqrt{3})$
B. $\frac{4}{3}(4 \pi+\sqrt{3})$
C. $\frac{4}{3}(8 \pi-\sqrt{3})$
D. $\frac{4}{3}(8 \pi+\sqrt{3})$

Answer: C

- Watch Video Solution

20. The area bounded by the Y-axis
,$y=\cos x$ and $y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$ is
A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

D Watch Video Solution

1. Find the area enclosed by the circle $x^{2}+y^{2}=a^{2}$.

- Watch Video Solution

2. Find the area enclosed by the circle the ellpise $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

- Watch Video Solution

3. Find the area of the region bounded by the curve
$y=x^{2}$ and the line $y=4$.
4. find the area of the region in the first quadrant enclosed by the X-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$

- Watch Video Solution

5. Find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the cordinates $x=0$ and $x=a e$, where $b^{2}=a^{2}\left(1-e^{2}\right)$ and $e<1$.

- Watch Video Solution

6. find the area of the region bounded by the two parabolas $y=x^{2}$ and $y^{2}=x$

- Watch Video Solution

7. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and inside of the prarabola $y^{2}=4 x$.
8. in figure $A O B A$ is the part of the ellipse $9 x^{2}+y^{2}=36$ in the first quadrant such that $\mathrm{OA}=2$ and $O B=6$. Find the area between the are $A B$ and the chord $A B$.

- Watch Video Solution

9. Using intregration find the area of region bounded by the triagnle whose vertices are $(1,0),(2,2)$ and $(3,1)$

D Watch Video Solution

10. Find the area of the region enclosed between the

two circles : $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.

- Watch Video Solution

11. Find the area of the parabola $y^{2}=4 a x$ bounded by its latus reactum,

- Watch Video Solution

12. Find the area of the region bounded by the line
$y=3 x+2$, the x -axis and the ordinates $\mathrm{x}=-1$ and $\mathrm{x}=1$.
13. Find the area bounded by the curve $y=\cos x$ between $x=0$ and $x=2 \pi$.

- Watch Video Solution

14. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $x=0, x=4$,
$y=4$ and $y=0$ into three equal parts.

- Watch Video Solution

15. Find the area of the region enclosed by

$$
\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}
$$

(Watch Video Solution

Solutions Of Ncert Examplar Problems Short Answer Type Questions

1. find the area of the region bounded by the curves
$y^{2}=9 x$ and $y=3 x$.

D Watch Video Solution
2. Find the area of the region bounded by the parabola $y^{2}=2 p x$ and $x^{2}=2 p y$.

- Watch Video Solution

3. find the area of the region bounded by the curve $y=x^{3}, y=x+6$ and $x=0$

- Watch Video Solution

4. Find the area of the region bounded by the curve

$$
y^{2}=4 x \text { and } x^{2}=4 y
$$

5. find the area of the region included between $y^{2}=9 x$ and $y=x$.

- Watch Video Solution

6. find the area of the region enclosed by the parabola $x^{2}=y$ and the line line $y=x+2$.

Watch Video Solution

7. Find the area of the region bounded by line $x=2$

 and parabola $y^{2}=8 x$
- Watch Video Solution

8. Sketch the region $\left\{(x, 0) / y=\sqrt{4-x^{2}}\right\}$ and X axis. Find the area of the region using integration.

- Watch Video Solution

9. Calculate the area under the curve $y=2 \sqrt{x}$ included between the lines $x=0$ and $\mathrm{x}=1$
10. Using integration, find the area of the region bounded by the line $2 y=5 x+7, x$ axis and the lines $\mathrm{x}=2$ and $\mathrm{x}=8$.

D Watch Video Solution

11. Draw a rough sketch of the curve $y=\sqrt{x-1}$ in the interval $x \in[1,5]$. Find the area under the curve and between the lines $x=1$ and $x=5$.
12. Determine the area under the curve
$y=\sqrt{a^{2}-x^{2}}$ included between the lines $\mathrm{x}=0$ and
$\mathrm{x}=\mathrm{a}$.

D Watch Video Solution

13. find the area of the region bounded by $y=\sqrt{x}$ and $y=x$.

- Watch Video Solution

14. find the area enclosed by the curve $y=-x^{2}$ and the straight line $x+y+2=0$

- Watch Video Solution

15. Find the area bounded by the curve
$y=\sqrt{x}, x=2 y+3$ in the first quadrant and Y axis

D Watch Video Solution

Solutions Of Ncert Examplar Problems Long Answer Type Questions

1. Find the area of the region bounded by the curve

$$
y^{2}=2 x \text { and } x^{2}+y^{2}=4 x
$$

2. Find the area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$.

- Watch Video Solution

3. Find the area of region bounded by the triangle whose vertices are $A(-1,1), B(0,5)$ and $C(3,2)$ using integration.
4. Draw a rough sketch of the region
$\left\{(x, y) / y^{2} \leq 6 a x\right.$ and $\left.x^{2}+y^{2}=16 a^{2}\right\}$.Also find the area of the region sketched using method of integration.

- Watch Video Solution

5. Compute the area bounded by the lines
$x+2 y=2, y-x=1$ and $2 x+y=7$

- Watch Video Solution

6. Find the area bounded by the lines $y=4 x+5, y=5-x$ and $4 y=x+5$.

- Watch Video Solution

7. find the area bounded by the curve $y=2 \cos x$ and the X -axis from $x=0$ to $x=2 \pi$

- Watch Video Solution

8. Draw a rough sketch of the given curve

$$
y=1+|x+1|, x=-3, x=3, y=0 \text { and find }
$$

the area of the region bounded by them, using integration

D Watch Video Solution

Solutions Of Ncert Examplar Problems Objective Type
 Questions

1. The area bounded by the Y-axis
, $y=\cos x$ and $y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$ is
A. $\sqrt{2}$ seq, unit
B. $\sqrt{2}+1$ seq. unit
C. $\sqrt{2}-1$ seq unit
D. $2(\sqrt{2}-1)$ seq. unit

Answer: C

- Watch Video Solution

2. The area of the region bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$ is
A. $\frac{3}{8}$
B. $\frac{5}{8}$
C. $\frac{7}{8}$
D. $\frac{9}{8}$

Answer: D

- Watch Video Solution

3. The area of the region bounded by the curve
$y=\sqrt{16-x^{2}}$ and $X-$ axis is
A. 8π
B. 20π
C. 16π
D. 256π

Answer: A

- Watch Video Solution

4. find the area of the region in the first quadrant enclosed by the X-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$
A. 16π
B. 4π
C. 32π
D. 24π

Answer: B
5. Area of the region bounded by the curve $y=\cos x$ between $\mathrm{x}=0$ and $\mathrm{x}=\pi$ is
A. 2
B. 4
C. 3
D. 1

Answer: A
6. The area of the region bounded by parabola $y^{2}=x$ and the straight line $2 y=x$ is.......... Seq. unit
A. $\frac{4}{3}$
B. 1
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: A
7. The area of the region bounded by the curve $y=\sin x$ between the ordinates $x=0, x=\frac{\pi}{2}$ and the X - axis is Seq . Unit
A. 2
B. 4
C. 3
D. 1

Answer: D

- Watch Video Solution

8. The area of the region bounded by the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is
A. 20π
B. $20 \pi^{2}$
C. $16 \pi^{2}$
D. 25π

Answer: A
9. The area of the region bounded by the circle $x^{2}+y^{2}=1$ is seq , unit.
A. 2π
B. π
C. 3π
D. 4π

Answer: B

- Watch Video Solution

10. The area of the region bounded by the curve $y=x+1$ and the lines $x=2$ and $\mathrm{x}=3$ is

$$
\begin{aligned}
& \text { A. } \frac{7}{2} \\
& \text { B. } \frac{9}{2} \\
& \text { C. } \frac{11}{2} \\
& \text { D. } \frac{13}{2}
\end{aligned}
$$

Answer: A

- Watch Video Solution

11. The area of the region bounded by the curve $x=2 y+3$ and the lines $y=1$ and $\mathrm{y}=-1$ is
A. 4
B. $\frac{3}{2}$
C. 6
D. 8

Answer: C

- Watch Video Solution

Questions

1. The area of the region bounded by the curve
$y=\log _{e}(x+e)$ and axis is Sq. Units
A. 1
B. 2
C. 3
D. 4

Answer: A

2. The function $f(x)$ is passing through (1,2) and its

 slope is $(2 x+1)$. The area of the region bounded by the function and x-axis isSq unitsA. 6
B. $\frac{5}{6}$
C. $\frac{1}{6}$
D. None of these

Answer: C

- Watch Video Solution

3. The area of the region bounded by the curve $y=s i n$

 $\mathrm{x}, \mathrm{x}=0$ and $\mathrm{x}=2 \pi$ issq. unitsA. 2
B. 4
C. 8
D. 1

Answer: B

- Watch Video Solution

4. The area of the region bounded by the curve $y=\log _{e} x, x=0$ and $y \leq 0$ and X - axis is ...sq. unit
A. 1
B. $\frac{1}{2}$
C. 2
D. None of these

Answer: A
5. The area of the region bounded by the curve $y=2 x-x^{2}$ and X -axis is Sq. Units .
A. $\frac{3}{5}$
B. 2
C. 8
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

6. The area of the region bounded by the curve
$y=\cos x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ and X -axis is ...sq .unit
A. 1
B. 4
C. 2
D. π

Answer: C

- Watch Video Solution

7. The area of the region bounded by the curve $y=\sin x, \pi \leq x \leq 2 \pi$ and X -axis issq. Units.
A. π
B. 2
C. -2
D. 0

Answer: B

- Watch Video Solution

8. The area between the curve $y=x^{2}, \mathrm{X}$ - axis and $\mathrm{x}=4$ is divided into two equal parts by the line $\mathrm{x}=\mathrm{a}$.

The value of a is
A. 2
B. $2^{\frac{4}{3}}$
C. $2^{\frac{5}{3}}$
D. 4

Answer: C

- Watch Video Solution

9. The area of the region bounded by the parabola $y^{2}=4 a x$ and its latus rectum is ...Sq. units.

$$
\begin{aligned}
& \text { А. } \frac{4}{3} a^{2} \\
& \text { B. } \frac{8}{3} a^{2} \\
& \text { C. } \frac{16}{3} a^{2} \\
& \text { D. } \frac{32}{3} a^{2}
\end{aligned}
$$

Answer: B
10. The area of the region bounded by the curve $y=2 x^{2}, \mathrm{X}$-axis and the line $\mathrm{x}=1$ isSq . Units .
A. 2
B. 1
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: D

- Watch Video Solution

11. The area bounded by the curve $y=x|x|, \mathrm{X}$-axis and the ordinates $x=-1$ and $\mathrm{x}=1$ is given by
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: C

- Watch Video Solution

12. The area of the region bounded by the line $y=3-x$ and X -axis and in the interval $[0,3]$ is

Sq. units.
A. $\frac{9}{2}$
B. 4
C. 5
D. $\frac{11}{2}$

Answer: A

- Watch Video Solution

13. The area of the region by the curve $y=3 \cos x, 0 \leq x \leq \frac{\pi}{2}$ is ..Sq. Units.
A. 3
B. 1
C. $\frac{3}{2}$
D. $\frac{1}{2}$

Answer: A
14. The area of the region bounded by the curve $y=2 \sqrt{x}$ and lines $x=0$ and $\mathrm{x}=1$ is ...Sq. units
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

15. The area of the region bounded by the curve $y=|x-5|, \mathrm{X}$ - axis and the lines $x=0, x=1$ is

Sq. Units.
A. $\frac{9}{2}$
B. $\frac{7}{2}$
C. 9
D. 5

Answer: A
16. The area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$ is $\ldots \ldots .$. .Sq . Units
A. $4 \sqrt{3}$
B. $8 \sqrt{3}$
C. $16 \sqrt{3}$
D. $5 \sqrt{3}$

Answer: B

- Watch Video Solution

17. The area of the region bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $\mathrm{x}=2$ in the first quadrant is ...Sq. units.
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: A
18. The Area of the region bounded by the curve $y^{2}=2 x, y$-axis and line $\mathrm{y}=3$ isSq. units
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer: D

- Watch Video Solution

19. The area of the region bounded by the curve $y=x^{2}$ and line $x=1, x=3$ and appear part of X axis is ...Sq. units .

$$
\begin{aligned}
& \text { A. } \frac{19}{3} \\
& \text { B. } \frac{26}{3} \\
& \text { C. } \frac{16}{3}
\end{aligned}
$$

D. 9

Answer: B

- Watch Video Solution

20. The area of the region bounded by the curve $y=2 \sin x, X-$ axis and $0 \leq x \leq \pi$ isSq. units.
A. 4
B. 6
C. 1
D. 2

Answer: A
21. The area of the region enclosed by the line $y=x+1, \quad \mathrm{X}$-axis and the lines $x=-3$ and $x=+3$ is Sq. Units.
A. 5
B. 7
C. 10
D. 9

Answer: C

- Watch Video Solution

22. The area of the region bounded by the semicircle
$y=\sqrt{4-x^{2}}$ and X - axis is ..Sq . Units .
A. 2π
B. π
C. $\frac{\pi}{2}$
D. 4π

Answer: A
23. the area of the region bounded by the parabola $y=x^{2}$ and the line $y=4$ isSq. Units.

$$
\begin{aligned}
& \text { A. } \frac{32}{3} \\
& \text { B. } \frac{16}{3} \\
& \text { C. } \frac{8}{3} \\
& \text { D. } \frac{64}{3}
\end{aligned}
$$

Answer: A

- Watch Video Solution

24. The area of the region bounded by the curve $y=|x-5|, \mathrm{X}$-axis and the line $x=5, x=6$ isSq . Units.
A. 1.25
B. 0.25
C. 0.50
D. 0.75

Answer: C

- Watch Video Solution

25. The area of the region bounded by the curve
$y=\cos x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ and X -axis is ...sq .unit
A. 2
B. 1
C. $\frac{3}{2}$
D. $\frac{1}{2}$

Answer: A
26. The area of the region bounded by the curve $y=x^{2}-x-6$ and X - axis isSq. units.

> A. $\frac{5}{6}$
> B. $\frac{25}{6}$
> C. $\frac{125}{6}$
> D. $\frac{50}{6}$

Answer: C

- Watch Video Solution

27. The area of the curve enclosed by the curve $y=5 \sin x, 0<x<\frac{\pi}{2}, x$-axis issq.units.
A. 1
B. $\frac{5}{2}$
C. $\frac{1}{5}$
D. 5

Answer: D

- Watch Video Solution

28. The area of the curve enclosed by the curve $y^{2}=2 x, \mathrm{Y}$-axis and line $y=2$ isSq . Units .
A. $\frac{4}{3}$
B. $\frac{9}{2}$
C. 8
D. $\frac{8}{3}$

Answer: A

- Watch Video Solution

29. The area of the curve bounded by the curve $f(x)=$ $\sin \pi x$ and X - axis issq. units . $x \in[1,3]$

$$
\begin{aligned}
& \text { A. } \frac{3}{\pi} \\
& \text { B. } \frac{2}{\pi} \\
& \text { C. } \frac{4}{\pi} \\
& \text { D. } \frac{1}{\pi}
\end{aligned}
$$

Answer: B
30. The area of the region bounded by the curve $y=x^{2}-x-6, y=0, x=-1$ and $\mathrm{x}=1$ ' isSq. units.
A. $\frac{37}{3}$
B. $\frac{37}{6}$
C. $\frac{34}{3}$
D. $\frac{125}{6}$

Answer: C

- Watch Video Solution

31. The area of the region bounded by the parabola $y^{2}=4 a x$ and its latus retrurn is 24 Sq. units. Then $a=.$.
A. $\pm \frac{3}{2}$
B. ± 3
C. ± 6
D. 9

Answer: B
32. For an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, the area enclosed by two latus rectum is (where is the eccentricity of an ellipse)

$$
\begin{aligned}
& \text { A. } b\left(b e+a \sin ^{-1} 2 e\right) \\
& \text { B. } 8 b\left(b e+a \sin ^{-1} e\right) \\
& \text { C. }\left(2 b\left(b e+a \sin ^{-1} e\right)\right. \\
& \text { D. } 4 b\left(b e+a \sin ^{-1} e\right)
\end{aligned}
$$

Answer: C

33. The area of the region bounded by the curve $y=|x-1|$ and $y=3-|X|$ isSq. units
A. 6
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

34. Find the area enclosed by the parabola $(y-2)^{2}=x-1, \mathrm{x}$-axis and the tangent to the parabola at $(2,3)$ points isSq. units
A. 9
B. 12
C. 3
D. 6

Answer: A
35. The area of the region enclosed between the

curves

$y=\sin x+\cos x$ and $y=|\cos x-\sin x|, x \in\left[0, \frac{\pi}{2}\right]$ isSq. units.
A. $4 \sqrt{2}-1$
B. $2 \sqrt{2}(\sqrt{2}-1)$
C. $2(\sqrt{2}+1)$
D. $\sqrt{2}+1$

Answer: B

36. The area of the region bounded by the curves

$$
\begin{aligned}
& y=x^{2} \text { and } y=\sqrt{|x|} \text { isSq.units. } \\
& \text { A. } \frac{1}{3} \\
& \text { B. } \frac{2}{3} \\
& \quad \text { C. } \frac{1}{6} \\
& \text { D. } 1
\end{aligned}
$$

Answer: B

- Watch Video Solution

37. The tangent at a point $(1,1)$ to the curve $f(x)=x^{2}+b x-b$ makes a trinagle in the first quadrant with axes. If the area of this triangle is 2 Sq, units then the value of b is
A. -1
B. -2
C. -3
D. 1

Answer: C

- Watch Video Solution

38. The area of the region enclosed by the curves $y=\sin x, y=\cos \quad$ and $x=0, x=\frac{3 \pi}{2} \quad$ is $\ldots \ldots .$. Sq. units.
A. $4 \sqrt{2}-2$
B. $4 \sqrt{2}+2$
C. $4 \sqrt{2}-1$
D. $4 \sqrt{2}+1$

Answer: A
39. The area of the region enclosed by the curve $y=\log _{e} x$ and $y=\left(\log _{e} x\right)^{2}$ isSq. units
A. $e+1$
B. $e-1$
C. $3-e$
D. 1

Answer: C
40. The area of the region bounded by the curve $(y-x)^{2}=x^{3}$ and the line $x=1$ isSq. unit.
A. $\frac{3}{5}$
B. $\frac{4}{5}$
C. $\frac{2}{5}$
D. $\frac{1}{5}$

Answer: B
41. The area of the region bounded by the curve $y=\left[\frac{x^{2}}{64}+2\right]$ and the lines $y=x-1, x=0$ and above the X -axis is Sq. units where [.] denotes maximum integer function .
A. 2
B. 3
C. 4
D. None of these

Answer: C

D View Text Solution
42. The area of smallest region enclosed by the circle $x^{2}+y^{2}=9$ and the line $x=1$ isSq. units

$$
\begin{aligned}
& \text { A. } \frac{1}{2}\left(9 \sec ^{-1} 3-\sqrt{8}\right) \\
& \text { B. } 9 \sec ^{-1}(3)-\sqrt{8} \\
& \text { C. } \sqrt{8}-9 \sec ^{-1} 3
\end{aligned}
$$

D. None of these

Answer: B
43. The curve $y=a \sqrt{x}+b x$ is passing through $(1,2)$
the area of the region bounded by the curve line $x=4$ and X - axis is 8 Sq. units then
A. $a=3 b=-1$
B. $a=3 b=1$
C. $a=-3 b=1$
D. $a=-3 b=-1$

Answer: A

Watch Video Solution

44. The area of the region bounded bwtween the curve $y=2^{x}$ and $y=2 x-x^{2}$ and the lines $\mathrm{x}=0$, $x=2$ isSq. units
A. $\frac{4}{3}-\frac{1}{\log 2}$
B. $\frac{3}{\log 2}+\frac{4}{3}$
C. $\frac{4}{\log 2}-1$
D. $\frac{3}{\log 2}-\frac{4}{3}$

Answer: D

- Watch Video Solution

45. The ratio of the area of the region of the curves
$y=\cos x$ and $y=\cos 2 x$ between X - axis , $x=0$ to
$x=\frac{\pi}{3}$ is
A. 1:2
B. $2: 1$
C. $\sqrt{3}: 1$
D. $1: \sqrt{3}$

Answer: B

- Watch Video Solution

46. The area of the region bounded by the curve $y=|[x-3]|, \mathrm{X}$ - axis and the lines $\mathrm{x}=-2$ and $\mathrm{x}=3$ is
...... q. units.
where [.] denotes maximum integer function .
A. 7
B. 15
C. 4
D. 28

Answer: B

- Watch Video Solution

47. The area of the region bounded by the curve $y=x^{2}+2 x+1, \mathrm{Y}$ - axis and the tangent drawn at a point $(1,4)$ to the curve is Sq . Units
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. 2
D. None of these

Answer: B
48. $f(x)=\left\{\begin{array}{ll}x^{2} & , x \leq 0 \\ x & , x \geq 0\end{array}\right.$ the area of the region bounded by the curve $y=f(x), y=0$ and
$x= \pm 3 a$ is $\frac{9 a}{2}$ sq. Units then $\mathrm{a}=.$.
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. 0
D. -1

Answer: A
49. $f(x)=\max \left\{\sin x, \cos x, \frac{1}{2}\right\}$ the area of the region bounded by the curve $y=f(x)$, X-axis Y -axis and $\mathrm{x}=2 \pi$ isSq. units

$$
\begin{aligned}
& \text { A. }\left(\frac{5 \pi}{12}+3\right) \\
& \text { B. }\left(\frac{5 \pi}{12}+\sqrt{2}\right) \\
& \text { C. }\left(\frac{5 \pi}{12}+\sqrt{3}\right) \\
& \text { D. }\left(\frac{5 \pi}{12}+\sqrt{2}+\sqrt{3}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

50. $f(x)=x^{2}-3 x+2 \forall x \in R$
the area of the region bounded by the curve $y=f(x)$,
X-axis and Y-axis issq units.
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{5}{6}$

Answer: D
51. The area of the region enclosed by the curve $y=f(|x|), x$ - axis isSq. units
A. 1
B. 2
C. 3
D. 0

Answer: D

D View Text Solution
52. The area of the reagion bounded by the curve
$y=|f(|X|)|, \mathrm{X}$ - axis and $1 \leq|x| \leq 2$ is
A. $\frac{1}{5}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: C

D View Text Solution
53. $|f(|x|)=a|$ has six real roots then ...

$$
\begin{aligned}
& \text { A. } a \in\left(0, \frac{1}{4}\right) \\
& \text { B. } a \in\left(\frac{1}{4}, 2\right) \\
& \text { C. } a \in\left(-\frac{1}{4}, 0\right)
\end{aligned}
$$

D. None of these

Answer: D

D View Text Solution

54.

The number
of solution
of

$$
|y|=|f(|x|)| \text { and } x^{2}+y^{2}=2 \text { is }
$$

A. 4
B. 6
C. 8
D. 5

Answer: C

- View Text Solution

55. The area of the region bounded by the curve $y=x^{4}-2 x^{3}+x^{2}+3, \mathrm{X}$ - axis and the x -coordination of the point where y becomes minimum isSq. units
A. 1
B. $\frac{91}{30}$
C. $\frac{30}{9}$
D. 4

Answer: B

- Watch Video Solution

56. The area of the region enclosed by
$\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$ isSq. units
A. $\frac{\pi}{5}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{4}-\frac{1}{4}$
D. $\frac{\pi^{2}}{2}$

Answer: C

- Watch Video Solution

57. The area of the region bounded by the parabola

$$
y=x^{2}+1 \text { and the line } x+y=3 \text { issq. units . }
$$

> A. $\frac{45}{7}$
> B. $\frac{25}{4}$
C. $\frac{\pi}{18}$
D. $\frac{9}{2}$

Answer: D

- Watch Video Solution

58. The area of the region bounded by the lines
$y=1-|x|$ and X-axis isSq. units
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

59. The area of the region bounded by the curve $x=\cos ^{-1} y$ and X - axis and the lines $|x|=1$ issq.units
A. $2 \sin 1^{\circ}$
B. 0
C. $\frac{\pi}{2}$

D. None of these

Answer: A

- Watch Video Solution

60. The area of the region bounded by the curve $y=e^{x}, x=a$ and $\mathrm{x}=\mathrm{b}$ and X - axis isSq. units $(a<b)$
A. e^{a-b}
B. e^{b-a}
C. $e^{a}-e^{b}$
D. $e^{b}-e^{a}$

Answer: D

- Watch Video Solution

61. The area of the region bounded by the curve
$y=\tan \theta, x=0$ and $x=\frac{\pi}{4}$ isSq. units .
A. $\log 2$
B. $2 \log 2$
C. $\frac{1}{2} \log 2$
D. $\log 3$

Answer: C

- Watch Video Solution

62. The area of the region bounded by the curve $y^{2}=4 a x$ and $y=m x$ is $\frac{a^{2}}{3}$ Sq. units then the value of m is
A. 2
B. -2
C. $\frac{1}{2}$
D. 1

Answer: A

D Watch Video Solution

63. If the area of the region bounded by the curve
$y=f(x), \mathrm{x}$ - axis and $\mathrm{x}=1$ and $\mathrm{x}=\mathrm{b}$ is $(\mathrm{b}-1) \sin (3 \mathrm{~b}+4)$
` $f(x)$
A. $3(x-1) \cos (3 x+4)+\sin (3 x+4)$
B. $(b-1) \sin (3 x+4)+3 \cos (3 x+4)$
C. $(b-1) \cos (3 x+4)+3 \sin (3 x+4)$
D. None of these

Answer: A

- Watch Video Solution

64. The area of region bounded by the curve
$y=|x-1|$ and $y=1$ is ...Sq. units
A. 2
B. 1
C. $\frac{1}{2}$
D. None of these

Answer: B

- Watch Video Solution

65. The area between the parabolas $y^{2}=4 a x$ and
$x^{2}=8 a y$ is Sq. units .
A. $\frac{8}{3} a^{2}$
B. $\frac{4}{3} a^{2}$
C. $\frac{32}{3} a^{2}$
D. $\frac{16}{3} a^{2}$

Answer: C

66. The area between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square formed by the lines $x=4, \mathrm{y}=4$ and oxes into three parts. If the area of these three parts from uppar to bottom is S_{1}, s_{2} and S_{3} then $S_{1}: S_{2}: s_{3}=\ldots \ldots \ldots$.
A. $2: 1: 2$
B. 1:1:1
C. 1:2:1
D. $1: 2: 3$

Answer: B

67. The area of the region bounded by the curve $y=\sqrt{3 x+4}, \mathrm{x}$ - axis and $x=-1$ and $x=4$ is A. the area of the region bounded by the curve $y^{2}=3 x+4, \mathrm{X}$ - axis and $\mathrm{x}=-1$ and $\mathrm{x}=4$ is B . then $\mathrm{A}: \mathrm{B}$ =........
A. 1:1
B. 2: 1
C. 1:2
D. None of these

Answer: A
68. The function $f(x)$ is a non - negative continous function .The area of the region bounded by the curve $y=f(x), \mathrm{x}$ - axis $, x=\frac{\pi}{4}, x=\beta>\frac{\pi}{4}$ is $\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$ then $f\left(\frac{\pi}{2}\right)$

> А. $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$
> B. $\left(1-\frac{\pi}{4}+\sqrt{2}\right)$
C. $\frac{\pi}{4}+\sqrt{2}-1$
D. $\frac{\pi}{4}-\sqrt{2}+1$
69. The area of region bounded by the curve $x^{2}+y^{2}=9$ parabola $y^{2}=8 x$ is
A. 0
B. $\frac{2 \sqrt{2}}{3}+\frac{9 \pi}{2}-9 \sin ^{-1}\left(\frac{1}{3}\right)$
C. 16π
D. None of these

Answer: B
70. The area of region bounded by the curve $y=x-x^{2}$ and line $y=m x$ is $\frac{9}{2}$ then the value of m is
A. -4
B. -2
C. 2
D. 4

Answer: B

- Watch Video Solution

71. The area of the region bounded by the curve $y=\log x, y=\log |x|, y=|\log x|$ and $y=|\log | x| |$
isSq. units
A. 4
B. 6
C. 10
D. None of these

Answer: A
72. The area of the quadrilateral formed by the tangents drawn at extreme points of latus reactum of an ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is ...Sq. units .
A. $\frac{27}{4}$
B. 9
C. $\frac{27}{2}$
D. 27

Answer: D

73. The area of the region bounded bwtween the curve $y=2^{x}$ and $y=2 x-x^{2}$ and the lines $\mathrm{x}=0$, $x=2$ isSq. units
A. $\frac{4}{3}-\frac{1}{\log 2}$
B. $\frac{3}{\log 2}+\frac{4}{3}$
C. $\frac{4}{\log 2}-1$
D. $\frac{3}{\log 2}-\frac{4}{3}$

Answer: D

- Watch Video Solution

74. $f(x)=\min \{x+1, \sqrt{(1-x)}\}$ the area of the region bounded by the curve $f(x)$ and X - axis is
....Sq. unit
A. $\frac{1}{6}$
B. $\frac{5}{6}$
C. $\frac{7}{6}$
D. $\frac{11}{6}$

Answer: C
75. The area of the region bounded by the curves
$y=2-|2-x|$ and $y=\frac{3}{|x|}$ issq. units .

$$
\begin{aligned}
& \text { A. } \frac{5-4 \log 2}{3} \\
& \text { B. } \frac{2-\log 3}{2} \\
& \text { C. } \frac{4-3 \log 3}{2}
\end{aligned}
$$

D. None of these

Answer: C

76. The area of the region bounded by the curves
$y=x e^{x}, y=x e^{-x}$ and the line $x=1$ is
unit.
A. $2 e$
B. $\frac{2}{e}$
C. $\frac{e}{2}$
D. e^{2}

Answer: B

- Watch Video Solution

77. The area of the region bounded by the curve $(y-x)^{2}=x^{3}$ and the line $x=1$ isSq. unit.
A. $\frac{1}{3}$
B. $\frac{4}{5}$
C. $\frac{6}{4}$
D. 3

Answer: B
78. The area of the region enclosed by the curves $|x+y-1|+|2 x+y-1|=1$ isSq. unit.
A. 2
B. 3
C. 6
D. 7

Answer: A

D View Text Solution
79. The area of the region bounded by the curve $y=\cos x, y=\sin x, Y$-axis and $0 \leq x \leq \frac{\pi}{4}$ is Sq. units.
A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

Watch Video Solution

80. The area of the region enclosed by the curve
$y=|\sin x| \mathrm{X}$ - axis and the lines $|x|=\pi$ is
units.
A. 4
B. 3
C. 2
D. 1

Answer: A
81. The area of the region bounded by the lines
$y=|x|, \mathrm{X}$ - axis and $|\mathrm{x}|=1$ isSq. units.
A. 3
B. 2
C. 1
D. 4

Answer: C

- Watch Video Solution

82. The area of the reagion bounded by the curve
$y=[x]$ and the lines $x=1$ and $x=1.9$ is....... Sq .
Units . Where [.] denotes the greatest integer function.
A. $\frac{3}{5}$
B. $\frac{7}{10}$
C. $\frac{4}{5}$
D. $\frac{9}{10}$

Answer: D

- Watch Video Solution

83. If $A=\left\{(x, y\}, x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$
then the area of A isSq. units .

$$
\begin{aligned}
& \text { A. } \frac{\pi}{2}-\frac{2}{3} \\
& \text { B. } \frac{\pi}{2}+\frac{2}{3} \\
& \text { C. } \frac{\pi}{2}+\frac{4}{3} \\
& \text { D. } \frac{\Pi}{2}-\frac{4}{3}
\end{aligned}
$$

Answer: C

- Watch Video Solution

84. The area of the region bounded by
$\left\{(x, y): y^{2} \geq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \geq 0\right\}$
isSq. units.

$$
\begin{aligned}
& \text { A. } \pi-\frac{4}{3} \\
& \text { B. } \pi-\frac{8}{3} \\
& \text { C. } \pi-\frac{4 \sqrt{2}}{3} \\
& \text { D. } \frac{\pi}{2}-\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

Answer: B
85. The area of region bounded by
$\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y \quad\right.$ and
$y \leq 1+\sqrt{x}\}$ isSq. Units
A. $\frac{5}{2}$
B. $\frac{59}{12}$
C. $\frac{3}{2}$
D. $\frac{7}{3}$

Answer: A

86.
 Area
 bounded
 curve
 $y=\tan \pi x, x \in\left[-\frac{1}{4}, \frac{1}{4}\right]$ and X -axis is

A. $\frac{\log 2}{2 \pi}$
B. $\frac{\log 2}{2}$
C. $\log 2$
D. $\frac{\log 2}{\pi}$

Answer: D

- Watch Video Solution

87. If the area of the region bounded by two curves
$y=x^{2}$ and $y=x^{3}$ is $\frac{k}{6}$ then $\mathrm{k}=.$.

$$
\begin{aligned}
& \text { A. } \frac{1}{3} \\
& \text { B. } \frac{1}{12} \\
& \text { C. } \frac{1}{2} \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

Answer: C

- Watch Video Solution

88. Area bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{16}=4$ is
A. 64π
B. 32π
C. 8π
D. $\frac{\pi}{64}$ s

Answer: B

- Watch Video Solution

89.

Let
$x^{k}+y^{k}=a^{k}(a, k>0)$ and $\frac{d y}{d x}+\left(\frac{y}{x}\right)^{\frac{1}{3}}=0$
then k is
A. $\frac{1}{3}$
B. $\frac{3}{2}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: C

D Watch Video Solution

90. Let the function $f:[-7,9] \rightarrow R$ be continuous
on $[-7,0]$ and differential on $(-7,0)$. If
$f(-7)=-3$ and $f^{\prime}(x) \leq 2$, for all $x \in(-7,0)$
, then for all such function $f, f(-1)+f(0)$ lies in the interval :
A. $[-6,20]$
B. $[-\infty, 20]$
C. $[-\infty, 11]$
D. $[-3,11]$

Answer: B

- Watch Video Solution

91. The area (in Sq. units) of the region
$\left\{(x, y) \in R \mid 4 x^{2} \leq y \leq 8 x+12\right\}$ is :
A. $\frac{125}{3}$
B. $\frac{128}{3}$
C. $\frac{124}{3}$
D. $\frac{127}{3}$

Answer: B

- Watch Video Solution

Practice Paper Section A

1. The area of the region bounded by the curve
$y=2 x-x^{2}$ and X -axis is Sq. Units .
A. $\frac{3}{5}$
B. 2
C. 8
D. $\frac{4}{3}$

Answer:

- Watch Video Solution

2. The area of the region by the curve
$y=3 \cos x, 0 \leq x \leq \frac{\pi}{2}$ is ..Sq. Units.
A. 3
B. 1
C. $\frac{3}{2}$
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

3. The area of the region bounded by the line $x+2 y=8, \mathrm{X}$-axis and the lines $\mathrm{x}=2$ and $\mathrm{x}=4$ issq . Units
A. 12
B. 5
C. 10
D. 8

Answer:

- Watch Video Solution

4. The area of the region bounded by the curve $y=e^{x}, x=a$ and $\mathrm{x}=\mathrm{b}$ and X - axis isSq. units $(a<b)$
A. $e^{a}-e^{b}$
B. $e^{b}-e^{a}$
C. e^{-b-a}
D. e^{a-b}

Answer:

- Watch Video Solution

5. The area of the region bounded by the curve $y=|x-5|, \mathrm{X}$ - axis and the lines $x=0, x=1$ isSq . Units.
A. $\frac{9}{2}$
B. $\frac{7}{2}$
C. 9
D. 5

Answer:

- Watch Video Solution

6. The area of the region bounded by the curve $y=\sqrt{3 x+4}, \mathrm{x}$ - axis and $x=-1$ and $x=4$ is A.
the area of the region bounded by the curve
$y^{2}=3 x+4, \mathrm{X}-$ axis and $\mathrm{x}=-1$ and $\mathrm{x}=4$ is B . then $\mathrm{A}: \mathrm{B}$
A. $1: 1$
B. $2: 1$
C. 1:2
D. None of these

Answer:

- Watch Video Solution

Practice Paper Section B

1. Using integration, find the ara of the region
bounded by the circle $x^{2}+y^{2}=a^{2}$
2. Find the area of the region bounded by the parabola $y=x^{2}$ and $\mathrm{y}=|\mathrm{x}|$.

- Watch Video Solution

3. Find the area of the region between the parabolas
$y^{2}=4 a x$ and $x^{2}=4 a y,(a>0)$

- Watch Video Solution

1. Using integration find the area of the region bounded by the triangle whose vertices are $(-1,0),(1,3)$ and $(3,2)$

- Watch Video Solution

2. find the area bounded by the curve $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.
3. Find the area of the region bounded by the curves
$y=\sqrt{4-x^{2}}, y=\sqrt{3 x}$ and X - Axis in the first quadrant.

- Watch Video Solution

4. Find the area of the region enclosed by the lines
$y=|x-1|, y=0$ and $|X|=2$.

- Watch Video Solution

Practice Paper Section D

1. Find the area of the regaion enclosed by $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$.

- Watch Video Solution

2. Find the area of the region enclosed by $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$.
