

MATHS

BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI ENGLISH)

CONTINUITY AND DIFFERENTIABILITY

Practice Work

1. Examine the continuity of the function f(x) = 2x + 3 at x = 1

Watch Video Solution

2. Prove that the function $f(x) = x^2$ is continuous at x=0.

3. Find the points of discontinuity of the following function.

(a)
$$f(x) = \frac{3x+7}{x^2-5x+6}$$
 (b) $f(x) = \frac{1}{|x|-1} - \frac{x^2}{2}$ (c) $f(x) = \frac{\sqrt{x^2+1}}{1+\sin^2 x}$ (d) $f(x) = \tan\left(\frac{\pi}{2}x\right)$

Watch Video Solution

4. $f(x) = \frac{x^2 + 1}{x^2 - 1}$ and $g(x) = \tan x$. Examine the continuity of (fog) (x).

Watch Video Solution

5.
$$y = f(\mu)$$
, where $f(\mu) = \frac{3}{2\mu^2 + 5\mu - 3}$ and $\mu = \frac{1}{x + 2}$. Find the points of

discontinuity of y.

6. Show that
$$f(x) = \begin{cases} x^3 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 is a discontinuous function at x= 0.

7.
$$f(x) = \frac{1}{(x-1)(x-2)}$$
 and $g(x) = \frac{1}{x^2}$. Find the points of discontinuity of

the composite function f(g(x))?

Watch Video Solution

8.
$$f(x) = \begin{cases} \frac{|\sin x|}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$
 Examine the continuity of f(x), x= 0

Watch Video Solution

$$\mathbf{9.} f(x) = \begin{cases} \frac{1}{e^{4x} + 1}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
 Examine the continuity of f(x) at x= 0

10. f (x)= $\{x\}$ and g(x)= [x]. Where $\{ \}$ is a fractional part and [] is a greatest

integer function. Prove that f(x) + g(x) is a continuous function at x= 1.

11. Show that $f(x) = [x] + [-x], x \in R$ - {integer} is a continuous function.

Where [] is a greatest integer function

12. Discuss the continuity and differentiability for $f(x) = [\sin x]$ when $x \in [0, 2\pi]$, where $[\cdot]$ denotes the greatest integer function x.

13.
$$f(x) = \begin{cases} |x - 1|, & x \ge 0 \\ -|x|, & x < 0 \end{cases}$$
 Prove that $f(x)$ is continuous for $x \in R - \{0\}$.

14. Prove that
$$f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & x \neq 0\\ 2, & x = 0 \end{cases}$$
 is a continuous function at x= 0

15. Prove that f(x) = 2x - |x| is a continuous function at x= 0.

Watch Video Solution

16. For which value of x, the function $f(x) = \frac{e^{\sin x}}{4 - \sqrt{x^2 - 9}}$ is discontinuous?

Watch Video Solution

17. $f(x) = \frac{x^2 + 1}{x^2 - 1}$ and $g(x) = \tan x$. Examine the continuity of (fog) (x).

$$\mathbf{18.} f(x) = \begin{cases} \frac{1}{2} - x, & 0 \le x < \frac{1}{2} \\ 1, & x = \frac{1}{2} \\ \frac{3}{2} - x, & \frac{1}{2} < x \le 1 \end{cases}$$
 Discuss the continuity of f(x)

19.
$$f(x) = \begin{cases} 2 + \sqrt{1 - x^2}, & |x| \le 1 \\ 2e^{(1 - x)^2}, & |x| > 1 \end{cases}$$
 Discuss the continuity of f(x) at x=1

Watch Video Solution

20.
$$f(x) = \frac{\sqrt{2}\cos x - 1}{\cot x - 1}, x \neq \frac{\pi}{4}$$
. If the function $f(x)$ is continuous at $x = \frac{\pi}{4}$ then find $f\left(\frac{\pi}{4}\right)$

21.
$$f(x) = \begin{cases} \frac{\tan 2x}{x}, & x \neq 0\\ K, & x = 0 \end{cases}$$
 If a function f is continuous at x=0 then find k.

22.
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0\\ k, & x = 0 \end{cases}$$
 If the function f(x) is continuous at x= 0, then

find k.

23. Show that,
$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
. Is discontinuous at x= 0

Watch Video Solution

.

24. The give functions is continuous at x=0. Find a, b, c

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0\\ C, & x = 0\\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx^{\frac{3}{2}}}, & x > 0 \end{cases}$$

Watch Video Solution

25.
$$f(x) = \begin{cases} \frac{x(1+a\cos x) - b\sin x}{x^3}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
. If f is continuous at x=0 then find the

value of a and b.

26. The give functions is continuous at x=0. Find a, b, c

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0\\ C, & x = 0\\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx^{\frac{3}{2}}}, & x > 0 \end{cases}$$

Watch Video Solution

27.
$$f(x) = \begin{cases} -4\sin x + \cos x, & x \le -\frac{\pi}{2} \\ a\sin x + b, & -\frac{\pi}{2} < x < \frac{\pi}{2}. & \text{If } f(x) \text{ is continuous for } x \in R, \\ \cos x + 2, & \frac{\pi}{2} \le x \end{cases}$$

then find the value of a and b.

28.
$$f(x) = \begin{cases} |x+1|, & x < -2 \\ 2x+3, & -2 \le x < 0 \\ x^2+3, & 0 \le x < 3 \\ x^3-15 & 3 \le x \end{cases}$$
. Find at which points, the function f(x) is

discontinuous ?

Watch Video Solution

29.
$$f(x) = \frac{1 - \tan x}{4x - \pi}, x \neq \frac{\pi}{4}$$
. If the function $f(x), x \in \left[0, \frac{\pi}{2}\right)$ is continuous then find $f\left(\frac{\pi}{4}\right)$.

Watch Video Solution

30.
$$f(x) = \begin{cases} \frac{2^{x+2} - 16}{4^x - 16}, & x \neq 2\\ k, & x = 2 \end{cases}$$
 f(x) is continuous at x=2 then find k

31. Find the derivative of the following functions with respect to x

 $\tan(2x + 3)$

Watch Video Solution

32. Find the derivative of the following functions with respect to x

sin 3*x*. sin3*x*

Watch Video Solution

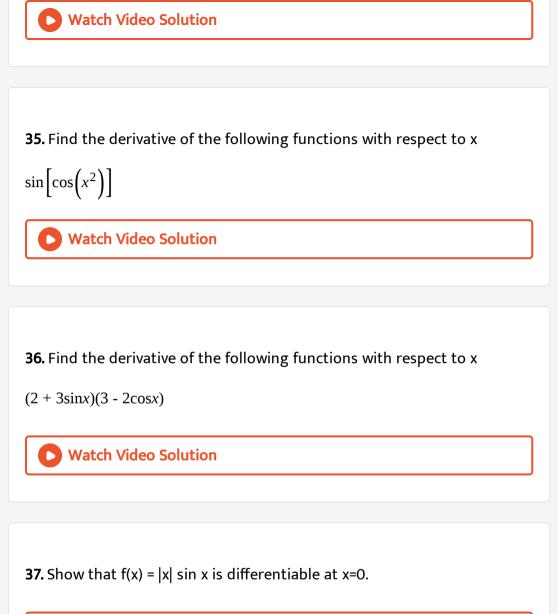
33. Find the derivative of the following functions with respect to x

$$\sqrt{\frac{x+1}{x-1}}$$

34. Find the derivative of the following functions with respect to x

sec*x* - 1

 $\sec x + 1$



38. The right hand derivative of $f(x) = [x] \tan (\pi x)$ at a point x=7 is $k\pi$ then

find the value of k. where [.] is the greatest integer function.

Watch Video Solution

39.
$$f(x) \begin{cases} \left| x - \frac{1}{2} \right|, & 0 \le x < 1 \\ x[x], & 1 \le x < 2 \end{cases}$$
 where [.] denotes the greatest integer

function. Show that f(x) is continuous at x=1 but not differentiable at x=1.

Watch Video Solution

40. $f(x) = x^3 \operatorname{sgn}(x)$. Show that f(x) is differentiable at x=0.

41. The left hand derivative of $f(x) = [x]\sin(\pi x)$ at x = k is an integer, is

42. Differentiate the following functions with respect to x:

$$x^2 + y^2 = xy$$

43. Differentiate the following functions with respect to x:

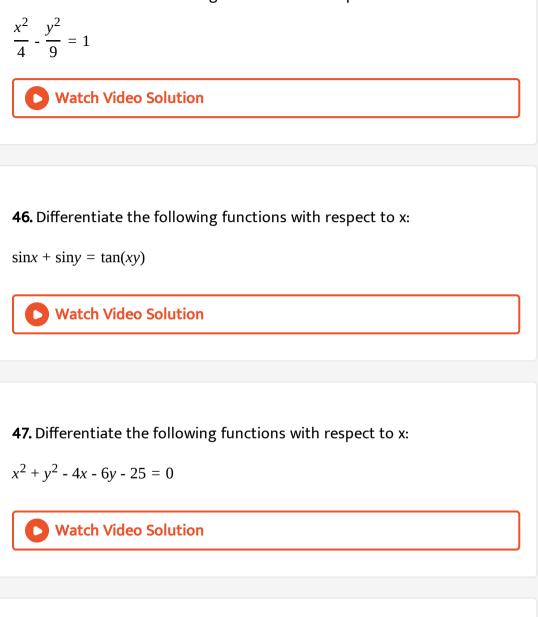
$$x^3 + y^3 = \sin(x + y)$$

Watch Video Solution

44. Differentiate the following functions with respect to x:

$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$

45. Differentiate the following functions with respect to x:



48. Differentiate the following functions with respect to x:

 $x + \sin x = \sin y$

49. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \sin^{-1}(3x - 4x^3), 0 < x < \frac{1}{2}$

50. Find
$$\frac{dy}{dx}$$
 in the following:

$$y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right), |x| < \frac{1}{\sqrt{3}}$$

Watch Video Solution

51. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \sin^{-1}\left(2x\sqrt{1-x^2}\right), \frac{1}{\sqrt{2}} < x < 1$

52. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$

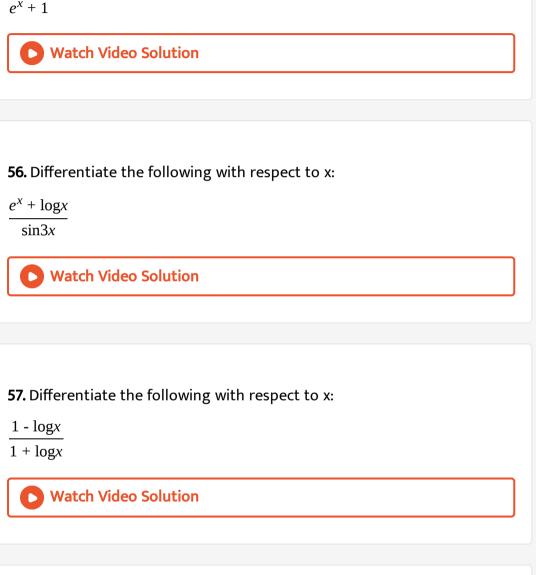
53. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \tan^{-1}\left(\frac{a\cos x - b\sin x}{b\cos x + a\sin x}\right)$

54. Differentiate the following with respect to x:

 $\frac{e^{x} \log x}{x^{2}}$

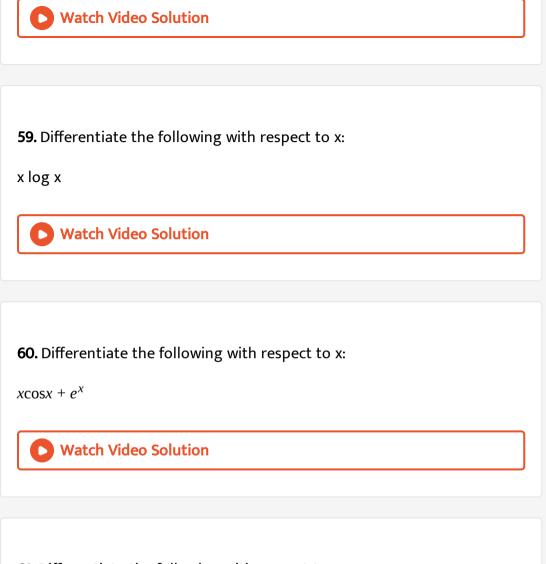
55. Differentiate the following with respect to x:

 $\frac{e^x - 1}{e^x + 1}$



58. Differentiate the following with respect to x:

$$\cos^{-1}(e^x)$$



61. Differentiate the following with respect to x:

 $\log \left[\log \left(\log x^5 \right) \right]$

62. Differentiate the following with respect to x:

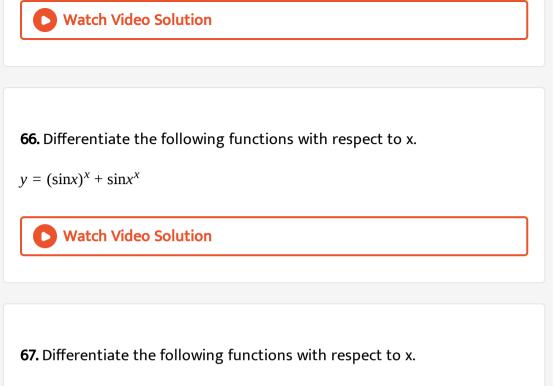
logx $1 + x \log x$ Watch Video Solution 63. Differentiate the following with respect to x: $\sin\left[\log(e^{\chi})\right]$ Watch Video Solution 64. Differentiate the following functions with respect to x.

$$y = (\sin x)^{x} + \left(\frac{1}{x}\right)^{\cos x}$$

Watch Video Solution

65. Differentiate the following functions with respect to x.

 $y = x^{x} . \sin x + (\sin x)^{x}$



$$x^y + y^x = 1000$$

68. Differentiate the following functions with respect to x.

$$y = \cos\left(x^{x}\right) + \sin\left(x^{x}\right)$$

69. If
$$y = x^{x^x}$$
 then find $\frac{dy}{dx}$

70. If
$$y = x^{x} + x^{a} + a^{x}$$
 then find $\frac{dy}{dx}$

71.
$$e^x + e^y = e^{x+y}$$
 then prove that, $\frac{dy}{dx} + \frac{e^x(e^y - 1)}{e^y(e^x - 1)} = 0$

Watch Video Solution

72. If
$$y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{x}}$$
 then find $\frac{dy}{dx}$

73. If
$$f(x) = |\cos x - \sin x|$$
 then find $f'\left(\frac{\pi}{6}\right)$

74. Find
$$\frac{dy}{dx}$$
:

 $x = \cos^2 \theta$ and $y = \sin^2 \theta$

Watch Video Solution

75. Find
$$\frac{dy}{dx}$$
:
 $x = t + \frac{1}{t}$ and $y = t - \frac{1}{t}$

D Watch Video Solution

76. Find
$$\frac{dy}{dx}$$
:
 $x = te^t, y = 1 + \log t$

77. Find
$$\frac{dy}{dx}$$
:
 $x = a\sec^3\theta, y = a\tan^3\theta$

78. Find
$$\frac{dy}{dx}$$
:
 $x = a\sin^2\theta\cos\theta$, $y = 2b\cos^2\theta$ (- sin θ)

Watch Video Solution

79. Find
$$\frac{dy}{dx}$$
:
 $x = 2\cos\theta - \cos^2\theta$ and $y = 2\sin\theta - \sin^2\theta$
Show that $\frac{dy}{dx} = -1$ when $\theta = \frac{\pi}{2}$

80. Find
$$\frac{dy}{dx}$$
:
 $x = e^{\cos 2t}$ and $y = e^{\sin 2t}$ show that, $\frac{dy}{dx} = \frac{-y \log x}{x \log y}$

81. Find
$$\frac{dy}{dx}$$
:
 $x = a\sin 2t(1 + \cos 2t)$ and $y = b\cos 2t$
(1 - cos2t) show that, $\left(\frac{dy}{dx}\right)_{t=\frac{\pi}{4}} = \frac{b}{a}$

82. Find the second order derivatives of the following functions:

 e^{ax}

83. Find the second order derivatives of the following functions:

$$x^3 + \tan x$$

Watch Video Solution

84. Find the second order derivatives of the following functions:

 $\sin^2 x$

Watch Video Solution

85. Find the second order derivatives of the following functions:

 $\tan^{-1}3x$

86. Find the second order derivatives of the following functions:

 $\log e^{\chi^{x^{x}}}$

87. Find the second order derivatives of the following functions:

 $3\sin 4x - 4\sin^3 4x$

Watch Video Solution

88. Find the second order derivatives of the following functions:

 $e^{-2\log x}$

Watch Video Solution

89. Find the second order derivatives of the following functions:

 $\sin\left(x^2+5\right)$

90. If $y = \sin^{-1}x$ then prove that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$

91. If
$$y = e^{\tan x}$$
 then show that, $\left(\cos^2 x\right) \frac{d^2 y}{dx^2} - (1 + \sin^2 x) \frac{dy}{dx} = 0$

Watch Video Solution

92. If
$$y = \sin(\sin x)$$
 then show that, $\frac{d^2y}{dx^2} + (\tan x)\frac{dy}{dx} + y\cos^2 x = 0$

Watch Video Solution

93. If
$$x^m$$
. $y^n = (x + y)^{m+n}$ then show that, $\frac{d^2y}{dx^2} = 0$

94. If
$$y = \log\left(x + \sqrt{x^2 + 1}\right)$$
 then show that, $\left(x^2 + 1\right)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0$

95. If
$$y = e^{ax} \sin bx$$
 then show that, $y_2 - 2ay_1 + (a^2 + b^2)y = 0$

Watch Video Solution

96. If
$$y = (x + \sqrt{x^2 + 1})^m$$
 then prove that, $(x^2 + 1)y_2 + xy_1 = m^2y$

Watch Video Solution

97. If
$$2x = y^{\frac{1}{m}} + y^{-\frac{1}{m}} (n \ge 1)$$
 then prove that, $(x^2 - 1)y_2 + xy_1 = m^2 y$

98. Verify Rolle's theorem for the following functions:

$$f(x) = \sqrt{9 - x^2}, x \in [-3, 3]$$

Watch Video Solution

99. Verify Rolle's theorem for the following functions:

 $f(x) = x^3 - 6x^2 + 11x - 6, x \in [2, 3]$

Watch Video Solution

100. Verify Rolle's theorem for the following functions:

 $f(x) = x(x - 3)^2, x \in [0, 3]$

Watch Video Solution

101. Verify Rolle's theorem for the following functions:

$$f(x) = \sin x + \cos x - 1, x \in \left[0, \frac{\pi}{2}\right]$$

102. Verify Rolle's theorem for the following functions:

 $f(x) = a^{\sin x}, x \in [0, \pi], a > 0$

Watch Video Solution

103. Vertify mean value theorem for the following functions:

 $f(x) = \log_e x, x \in [1, 2]$

Watch Video Solution

104. Vertify mean value theorem for the following functions:

 $f(x) = x - 2\sin x, x \in [-\pi, \pi]$

105. Vertify mean value theorem for the following functions:

$$f(x) = x + \frac{1}{x}, x \in [1, 3]$$
Watch Video Solution
106. Vertify mean value theorem for the following functions:
$$f(x) = \tan^{-1}x, x \in [0, 1]$$

107. Vertify mean value theorem for the following functions:

 $f(x) = x^2 + 2x + 3, x \in [4, 6]$

Watch Video Solution

Watch Video Solution

108. Prove that
$$0 < a < b < \frac{\pi}{2}$$
, $\sec^2 a < \frac{\tan b - \tan a}{b - a} < \sec^2 b$

109.
$$y = e^{x + e^{x + e^{x + \dots \infty}}}$$
 then find $\frac{dy}{dx}$

110. Find the derivative of
$$\tan^{-1}\left[\frac{\sqrt{1+x^2}-1}{x}\right]$$
 with respect to $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$
Watch Video Solution

111.
$$y = x + \frac{1}{x + \frac{1}{x + \frac{1}{x + \dots \infty}}}$$
 then find $\frac{dy}{dx}$

112. Find the derivative of
$$\sin^{-1}\left[\frac{2^{x+1} \cdot 3^x}{1+(36)^x}\right]$$
 with respect to x.

113.
$$x = a \sin t$$
 and $y = a \left(\cos t + \log \tan \frac{t}{2} \right)$ then find $\frac{d^2 y}{dx^2}$.

Watch Video Solution

114. If
$$y = \frac{ax^2}{(x-a)(x-b)(x-c)} + \frac{bx}{(x-b)(x-c)} + \frac{c}{(x-c)} + 1$$
 then prove that
 $\frac{y'}{y} = \frac{1}{x} \left[\frac{a}{a-x} + \frac{b}{b-x} + \frac{c}{c-x} \right]$

115.
$$y = \sin^{-1} \left[\frac{5x + 12\sqrt{1 - x^2}}{13} \right]$$
 then find $\frac{dy}{dx}$

116. If
$$y = x \log\left(\frac{x}{a+bx}\right)$$
 prove that $\frac{d^2y}{dx^2} = \frac{1}{x}\left(\frac{a}{a+bx}\right)^2$

117. If
$$y = \left\{x + \sqrt{x^2 + a^2}\right\}^n$$
 prove that $\frac{dy}{dx} = \frac{ny}{\sqrt{x^2 + a^2}}$. $n > 1 \neq N$

Watch Video Solution

118.
$$y = \sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}}$$
 then prove that $\frac{dy}{dx} + \sec^2\left(\frac{\pi}{4} - x\right) = 0$

119. Show that
$$\frac{d}{dx}e^{ax}\cos(bx+c) = re^{ax}\cos(bx+c+\alpha)$$
 where $r = \sqrt{a^2 + b^2}, \cos\alpha = \frac{a}{r}, \sin\alpha = \frac{b}{r}$ and $\frac{d^2}{dx^2}e^{ax}\cos(ax+c) = r^2e^{ax}\cos(bx+c+2\alpha)$

120. If
$$(a - b\cos y)(a + b\cos x) = a^2 - b^2$$
 show that $\frac{dy}{dx} = \frac{\sqrt{a^2 - b^2}}{a + b\cos x}, 0 < x < \frac{\pi}{2}$

121. Find
$$\frac{d}{dx} \left[\operatorname{cosec}^{-1} x \right]_{x=-2}$$

Natch Video Solution

122.
$$\frac{d}{dx}$$
tan⁻¹(secx - tanx)- Find

123. Prove that,
$$\frac{d}{dx} \left[\log \frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{-1} \frac{\sqrt{3}x}{1 - x^2} \right] = \frac{4}{x^4 + x^2 + 1}$$
Watch Video Solution
124. Examine the continuity of the function $f(x) = 2x + 3$ at $x = 1$
Watch Video Solution
125. Prove that the function $f(x) = x^2$ is continuous at x=0.
126. Find the points of discontinuity of the following function.

(a)
$$f(x) = \frac{3x+7}{x^2-5x+6}$$
 (b) $f(x) = \frac{1}{|x|-1} - \frac{x^2}{2}$ (c) $f(x) = \frac{\sqrt{x^2+1}}{1+\sin^2 x}$ (d)
 $f(x) = \tan\left(\frac{\pi}{2}x\right)$

127.
$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
 and $g(x) = \tan x$. Examine the continuity of (fog) (x).

128.
$$y = f(\mu)$$
, where $f(\mu) = \frac{3}{2\mu^2 + 5\mu - 3}$ and $\mu = \frac{1}{x+2}$. Find the points of

discontinuity of y.

Watch Video Solution

129. Show that
$$f(x) = \begin{cases} x^3 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 is a discontinuous function at x= 0.

Watch Video Solution

130. $f(x) = \frac{1}{(x-1)(x-2)}$ and $g(x) = \frac{1}{x^2}$. Find the points of discontinuity of

the composite function f(g(x))?

131.
$$f(x) = \begin{cases} \frac{|\sin x|}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$
 Examine the continuity of f(x), x= 0

132.
$$f(x) = \begin{cases} \frac{1}{e^{4x} + 1}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
 Examine the continuity of f(x) at x= 0

Watch Video Solution

133. $f(x) = \{x\}$ and g(x) = [x]. Where $\{ \}$ is a fractional part and [] is a greatest

integer function. Prove that f(x) + g(x) is a continuous function at x= 1.

134. Show that $f(x) = [x] + [-x], x \in \mathbb{R}$ - {integer} is a continuous

function. Where [] is a greatest integer function

135. $f(x) = [\sin x], x \in [0, 2\pi]$ At which points, f(x) is discontinuous?

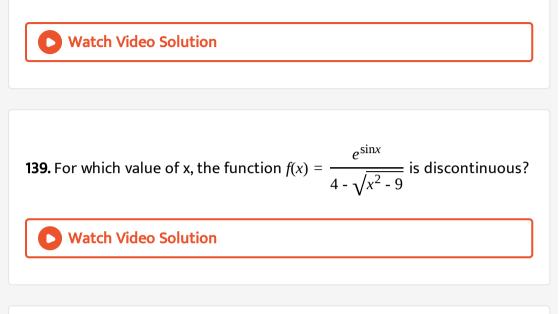
Watch Video Solution

136.
$$f(x) = \begin{cases} |x-1|, & x \ge 0 \\ -|x|, & x < 0 \end{cases}$$
 Prove that $f(x)$ is continuous for $x \in R - \{0\}$.

Watch Video Solution

137. Prove that
$$f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & x \neq 0\\ 2, & x = 0 \end{cases}$$
 is a continuous function at x= 0

138. Prove that f(x) = 2x - |x| is a continuous function at x= 0.



140.
$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
 and $g(x) = \tan x$. Examine the continuity of the

composite function (fog) (x)

141.
$$f(x) = \begin{cases} \frac{1}{2} - x, & 0 \le x < \frac{1}{2} \\ 1, & x = \frac{1}{2} \\ \frac{3}{2} - x, & \frac{1}{2} < x \le 1 \end{cases}$$
 Discuss the continuity of f(x)

142.
$$f(x) = \begin{cases} 2 + \sqrt{1 - x^2}, & |x| \le 1 \\ 2e^{(1 - x)^2} & |x| > 1 \end{cases}$$
 Discuss the continuity of f(x) at x=1

Watch Video Solution

143.
$$f(x) = \frac{\sqrt{2}\cos x - 1}{\cot x - 1}, x \neq \frac{\pi}{4}$$
. If the function $f(x)$ is continuous at $x = \frac{\pi}{4}$ then find $f\left(\frac{\pi}{4}\right)$

144.
$$f(x) = \begin{cases} \frac{\tan 2x}{x}, & x \neq 0\\ K, & x = 0 \end{cases}$$
 If a function f is continuous at x=0 then find k.

145.
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0\\ k, & x = 0 \end{cases}$$
. If the function f(x) is continuous at x= 0, then

find k.

Watch Video Solution

146. Show that,
$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
. Is discontinuous at x= 0

147. The give functions is continuous at x=0. Find a, b, c

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0\\ C, & x = 0\\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx^{\frac{3}{2}}}, & x > 0 \end{cases}$$

148.
$$f(x) = \begin{cases} \frac{x(1+a\cos x) - b\sin x}{x^3}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
. If f is continuous at x=0 then find the

value of a and b.

149.
$$f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x}, & x < 0\\ q, & x = 0\\ \frac{\sqrt{x+x^2} - \sqrt{x}}{x}, & \frac{\sqrt{x+x^2} - \sqrt{x}}{x} \end{cases}$$
 If f(x) is continuous for $x \in R$ then

find the value of p and q.

Watch Video Solution

150.
$$f(x) = \begin{cases} -4\sin x + \cos x, & x \le -\frac{\pi}{2} \\ a\sin x + b, & -\frac{\pi}{2} < x < \frac{\pi}{2}. & \text{If } f(x) \text{ is continuous for } x \in R, \\ \cos x + 2, & \frac{\pi}{2} \le x \end{cases}$$

then find the value of a and b.

151.
$$f(x) = \begin{cases} |x+1|, & x < -2 \\ 2x+3, & -2 \le x < 0 \\ x^2+3, & 0 \le x < 3 \\ x^3-15 & 3 \le x \end{cases}$$
. Find at which points, the function f(x) is

discontinuous ?

Watch Video Solution

152.
$$f(x) = \frac{1 - \tan x}{4x - \pi}, x \neq \frac{\pi}{4}$$
. If the function $f(x), x \in \left[0, \frac{\pi}{2}\right)$ is continuous then find $f\left(\frac{\pi}{4}\right)$.

Watch Video Solution

153.
$$f(x) = \begin{cases} \frac{2^{x+2} - 16}{4^x - 16}, & x \neq 2\\ k, & x = 2 \end{cases}$$
 f(x) is continuous at x=2 then find k

154. Find the derivative of the following functions with respect to x

 $\tan(2x + 3)$

Watch Video Solution

155. Find the derivative of the following functions with respect to x

sin 3*x*. sin3*x*

Watch Video Solution

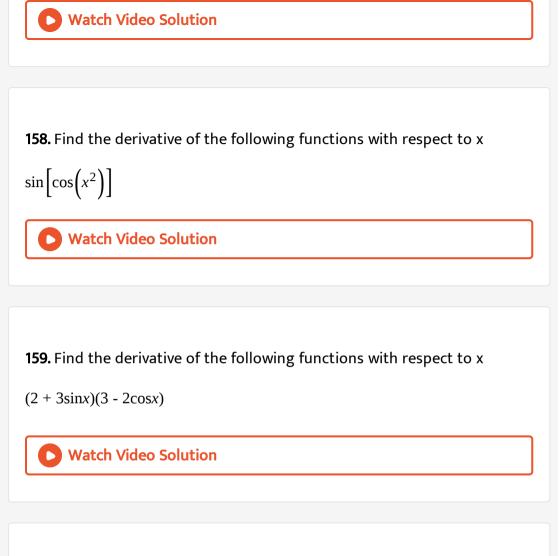
156. Find the derivative of the following functions with respect to x

$$\sqrt{\frac{x+1}{x-1}}$$

157. Find the derivative of the following functions with respect to x

sec*x* - 1

 $\sec x + 1$



160. Show that $f(x) = |x| \sin x$ is differentiable at x=0.

161. The right hand derivative of $f(x) = [x] \tan (\pi x)$ at a point x=7 is $k\pi$ then

find the value of k. where [.] is the greatest integer function.

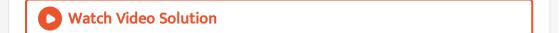
Watch Video Solution

162.
$$f(x) \begin{cases} \left| x - \frac{1}{2} \right|, & 0 \le x < 1 \\ x[x], & 1 \le x < 2 \end{cases}$$
 where [.] denotes the greatest integer

function. Show that f(x) is continuous at x=1 but not differentiable at x=1.

Watch Video Solution

163. $f(x) = x^3 \operatorname{sgn}(x)$. Show that f(x) is differentiable at x=0.



164. Find the left hand derivative of $f(x) = [x]\sin(\pi x)$ at x=k. where k is an

integer and [.] denotes the greatest integer function.

165. Differentiate the following functions with respect to x:

$$x^2 + y^2 = xy$$

Watch Video Solution

166. Differentiate the following functions with respect to x:

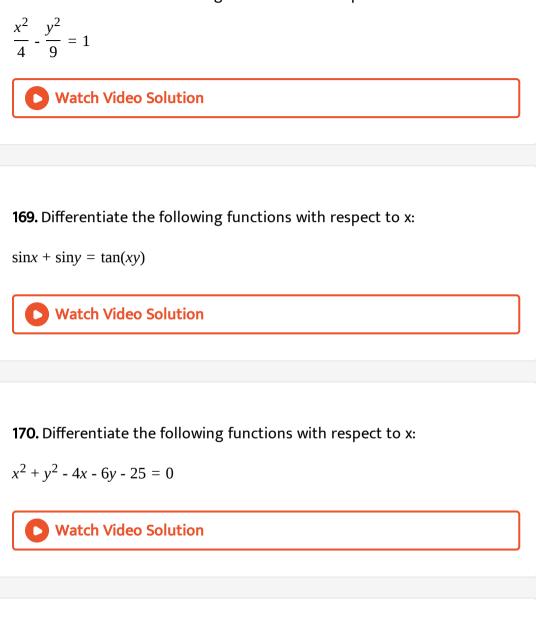
$$x^3 + y^3 = \sin(x + y)$$

Watch Video Solution

167. Differentiate the following functions with respect to x:

$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$

168. Differentiate the following functions with respect to x:



171. Differentiate the following functions with respect to x:

 $x + \sin x = \sin y$

172. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \sin^{-1}(3x - 4x^3), 0 < x < \frac{1}{2}$

173. Find
$$\frac{dy}{dx}$$
 in the following:

$$y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right), |x| < \frac{1}{\sqrt{3}}$$

Watch Video Solution

174. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \sin^{-1}\left(2x\sqrt{1-x^2}\right), \frac{1}{\sqrt{2}} < x < 1$

175. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$

176. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \tan^{-1} \left(\frac{a\cos x - b\sin x}{b\cos x + a\sin x} \right)$

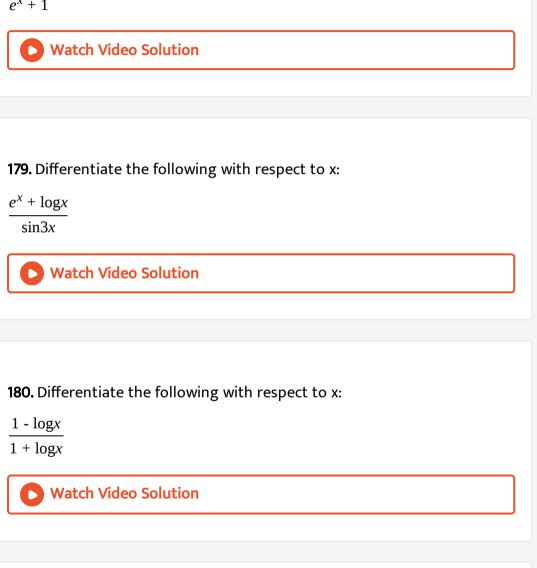
177. Differentiate the following with respect to x:

 $\frac{e^{x}\log x}{2}$

 x^2

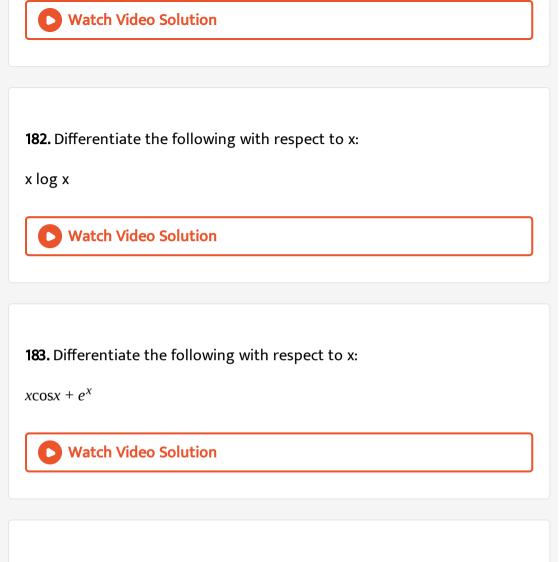
178. Differentiate the following with respect to x:

 $\frac{e^{x}-1}{e^{x}+1}$



181. Differentiate the following with respect to x:

$$\cos^{-1}(e^x)$$



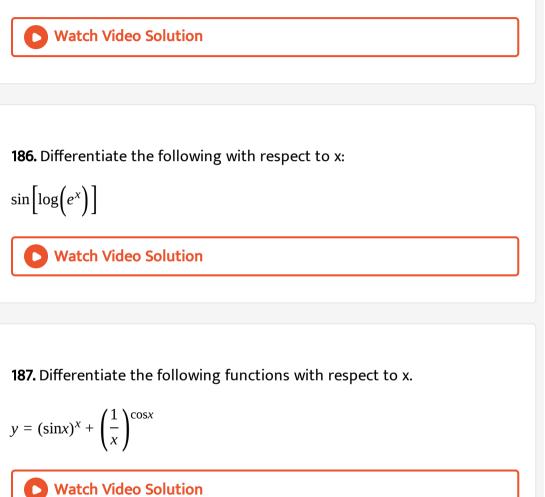
184. Differentiate the following with respect to x:

 $\log \left[\log \left(\log x^5 \right) \right]$

185. Differentiate the following with respect to x:

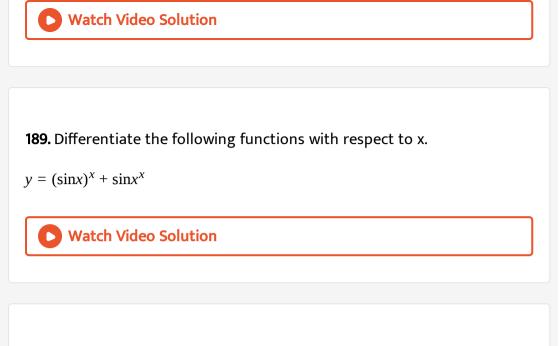
logx

 $1 + x \log x$



188. Differentiate the following functions with respect to x.

$$y = x^{\chi} . \sin x + (\sin x)^{\chi}$$



190. Differentiate the following functions with respect to x.

$$x^y + y^x = 1000$$

Watch Video Solution

191. Differentiate the following functions with respect to x.

$$y = \cos\left(x^{x}\right) + \sin\left(x^{x}\right)$$

192. If
$$y = x^{x^x}$$
 then find $\frac{dy}{dx}$

193. If
$$y = x^{x} + x^{a} + a^{x}$$
 then find $\frac{dy}{dx}$

194.
$$e^{x} + e^{y} = e^{x+y}$$
 then prove that, $\frac{dy}{dx} + \frac{e^{x}(e^{y}-1)}{e^{y}(e^{x}-1)} = 0$

Watch Video Solution

195. If
$$y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{x}}$$
 then find $\frac{dy}{dx}$

196. If
$$f(x) = |\cos x - \sin x|$$
 then find $f\left(\frac{\pi}{6}\right)$

197. Find
$$\frac{dy}{dx}$$
:
 $x = \cos^2 \theta$ and $y = \sin^2 \theta$

198. Find
$$\frac{dy}{dx}$$
:
 $x = t + \frac{1}{t}$ and $y = t - \frac{1}{t}$

199. Find
$$\frac{dy}{dx}$$
:
 $x = te^{t}, y = 1 + \log t$

200. Find
$$\frac{dy}{dx}$$
:
 $x = a\sec^3\theta, y = a\tan^3\theta$

201. Find
$$\frac{dy}{dx}$$
:

$$x = a\sin^2\theta\cos\theta, y = 2b\cos^2\theta(-\sin\theta)$$

Natch Video Solution

202. Find
$$\frac{dy}{dx}$$
:
 $x = 2\cos\theta - \cos^2\theta$ and $y = 2\sin\theta - \sin^2\theta$
Show that $\frac{dy}{dx} = -1$ when $\theta = \frac{\pi}{2}$

203. Find
$$\frac{dy}{dx}$$
:
 $x = e^{\cos 2t}$ and $y = e^{\sin 2t}$ show that, $\frac{dy}{dx} = \frac{-y \log x}{x \log y}$

204. Find
$$\frac{dy}{dx}$$
:
 $x = a\sin 2t(1 + \cos 2t)$ and $y = b\cos 2t$
 $(1 - \cos 2t)$ show that, $\left(\frac{dy}{dx}\right)_{t=\frac{\pi}{4}} = \frac{b}{a}$

205. Find the second order derivatives of the following functions:

 e^{ax}

206. Find the second order derivatives of the following functions:

$$x^3 + \tan x$$

Watch Video Solution

207. Find the second order derivatives of the following functions:

 $\sin^2 x$

Watch Video Solution

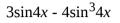
208. Find the second order derivatives of the following functions:

 $\tan^{-1}3x$

209. Find the second order derivatives of the following functions:

 $\log e^{\chi^{x^{x}}}$

210. Find the second order derivatives of the following functions:



Watch Video Solution

211. Find the second order derivatives of the following functions:

 $e^{-2\log x}$

Watch Video Solution

212. Find the second order derivatives of the following functions:

 $\sin\left(x^2+5\right)$

213. If
$$y = \sin^{-1}x$$
 then prove that $\left(1 - x^2\right) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 0$

214. If
$$y = e^{\tan x}$$
 then show that, $\left(\cos^2 x\right) \frac{d^2 y}{dx^2} - (1 + \sin 2x) \frac{dy}{dx} = 0$

Watch Video Solution

215. If
$$y = \sin(\sin x)$$
 then show that, $\frac{d^2y}{dx^2} + (\tan x)\frac{dy}{dx} + y\cos^2 x = 0$

Watch Video Solution

216. If
$$x^m$$
. $y^n = (x + y)^{m+n}$ then show that, $\frac{d^2y}{dx^2} = 0$

217. If
$$y = \log\left(x + \sqrt{x^2 + 1}\right)$$
 then show that, $\left(x^2 + 1\right)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0$

218. If
$$y = e^{ax} \sin bx$$
 then show that, $y_2 - 2ay_1 + (a^2 + b^2)y = 0$

Watch Video Solution

219. If
$$y = (x + \sqrt{x^2 + 1})^m$$
 then prove that, $(x^2 + 1)y_2 + xy_1 = m^2y$

Watch Video Solution

220. If
$$2x = y\frac{1}{m} + y^{-1}\frac{1}{m}$$
 $(n \ge 1)$ then prove that, $(x^2 - 1)y_2 + xy_1 = m^2y$

221. Verify Rolle's theorem for the following functions:

$$f(x) = \sqrt{9 - x^2}, x \in [-3, 3]$$

Watch Video Solution

222. Verify Rolle's theorem for the following functions:

 $f(x) = x^3 - 6x^2 + 11x - 6, x \in [2, 3]$

Watch Video Solution

223. Verify Rolle's theorem for the following functions:

 $f(x) = x(x - 3)^2, x \in [0, 3]$

224. Verify Rolle's theorem for the following functions:

$$f(x) = \sin x + \cos x - 1, x \in \left[0, \frac{\pi}{2}\right]$$

225. Verify Rolle's theorem for the following functions:

 $f(x) = a^{\sin x}, x \in [0, \pi], a > 0$

Watch Video Solution

226. Vertify mean value theorem for the following functions:

 $f(x) = \log_e x, x \in [1, 2]$

Watch Video Solution

227. Vertify mean value theorem for the following functions:

 $f(x) = x - 2\sin x, x \in [-\pi, \pi]$

228. Vertify mean value theorem for the following functions:

$$f(x) = x + \frac{1}{x}, x \in [1, 3]$$
Watch Video Solution
229. Vertify mean value theorem for the following functions:
$$f(x) = \tan^{-1}x, x \in [0, 1]$$
Watch Video Solution

230. Vertify mean value theorem for the following functions:

 $f(x) = x^2 + 2x + 3, x \in [4, 6]$

Watch Video Solution

231. Prove that
$$0 < a < b < \frac{\pi}{2}$$
, $\sec^2 a < \frac{\tan b - \tan a}{b - a} < \sec^2 b$

232.
$$y = e^{x + e^{x + e^{x + \dots \infty}}}$$
 then find $\frac{dy}{dx}$

233. Find the derivative of
$$\tan^{-1}\left[\frac{\sqrt{1+x^2}-1}{x}\right]$$
 with respect to $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$
Watch Video Solution

234.
$$y = x + \frac{1}{x + \frac{1}{x + \frac{1}{x + \dots \infty}}}$$
 then find $\frac{dy}{dx}$

235. Find the derivative of
$$\sin^{-1}\left[\frac{2^{x+1} \cdot 3^x}{1+(36)^x}\right]$$
 with respect to x.

236.
$$x = a \sin t$$
 and $y = a \left(\cos t + \log \tan \frac{t}{2} \right)$ then find $\frac{d^2 y}{dx^2}$.

Watch Video Solution

237. If
$$y = \frac{ax^2}{(x-a)(x-b)(x-c)} + \frac{bx}{(x-b)(x-c)} + \frac{c}{(x-c)} + 1$$
 then prove that

$$\frac{y'}{y} = \frac{1}{x} \left[\frac{a}{a-x} + \frac{b}{b-x} + \frac{c}{c-x} \right]$$

$$238. y = \sin^{-1} \left[\frac{5x + 12\sqrt{1 - x^2}}{13} \right] \text{ then find } \frac{dy}{dx}$$

239. If
$$y = x \log\left(\frac{x}{a+bx}\right)$$
 prove that $\frac{d^2y}{dx^2} = \frac{1}{x}\left(\frac{a}{a+bx}\right)^2$

240. If
$$y = \left\{x + \sqrt{x^2 + a^2}\right\}^n$$
 prove that $\frac{dy}{dx} = \frac{ny}{\sqrt{x^2 + a^2}}$. $n > 1 \neq N$

D Watch Video Solution

241.
$$y = \sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}}$$
 then prove that $\frac{dy}{dx} + \sec^2\left(\frac{\pi}{4} - x\right) = 0$

242. Show that
$$\frac{d}{dx}e^{ax}\cos(bx+c) = re^{ax}\cos(bx+c+\alpha)$$
 where $r = \sqrt{a^2 + b^2}$, $\cos\alpha = \frac{a}{r}$, $\sin\alpha = \frac{b}{r}$ and $\frac{d^2}{dx^2}e^{ax}\cos(ax+c) = r^2e^{ax}\cos(bx+c+2\alpha)$

243. If
$$(a - b\cos y)(a + b\cos x) = a^2 - b^2$$
 show that $\frac{dy}{dx} = \frac{\sqrt{a^2 - b^2}}{a + b\cos x}, 0 < x < \frac{\pi}{2}$

244. Find
$$\frac{d}{dx} \left[\operatorname{cosec}^{-1} x \right]_{x=-2}$$

Natch Video Solution

245.
$$\frac{d}{dx}$$
tan⁻¹(secx - tanx)- Find

246. Prove that,
$$\frac{d}{dx} \left[\log \frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{-1} \frac{\sqrt{3}x}{1 - x^2} \right] = \frac{4}{x^4 + x^2 + 1}$$

Exercise-5.1

1. Prove that the function f(x) = 5x - 3 is continuous at x=0, at x = -3 and

at x= 5

2. Examine the continuity of the function $f(x) = 2x^2 - 1$ at x = 3

3. Examine the following functions for continuity.

$$f(x) = x - 5$$

Watch Video Solution

4. Examine the following functions for continuity.

$$f(x)=\frac{1}{x-5}, x\neq 5$$

Watch Video Solution

5. Examine the following functions for continuity.

$$f(x) = \frac{x^2 - 25}{x + 5}, x \neq -5$$

6. Examine the following functions for continuity.

f(x) = |x - 5|

• Watch Video Solution 7. Prove that the function $f(x) = x^n$ is continuous at x = n, where n is a positive integer • Watch Video Solution

8. Is the function f defined by $f(x) = \begin{cases} x, & \text{if } x \le 1 \\ 5, & \text{if } x > 1 \end{cases}$ continuous at x = 0? At

x=1? At x=2?

Watch Video Solution

$$9. f(x) = \begin{cases} 2x + 3, & \text{if } x \le 2\\ 2x - 3, & \text{if } x > 2 \end{cases}$$

$$\mathbf{10.} f(x) = \begin{cases} |x| + 3, & \text{if } x \le -3 \\ -2x, & \text{if } -3 < x < 3 \\ 6x + 2, & \text{if } x \ge 3 \end{cases}$$

View Text Solution

$$\mathbf{11.} f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$

Watch Video Solution

$$\mathbf{12.} f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0\\ -1, & \text{if } x \ge 0 \end{cases}$$

13.
$$f(x) = \begin{cases} x+1, & \text{if } x \ge 1 \\ x^2+1, & \text{if } x < 1 \end{cases}$$

14.
$$f(x) = \begin{cases} x^3 - 3, & \text{if } x \le 2 \\ x^2 + 1, & \text{if } x > 2 \end{cases}$$

15.
$$f(x) = \begin{cases} x^{10} - 1, & \text{if } x \le 1 \\ x^2, & \text{if } x > 1 \end{cases}$$

Watch Video Solution

16. Is the function defined by $f(x) = \begin{cases} x+5, & \text{if } x \le 1 \\ x-5, & \text{if } x > 1 \end{cases}$ a continuous

function?

$$\mathbf{17.} f(x) = \begin{cases} 3, & \text{if} 0 \le x \le 1\\ 4, & \text{if} 1 \le x \le 3\\ 5, & \text{if} 3 \le x \le 10 \end{cases}$$

$$\mathbf{18.} f(x) = \begin{cases} 2x, & \text{if } x < 0\\ 0, & \text{if } 0 \le x \le 1\\ 4x, & \text{if } x > 1 \end{cases}$$

Watch Video Solution

$$\mathbf{19.} f(x) = \begin{cases} -2, & \text{if } x \le -1 \\ 2x, & \text{if } -1 < x \le 1 \\ 2, & \text{if } x > 1 \end{cases}$$

20. Find the relationship between a and b so that the function f defined

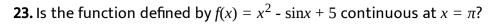
by

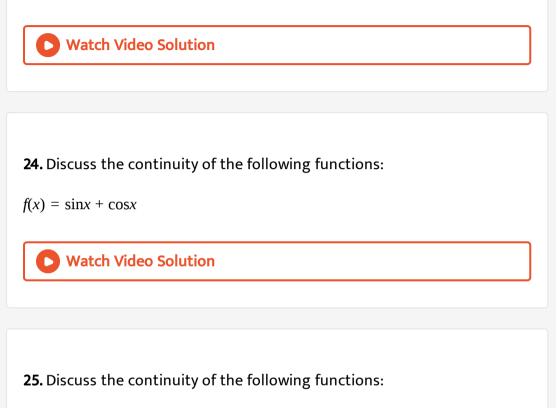
$$f(x) = \begin{cases} ax + 1 & \text{if } x \le 3\\ bx + 3 & \text{if } x > 3 \end{cases} \text{ is continuous at x=3.}$$

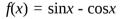
21. For what value of
$$\lambda$$
 is the function defined by
$$f(x) = \begin{cases} \lambda (x^2 - 2x), & \text{if } x \leq 0 \\ 4x + 1, & \text{if } x > 0 \end{cases}$$
continuous at x=0 ? What about continuity at x=1?

Watch Video Solution

22. Show that the function defined by g(x) = x - [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.







26. Discuss the continuity of the following functions:

 $f(x) = \sin x \cdot \cos x$

27. Discuss the continuity of

 $f(x) = \cos x, x \in R$

Watch Video Solution

28. Discuss the continuity of the cosine, cosecant, secant and cotangent

functions:

$$f(x) = \operatorname{cosec} x = \frac{1}{\sin x}, x \in R - \{n\pi\}, n \in I$$

Watch Video Solution

29. Discuss the continuity of the cosine, cosecant, secant and cotangent

functions:

$$f(x) = \sec x = \frac{1}{\cos x}, x \in R - \left\{ (2n+1)\frac{\pi}{2}, n \in I \right\}$$

30. Discuss the continuity of the cosine, cosecant, secant and cotangent

functions:

$$f(x) = \cot x = \frac{1}{\tan x}, x \in R - \{n\pi, n \in I\}$$

Watch Video Solution

31. Find all points of discontinuity of f, where
$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x < 0 \\ x + 1, & \text{if } x \ge 0 \end{cases}$$

32. Determine if f defined by
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 is a continuous

function?

$$f(x) = \begin{cases} \sin x - \cos x, & \text{if } x \neq 0\\ -1 & \text{if } x = 0 \end{cases}$$

34. Find the values of k so that the function f is continuous at the indicated point

$$f(x) = \begin{cases} \frac{k\cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases} \text{ at } x = \frac{\pi}{2}$$

Watch Video Solution

35. Find the values of k so that the function f is continuous at the indicated point

$$f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases} \text{ at } x=2$$

36. Find the values of k so that the function f is continuous at the

indicated point

$$f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi \\ \cos x & \text{if } x > \pi \end{cases} \text{ at } x = \pi$$

Watch Video Solution

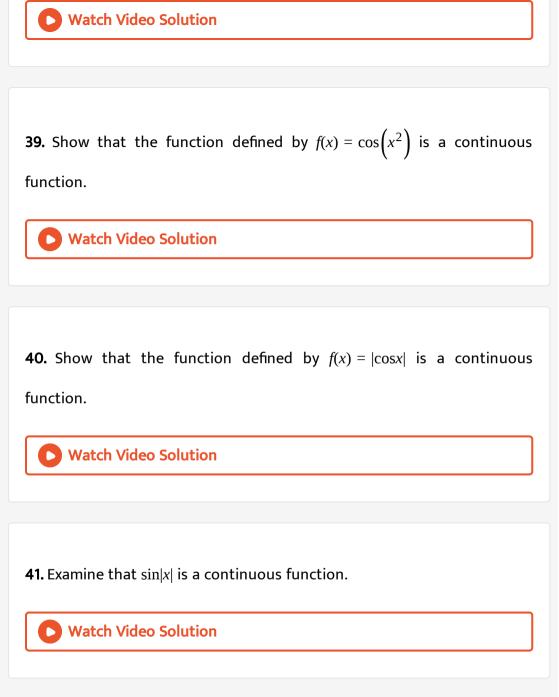
37. Find the values of k so that the function f is continuous at the indicated point

$$f(x) = \begin{cases} kx + 1, & \text{if } x \le 5\\ 3x - 5, & \text{if } x > 5 \end{cases} \text{ at } x = 5$$

Watch Video Solution

38. Find the values of a and b such that the function defined by

$$f(x) = \begin{cases} 5 & \text{if } x \le 2\\ ax + b, & \text{If } 2 < x < 10 \text{ is a continuous function}\\ 21 & \text{If } x \ge 10 \end{cases}$$



42. Find all the points of discontinuity of f defined by f(x) = |x| - |x + 1|

43. Prove that the function f(x) = 5x - 3 is continuous at x=0, at x = -3

and at x= 5

Watch Video Solution

44. Examine the continuity of the function $f(x) = 2x^2 - 1$ at x = 3

Watch Video Solution

45. Examine the following functions for continuity.

f(x) = x - 5

46. Examine the following functions for continuity.

$$f(x)=\frac{1}{x-5}, x\neq 5$$

Watch Video Solution

47. Examine the following functions for continuity.

$$f(x) = \frac{x^2 - 25}{x + 5}, x \neq -5$$

Watch Video Solution

48. Examine the following functions for continuity.

$$f(x) = |x - 5|$$

49. Prove that the function $f(x) = x^n$ is continuous at x= n, where n is a

positive integer

50. Is the function f defined by $f(x) = \begin{cases} x, & \text{if } x \le 1 \\ 5, & \text{if } x > 1 \end{cases}$ continuous at x = 0? At

x=1? At x=2?

Watch Video Solution

51.
$$f(x) = \begin{cases} 2x + 3, & \text{if } x \le 2\\ 2x - 3, & \text{if } x > 2 \end{cases}$$

Watch Video Solution

52.
$$f(x) = \begin{cases} |x| + 3, & \text{if } x \le -3 \\ -2x, & \text{if } -3 < x < 3 \\ 6x + 2, & \text{if } x \ge 3 \end{cases}$$

53.
$$f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

54.
$$f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0 \\ -1, & \text{if } x \ge 0 \end{cases}$$

Watch Video Solution

55.
$$f(x) = \begin{cases} x+1, & \text{if } x \ge 1 \\ x^2+1, & \text{if } x < 1 \end{cases}$$

56.
$$f(x) = \begin{cases} x^3 - 3, & \text{if } x \le 2 \\ x^2 + 1, & \text{if } x > 2 \end{cases}$$

57.
$$f(x) = \begin{cases} x^{10} - 1, & \text{if } x \le 1 \\ x^2, & \text{if } x > 1 \end{cases}$$

58. Is the function defined by
$$f(x) = \begin{cases} x+5, & \text{if } x \le 1 \\ x-5, & \text{if } x > 1 \end{cases}$$
 a continuous

function?

Watch Video Solution

59.
$$f(x) = \begin{cases} 3, & \text{if } 0 \le x \le 1 \\ 4, & \text{if } 1 < x < 3 \\ 5, & \text{if } 3 \le x \le 10 \end{cases}$$

$$60. f(x) = \begin{cases} 2x, & \text{if } x < 0\\ 0, & \text{if } 0 \le x \le 1\\ 4x, & \text{if } x > 1 \end{cases}$$

$$\mathbf{61.} f(x) = \begin{cases} -2, & \text{if } x \le -1 \\ 2x, & \text{if } -1 < x \le 1 \\ 2, & \text{if } x > 1 \end{cases}$$

Watch Video Solution

62. Find the relationship between a and b so that the function f defined

by

$$f(x) = \begin{cases} ax + 1 & \text{if } x \le 3\\ bx + 3 & \text{if } x > 3 \end{cases} \text{ is continuous at x=3.}$$

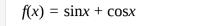
63. For what value of
$$\lambda$$
 is the function defined by
$$f(x) = \begin{cases} \lambda (x^2 - 2x), & \text{if } x \leq 0 \\ 4x + 1, & \text{if } x > 0 \end{cases}$$
continuous at x=0? What about continuity at x=1?

64. Show that the function defined by g(x) = x - [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal

to x.

65. Is the function defined by $f(x) = x^2 - \sin x + 5$ continuous at $x = \pi$?

66. Discuss the continuity of the following functions:



Watch Video Solution

67. Discuss the continuity of the following functions:

 $f(x) = \sin x - \cos x$

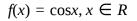
Watch Video Solution

68. Discuss the continuity of the following functions:

 $f(x) = \sin x \cdot \cos x$

69. Discuss the continuity of the cosine, cosecant, secant and cotangent

functions:



70. Discuss the continuity of the cosine, cosecant, secant and cotangent

functions:

$$f(x) = \operatorname{cosec} x = \frac{1}{\sin x}, x \in R - \{n\pi\}, n \in I$$

Watch Video Solution

71. Discuss the continuity of the cosine, cosecant, secant and cotangent

functions:

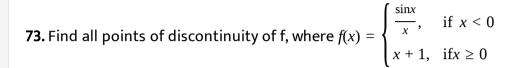
$$f(x) = \sec x = \frac{1}{\cos x}, x \in R - \left\{ (2n+1)\frac{\pi}{2}, n \in I \right\}$$

Watch Video Solution

72. Discuss the continuity of the cosine, cosecant, secant and cotangent

functions:

$$f(x) = \cot x = \frac{1}{\tan x}, x \in R - \{n\pi, n \in I\}$$



74. Determine if f defined by
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 is a continuous

function?

Watch Video Solution

75. Examine the continuity of f, where f is defined by $f(x) = \begin{cases} \sin x - \cos x, & \text{if } x \neq 0 \\ -1, & \text{if } x = 0 \end{cases}$

76. Find the values of k so that the function f is continuous at the indicated point

$$f(x) = \begin{cases} \frac{k\cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases} \text{ at } x = \frac{\pi}{2}$$

Watch Video Solution

77. Find the values of k so that the function f is continuous at the indicated point

$$f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases} \text{ at } x=2$$

78. Find the values of k so that the function f is continuous at the

indicated point

$$f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi \\ \cos x & \text{if } x > \pi \end{cases} \text{ at } x = \pi$$

Watch Video Solution

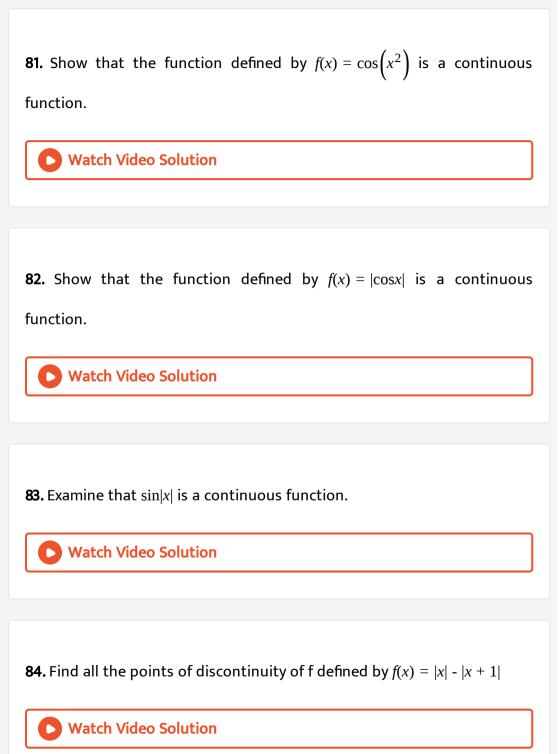
79. Find the values of k so that the function f is continuous at the indicated point

$$f(x) = \begin{cases} kx + 1, & \text{if } x \le 5\\ 3x - 5, & \text{if } x > 5 \end{cases} \text{ at } x = 5$$

Watch Video Solution

80. Find the values of a and b such that the function defined by

$$f(x) = \begin{cases} 5 & \text{if } x \le 2\\ ax + b, & \text{If } 2 < x < 10 \text{ is a continuous function}\\ 21 & \text{If } x \ge 10 \end{cases}$$



 $\sin\left(x^2+5\right)$

Watch Video Solution

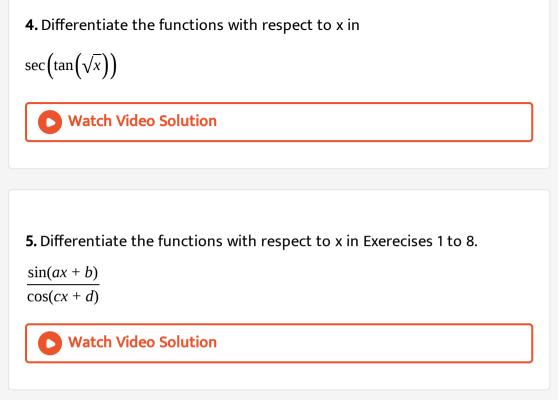
2. Differentiate the functions with respect to x in

cos(sinx)

Watch Video Solution

3. Differentiate the functions with respect to x in

sin(ax + b)



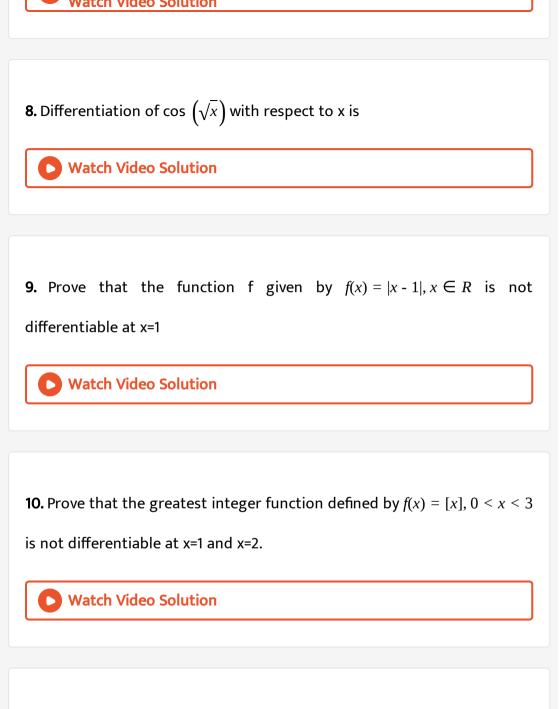
6. Differentiate the functions with respect to x in Exerecises 1 to 8.

 $\cos x^3 \cdot \sin^2(x^5)$.

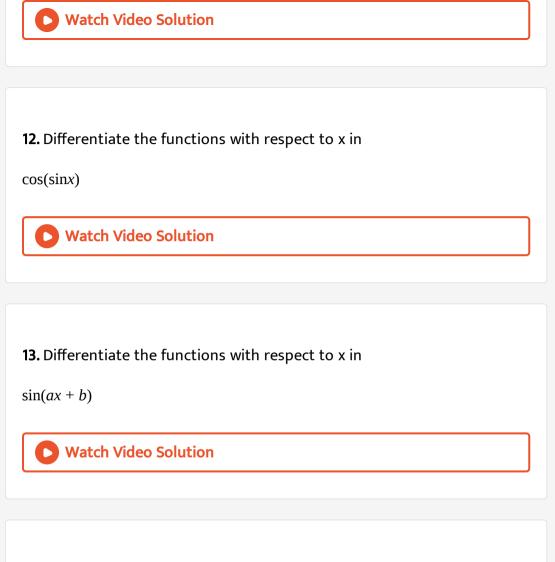
Watch Video Solution

7. Differentiate the functions with respect to x in

$$2\sqrt{\cot(x^2)}$$



 $\sin\left(x^2+5\right)$



 $\operatorname{sec}(\operatorname{tan}(\sqrt{x}))$

 $\frac{\sin(ax+b)}{\cos(cx+d)}$

16. Differentiate the functions with respect to x in

$$\cos\left(x^3\right)$$
. $\sin^2\left(x^5\right)$

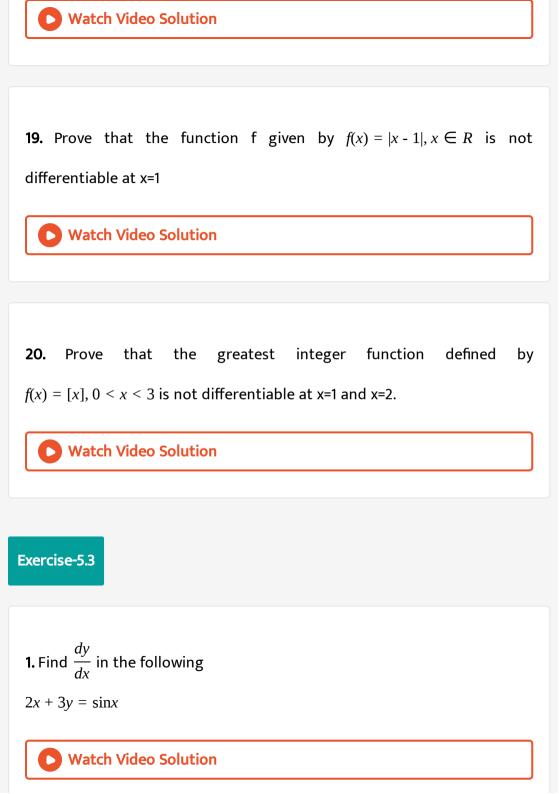
Watch Video Solution

17. Differentiate the functions with respect to x in

$$2\sqrt{\cot(x^2)}$$

18. Differentiate the functions with respect to x in

$$\cos\left(\sqrt{x}\right)$$



2. Find
$$\frac{dy}{dx}$$
 in the following

 $2x + 3y = \sin y$

Watch Video Solution

3. Find
$$\frac{dy}{dx}$$
 in the following $ax + by^2 = \cos y$

Watch Video Solution

4. Find
$$\frac{dy}{dx}$$
 in the following $xy + y^2 = \tan x + y$

5. Find
$$\frac{dy}{dx}$$
 in the following $x^2 + xy + y^2 = 100$

6. Find
$$\frac{dy}{dx}$$
 in the following
 $x^3 + x^2y + xy^2 + y^3 = 81$

7. Find
$$\frac{dy}{dx}$$
 in the following $\sin^2 y + \cos xy = k$

8. Find
$$\frac{dy}{dx}$$
 in the following $\sin^2 x + \cos^2 y = 1$

9. Find
$$\frac{dy}{dx}$$
 in the following

$$y = \sin^{-1} \left(\frac{2x}{1 + x^2} \right)$$

10. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right), |x| < \frac{1}{\sqrt{3}}$

Watch Video Solution

11. Find
$$\frac{dy}{dx}$$
 in the following

$$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), 0 < x < 1$$

12. Find
$$\frac{dy}{dx}$$
 in the following

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right), 0 < x < 1$$

13. Find
$$\frac{dy}{dx}$$
 in the following
 $y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$, $-1 < x < 1$

D Watch Video Solution

14. Find
$$\frac{dy}{dx}$$
 in the following
 $y = \sin^{-1}\left(2x\sqrt{1-x^2}\right), -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

15. Find
$$\frac{dy}{dx}$$
 in the following
 $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right), \ 0 < x < \frac{1}{\sqrt{2}}$

16. Find
$$\frac{dy}{dx}$$
 in the following

 $2x + 3y = \sin x$

Watch Video Solution

17. Find $\frac{dy}{dx}$ in the following $2x + 3y = \sin y$

18. Find
$$\frac{dy}{dx}$$
 in the following $ax + by^2 = \cos y$

19. Find
$$\frac{dy}{dx}$$
 in the following $xy + y^2 = \tan x + y$

20. Find
$$\frac{dy}{dx}$$
 in the following $x^2 + xy + y^2 = 100$

21. Find
$$\frac{dy}{dx}$$
 in the following
 $x^3 + x^2y + xy^2 + y^3 = 81$

22. Find
$$\frac{dy}{dx}$$
 in the following

 $\sin^2 y + \cos xy = k$

Watch Video Solution

23. Find
$$\frac{dy}{dx}$$
 in the following $\sin^2 x + \cos^2 y = 1$

Watch Video Solution

24. Find
$$\frac{dy}{dx}$$
 in the following
 $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

25. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right), |x| < \frac{1}{\sqrt{3}}$

26. Find
$$\frac{dy}{dx}$$
 in the following
 $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), 0 < x < 1$

Watch Video Solution

27. Find
$$\frac{dy}{dx}$$
 in the following
 $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right), 0 < x < 1$

28. Find
$$\frac{dy}{dx}$$
 in the following

$$y = \cos^{-1}\left(\frac{2x}{1+x^2}\right), -1 < x < 1$$

29. Find
$$\frac{dy}{dx}$$
 in the following
 $y = \sin^{-1}\left(2x\sqrt{1-x^2}\right), -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

Watch Video Solution

30. Find
$$\frac{dy}{dx}$$
 in the following

$$y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right), \ 0 < x < \frac{1}{\sqrt{2}}$$

 e^{x}

sinx

Watch Video Solution

2. Differentiate the following w.r.t. x:

 $e^{\sin^{-1}x}$

Watch Video Solution

3. Differentiate the following w.r.t. x :

 e^{x^3} .

$$\sin\left(\tan^{-1}e^{-x}\right)$$

Watch Video Solution

5. Differentiate the following w.r.t. x:

 $\log(\cos e^{\chi})$

Watch Video Solution

6. Differentiate the following w.r.t. x:

$$e^{x} + e^{x^{2}} + \dots + e^{x^{5}}$$

7. Differentiate the following w.r.t. x:

$$\sqrt{e^{\sqrt{x}}}, x > 0$$

log(log x), x > 1

Watch Video Solution

9. Differentiate the following w.r.t. x:

 $\frac{\cos x}{\log x}, x > 0, x \neq 1$

10. Differentiate the following w.r.t. x:

$$\cos\left(\log x + e^x\right), x > 0$$

 e^{x}

sin*x*

12. Differentiate the following w.r.t. x:

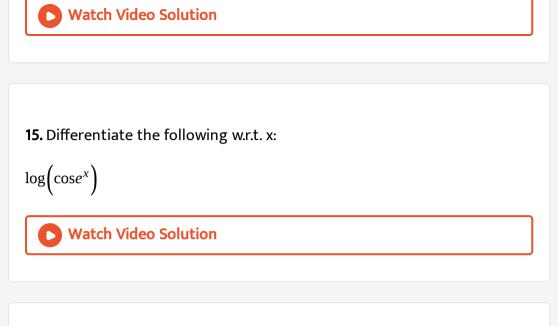
 $e^{\sin^{-1}x}$

Watch Video Solution

13. Differentiate the following w.r.t. x :

14. Differentiate the following w.r.t. x:

 $\sin\left(\tan^{-1}e^{-x}\right)$



$$e^{x} + e^{x^{2}} + \dots + e^{x^{5}}$$

17. Differentiate the following w.r.t. x:

$$\sqrt{e^{\sqrt{x}}}, x > 0$$

log(log x), x > 1

19. Differentiate the following w.r.t. x:

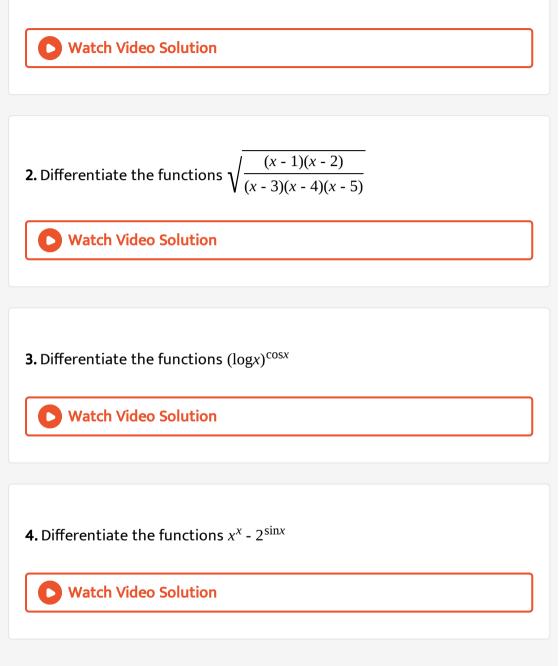
 $\frac{\cos x}{\log x}, x > 0, x \neq 1$

Watch Video Solution

20. Differentiate the following w.r.t. x:

$$\cos\left(\log x + e^x\right), x > 0$$

1. Differentiate the functions $\cos x$. $\cos 2x$. $\cos 3x$



5. Differentiate the functions $(x + 3)^2$. $(x + 4)^3$. $(x + 5)^4$

6. Differentiate the functions
$$\left(x + \frac{1}{x}\right)^x + x \left(1 + \frac{1}{x}\right)^x$$

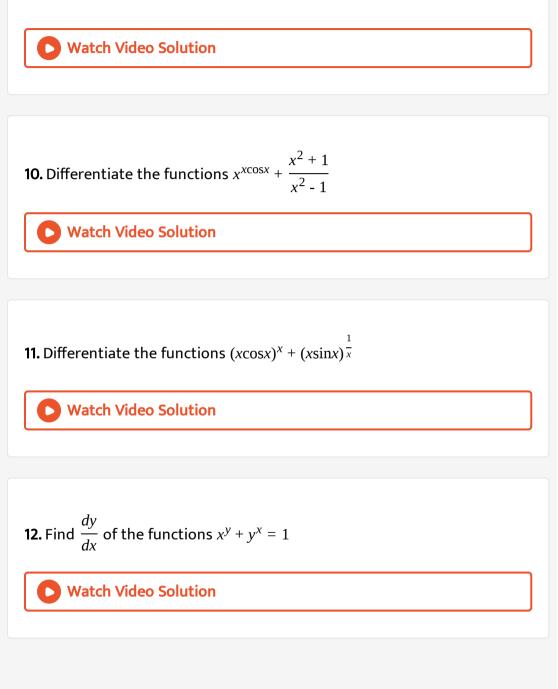
Watch Video Solution

7. Differentiate the functions $(\log x)^{x} + x^{\log x}$

Watch Video Solution

8. Differentiate the functions $(\sin x)^x + \sin^{-1}\sqrt{x}$

9. Differentiate the functions $x^{\sin x} + (\sin x)^{\cos x}$



13. Find
$$\frac{dy}{dx}$$
 of the functions $y^x = x^y$

14. Find
$$\frac{dy}{dx}$$
 of the functions $(\cos x)^y = (\cos y)^x$

15. Find
$$\frac{dy}{dx}$$
 of the functions given in Exercises 12 to 15.
 $xy = e^{(x-y)}$.

Watch Video Solution

16. Find the derivative of the function given by
$$f(x) = (1+x)(1+x^2)(1+x^4)(1+x^8) \text{ and hence find f'(1)}$$

17. Differentiate
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$

By using product rule

18. Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ in three ways mentioned

below:

By expanding the product to obtain a single polynomial

Do they all give the same answer?

Watch Video Solution

19. Differentiate
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$
 in three ways mentioned

below:

By logarithmic differentiation.

Do they all give the same answer?

20. If u, v and w are functions of x, then show that $\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w+u.\frac{dv}{dx}.w+u.v.\frac{dw}{dx}$ in two ways- first by repeated application of product rule, second by logarithmic differentiation.

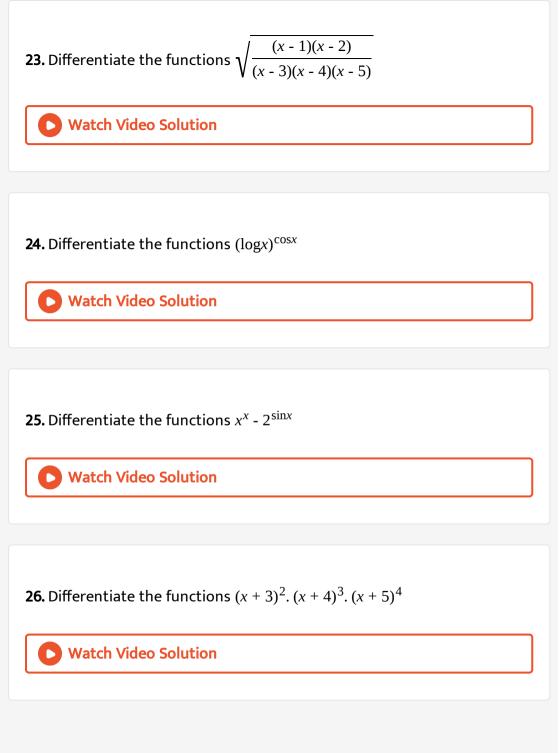
Using product rule

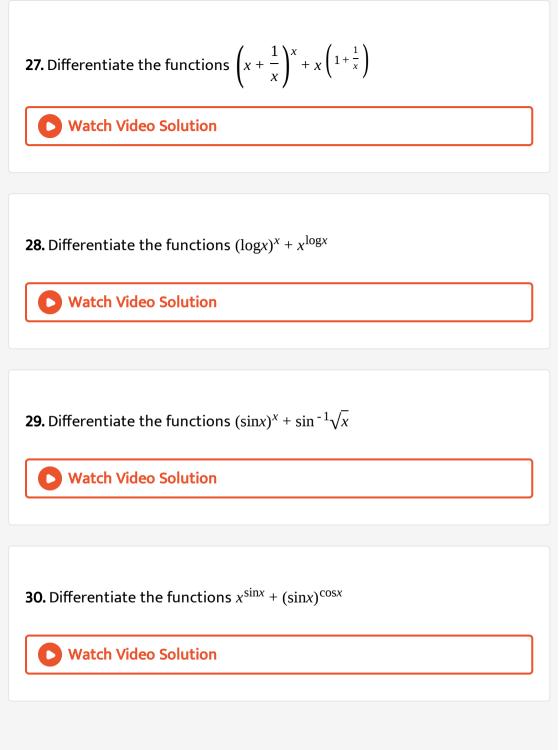
Watch Video Solution

21. If u, v and w are functions of x, then show that $\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w+u.\frac{dv}{dx}.w+u.v.\frac{dw}{dx}$ in two ways- first by repeated application of product rule, second by logarithmic differentiation.

Using product rule

22. Differentiate the functions cos*x*. cos2*x*. cos3*x*







35. Find
$$\frac{dy}{dx}$$
 of the functions $(\cos x)^y = (\cos y)^x$

36. Find
$$\frac{dy}{dx}$$
 of the functions given in Exercises 12 to 15.
 $xy = e^{(x-y)}$.

37. Find the derivative of the function given by
$$f(x) = (1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)$$
 and hence find f'(1)

38. Differentiate
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$

By using product rule

39. Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ in three ways mentioned below:

By expanding the product to obtain a single polynomial

Do they all give the same answer?

Watch Video Solution

40. Differentiate
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$
 in three ways mentioned

below:

By logarithmic differentiation.

Do they all give the same answer?

Watch Video Solution

41. If u, v and w are functions of x, then show that $\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w+u.\frac{dv}{dx}.w+u.v.\frac{dw}{dx}$ in two ways- first by repeated

application of product rule, second by logarithmic differentiation.

Using product rule

42. If u, v and w are functions of x, then show that $\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w+u.\frac{dv}{dx}.w+u.v.\frac{dw}{dx}$ in two ways- first by repeated application of product rule, second by logarithmic differentiation.

Using product rule

Watch Video Solution

1. If x and y are connected parametrically by the equations without eliminating the parameter, find $\frac{dy}{dx}$

$$x = 2at^2$$
, $y = at^4$

2. If x and y are connected parametrically by the equations without

eliminating the parameter, find $\frac{dy}{dx}$

 $x = a\cos\theta, y = b\cos\theta$

Watch Video Solution

3. If x and y are connected parametrically by the equations without eliminating the parameter, find $\frac{dy}{dx}$ $x = \sin t, y = \cos 2t$

Watch Video Solution

4. If x and y are connected parametrically by the equations without eliminating the parameter, find $\frac{dy}{dx}$

$$x = 4t, y = \frac{4}{t}$$

5. If x and y are connected parametrically by the equations without

eliminating the parameter, find $\frac{dy}{dx}$

 $x = \cos\theta - \cos 2\theta, y = \sin\theta - \sin 2\theta$

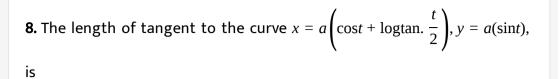
Watch Video Solution

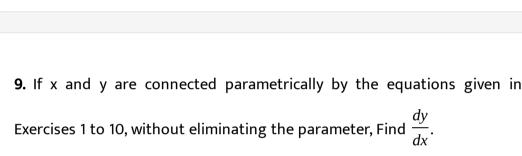
6. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = a(\theta - \sin\theta), y = a(1 + \cos\theta).$

Watch Video Solution

7. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$.

$$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}, y = \frac{\cos^3 t}{\sqrt{\cos 2t}}.$$





 $x = a \sec \theta, y = b \tan \theta.$

Watch Video Solution

10. If x and y are connected parametrically by the equations without eliminating the parameter, find $\frac{dy}{dx}$ $x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$

11. If
$$x = \sqrt{a^{\sin^{-1}t}}, y = \sqrt{a^{\cos^{-1}t}}, a > 0$$
 and $-1 < t < 1$. show that
 $\frac{dy}{dx} = -\frac{y}{x},$
Watch Video Solution

12. If x and y are connected parametrically by the equations without eliminating the parameter, find $\frac{dy}{dx}$ $x = 2at^2$, $y = at^4$

Watch Video Solution

13. If x and y are connected parametrically by the equations without eliminating the parameter, find $\frac{dy}{dx}$ $x = a\cos\theta, y = b\cos\theta$

14. If x and y are connected parametrically by the equations without

eliminating the parameter, find $\frac{dy}{dx}$

 $x = \sin t, y = \cos 2t$

15. If x and y are connected parametrically by the equations without

eliminating the parameter, find $\frac{dy}{dx}$

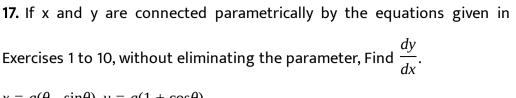
$$x = 4t, y = \frac{2}{4}$$

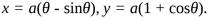
Watch Video Solution

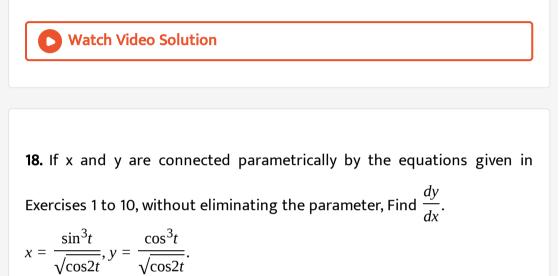
16. If x and y are connected parametrically by the equations without

eliminating the parameter, find
$$\frac{dy}{dx}$$

$$x = \cos\theta - \cos2\theta, y = \sin\theta - \sin2\theta$$





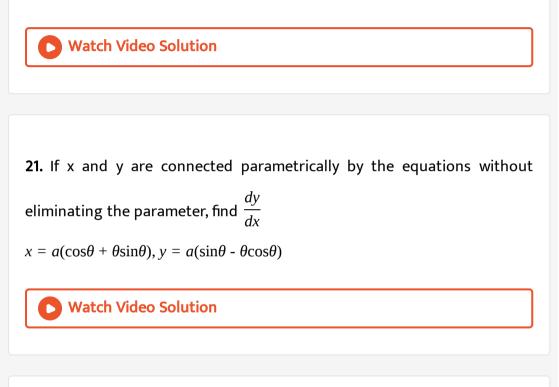


19. If x and y are connected parametrically by the equations without

eliminating the parameter, find $\frac{dy}{dx}$

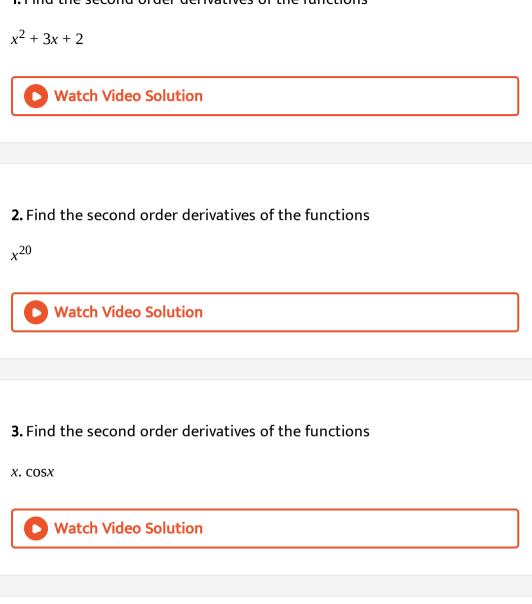
$$x = a\left(\cos t + \log \tan \frac{t}{2}\right), y = a\sin t$$

20. If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$. $x = a\sec\theta, y = b\tan\theta$.



22. If
$$x = \sqrt{a^{\sin^{-1}t}}$$
, $y = \sqrt{a^{\cos^{-1}t}}$, show that $\frac{dy}{dx} = -\frac{y}{x}$

1. Find the second order derivatives of the functions



4. Find the second order derivatives of the functions

log x

5. Find the second order derivatives of the functions given in Exercises 1

to 10.

 $x^3 \log x$.

Watch Video Solution

6. Find the second order derivatives of the functions

e^xsin5x

Watch Video Solution

7. Find the second order derivatives of the functions given in Exercises 1

to 10.

 $e^{6x}\cos 3x$.

8. Find the second order derivatives of the functions

 $\tan^{-1}x$

Watch Video Solution

9. Find the second order derivatives of the functions

log (log x)

Watch Video Solution

10. Find the second order derivatives of the functions

sin (log x)

11. If
$$y = 5\cos x - 3\sin x$$
, prove that $\frac{d^2y}{dx^2} + y = 0$

12. If
$$y = \cos^{-1}x$$
, Find $\frac{d^2y}{dx^2}$ in terms of y alone

13. If $y = 3\cos(\log x) + 4\sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$

Watch Video Solution

14. If
$$y = Ae^{mx} + Be^{nx}$$
, show that $\frac{d^2y}{dx^2} - (m+n)\frac{dy}{dx} + mny = 0$

Watch Video Solution

15. If
$$y = 500e^{7x} + 600e^{-7x}$$
, show that $\frac{d^2y}{dx^2} = 49y$

16. If
$$e^{y}(x+1) = 1$$
, show that $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$

17. If
$$y = (\tan^{-1}x)^2$$
 show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$

Watch Video Solution

18. Find the second order derivatives of the functions

$$x^2 + 3x + 2$$

Watch Video Solution

19. Find the second order derivatives of the functions

 x^{20}

20. Find the second order derivatives of the functions

x. cos*x*

Watch Video Solution
21. Find the second order derivatives of the functions
log x
Watch Video Solution
22. Find the second order derivatives of the functions
x ³ logx
Vatch Video Solution
23. Find the second order derivatives of the functions
$e^x \sin 5x$

Watch Video Solution
24. Find the second order derivatives of the functions $e^{6x}\cos 3x$
e ^w cos3x Watch Video Solution

25. Find the second order derivatives of the functions

 $\tan^{-1}x$

Watch Video Solution

26. Find the second order derivatives of the functions

log (log x)

27. Find the second order derivatives of the functions

sin (log x)

28. If
$$y = 5\cos x - 3\sin x$$
, prove that $\frac{d^2y}{dx^2} + y = 0$

Watch Video Solution

29. If
$$y = \cos^{-1}x$$
, Find $\frac{d^2y}{dx^2}$ in terms of y alone

Watch Video Solution

30. If $y = 3\cos(\log x) + 4\sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$

31. If
$$y = Ae^{mx} + Be^{nx}$$
, show that $\frac{d^2y}{dx^2} - (m+n)\frac{dy}{dx} + mny = 0$

32. If
$$y = 500e^{7x} + 600e^{-7x}$$
, show that $\frac{d^2y}{dx^2} = 49y$

Watch Video Solution

33. If
$$e^{y}(x+1) = 1$$
, show that $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$

Watch Video Solution

34. If
$$y = (\tan^{-1}x)^2$$
 show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$

1. Verify Rolle's theorem for the function $f(x) = x^2 + 2x - 8, x \in [-4, 2]$

2. Examine if Rolle's theorem is applicable to any of the following functions.

 $f(x) = [x], x \in [5, 9]$

Watch Video Solution

3. Examine if Rolle's theorem is applicable to any of the following

functions.

 $f(x) = [x], x \in [-2, 2]$

4. Examine if Rolle's theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle's theorem from these example?

 $f(x) = x^2 - 1$ for $x \in [1, 2]$.

Watch Video Solution

5. If $f: [-5, 5] \rightarrow R$ is a differentiable function and if f'(x) does not vanish

anywhere, then prove that $f(-5) \neq f(5)$

Watch Video Solution

6. Verify Mean Value Theorem, if $f(x) = x^2 - 4x - 3$ in the interval [a, b]

where a=1 and b= 4.

7. Verify Mean Value Theorem, if $f(x) = x^3 - 5x^2 - 3x$ in the interval [a, b], where a=1 and b=3. Find all $c \in (1, 3)$ for which f'(c) = 0

8. Examine the applicability of Mean Value Theorem for all three functions

 $f(x) = [x], x \in [5, 9]$

Watch Video Solution

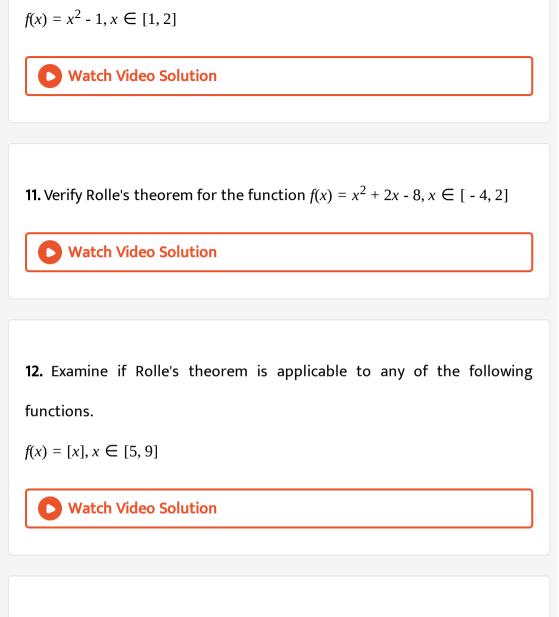
9. Examine the applicability of Mean Value Theorem for all three functions

 $f(x) = [x], x \in [-2, 2]$

Watch Video Solution

10. Examine the applicability of Mean Value Theorem for all three

functions



13. Examine if Rolle's theorem is applicable to any of the following functions.

 $f(x) = [x], x \in [-2, 2]$

14. Examine if Rolle's theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle's theorem from these example?

 $f(x) = x^2 - 1$ for $x \in [1, 2]$.

Watch Video Solution

15. If *f*: [-5, 5] → *R* is a differentiable function and if f'(x) does not vanish anywhere, then prove that $f(-5) \neq f(5)$

Watch Video Solution

16. Verify Mean Value Theorem, if $f(x) = x^2 - 4x - 3$ in the interval [a, b]

where a=1 and b= 4.

17. Verify Mean Value Theorem, if $f(x) = x^3 - 5x^2 - 3x$ in the interval [a, b],

where a=1 and b=3. Find all $c \in (1, 3)$ for which f'(c)= 0

18. Examine the applicability of Mean Value Theorem for all three functions

 $f(x) = [x], x \in [5, 9]$

Watch Video Solution

19. Examine the applicability of Mean Value Theorem for all three

functions

 $f(x) = [x], x \in [-2, 2]$

20. Examine the applicability of Mean Value Theorem for all three

functions

 $f(x) = x^2 - 1, x \in [1, 2]$

Watch Video Solution

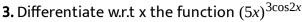
Miscellaneous Exercise - 5

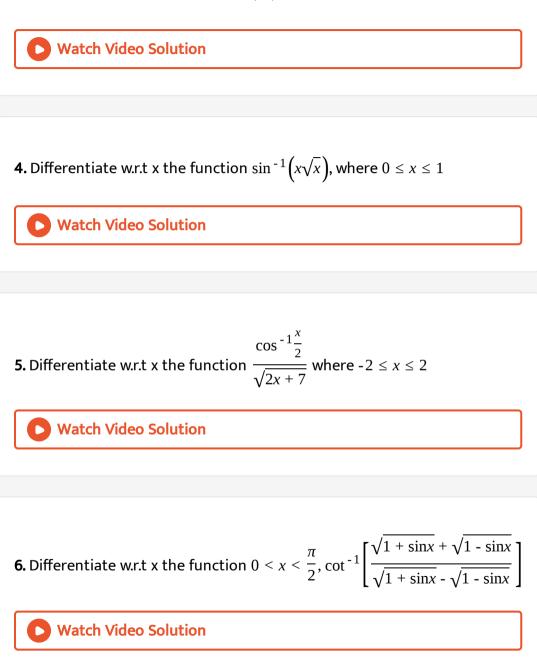
1. Differentiate w.r.t.x the function in Exercises 1 to 11.

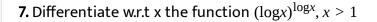
$$\left(3x^2 - 9x + 5\right)^9$$

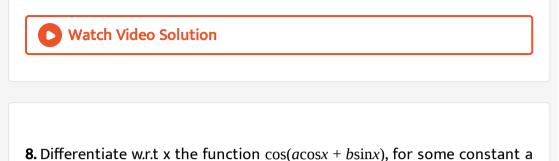
Watch Video Solution

2. Differentiate w.r.t x the function $\sin^3 x + \cos^6 x$



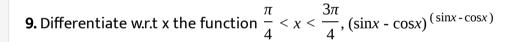






and b

Watch Video Solution



Watch Video Solution

10. Differentiate w.r.t x the function $x^{x} + x^{a} + a^{x} + a^{a}$, for some fixed

a > 0 and x > 0.

11. Differentiate w.r.t x the function $x^{x^2-3} + (x-3)^{x^2}$, for x > 3

12. Find
$$\frac{dy}{dx}$$
, if $y = 12(1 - \cos t)$, $x = 10(t - \sin t)$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$

Watch Video Solution

13. Find
$$\frac{dy}{dx}$$
, If $y = \sin^{-1}x + \sin^{-1}\sqrt{1 - x^2}$, $0 \le x \le 1$

Watch Video Solution

14. If
$$x\sqrt{1+y+y}\sqrt{1+x} = 0$$
 then $\frac{dy}{dx}$ equals.



constant independent of a and b.

Watch Video Solution

16. If $\cos y = x\cos(a + y)$, with $\cos a \neq \pm 1$, prove that $\frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a}$

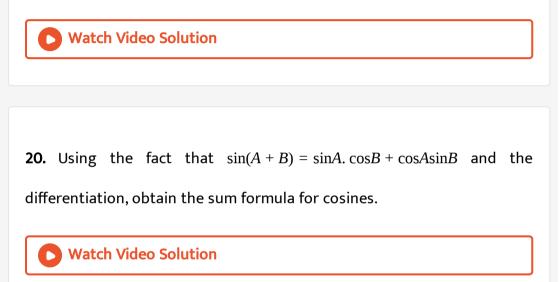
Watch Video Solution

17. If
$$x = a(\cos t + t\sin t)$$
 and $y = a(\sin t - t\cos t)$, find $\frac{d^2y}{dx^2}$.

18. If $f(x) = |x|^3$, show that f''(x) exists for all real x and find it

19. Using mathematical induction prove that $\frac{d}{dx}(x^n) = nx^{n-1}$ for all

positive integers n.



21. Does there exist a function which is continuous everywhere but not

differentiable at exactly two points ? Justify your answer.

22. If
$$y = \begin{vmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{vmatrix}$$
, prove that $\frac{dy}{dx} = \begin{vmatrix} f(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix}$

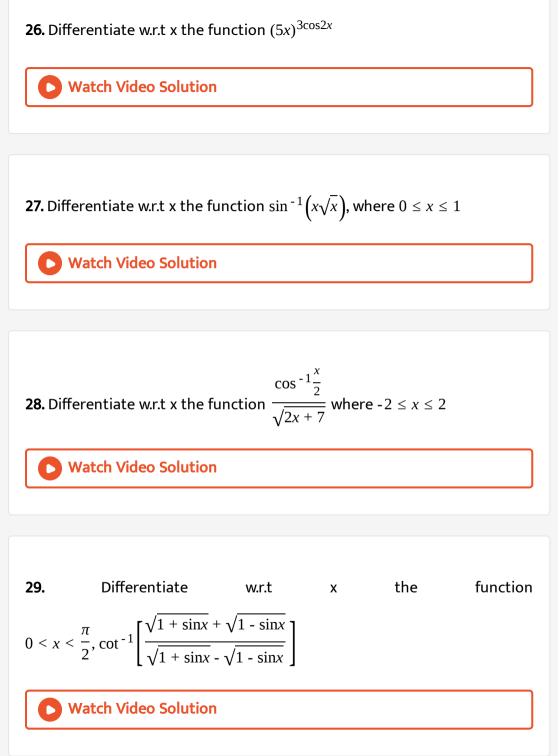
23. If
$$y = e^{a\cos^{-1}x}$$
 show that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$. Where $-1 \le x \le 1$

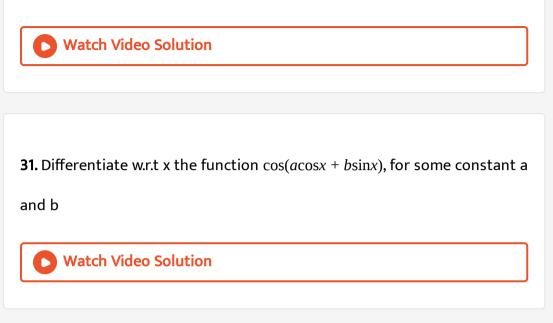
Watch Video Solution

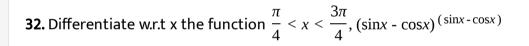
24. Differentiate w.r.t x the function $(3x^2 - 9x + 5)^9$

Watch Video Solution

25. Differentiate w.r.t x the function $\sin^3 x + \cos^6 x$







33. Differentiate w.r.t x the function $x^{x} + x^{a} + a^{x} + a^{a}$, for some fixed a > 0 and x > 0.

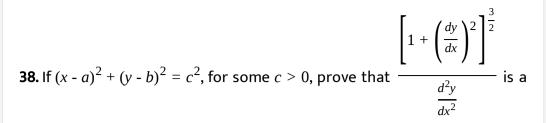
34. Differentiate w.r.t x the function $x^{x^2-3} + (x-3)^{x^2}$, for x > 3

35. Find
$$\frac{dy}{dx}$$
, if $y = 12(1 - \cos t)$, $x = 10(t - \sin t)$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$

36. Find
$$\frac{dy}{dx}$$
, If $y = \sin^{-1}x + \sin^{-1}\sqrt{1 - x^2}$, $0 \le x \le 1$

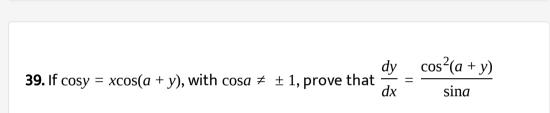
Watch Video Solution

37. If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, for $-1 < x < 1$, prove that $\frac{dy}{dx} = -\frac{-1}{(1+x)^2}$



constant independent of a and b.

Watch Video Solution



Watch Video Solution

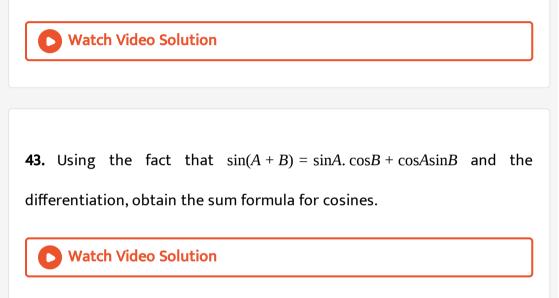
40. If
$$x = a(\cos t + t\sin t)$$
 and $y = a(\sin t - t\cos t)$, find $\frac{d^2y}{dx^2}$.

Watch Video Solution

41. If $f(x) = |x|^3$, show that f''(x) exists for all real x and find it

42. Using mathematical induction prove that $\frac{d}{dx}(x^n) = nx^{n-1}$ for all

positive integers n.



44. Does there exist a function which is continuous everywhere but not

differentiable at exactly two points ? Justify your answer.

45. If
$$y = \begin{vmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{vmatrix}$$
, prove that $\frac{dy}{dx} = \begin{vmatrix} f(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix}$

46. If
$$y = e^{a\cos^{-1}x}$$
 show that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$. Where $-1 \le x \le 1$

D Watch Video Solution

Textbook based MCQs

1. If
$$y = \log\left(x + \sqrt{x^2 + a^2}\right)$$
 then $\frac{dy}{dx} = \dots$
A. (a) $\sqrt{x^2 + a^2}$
B. (b) $\frac{1}{\sqrt{x^2 + a^2}}$
C. (c) $x^2 + a^2$

D. (d)
$$\frac{1}{x^2 + a^2}$$

Answer: B

2. If
$$y = \log_{10} \sin x$$
 then $\frac{dy}{dx} = \dots$

A. cot x

B. cotx. $\log_e 10$

C. cot x. $\log_{10}e$

 $D. \log_{10} \cot x$

Answer: C

3.
$$y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots \infty}}}$$
 then $\frac{dy}{dx}$ =.....

A.
$$\frac{\cos x}{2y - 1}$$

B. cosx(2y + 1)

$$\mathsf{C}.\,\frac{\cos x}{2y+1}$$

D. give not

Answer: A

Watch Video Solution

4. $f(x) = x^2 e^{2(x-1)}, 0 < x < 1 = a \operatorname{sgn}(x+1) \cos(2x-2) + bx^2, 1 < x \le 2$. If a

function f(x) is differentiable at x=1 then.

A. a = -1, b = 2

B. a = 1, b = -2

C. a = -3, b = 4

D. a = 3, b = -4

Answer: A

5. The value of f(0), so that
$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
 becomes

continuous for all x, is given by

A.
$$a\sqrt{a}$$

B. \sqrt{a}

D. -
$$a\sqrt{a}$$

Answer: C

Watch Video Solution

6. f(x + y) = f(x)f(y), For $\forall x$ and y. If f(3)=3 and f'(0)=11 then f'(3)=...

B.44

C. 28

D. None of these

Answer: D

Watch Video Solution

7. $f(x) = [x] + \sqrt{x - [x]}$, where [.] is a greatest integer function then (a) f(x) is continuous in R+ (b) f(x) is continuous in R (C) f(x) is continuous in R - 1 (d) None of these

A. f(x) is continuous in R^+

B. f(x) is continuous in R

C. f(x) is continuous in R - 1

D. None of these

Answer: B

8. The function $f(x) = (\sin 3x)^{\tan^2 3x}$ is continuous at $x = \frac{\pi}{6}$ then $f\left(\frac{\pi}{6}\right) = \dots$ A. $e^{-\frac{1}{2}}$ B. $\frac{1}{e}$ C. $e^{(d)}$ D. $e^{\frac{1}{2}}$

Answer: A

9.
$$y^2 = ax^2 + bx + c$$
 then $y^3 \frac{d^2y}{dx^2}$ is a function

A. constant

B. only for x

C. only for y

D. for x and y

Answer: A

Watch Video Solution

10. $f(x) = x + \tan x$ and f is an inverse function of g then g'(x)=

A. (a)
$$\frac{1}{1 + (g(x) - x)^2}$$

B. (b)
$$\frac{1}{1 - (g(x) - x)^2}$$

C. (c)
$$\frac{1}{2 + (g(x) - x)^2}$$

D. (d)
$$\frac{1}{2 - (g(x) - x)^2}$$

Answer: C

11. If $y^2 = p(x)$ the is polynomial of order 3, then $2\frac{d}{dx}\left[y^3\frac{d^2y}{dx^2}\right] = \dots$

A. p'''(x) + p'(x)B. p''(x). p'''(x)C. p(x). p'''(x)

D. p(x) + p'''(x)

Answer: C

Watch Video Solution

12. If
$$x^2 + y^2 = t - \frac{1}{t}$$
 and $x^4 + y^4 = t^2 + \frac{1}{t^2}$ then $x^3 y \frac{dy}{dx} = \dots$

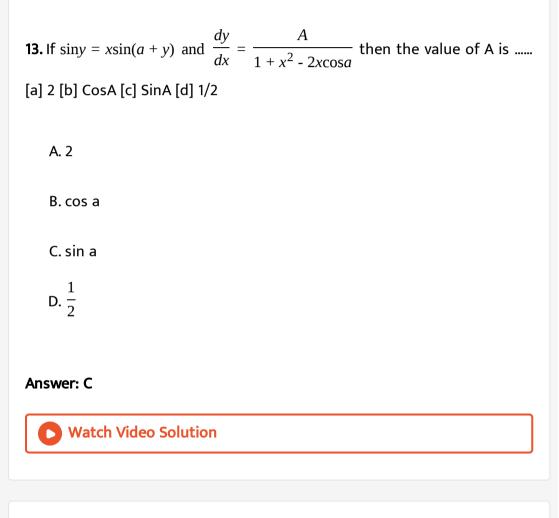
A. - 1

B. 0

C. 1

D. None of these

Answer: C



14.
$$f(x + y) = f(x) + f(y)$$
, for $\forall x$ and y and $f(x) = (2x^2 + 3x)g(x)$. For $\forall x$. If

g(x) is a continuous function and g(0)=3 then $f'(x) = \dots$

A. 9

B. 3

C. 6

D. None of these

Answer: A

Watch Video Solution

15.
$$y = \sin x - \cos x$$
 and $f(x) = \frac{d^{17}y}{dx^{17}}$ then $f\left(\frac{\pi}{4}\right) = \dots$ [a] $\sqrt{2}$ [b] $1/\sqrt{2}$ [c] $(\sqrt{2})^{17}$ [d] 0

A.
$$\sqrt{2}$$

B. $\frac{1}{\sqrt{2}}$
C. $(\sqrt{2})^{17}$

D. 0

Answer: A

16.
$$y = \tan^{-1}\left(\frac{ax - b}{bx + a}\right)$$
 then $\frac{dy}{dx}|_{x=-1}$ =
A. $\frac{1}{2}$
B. a
C. ab

Answer: A

Watch Video Solution

17.
$$u = f(\tan x), v = g(\sec x), f'(1) = 2$$
 and $g'(\sqrt{2}) = 4$ then $\frac{du}{dv}\Big|_{x=\frac{\pi}{4}} = \dots$

A. $\sqrt{2}$

B. 2

C.
$$\frac{1}{\sqrt{2}}$$

D. $\frac{1}{2}$

Answer: C

18.
$$f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos x \cos \left(x + \frac{\pi}{3} \right)$$
 and g(5 / 4)' =1 then (gof)

(x) =

A. 1

B. $\cos^2 x$

C. 0

D. sin 2x

Answer: C

19.
$$y = e^{3x+7}$$
 then $y_n(0) = \dots$

A. 1 B. 3^n C. $3^n e^7$ D. 3^n . $(e^7.7)$

Answer: C

20.
$$x = f(t), y = \phi(t)$$
 then $\frac{d^2y}{dx^2} = \dots$
A. $\frac{f_1(t)\phi_2(t) - \phi_1(t)f_2(t)}{(f_1(t))^2}$
B. $\frac{f_1(t)\phi_2(t) - \phi_1(t)f_2(t)}{(f_1(t))^3}$
C. $\frac{\phi_1(t)f_2(t) - f_1(t)\phi_2(t)}{(f_1(t))^3}$

D. None of these

Answer: B

Watch Video Solution

21. In the function $f(x) = 2x^3 + bx^2 + qx$ satisfies conditions of Rolle's theorem in [-1, 1] and $c = \frac{1}{2}$ then the value of 2b + q is.....

A. 0

B. 1

 $C. -\frac{1}{2}$

D. - 1

Answer: D

22. If $y = \frac{a + bx}{c + dx}$, where a, b, c, d are constants and $\lambda y_1 y_3 = \mu y_2^2$ then the value of μ^{λ^2} is where y_1, y_2, y_3 are respectively. First, second and third derivatives of y.

A. 42 B. 81 C. 64 D. 27

Answer: B

23. The function
$$f(x) = \frac{2 - \sqrt[4]{x^2 + 16}}{\cos 2x - 1}$$
 is continuous at x=0 then f(0)=
A. $\frac{1}{8}$
B. $\frac{1}{64}$

C.
$$\frac{1}{32}$$

D. $\frac{1}{2}$

Answer: B

24. Let
$$f(x) = x^3 - x^2 + x + 1$$
 $g(x) = max$

L

{ $f(t), 0 \le t \le x$ }, $0 \le x \le 1 = 3 - x, 1 < x \le 2$

Then in [0, 2] the points where g(x) is not differentiable is......

A. 0

B. 1

C. 2

D. None of these

Answer: B

View Text Solution

25.
$$f(x) = \begin{vmatrix} \sin x & \cos x \\ \tan x & \cot x \end{vmatrix}$$
 then $f'\left(\frac{\pi}{4}\right) = \dots$
A. 0
B. $-\sqrt{2}$
C. $-2\sqrt{2}$
D. $\sqrt{2}$

Answer: D

Watch Video Solution

26.
$$x = t^2 + 3t - 8$$
, $y = 2t^2 - 2t - 4$. If at point (2, -1), $\lambda = \frac{dy}{dx}$ then the value of λ =

B.
$$\frac{6}{7}$$

C. - 6

Answer: B

View Text Solution

27.
$$x = 2 + t^3$$
, $y = 2t^2$. If $\frac{\frac{d^2y}{dx^2}}{\left(\frac{dy}{dx}\right)^n}$ is constant then n=

A. 4

B. 1

C. 0

D. 3

Answer: A

28. If
$$F(x) = \frac{1}{x^2} \int_{-\infty}^{x} 4(4t^2 - 2F'(t)) dt$$
 then F'(4) equals to
A. $\frac{32}{9}$
B. $\frac{64}{3}$
C. $\frac{64}{9}$
D. $\frac{32}{3}$

Answer: A

Watch Video Solution

29. If
$$\sqrt{x^2 + y^2} = a \cdot e^{\tan^{-1}\left(\frac{y}{x}\right)}$$
, $a > 0$ then the value of y''(0) is.....

A.
$$\frac{a}{2}e^{-\frac{\pi}{2}}$$

B. $ae^{\frac{\pi}{2}}$
C. $\frac{-2}{a}e^{-\frac{\pi}{2}}$

D. Does not exist

30. If f(x - y), f(x). f(y) and f(x + y) are in arithmatic progression and $f(0) \neq 0$ then (for $\forall x$ and y......

A. f(2) + f'(2) = 0

B.f(2) + f(-2) = 0

C. f(2) - f'(-2) = 0

$$\mathsf{D}.f(2) - f(-2) = 0$$

Answer: B

31.
$$\left[\frac{d}{dx}\sec^{-1}x\right]_{x=-3}$$
=.....

A.
$$\frac{1}{\sqrt{x^2 - 1}}$$

B.
$$-\frac{1}{\sqrt{x^2 - 1}}$$

C.
$$\frac{1}{6\sqrt{2}}$$

D.
$$-\frac{1}{6\sqrt{2}}$$

Watch Video Solution

32.
$$\frac{d}{dx}(x^{x}) = \dots (x > 0)$$

A. x^{x-1}
B. x^{x}
C. 0

 $\mathsf{D.}\,x^{x}(1+\log x)$

Answer: D

33.
$$\frac{d}{dx} \left(\sin^{-1}x + \cos^{-1}x \right) = \dots (|x| < 1)$$

A. 0

B.
$$\frac{2}{\sqrt{1-x^2}}$$
C.
$$\frac{1}{\sqrt{1-x^2}}$$

D. Does not exist

Answer: A

Watch Video Solution

$$\mathbf{34.} \ \frac{d}{dx} \left(a^a \right) = \dots (a > 0)$$

A. $a^{a}(1 + \log a)$

B. 0

C. *a*^{*a*}

D. Does not exist

Answer: B

35.
$$\frac{d}{dx} (e^{5x}) = \dots$$

A. e^{5x}
B. $5e^{5x}$
C. $5x. e^{5x-1}$

D. 0

Answer: B

36.
$$\frac{d}{dx}(\log|x|) = \dots (x \neq 0)$$

A. $\frac{1}{|x|}$ B. $\frac{1}{x}$

C. does not exist

D. e^{x}

Answer: B

Watch Video Solution

37. $\frac{d}{dx}(\sin^3 x)$ =

A. $3\sin^2 x$

B. $3\cos^2 x$

C. $3\sin^2 x. \cos x$

D. $-3\cos^2 x \sin x$

38.
$$\frac{d}{dx}(\tan^n x)$$
=

A. $n \tan^{n-1} x$

B. $n \tan^{n-1} x$. $\sec^2 x$

C. $n \sec^{2n} x$

D. $n \tan^{n-1} x$. $\sec^{n-1} x$

Answer: B

39. If
$$f(x) = \begin{cases} ax + b & 1 \le x < 5 \\ 7x - 5 & 5 \le x < 10 \text{ is continuous, (a,b)} = \dots \\ bx + 3a & x \ge 10 \end{cases}$$

A. (5, 10)

B. (5,5)

C. (10, 5)

D. (0, 0)

Answer: B

Watch Video Solution

40. If
$$f(x) = \begin{cases} \frac{x^2}{a} - a, & x < a \\ 0, & x = a \text{ then,} \\ a - \frac{x^2}{a}, & x > a \end{cases}$$

A. $\lim x \to a^+ f(x) = a$

.

B. $\lim x \to af(x) = -a$

C. f is continuous at x=a

D. f is differentiable at x=a

Answer: C

41. If
$$f(x) = \begin{cases} x, & x \in \{0, 1\} \\ 1, & x \ge 1 \end{cases}$$
 then,

A. f is continuous at x=1 only

B. f is discontinuous at x=1 only

C. f is continuous on R^+

D. f is not defined for x=1

Answer: C

View Text Solution

42.
$$\frac{d}{dx} \cdot \left(\frac{1}{\log|x|}\right) = \dots$$
A.
$$\frac{1}{|x|}$$
B.
$$\frac{1}{(\log x)^2}$$
C.
$$\frac{-1}{x(\log|x|)^2}$$
D.
$$e^x$$

Watch Video Solution

43. If
$$y = a \sin x + b \cos x$$
 then, $y^2 + (y_1)^2 = \dots (a^2 + b^2 \neq 0)$

A. *a*cos*x* - *b*sin*x*

 $\mathsf{B.} (a \sin x - b \cos x)^2$

C. $a^2 + b^2$

D. 0

44.
$$\frac{d}{dx}(x^2 + \sin^2 x)^3 = \dots$$

A.
$$3(x^2 + \sin^2 x)$$

B. $3(x^2 + \sin^2 x)^2(2x + \sin^2 x)$

C. $2x + 2\sin x \cos x$

Answer: B

45.
$$\frac{d}{dx}\left(\sqrt{x \sin x}\right) = \dots (0 < x < \pi)$$

A.
$$\frac{x \sin x + \cos x}{\sqrt{x \sin x}}$$

B.
$$\frac{x\cos x}{2\sqrt{x\sin x}}$$

C.
$$\frac{x\cos x + \sin x}{2\sqrt{x\sin x}}$$

D.
$$\frac{1}{2\sqrt{x\sin x}}$$

Watch Video Solution

46.
$$\frac{d}{dx}\left(e^{\sin^{-1}x + \cos^{-1}x}\right) = \dots (|x| < 1)$$

A.
$$\frac{2}{\sqrt{1-x^2}}$$

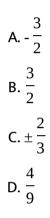
B. 0

$$\mathsf{C}.\,\frac{1}{\sqrt{1-x^2}}$$

D. $e^{\sin^{-1}x + \cos^{-1}x}$

Answer: B

47. If function f(x) is continuous at x= 0, $f(x) = \begin{cases} \frac{\sin(4x)}{9x}, & x \neq 0\\ k^2, & x = 0 \end{cases}$ then k=



.

Answer: C

48. If
$$x = at^2$$
, $y = 2at$ then $\frac{dy}{dx} = \dots$, where $t \neq 0$
A. $\frac{1}{t}$

B.t

C. - *t*

D. a

Answer: A

Watch Video Solution

49.
$$\frac{d}{dx} \left(\log_5 x^2 \right) = \dots$$
A.
$$\frac{1}{(\log 5)x}$$
B.
$$\frac{1}{x^2}$$
C.
$$\frac{2}{(\log 5)x}$$
D.
$$\frac{1}{(\log 5)x^2}$$

Answer: C

50. Derivative of $\tan^{-1}x$ w.r. to $\cot^{-1}x$ is Where $x \in R$

A. - 1

B. 1

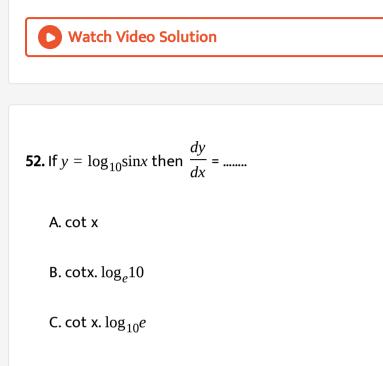
C.
$$\frac{1}{1 + x^2}$$

D. $-\frac{1}{1 + x^2}$

Answer: A

51. If
$$y = \log\left(x + \sqrt{x^2 + a^2}\right)$$
 then $\frac{dy}{dx} = \dots$
A. $\sqrt{x^2 + a^2}$
B. $\frac{1}{\sqrt{x^2 + a^2}}$
C. $x^2 + a^2$
D. $\frac{1}{x^2 + a^2}$

Answer: B



 $D. \log_{10} \cot x$

Answer: C

53.
$$y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots \infty}}}$$
 then $\frac{dy}{dx}$ =.....

A.
$$\frac{\cos x}{2y - 1}$$

B. cosx(2y + 1)

C.
$$\frac{\cos x}{2y+1}$$

D. give not

Answer: A

54.

 $f(x) = x^2 e^{2(x-1)}, 0 < x < 1$ and $f(x) = a \operatorname{sgn}(x + 1) \cos(2x - 2) + bx^2, 1 < x \le 2$

. If a function f(x) is differentiable at x=1 then.

B. a = 1, b = -2

$$C. a = -3, b = 4$$

D. a = 3, b = -4

Answer: A

55. The value of f(0), so that
$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
 becomes

continuous for all x, is given by

A. $a\sqrt{a}$ B. \sqrt{a} C. $-\sqrt{a}$

D. -*a√a*

Answer: C

Watch Video Solution

56. f(x + y) = f(x)f(y), For $\forall x$ and y. If f(3)=3 and f'(0)=11 then f'(3)=...

A. 22

B.44

C. 28

D. None of these

Answer: D

Watch Video Solution

57. $f(x) = [x] + \sqrt{x - [x]}$, where [.] is a greatest integer function then (a)

f(x) is continuous in R+ (b) f(x) is continuous in R (C) f(x) is continuous in

R - 1 (d) None of these

A. f(x) is continuous in R^+

B. f(x) is continuous in R

C. f(x) is continuous in R - 1

D. None of these

Answer: B

58. The function $f(x) = (\sin 3x)^{\tan^2 3x}$ is continuous at $x = \frac{\pi}{6}$ then $f\left(\frac{\pi}{6}\right) = \dots$

A.
$$e^{-\frac{1}{2}}$$

B. $\frac{1}{e}$
C. $e^{(d)}$
D. $e^{\frac{1}{2}}$

Answer: A

Watch Video Solution

59.
$$y^2 = ax^2 + bx + c$$
 then $y^3 \frac{d^2y}{dx^2}$ is a function

A. constant

B. only for x

C. only for y

D. for x and y

Answer: A

60. $f(x) = x + \tan x$ and f is an inverse function of g then g'(x)=

A.
$$\frac{1}{1 + (g(x) - x)^2}$$

B.
$$\frac{1}{1 - (g(x) - x)^2}$$

C.
$$\frac{1}{2 + (g(x) - x)^2}$$

D.
$$\frac{1}{2 - (g(x) - x)^2}$$

Answer: C

61. If
$$y^2 = p(x)$$
 the is polynomial of order 3, then $2\frac{d}{dx}\left[y^3\frac{d^2y}{dx^2}\right] = \dots$

A.
$$p'''(x) + p'(x)$$

B. $p''(x)$. $p'''(x)$
C. $p(x)$. $p'''(x)$
D. $p(x) + p'''(x)$

Watch Video Solution

62. If
$$x^2 + y^2 = t - \frac{1}{t}$$
 and $x^4 + y^4 = t^2 + \frac{1}{t^2}$ then $x^3 y \frac{dy}{dx} = \dots$

A. - 1

Β.Ο

C. 1

D. None of these

Answer: C

63. If siny =
$$xsin(a + y)$$
 and $\frac{dy}{dx} = \frac{A}{1 + x^2 - 2xcosa}$ then the value of A is
[a] 2 [b] CosA [c] SinA [d] 1/2

A. 2

B. cos a

C. sin a

D. $\frac{1}{2}$

Answer: C

Watch Video Solution

64. f(x + y) = f(x) + f(y), for $\forall x$ and y and $f(x) = (2x^2 + 3x)g(x)$. For $\forall x$. If g(x) is a continuous function and g(0)=3 then $f'(x) = \dots$

A. 9

B. 3

C. 6

D. None of these

Answer: A

Watch Video Solution

65.
$$y = \sin x - \cos x$$
 and $f(x) = \frac{d^{17}y}{dx^{17}}$ then $f\left(\frac{\pi}{4}\right) = \dots$ [a] $\sqrt{2}$ [b] $1/\sqrt{2}$ [c]

A.
$$\sqrt{2}$$

B. $\frac{1}{\sqrt{2}}$
C. $(\sqrt{2})^{17}$

D. 0

Answer: A

66.
$$y = \tan^{-1}\left(\frac{ax - b}{bx + a}\right)$$
 then $\frac{dy}{dx}|_{x = -1}$ =
A. $\frac{1}{2}$
B. a
C. ab
D. $\frac{b}{a}$

Answer: A

D Watch Video Solution

67.
$$u = f(\tan x), v = g(\sec x), f'(1) = 2$$
 and $g'(\sqrt{2}) = 4$ then $\frac{du}{dv}|_{x=\frac{\pi}{4}} = \dots$

A.
$$\sqrt{2}$$

B. 2

C.
$$\frac{1}{\sqrt{2}}$$

D. $\frac{1}{2}$

68.
$$f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos x \cos \left(x + \frac{\pi}{3} \right)$$
 then f'(x) =

A. 1

B. $\cos^2 x$

C. 0

D. sin 2x

Answer: C

69.
$$y = e^{3x+7}$$
 then $y_n(0) = \dots$

B. 3^{*n*}

C.
$$3^{n}e^{7}$$

D. 3^{n} . $(e^{7}.7)$

Answer: C

70.
$$x = f(t), y = \phi(t)$$
 then $\frac{d^2y}{dx^2} = \dots$
A. $\frac{f_1(t)\phi_2(t) - \phi_1(t)f_2(t)}{(f_1(t))^2}$
B. $\frac{f_1(t)\phi_2(t) - \phi_1(t)f_2(t)}{(f_1(t))^3}$
C. $\frac{\phi_1(t)f_2(t) - f_1(t)\phi_2(t)}{(f_1(t))^3}$

D. None of these

Answer: B

71. In the function $f(x) = 2x^3 + bx^2 + qx$ satisfies conditions of Rolle's theorem in [-1, 1] and $c = \frac{1}{2}$ then the value of 2b + q is.....

A. 0

B. 1

C. $-\frac{1}{2}$

D. - 1

Answer: D

Watch Video Solution

72. If $y = \frac{a+bx}{c+dx}$, where a, b, c, d are constants and $\lambda y_1 y_3 = \mu y_2^2$ then the value of μ^{λ^2} is where y_1, y_2, y_3 are respectively. First, second and third derivatives of y.

B. 81

C. 64

D. 27

Answer: B

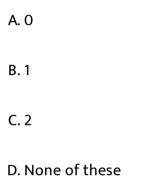
Watch Video Solution

73. The function
$$f(x) = \frac{2 - \sqrt[4]{x^2 + 16}}{\cos 2x - 1}$$
 is continuous at x=0 then f(0)=
A. $\frac{1}{8}$
B. $\frac{1}{64}$
C. $\frac{1}{32}$
D. $\frac{1}{2}$

Answer: B

 $g(x) = \{ \max(f(t)), 0 \le t \le x \}, 0 \le x \le 1 \} \{3 - x, 1 < x \le 2 \}$

Then in [0, 2] the points where g(x) is not differentiable is.....



Answer: B

View Text Solution

75.
$$f(x) = \begin{vmatrix} \sin x & \cos x \\ \tan x & \cot x \end{vmatrix}$$
 then $f'\left(\frac{\pi}{4}\right) = \dots$

A. 0

B. $-\sqrt{2}$

C. $-2\sqrt{2}$

D. $\sqrt{2}$

Answer: D

76.
$$x = t^2 + 3t - 8$$
, $y = 2t^2 - 2t - 4$. If at point (2, -1), $\lambda = \frac{dy}{dx}$ then the value of λ =
A. 2
B. $\frac{6}{7}$
C. -6
D. 7

Answer: B

77.
$$x = 2 + t^3$$
, $y = 2t^2$. If $\frac{\frac{d^2y}{dx^2}}{\left(\frac{dy}{dx}\right)^n}$ is constant then n=
A. 4
B. 1
C. 0
D. 3

Answer: A

78. If
$$F(x) = \frac{1}{x^2} \int_{-\infty}^{x} 4(4t^2 - 2F'(t)) dt$$
 then F'(4) equals to
A. $\frac{32}{9}$
B. $\frac{64}{3}$
C. $\frac{64}{9}$

D. $\frac{32}{3}$

Answer: A

Watch Video Solution

79. If
$$\sqrt{x^2 + y^2} = a \cdot e^{\tan^{-1}\left(\frac{y}{x}\right)}$$
, $a > 0$ then the value of y''(0) is.....

B.
$$ae^{\frac{\pi}{2}}$$

C.
$$\frac{-2}{a}e^{-\frac{\pi}{2}}$$

D. Does not exist

Answer: C

80. If f(x - y), f(x). f(y) and f(x + y) are in arithmatic progression and $f(0) \neq 0$ then (for $\forall x$ and y......

A. f(2) + f'(2) = 0

 $\mathsf{B}.f(2) + f(-2) = 0$

C.f(2) - f'(-2) = 0

D.f(2) - f(-2) = 0

Answer: B

81.
$$\left[\frac{d}{dx}\sec^{-1}x\right]_{x=-3}$$
=.....
A. $\frac{1}{\sqrt{x^2 - 1}}$
B. $-\frac{1}{\sqrt{x^2 - 1}}$
C. $\frac{1}{6\sqrt{2}}$

$$\mathsf{D.} - \frac{1}{6\sqrt{2}}$$

Answer: C

82.
$$\frac{d}{dx}(x^{x}) = \dots (x > 0)$$

A. x^{x-1}
B. x^{x}
C. 0

D. $x^{x}(1 + \log x)$

Answer: D

83.
$$\frac{d}{dx}\left(\sin^{-1}x + \cos^{-1}x\right) = \dots (|x| < 1)$$

A. 0

B.
$$\frac{2}{\sqrt{1-x^2}}$$
C.
$$\frac{1}{\sqrt{1-x^2}}$$

D. Does not exist

Answer: A

Watch Video Solution

84.
$$\frac{d}{dx}(a^a) = \dots (a > 0)$$

A. $a^{a}(1 + \log a)$

B. 0

C. *a*^{*a*}

D. Does not exist

Answer: B

85. $\frac{d}{dx} (e^{5x}) = \dots$ A. e^{5x} B. $5e^{5x}$ C. 5x. e^{5x-1}

D. 0

Answer: B

O Watch Video Solution

86.
$$\frac{d}{dx}(\log|x|) = \dots (x \neq 0)$$

A. $\frac{1}{|x|}$
B. $\frac{1}{x}$

C. does not exist

Answer: B

87.
$$\frac{d}{dx}\left(\sin^3 x\right) = \dots$$

A. $3\sin^2 x$

B. $3\cos^2 x$

C. $3\sin^2 x. \cos x$

D. $-3\cos^2 x \sin x$

Answer: C

88.
$$\frac{d}{dx}(\tan^n x)$$
=

A. $n \tan^{n-1} x$

B. $n \tan^{n-1} x$. $\sec^2 x$

C. $n \sec^{2n} x$

D. $n \tan^{n-1} x$. $\sec^{n-1} x$

Answer: B

Watch Video Solution

89. If
$$f(x) = \begin{cases} ax + b & 1 \le x \le 5 \\ 7x - 5 & 5 \le x \le 10 \text{ is continuous, (a,b)} = \dots \\ bx + 3a & x \ge 10 \end{cases}$$

A. (5, 10)
B. (5,5)
C. (10, 5)
D. (0, 0)

Answer: B

90. If
$$f(x) = \begin{cases} \frac{x^2}{a} - a, & x < a \\ 0, & x = a \text{ then,} \\ a - \frac{x^2}{a}, & x > 0 \end{cases}$$

A.
$$\lim x \to a^+ f(x) = a$$

-

- $\mathsf{B.} \lim x \to af(x) = -a$
- C. f is continuous at x=a
- D. f is differentiable at x=a

Answer: C

91. If
$$f(x) = \begin{cases} x, & x \in \{0, 1\} \\ 1, & x \ge 1 \end{cases}$$
 then,

A. f is continuous at x=1 only

B. f is discontinuous at x=1 only

C. f is continuous on R^+

D. f is not defined for x=1

Answer: C

Watch Video Solution

92.
$$\frac{d}{dx} \cdot \left(\frac{1}{\log|x|}\right) = \dots$$
A.
$$\frac{1}{|x|}$$
B.
$$\frac{1}{(\log x)^2}$$
C.
$$\frac{-1}{x(\log|x|)^2}$$
D.
$$e^x$$

Answer: C

93. If
$$y = a \sin x + b \cos x$$
 then, $y^2 + (y_1)^2 = \dots (a^2 + b^2 \neq 0)$

A. *a*cos*x* - *b*sin*x*

B. $(a \sin x - b \cos x)^2$

C. $a^2 + b^2$

D. 0

Answer: C

Watch Video Solution

94.
$$\frac{d}{dx} \left(x^2 + \sin^2 x \right)^3 = \dots$$

A. $3 \left(x^2 + \sin^2 x \right)$
B. $3 \left(x^2 + \sin^2 x \right)^2 (2x + \sin^2 x)$

C. $2x + 2\sin x \cos x$

Answer: B

95.
$$\frac{d}{dx} \left(\sqrt{x \sin x} \right) = \dots (0 < x < \pi)$$

A.
$$\frac{x \sin x + \cos x}{\sqrt{x \sin x}}$$

B.
$$\frac{x \cos x}{2\sqrt{x \sin x}}$$

C.
$$\frac{x \cos x + \sin x}{2\sqrt{x \sin x}}$$

D.
$$\frac{1}{2\sqrt{x \sin x}}$$

Answer: C

96.
$$\frac{d}{dx}\left(e^{\sin^{-1}x + \cos^{-1}x}\right) = \dots (|x| < 1)$$

A.
$$\frac{2}{\sqrt{1-x^2}}$$

B. 0

$$\mathsf{C}.\,\frac{1}{\sqrt{1-x^2}}$$

D.
$$e^{\sin^{-1}x + \cos^{-1}x}$$

Answer: B

97. If function f(x) is continuous at x= 0,
$$f(x) = \begin{cases} \frac{\sin(4x)}{9x}, & x \neq 0\\ k^2, & x = 0 \end{cases}$$
 then k=

A.
$$-\frac{3}{2}$$

B. $\frac{3}{2}$
C. $\pm \frac{2}{3}$
D. $\frac{4}{9}$

•••••

Answer: C

98. If
$$x = at^2$$
, $y = 2at$ then $\frac{dy}{dx} =$, where $t \neq 0$
A. $\frac{1}{t}$
B. t
C. $-t$
D. a

Answer: A

$$99. \frac{d}{dx} \left(\log_5 x^2 \right) = \dots$$

A. $\frac{1}{(\log 5)x}$

B.
$$\frac{1}{x^2}$$

C. $\frac{2}{(\log 5)x}$
D. $\frac{1}{(\log 5)x^2}$

Answer: C

100. Derivative of $\tan^{-1}x$ w.r. to $\cot^{-1}x$ is Where $x \in R$

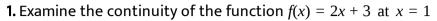
A. - 1

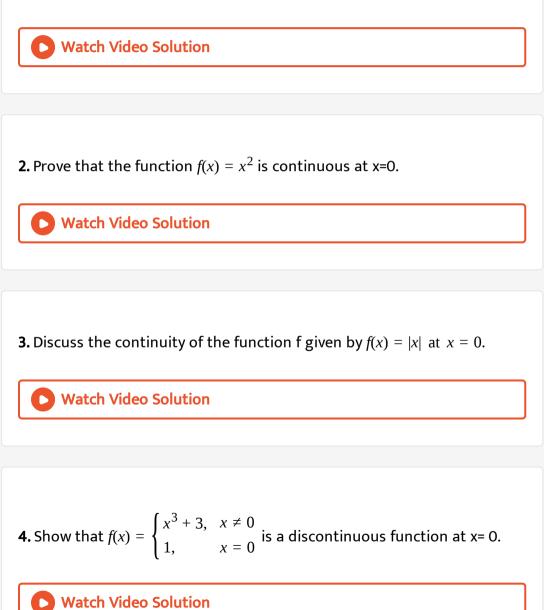
B. 1

C.
$$\frac{1}{1 + x^2}$$

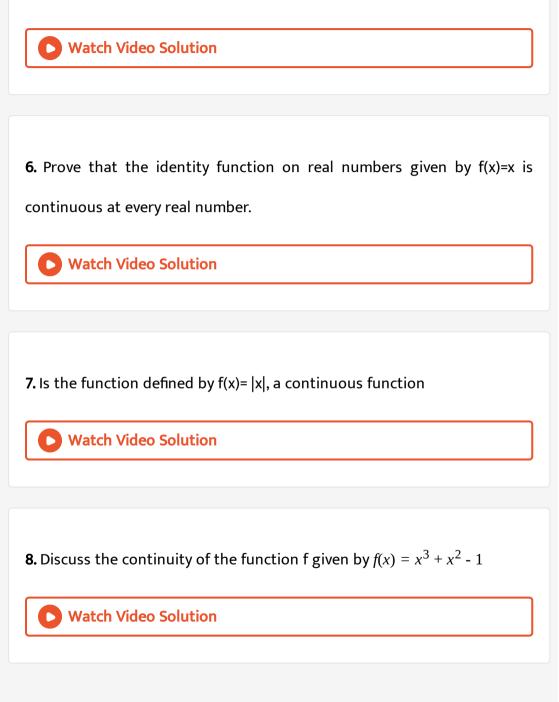
D. $-\frac{1}{1 + x^2}$

Answer: A

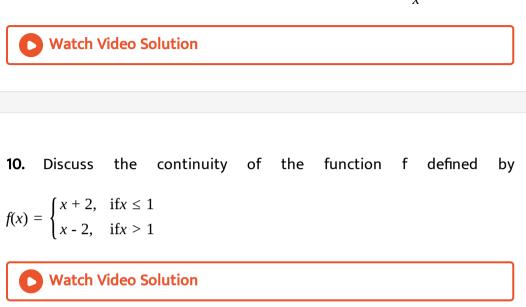




5. Check the points where the constant function f(x)= k is continuous

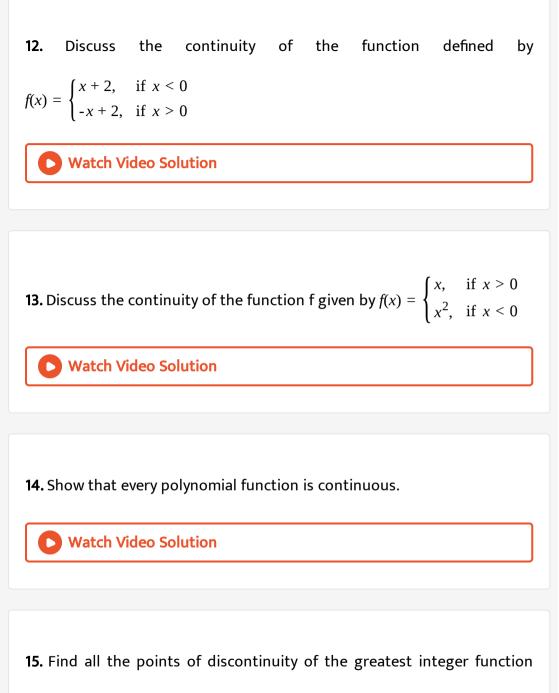


9. Discuss the continuity of the function f defined by $f(x) = \frac{1}{x}, x \neq 0$



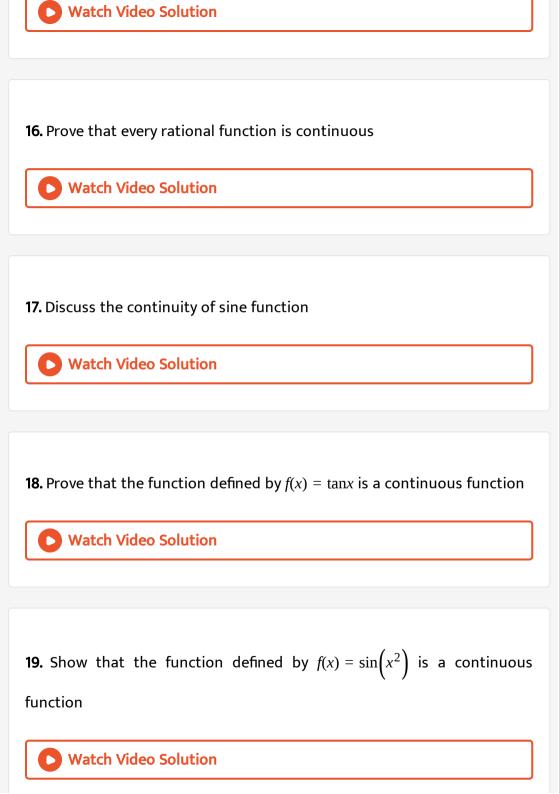
11. Find all the points of discontinuity of the function f defined by

$$f(x) = \begin{cases} x+2, & \text{if } x < 1 \\ 0 & \text{if } x = 1 \\ x-2, & \text{if } x > 1 \end{cases}$$



defined by f(x)=[x], where [x] denotes the greatest integer less than or

equal to x.



20. Show that the function f defined by f(x) = |1 - x + |x|| where x is any real number is continous. Watch Video Solution **21.** Find the derivative of the function given by $f(x) = \sin x^2$ Watch Video Solution **22.** Find the derivative of tan(2x + 3)Watch Video Solution **23.** Differentiate $sin(cosx^2)$ with respect to x Watch Video Solution

24. Find
$$\frac{dy}{dx}$$
 if $x - y = \pi$

25. Find
$$\frac{dy}{dx}$$
 if $y + \sin y = \cos x$

Watch Video Solution

26. Find the derivative of f given by $f(x) = \sin^{-1}x$ assuming it exists.

27. Find the derivative of f given by $f(x) = \tan^{-1}x$ assuming it exists

Watch Video Solution

28. Is it true that $x = e^{\log x}$ for all real x?

29. Differentiate the following w.r.t x:

(i) e^{-x} (ii) $\sin(\log x)$, x > 0 (iii) $\cos^{-1}(e^x)$ (iv) $e^{\cos x}$

Watch Video Solution

30. Differentiate
$$\frac{\sqrt{(x-3)(x^2+4)}}{\sqrt{(3x^2+4x+5)}}$$
 w.r.t x.

Watch Video Solution

31. Differentiate a^{x} w.r.t x, where a is a positive constant

32. Differentiate $x^{\sin x}$, x > 0 w.r.t x

33. Find
$$\frac{dy}{dx}$$
, If $y^x + x^y + x^x = a^b$

34. Find
$$\frac{dy}{dx}$$
, if $x = a\cos\theta$, $y = a\sin\theta$

D Watch Video Solution

35. Find
$$\frac{dy}{dx}$$
, if $x = at^2$, $y = 2at$

Watch Video Solution

36. Find
$$\frac{dy}{dx}$$
, if $x = a(\theta + \sin\theta)$, $y = a(1 - \cos\theta)$

37. Find
$$\frac{dy}{dx}$$
, if $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$

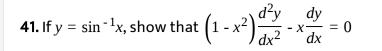
38. Find
$$\frac{d^2y}{dx^2}$$
, if $y = x^3 + \tan x$

D Watch Video Solution

39. If
$$y = A\sin x + B\cos x$$
, then prove that $\frac{d^2y}{dx^2} + y = 0$

Natch Video Solution

40. If
$$y = 3e^{2x} + 2e^{3x}$$
, prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$



Watch Video Solution

42. Verify Rolle's theorem for the function $y = x^2 + 2$, a = -2 and b = 2

Watch Video Solution

43. Verify Mean value Theorem for the function $f(x) = x^2$ in the interval [2,4]

Watch Video Solution

44. Differentiate w.r.t x, the following function:

(i)
$$\sqrt{3x+2} + \frac{1}{\sqrt{2x^2+4}}$$
 (ii) $e^{\sec^2 x} + 3\cos^{-1} x$ (iii) $\log_7(\log x)$

45. Differentiate the following w.r.t x.

(i)
$$\cos^{-1}(\sin x)$$
 (ii) $\tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right)$ (iii) $\sin^{-1}\left(\frac{2^{x+1}}{1 + 4^x}\right)$

Watch Video Solution

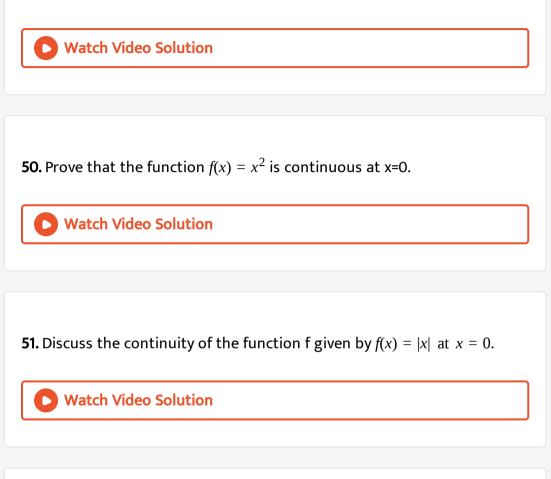
46. Find f'(x) if $f(x) = (\sin x)^{\sin x}$ for all $0 < x < \pi$.

Watch Video Solution

47. For a positive constant a find
$$\frac{dy}{dx}$$
, where $y = a^{t+\frac{1}{t}}$, and $x = \left(t + \frac{1}{t}\right)^a$

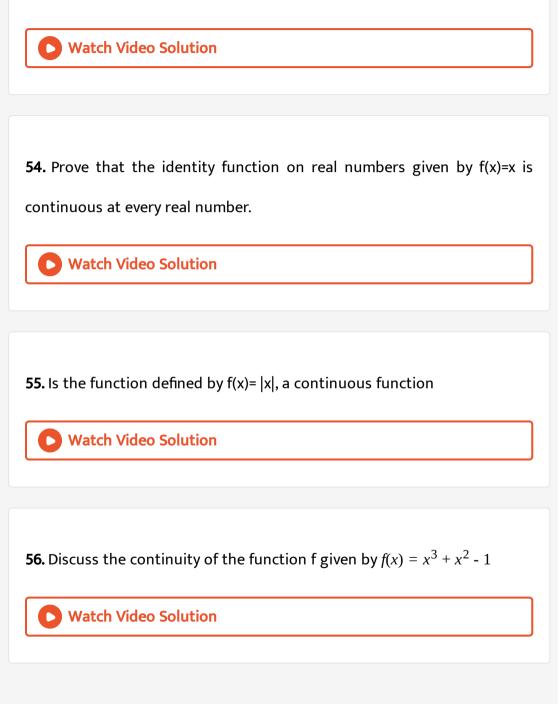
48. Differentiate $\sin^2 x$ w.r.t $e^{\cos x}$

49. Examine the continuity of the function f(x) = 2x + 3 at x = 1

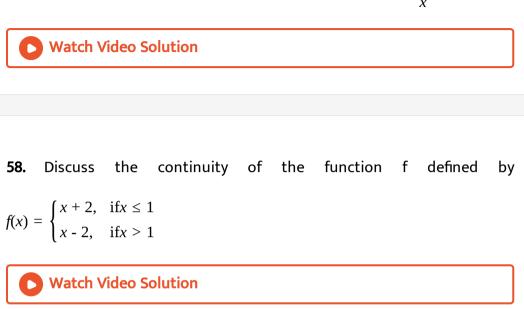


52. Show that
$$f(x) = \begin{cases} x^3 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 is a discontinuous function at x= 0.

53. Check the points where the constant function f(x) = k is continuous

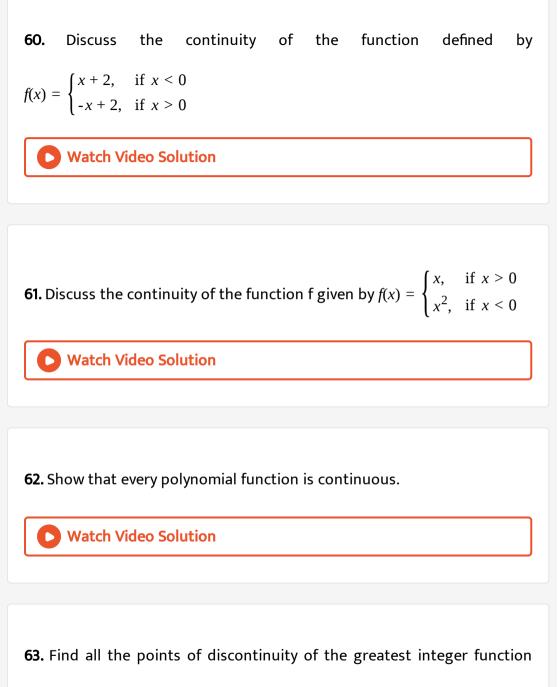


57. Discuss the continuity of the function f defined by $f(x) = \frac{1}{x}, x \neq 0$



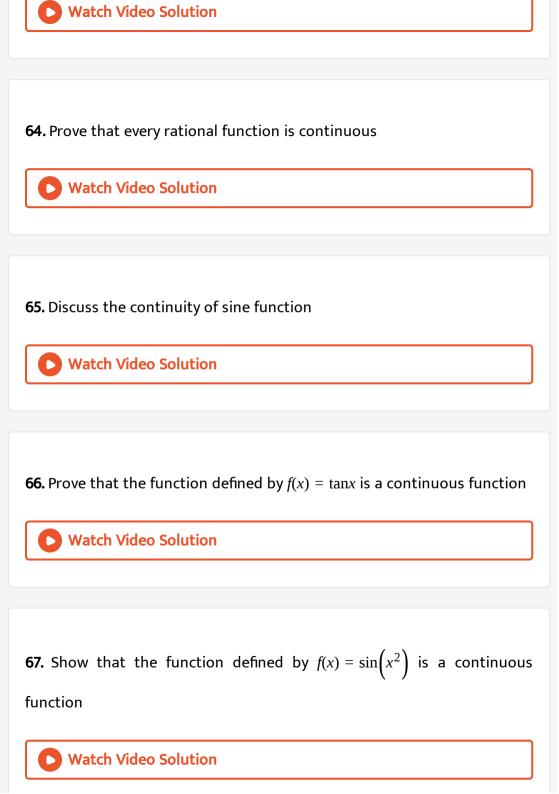
59. Find all the points of discontinuity of the function f defined by

$$f(x) = \begin{cases} x+2, & \text{if } x < 1 \\ 0 & \text{if } x = 1 \\ x-2, & \text{if } x > 1 \end{cases}$$



defined by f(x) = [x], where [x] denotes the greatest integer less than or

equal to x.



68. Show that the function f defined by f(x) = |1 - x + |x|| where x is any real number is continous. Watch Video Solution **69.** Find the derivative of the function given by $f(x) = \sin x^2$ Watch Video Solution **70.** Find the derivative of tan(2x + 3)Watch Video Solution **71.** Differentiate $\sin(\cos x^2)$ with respect to x Watch Video Solution

72. Find
$$\frac{dy}{dx}$$
 if $x - y = \pi$

73. Find
$$\frac{dy}{dx}$$
 if $y + \sin y = \cos x$

Watch Video Solution

74. Find the derivative of f given by $f(x) = \sin^{-1}x$ assuming it exists.

75. Find the derivative of f given by $f(x) = \tan^{-1}x$ assuming it exists

Watch Video Solution

76. Is it true that $x = e^{\log x}$ for all real x?

77. Differentiate the following w.r.t x:

(i) e^{-x} (ii) $\sin(\log x)$, x > 0 (iii) $\cos^{-1}(e^x)$ (iv) $e^{\cos x}$

Watch Video Solution

78. Differentiate
$$\frac{\sqrt{(x-3)(x^2+4)}}{\sqrt{(3x^2+4x+5)}}$$
 w.r.t x.

Watch Video Solution

79. Differentiate a^{x} w.r.t x, where a is a positive constant

80. Differentiate $s^{\sin x}$, x > 0 w.r.t x

81. Find
$$\frac{dy}{dx}$$
, If $y^{x} + x^{y} + x^{x} = a^{b}$

82. Find
$$\frac{dy}{dx}$$
, if $x = a\cos\theta$, $y = a\sin\theta$

Watch Video Solution

83. Find
$$\frac{dy}{dx}$$
, if $x = at^2$, $y = 2at$

Watch Video Solution

84. If x and y are connected parametrically by the equations without eliminating the parameter, find $\frac{dy}{dx}$ $x = a(\theta - \sin\theta), y = a(1 + \cos\theta)$

85. Find
$$\frac{dy}{dx}$$
, if $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$

86. Find
$$\frac{d^2y}{dx^2}$$
, if $y = x^3 + \tan x$

Watch Video Solution

87. If $y = A\sin x + B\cos x$, then prove that $\frac{d^2y}{dx^2} + y = 0$

Watch Video Solution

88. If
$$y = 3e^{2x} + 2e^{3x}$$
, prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$

89. If
$$y = \sin^{-1}x$$
, show that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$
Watch Video Solution
90. Verify Rolle's theorem for the function $y = x^2 + 2$, $a = -2$ and $b = 2$
Watch Video Solution
91. Verify Mean value Theorem for the function $f(x) = x^2$ in the interval [2,4]
Watch Video Solution

92. Differentiate w.r.t x, the following function:

(i)
$$\sqrt{3x+2} + \frac{1}{\sqrt{2x^2+4}}$$
 (ii) $e^{\sec^2 x} + 3\cos^{-1} x$ (iii) $\log_7(\log x)$

93. Differentiate the following w.r.t x.

(i)
$$\cos^{-1}(\sin x)$$
 (ii) $\tan^{-1}\left(\frac{\sin x}{1+\cos x}\right)$ (iii) $\sin^{-1}\left(\frac{2^{x+1}}{1+4^x}\right)$

Watch Video Solution

94. Find f'(x) if $f(x) = (\sin x)^{\sin x}$ for all $0 < x < \pi$.

Watch Video Solution

95. For a positive constant a find
$$\frac{dy}{dx}$$
, where $y = a^{t+\frac{1}{t}}$, and $x = \left(t + \frac{1}{t}\right)^a$

Watch Video Solution

96. Differentiate $\sin^2 x$ w.r.t $e^{\cos x}$

$$f(x) = x^3 + 2x^2 - 1$$
 at $x = 1$

Watch Video Solution

2. Examine the continuity of the function

$$f(x) = \begin{cases} 3x + 5, & \text{if } x \ge 2\\ x^2 & \text{if } x < 2 \end{cases} \text{ at } x = 2$$

Watch Video Solution

3. Examine the continuity of the function

$$f(x) = \begin{cases} \frac{1 - \cos(2x)}{x^2} & \text{if } x \neq 0\\ 5, & \text{if } x = 0 \end{cases} \text{ at } x=0$$

$$f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{x - 2}, & \text{if } x \neq 2\\ 5, & \text{if } x = 2 \end{cases} \text{ at } x = 2$$

5. Examine the continuity of the function

$$f(x) = \begin{cases} \frac{|x-4|}{2(x-4)}, & \text{if } x \neq 4\\ 0, & \text{if } x = 4 \end{cases} \text{ at } x=4$$

Watch Video Solution

6. Examine the continuity of the function

$$f(x) = \begin{cases} |x| \cdot \cos\left(\frac{1}{x}\right), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \text{ at } x = 0$$

$$f(x) = \begin{cases} |x - a| \sin\left(\frac{1}{x - a}\right), & \text{if } x \neq a \\ 0, & \text{if } 'x = a \end{cases} \text{ at } x=a$$

Watch Video Solution

8. Examine the continuity of the function

$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases} \text{ at } x = 0$$

$$f(x) = \begin{cases} \frac{x^2}{2}, & \text{if } 0 \le x \le 1\\ 2x^2 - 3x + \frac{3}{2}, & \text{if } 1 < x \le 2 \end{cases}$$

Watch Video Solution

10. Examine the continuity of the function

f(x) = |x| + |x - 1| at x=1

Watch Video Solution

11. Find the values of k so that the function f is continuous at the

indicated point
$$f(x) = \begin{cases} 3x - 8, & \text{if } x \le 5\\ 2k, & \text{if } x > 5 \end{cases}$$
 at x= 5

12.
$$f(x) = \begin{cases} \frac{2^{x+2} - 16}{4^x - 16}, & x \neq 2\\ k, & x = 2 \end{cases}$$
 f(x) is continuous at x=2 then find k

13. Find the values of k so that the function f is continuous at the

indicated point
$$f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x}, & \text{if } -1 \le x < 0\\ \frac{2x+1}{x-1}, & \text{if } 0 \le x < 1 \end{cases}$$
 at x= 0

Watch Video Solution

14. Find the values of k so that the function f is continuous at the

indicated point
$$f(x) = \begin{cases} \frac{1 - \cos(kx)}{x^2}, & \text{if } x \neq 0\\ \frac{1}{2}, & \text{if } x = 0 \end{cases}$$
 at $x = 0$

15. Prove that the function f defined by $f(x) = \begin{cases} \frac{x}{|x| + 2x^2}, & \text{if } x \neq 0\\ k & \text{if } x = 0 \end{cases}$ remains

discontinuous at x=0, regardless the choice of k

Watch Video Solution

16. Find the values of a and b such that the function f defined by

$$f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & \text{if } x < 4\\ a+b & \text{if } x = 4 \text{ is a continuous function at } x=4\\ \frac{x-4}{|x-4|} + b & \text{if } x > 4 \end{cases}$$

Watch Video Solution

17. If the function $f(x) = \frac{1}{x+2}$, then find the points of discontinuity of the composite function y= f {f(x)}

18. Find all points of discontinuity of the function $f(t) = \frac{1}{t^2 + t - 2}$, where

$$t = \frac{1}{x - 1}$$

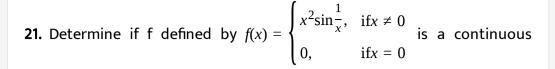
Watch Video Solution

19. Show that the function $f(x) = |\sin x + \cos x|$ is continuous at $x = \pi$

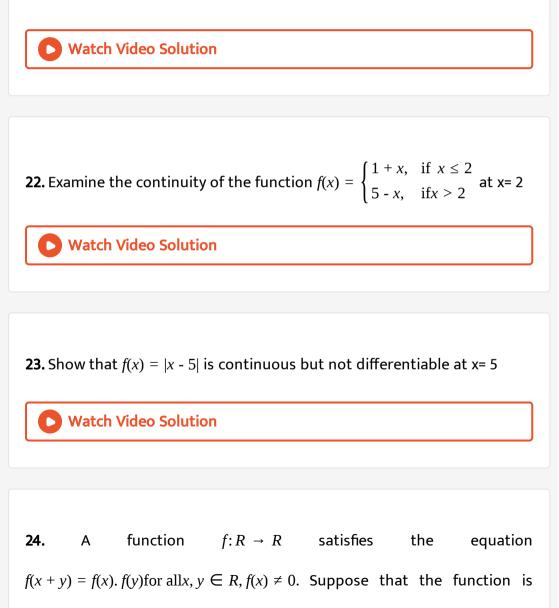
Watch Video Solution

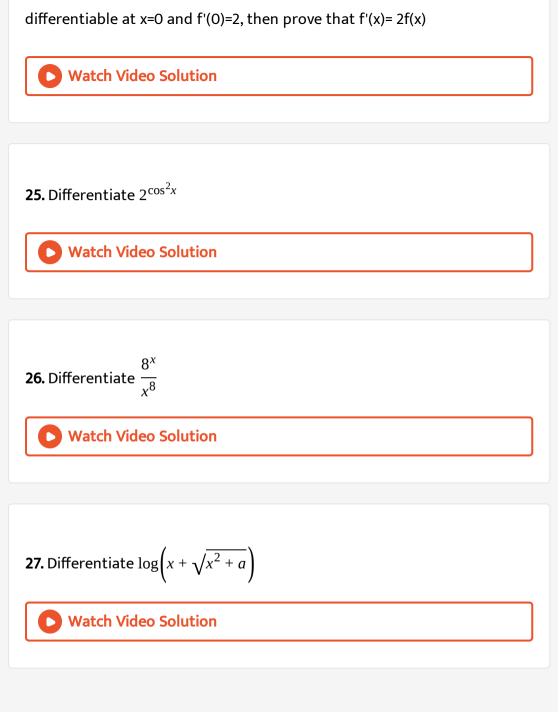
20. Examine the differentiability of f, where f is defined by

$$f(x) = \begin{cases} x. [x], & \text{if } 0 \le x < 2\\ (x - 1)x & \text{if } 2 \le x < 3 \end{cases} \text{ at } x = 2$$

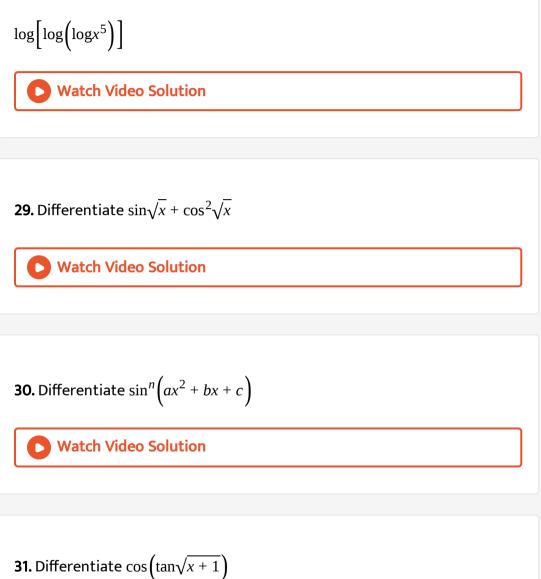


function?





28. Differentiate the following with respect to x:



32. Differentiate
$$\sin x^2 + \sin^2 x + \sin^2 \left(x^2\right)$$

33. Differentiate
$$\sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right)$$

34. Differentiate (sinx)^{cosx}

Watch Video Solution

35. Differentiate $\sin^m x \cdot \cos^n x$

36. Differentiate
$$(x + 1)^2(x + 2)^3(x + 3)^4$$

37. Differentiate
$$\cos^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right)$$
, $-\frac{\pi}{4} < x < \frac{\pi}{4}$

38. Differentiate
$$\tan^{-1}\sqrt{\frac{1-\cos x}{1+\cos x}}$$
, $-\frac{\pi}{4} < x < \frac{\pi}{4}$

Watch Video Solution

39. Differentiate
$$\tan^{-1}(\sec x + \tan x)$$
, $-\frac{\pi}{2} < x < \frac{\pi}{2}$

40. Differentiate,
$$\tan^{-1}\left(\frac{a\cos x - b\sin x}{b\cos x + a\sin x}\right)$$
, $\frac{-\pi}{2} < x < \frac{\pi}{2}$ and $\frac{a}{b}\tan x > -1$

41. Differentiate sec⁻¹
$$\left(\frac{1}{4x^3 - 3x}\right)$$
, $0 < x < \frac{1}{\sqrt{2}}$

Watch Video Solution

42. Write the following functions in the simplest form :

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right), a > 0, \frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$$

43. Prove that :

$$\tan^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right) = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2.$$

Watch Video Solution

44. Find
$$\frac{dy}{dx}$$
:
 $x = t + \frac{1}{t}$ and $y = t - \frac{1}{t}$

Watch Video Solution

45. Find $\frac{dy}{dx}$ of each of the functions expressed in parametric form:

$$x = e^{\theta} \left(\theta + \frac{1}{\theta} \right), y = e^{-\theta} \left(\theta - \frac{1}{\theta} \right)$$

46. Find $\frac{dy}{dx}$ of each of the functions expressed in parametric form:

 $x = 3\cos\theta - 2\cos^3\theta, y = 3\sin\theta - 2\sin^3\theta$

47. Find $\frac{dy}{dx}$ of each of the functions expressed in parametric form: $\sin x = \frac{2t}{1+t^2}$, $\tan y = \frac{2t}{1-t^2}$, $t \in R$

Watch Video Solution

48. Find $\frac{dy}{dx}$ of each of the functions expressed in parametric form: $x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}$

49. Find
$$\frac{dy}{dx}$$
:
 $x = e^{\cos 2t}$ and $y = e^{\sin 2t}$ show that, $\frac{dy}{dx} = \frac{-y \log x}{x \log y}$

50. Find
$$\frac{dy}{dx}$$
:
 $x = a\sin 2t(1 + \cos 2t)$ and $y = b\cos 2t$
 $(1 - \cos 2t)$ show that, $\left(\frac{dy}{dx}\right)_{t=\frac{\pi}{4}} = \frac{b}{a}$

51. If
$$x = 3\sin t - \sin(3t)$$
, $y = 3\cos t - \cos 3t$, then find $\left(\frac{dy}{dx}\right)$ at $t = \frac{\pi}{3}$

52. Differentiate
$$\frac{x}{\sin x}$$
 w.r.t sin x

53. Differentiate
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$
 w.r.t $\tan^{-1}x$, where $x \neq 0$

54. Find
$$\frac{dy}{dx}$$
 when x and y are connected by the relation given:
 $sin(xy) + \frac{x}{y} = x^2 - y$

Watch Video Solution

55. Find $\frac{dy}{dx}$ when x and y are connected by the relation given:

 $\sec(x + y) = xy$

56. Find $\frac{dy}{dx}$ when x and y are connected by the relation given:

$$\tan^{-1}\left(x^2 + y^2\right) = a$$

57. Find $\frac{dy}{dx}$ when x and y are connected by the relation given: $(x^2 + y^2)^2 = xy$

Watch Video Solution

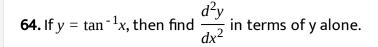
58. If
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
, then show that $\frac{dy}{dx} \cdot \frac{dx}{dy} = 1$

Watch Video Solution

59. If
$$x = e^{\frac{x}{y}}$$
, then prove that $\frac{dy}{dx} = \frac{x - y}{x \cdot \log x}$

60. If
$$y^x = e^{y-x}$$
, then prove that $\frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y}$
Watch Video Solution
61. If $y = (\cos x)^{(\cos x) \cdots \infty}$, then show that $\frac{dy}{dx} = \frac{y^2 \tan x}{y \cdot \log \cos x - 1}$
Watch Video Solution
62. If $x \sin(a + y) + \sin a \cos(a + y) = 0$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$
Watch Video Solution
63. If $\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)$, then prove that $\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}$. (Where

 $|x| \le 1, |y| \le 1$)



65. Verify the Rolle's theorem for each of the function in following questions:

 $f(x) = x(x - 1)^2$, in $x \in [0, 1]$

Watch Video Solution

66. Verify the Rolle's theorem for each of the function in following questions:

$$f(x) = \sin^4 x + \cos^4 x, \text{ in } x \in \left[0, \frac{\pi}{2}\right]$$

67. Verify the Rolle's theorem for each of the function in following questions:

$$f(x) = \log(x^2 + 2) - \log 3$$
, in $x \in [-1, 1]$

Watch Video Solution

68. Verify the Rolle's theorem for each of the function in following questions:

$$f(x) = x(x + 3). e^{-\frac{x}{2}}, \text{ in } x \in [-3, 0]$$

Watch Video Solution

69. Verify the Rolle's theorem for each of the function in following questions:

$$f(x) = \sqrt{4 - x^2}$$
, in $x \in [-2, 2]$

70. Discuss the applicability of Rolle's theorem on the function given by

$$f(x) = \begin{cases} x^2 + 1, & \text{if } 0 \le x < 1\\ 3 - x, & \text{if } 1 \le x \le 2 \end{cases}$$

71. Find the points on the curve $y = \cos x - 1$ in $x \in [0, 2\pi]$, where the tangent is parallel to X-axis.

72. Using Rolle's theorem, find the point on the curve $y = x(x - 4), x \in [0, 4]$, where the tangent is parallel to X-axis

73. Verify mean value theorem for each of the functions:

$$f(x) = \frac{1}{4x - 1}, x \in [1, 4]$$

74. Verify mean value theorem for each of the functions:

$$f(x) = x^3 - 2x^2 - x + 3, x \in [0, 1]$$

Watch Video Solution

75. Verify mean value theorem for each of the functions:

$$f(x) = \sin x - \sin(2x)$$
, in $x \in [0, \pi]$

Watch Video Solution

76. Verify mean value theorem for each of the functions:

$$f(x) = \sqrt{25 - x^2}$$
, in $x \in [1, 5]$

77. Find a point on the curve $y = (x - 3)^2$, where the tangent is parallel to

the chord joining the points (3,0) and (4,1).

78. Using mean value theorem, prove that there is a point on the curve $y = 2x^2 - 5x + 3$ between the points P(1,0) and B(2,1), where tangent is parallel to the chord AB. Also, find the point.

Watch Video Solution

79. Examine the continuity of the function

 $f(x) = x^3 + 2x^2 - 1$ at x = 1

$$f(x) = \begin{cases} 3x + 5, & \text{if } x \ge 2\\ x^2 & \text{if } x < 2 \end{cases} \text{ at } x = 2$$

Watch Video Solution

81. Examine the continuity of the function

$$f(x) = \begin{cases} \frac{1 - \cos(2x)}{x^2} & \text{if } x \neq 0\\ 5, & \text{if } x = 0 \end{cases} \text{ at } x=0$$

Watch Video Solution

82. Examine the continuity of the function

$$f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{x - 2}, & \text{if } x \neq 2\\ 5, & \text{if } x = 2 \end{cases} \text{ at } x = 2$$

$$f(x) = \begin{cases} \frac{|x-4|}{2(x-4)}, & \text{if } x \neq 4\\ 0, & \text{if } x = 4 \end{cases} \text{ at } x=4$$

84. Examine the continuity of the function

$$f(x) = \begin{cases} |x| \cdot \cos\left(\frac{1}{x}\right), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \text{ at } x = 0$$

Watch Video Solution

85. Examine the continuity of the function

$$f(x) = \begin{cases} |x - a| \sin\left(\frac{1}{x - a}\right), & \text{if } x \neq a \\ 0, & \text{if } 'x = a \end{cases} \text{ at } x = a$$

$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases} \text{ at } x = 0$$

Watch Video Solution

87. Examine the continuity of the function

$$f(x) = \begin{cases} \frac{x^2}{2}, & \text{if } 0 \le x \le 1\\ 2x^2 - 3x + \frac{3}{2}, & \text{if } 1 \le x \le 2 \end{cases}$$
 at x=1

Watch Video Solution

88. Examine the continuity of the function

f(x) = |x| + |x - 1| at x=1

89. Find the values of k so that the function f is continuous at the

indicated point
$$f(x) = \begin{cases} 3x - 8, & \text{if } x \le 5\\ 2k, & \text{if } x > 5 \end{cases}$$
 at x= 5

Watch Video Solution

90.
$$f(x) = \begin{cases} \frac{2^{x+2} - 16}{4^x - 16}, & x \neq 2\\ k, & x = 2 \end{cases}$$
 f(x) is continuous at x=2 then find k

Watch Video Solution

91. Find the values of k so that the function f is continuous at the

indicated point
$$f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x}, & \text{if } -1 \le x < 0\\ \frac{2x+1}{x-1}, & \text{if } 0 \le x < 1 \end{cases}$$
 at x= 0

92. Find the values of k so that the function f is continuous at the

indicated point
$$f(x) = \begin{cases} \frac{1 - \cos(kx)}{x^2}, & \text{if } x \neq 0\\ \frac{1}{2}, & \text{if } x = 0 \end{cases}$$
 at x= 0

-

93. Prove that the function f defined by
$$f(x) = \begin{cases} \frac{x}{|x|+2x^2}, & \text{if } x \neq 0\\ k, & \text{if } x = 0 \end{cases}$$
 remains

discontinuous at x=0, regardless the choice of k

94. Find the values of a and b such that the function f defined by

$$f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & \text{if } x < 4\\ a+b & \text{if } x = 4 \text{ is a continuous function at } x=4\\ \frac{x-4}{|x-4|} + b & \text{if } x > 4 \end{cases}$$

Watch Video Solution

95. If the function $f(x) = \frac{1}{x+2}$, then find the points of discontinuity of the composite function y= f {f(x)}

Watch Video Solution

96. Find all points of dicontinuity of the function $f(t) = \frac{1}{t^2 + t - 2}$, where $t = \frac{1}{x - 1}$

97. Show that the function $f(x) = |\sin x + \cos x|$ is continuous at $x = \pi$

98. Examine the differentiability of f, where f is defined by

$$f(x) = \begin{cases} x. [x], & \text{if } 0 \le x < 2\\ (x - 1)x & \text{if } 2 \le x < 3 \end{cases} \text{ at } x = 2$$

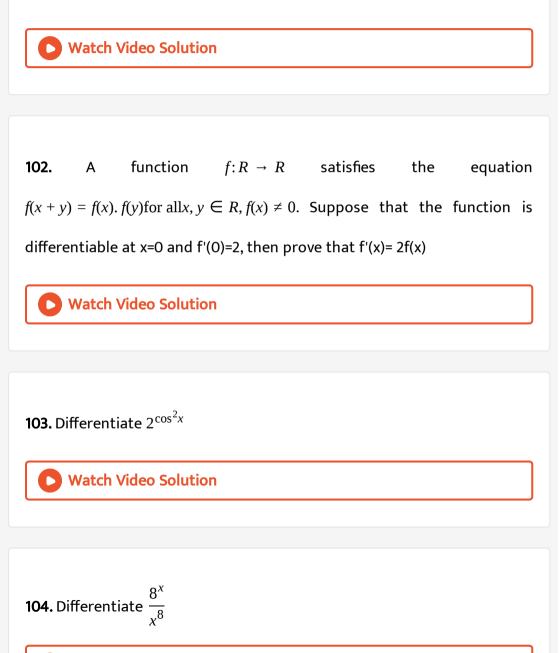
Watch Video Solution

99. Determine if f defined by
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 is a continuous

function?

100. Examine the continuity of the function $f(x) = \begin{cases} 1+x, & \text{if } x \le 2\\ 5-x, & \text{if } x > 2 \end{cases}$ at x=2

101. Show that f(x) = |x - 5| is continuous but not differentiable at x= 5



105. Differentiate
$$\log\left(x + \sqrt{x^2 + a}\right)$$

106. Differentiate the following with respect to x:

 $\log\left[\log\left(\log x^{5}\right)\right]$

SWatch Video Solution

107. Differentiate
$$\sin\sqrt{x} + \cos^2\sqrt{x}$$

108. Differentiate
$$\sin^n \left(ax^2 + bx + c \right)$$

109. Differentiate
$$\cos(\tan\sqrt{x+1})$$

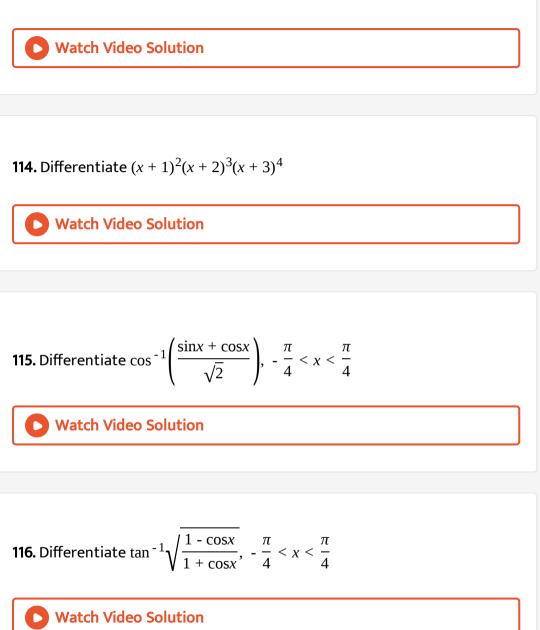
110. Differentiate
$$\sin x^2 + \sin^2 x + \sin^2 \left(x^2\right)$$

111. Differentiate
$$\sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right)$$

Watch Video Solution

112. Differentiate (sinx)^{cosx}

113. Differentiate $\sin^m x. \cos^n x$



117. Differentiate
$$\tan^{-1}(\sec x + \tan x)$$
, $-\frac{\pi}{2} < x < \frac{\pi}{2}$

118. Differentiate,
$$\tan^{-1}\left(\frac{a\cos x - b\sin x}{b\cos x + a\sin x}\right)$$
, $\frac{-\pi}{2} < x < \frac{\pi}{2}$ and $\frac{a}{b}\tan x > -1$

Watch Video Solution

119. Differentiate
$$\sec^{-1}\left(\frac{1}{4x^3 - 3x}\right), 0 < x < \frac{1}{\sqrt{2}}$$

Watch Video Solution

120. Write the following functions in the simplest form :

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right), a > 0, \ \frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$$

Watch Video Solution

D

121. Prove that :

$$\tan^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right) = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2.$$

Watch Video Solution

122. Find
$$\frac{dy}{dx}$$
:
 $x = t + \frac{1}{t}$ and $y = t - \frac{1}{t}$

Watch Video Solution

123. Find $\frac{dy}{dx}$ of each of the functions expressed in parametric form:

$$x = e^{\theta} \left(\theta + \frac{1}{\theta} \right), y = e^{-\theta} \left(\theta - \frac{1}{\theta} \right)$$

124. Find $\frac{dy}{dx}$ of each of the functions expressed in parametric form: $x = 3\cos\theta - 2\cos^{3}\theta, y = 3\sin\theta - 2\sin^{3}\theta$

Watch Video Solution

125. Find $\frac{dy}{dx}$ of each of the functions expressed in parametric form: $\sin x = \frac{2t}{1+t^2}$, $\tan y = \frac{2t}{1-t^2}$, $t \in R$

Watch Video Solution

126. Find $\frac{dy}{dx}$ of each of the functions expressed in parametric form: $x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}$

127. Find
$$\frac{dy}{dx}$$
:
 $x = e^{\cos 2t}$ and $y = e^{\sin 2t}$ show that, $\frac{dy}{dx} = \frac{-y \log x}{x \log y}$

128. Find
$$\frac{dy}{dx}$$
:
 $x = a\sin 2t(1 + \cos 2t)$ and $y = b\cos 2t$
(1 - cos2t) show that, $\left(\frac{dy}{dx}\right)_{t=\frac{\pi}{4}} = \frac{b}{a}$

Watch Video Solution

129. If
$$x = 3\sin t - \sin(3t)$$
, $y = 3\cos t - \cos 3t$, then find $\left(\frac{dy}{dx}\right)$ at $t = \frac{\pi}{3}$

130. Differentiate
$$\frac{x}{\sin x}$$
 w.r.t sin x

131. Differentiate
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$
 w.r.t $\tan^{-1}x$, where $x \neq 0$

Watch Video Solution

132. Find
$$\frac{dy}{dx}$$
 when x and y are connected by the relation given:
 $sin(xy) + \frac{x}{y} = x^2 - y$

Watch Video Solution

133. Find
$$\frac{dy}{dx}$$
 when x and y are connected by the relation given:

 $\sec(x + y) = xy$

134. Find $\frac{dy}{dx}$ when x and y are connected by the relation given:

$$\tan^{-1}\left(x^2 + y^2\right) = a$$

Watch Video Solution

135. Find
$$\frac{dy}{dx}$$
 when x and y are connected by the relation given:
 $(x^2 + y^2)^2 = xy$

Watch Video Solution

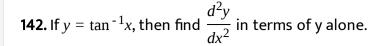
136. If
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
, then show that $\frac{dy}{dx} \cdot \frac{dx}{dy} = 1$

Watch Video Solution

137. If
$$x = e^{\frac{x}{y}}$$
, then prove that $\frac{dy}{dx} = \frac{x - y}{x \cdot \log x}$

138. If
$$y^x = e^{y - x}$$
, then prove that $\frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y}$
Watch Video Solution
139. If $y = (\cos x)^{(\cos x) \cdots \infty}$, then show that $\frac{dy}{dx} = \frac{y^2 \tan x}{y \cdot \log \cos x - 1}$
Watch Video Solution
140. If $x \sin(a + y) + \sin a \cos(a + y) = 0$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$
Watch Video Solution
141. If $\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)$, then prove that $\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}$. (Where

 $|x|\leq 1, |y|\leq 1)$



Watch Video Solution

143. Verify the Rolle's theorem for each of the function in following questions:

 $f(x) = x(x - 1)^2$, in $x \in [0, 1]$

Watch Video Solution

144. Verify the Rolle's theorem for each of the function in following questions:

$$f(x) = \sin^4 x + \cos^4 x, \text{ in } x \in \left[0, \frac{\pi}{2}\right]$$

145. Verify the Rolle's theorem for each of the function in following questions:

$$f(x) = \log(x^2 + 2) - \log 3$$
, in $x \in [-1, 1]$

Watch Video Solution

146. Verify the Rolle's theorem for each of the function in following questions:

$$f(x) = x(x+3). e^{-\frac{x}{2}}, \text{ in } x \in [-3, 0]$$

Watch Video Solution

147. Verify the Rolle's theorem for each of the function in following questions:

$$f(x) = \sqrt{4 - x^2}$$
, in $x \in [-2, 2]$

148. Discuss the applicability of Rolle's theorem on the function given by

$$f(x) = \begin{cases} x^2 + 1, & \text{if } 0 \le x < 1\\ 3 - x, & \text{if } 1 \le x \le 2 \end{cases}$$

Watch Video Solution

149. Find the points on the curve $y = \cos x - 1$ in $x \in [0, 2\pi]$, where the tangent is parallel to X-axis.

Watch Video Solution

150. Using Rolle's theorem, find the point on the curve $y = x(x - 4), x \in [0, 4]$, where the tangent is parallel to X-axis

151. Verify mean value theorem for each of the functions:

$$f(x) = \frac{1}{4x - 1}, x \in [1, 4]$$

152. Verify mean value theorem for each of the functions:

$$f(x) = x^3 - 2x^2 - x + 3, x \in [0, 1]$$

Watch Video Solution

153. Verify mean value theorem for each of the functions:

$$f(x) = \sin x - \sin(2x), \text{ in } x \in [0, \pi]$$

Watch Video Solution

154. Verify mean value theorem for each of the functions:

$$f(x) = \sqrt{25 - x^2}$$
, in $x \in [1, 5]$

155. Find a point on the curve $y = (x - 3)^2$, where the tangent is parallel to

the chord joining the points (3,0) and (4,1).

156. Using mean value theorem, prove that there is a point on the curve $y = 2x^2 - 5x + 3$ between the points P(1,0) and B(2,1), where tangent is parallel to the chord AB. Also, find the point.

Watch Video Solution

NCERT Exemplar Problems and Solution (Long Answer Type Questions)

1. Find the values of p and q, so that
$$f(x) = \begin{cases} x^2 + 3x + p & x \le 1 \\ qx + 2 & x > 1 \end{cases}$$
 is

differentiable at x=1.

2. If
$$x^m$$
. $y^n = (x + y)^{m+n}$, prove that

$$\frac{dy}{dx} = \frac{y}{x}$$

Natch Video Solution

3. If
$$x^m$$
. $y^n = (x + y)^{m+n}$ then show that, $\frac{d^2y}{dx^2} = 0$

Watch Video Solution

4. If
$$y = \sin(pt)$$
, $x = \sin t$, then prove that $(1 - x^2)y_2 - xy_1 + p^2y = 0$

Watch Video Solution

5. Find the value of
$$\frac{dy}{dx}$$
 if $y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}$

6. Find the values of p and q, so that $f(x) = \begin{cases} x^2 + 3x + p & x \le 1 \\ qx + 2 & x > 1 \end{cases}$ is

differentiable at x=1.

7. If
$$x^m$$
. $y^n = (x + y)^{m+n}$, prove that
 $\frac{dy}{dx} = \frac{y}{x}$

8. If x^m . $y^n = (x + y)^{m+n}$ then show that, $\frac{d^2y}{dx^2} = 0$

Watch Video Solution

9. If $y = \sin(pt)$, $x = \sin t$, then prove that $(1 - x^2)y_2 - xy_1 + p^2y = 0$

10. Find the value of
$$\frac{dy}{dx}$$
 if $y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}$

Watch Video Solution

NCERT Exemplar Problems and Solution (Objective Type Questions)

1. If
$$f(x) = 2x$$
 and $g(x) = \frac{x^2}{2} + 1$, then which of the following can be a

discontinuous function?

A. f(x) + g(x)

B. f(x) - g(x)

C. f(x). g(x)

D.
$$\frac{g(x)}{f(x)}$$

Answer: D

2. The function $f(x) = \frac{4 - x^2}{4x - x^3}$ is

A. discontinuous at only one point

B. discontinuous at exactly two points

C. discontinuous at exactly three points

D. none of the above

Answer: C

Watch Video Solution

3. The set of points where the function f given by $f(x) = |2x - 1|\sin x$ is differentiable is $x \in \dots$

A. R

$$\mathsf{B}.\,\mathsf{R}-\left\{\frac{1}{2}\right\}$$

C. (0, ∞)

D. none of these

Answer: B

4. The function $f(x) = \cot x$ is discontinuous on the set

A.
$$\{x \mid x = n\pi, n \in Z\}$$

B. { $x \mid x = 2n\pi, n \in Z$ }

C.
$$\left\{ x \mid x = (2n+1)\frac{\pi}{2}, n \in Z \right\}$$

D.
$$\left\{ x \mid x = \frac{n\pi}{2}, n \in Z \right\}$$

Answer: A

Watch Video Solution

5. The function $f(x) = e^{|x|}$ is

A. continuous everywher but not differentiable at x= 0

B. continuous and differentiable everywhere

C. Not continuous at x= 0

D. none of the above

Answer: A

> Watch Video Solution

6. If
$$f(x) = x^2 \sin\left(\frac{1}{x}\right)$$
, where $x \neq 0$, then the value of the function f at x=0,

so that the function is continuous at x= 0, is

A. 0

B. - 1

C. 1

D. None of these

Answer: A

7. If
$$f(x)$$

$$\begin{cases}
mx + 1 & x \le \frac{\pi}{2} \\
(\sin x) + n & x > \frac{\pi}{2}
\end{cases}$$
is continuous at $x = \frac{\pi}{2}$, then
A. $m = 1, n = 0$
B. $m = \frac{n\pi}{2} + 1$
C. $n = \frac{m\pi}{2}$
D. $m = n = \frac{\pi}{2}$

Answer: C

8. If $f(x) = |\sin x|$, then

A. f is everywhere differentiable

B. f is everywhere continuous but not differentiable at $x = n\pi$, $n \in Z$

C.f is everywhere continuous but not differentiable at

$$x = \left(2n + \frac{\pi}{2}\right), n \in \mathbb{Z}$$

D. none of the above

Answer: B

Watch Video Solution

9. If
$$y = \log\left(\frac{1-x^2}{1+x^2}\right)$$
, then $\frac{dy}{dx}$ is equal to
A. $\frac{4x^3}{1-x^4}$
B. $\frac{-4x}{1-x^4}$
C. $\frac{1}{4-x^4}$
D. $\frac{-4x^3}{1-x^4}$

Answer: B

10. If
$$y = \sqrt{\sin x + y}$$
, then $\frac{dy}{dx}$ is equal to
A. $\frac{\cos x}{2y - 1}$
B. $\frac{\cos x}{1 - 2y}$
C. $\frac{\sin x}{1 - 2y}$
D. $\frac{\sin x}{2y - 1}$

Answer: A

Watch Video Solution

11. The derivative of
$$\cos^{-1}(2x^2 - 1)$$
 w.r.t $\cos^{-1}x$ is

A. 2

$$B. \frac{-1}{2\sqrt{1-x^2}}$$

C.
$$\frac{2}{x}$$

D. 1 - x^2

Answer: A

12. If
$$x = t^2$$
 and $y = t^3$, then $\frac{d^2y}{dx^2}$ is equal to

A.
$$\frac{3}{2}$$

B. $\frac{3}{4t}$
C. $\frac{3}{2t}$
D. $\frac{3t}{2}$

Answer: B

13. The value of c in Rolle's theorem for the function $f(x) = x^3$ in the interval $x \in [0, \sqrt{3}]$

A. 1

B. -1 C. $\frac{3}{2}$ D. $\frac{1}{3}$

Answer: A

Watch Video Solution

14. For the function $f(x) = x + \frac{1}{x}$, $x \in [1, 3]$ the value of c for mean value

theorem is

A. 1

B. $\sqrt{3}$

C. 2

D. None of these

Answer: B

Watch Video Solution

15. If f(x) = 2x and $g(x) = \frac{x^2}{2} + 1$, then which of the following can be a discontinuous function?

A. f(x) + g(x)B. f(x) - g(x)C. f(x). g(x)

D.
$$\frac{g(x)}{f(x)}$$

Answer: D

16. The function $f(x) = \frac{4 - x^2}{4x - x^3}$ is

A. discontinuous at only one point

B. discontinuous at exactly two points

C. discontinuous at exactly three points

D. none of the above

Answer: C

Watch Video Solution

17. The set of points where the function f given by $f(x) = |2x - 1|\sin x$ is differentiable is $x \in$

A. R

$$B. R - \left\{\frac{1}{2}\right\}$$
$$C. (0, \infty)$$

D. none of these

Answer: B

18. The function $f(x) = \cot x$ is discontinuous on the set

A.
$$\{x \mid x = n\pi, n \in Z\}$$

B. {
$$x \mid x = 2n\pi, n \in Z$$
}

C.
$$\left\{ x \mid x = (2n+1)\frac{\pi}{2}, n \in Z \right\}$$

D.
$$\left\{ x \mid x = \frac{n\pi}{2}, n \in Z \right\}$$

Answer: A

Watch Video Solution

19. The function $f(x) = e^{|x|}$ is

A. continuous everywher but not differentiable at x= 0

B. continuous and differentiable everywhere

C. Not continuous at x= 0

D. none of the above

Answer: A

Watch Video Solution

20. If
$$f(x) = x^2 \sin\left(\frac{1}{x}\right)$$
, where $x \neq 0$, then the value of the function f at x=0,

so that the function is continuous at x= 0, is

A. 0

B. - 1

C. 1

D. None of these

Answer: A

21. If
$$f(x)$$

$$\begin{cases}
mx + 1 & x \le \frac{\pi}{2} \\
(\sin x) + n & x > \frac{\pi}{2}
\end{cases}$$
is continuous at $x = \frac{\pi}{2}$, then
A. $m = 1, n = 0$
B. $m = \frac{n\pi}{2} + 1$
C. $n = \frac{m\pi}{2}$
D. $m = n = \frac{\pi}{2}$

Answer: C

Watch Video Solution

22. If
$$f(x) = |\cos x|$$
, then $f'\left(\frac{\pi}{4}\right)$ is equal to $0 < x < \frac{\pi}{2}$

A. f is everywhere differentiable

B. f is everywhere continuous but not differentiable at $x = n\pi$, $n \in Z$

C.f is everywhere continuous but not differentiable at

$$x = \left(2n + \frac{\pi}{2}\right), n \in \mathbb{Z}$$

D. none of the above

Answer: B

Watch Video Solution

23. If
$$y = \log\left(\frac{1-x^2}{1+x^2}\right)$$
, then $\frac{dy}{dx}$ is equal to
A. $\frac{4x^3}{1-x^4}$
B. $\frac{-4x}{1-x^4}$
C. $\frac{1}{4-x^4}$
D. $\frac{-4x^3}{1-x^4}$

Answer: B

24. If
$$y = \sqrt{\sin x + y}$$
, then $\frac{dy}{dx}$ is equal to
A. $\frac{\cos x}{2y - 1}$
B. $\frac{\cos x}{1 - 2y}$
C. $\frac{\sin x}{1 - 2y}$
D. $\frac{\sin x}{2y - 1}$

Answer: A

25. The derivative of
$$\cos^{-1}(2x^2 - 1)$$
 w.r.t $\cos^{-1}x$ is

A. 2

$$B. \frac{-1}{2\sqrt{1-x^2}}$$

C.
$$\frac{2}{x}$$

D. 1 - x^2

Answer: A

26. If
$$x = t^2$$
 and $y = t^3$, then $\frac{d^2y}{dx^2}$ is equal to

A.
$$\frac{3}{2}$$

B. $\frac{3}{4t}$
C. $\frac{3}{2t}$
D. $\frac{3t}{2}$

Answer: B

27. The value of c in Rolle's theorem for the function $f(x) = x^3$ in the interval $x \in [0, \sqrt{3}]$

A. 1

B. -1 C. $\frac{3}{2}$ D. $\frac{1}{3}$

Answer: A

Watch Video Solution

28. For the function $f(x) = x + \frac{1}{x}$, $x \in [1, 3]$ the value of c for mean value

theorem is

A. 1

B. $\sqrt{3}$

C. 2

D. None of these

Answer: B

Watch Video Solution

NCERT Exemplar Problems and Solution (Fillers)

1. Does there exist a function which is continuous everywhere but not

differentiable at exactly two points ? Justify your answer.

Watch Video Solution

2. Derivative of x^2 w.r.t x^3 is.....

3. If
$$f(x) = |\cos x|$$
, then $f'\left(\frac{\pi}{4}\right)$ is equal to $0 < x < \frac{\pi}{2}$

4. If
$$f(x) = |\cos x - \sin x|$$
, then $f\left(\frac{\pi}{3}\right)$ is equal to

Watch Video Solution

5. For the curve
$$\sqrt{x} + \sqrt{y} = 1$$
, $\frac{dy}{dx}$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$ is

Watch Video Solution

6. Does there exist a function which is continuous everywhere but not

differentiable at exactly two points ? Justify your answer.

7. Derivative of
$$x^2$$
 w.r.t x^3 is.....

8. If
$$f(x) = |\cos x|$$
, then $f'\left(\frac{\pi}{4}\right)$ is equal to $0 < x < \frac{\pi}{2}$

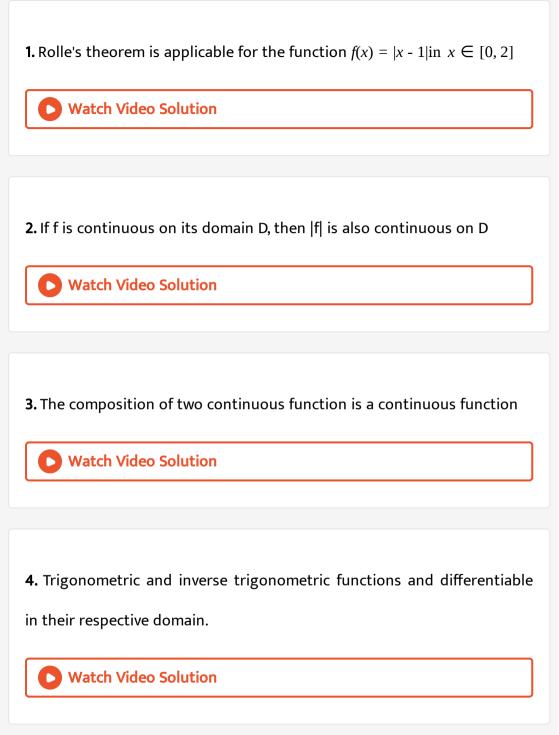
9. If
$$f(x) = |\cos x - \sin x|$$
, then $f'\left(\frac{\pi}{3}\right)$ is equal to

Watch Video Solution

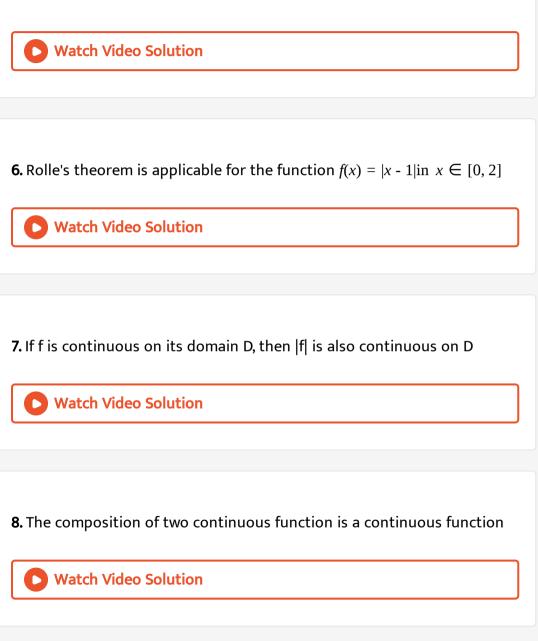
10. For the curve
$$\sqrt{x} + \sqrt{y} = 1$$
, $\frac{dy}{dx}$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$ is

Watch Video Solution

NCERT Exemplar Problems and Solution (True/False)



5. If f.g is continuous at x=a, then f and g are separately continuous at x=



9. Trigonometric and inverse trigonometric functions and differentiable in

their respective domain.

Watch Video Solution

10. If f.g is continuous at x=a, then f and g are separately continuous at x=

a.

Watch Video Solution

Practice Paper - 5 (Section - A)

$$1. \frac{d}{dx} \left(\sqrt{x \sin x} \right) = \dots \quad (0 < x < \pi)$$

A.
$$\frac{x \sin x + \cos x}{\sqrt{x \sin x}}$$

B.
$$\frac{x \cos x}{2\sqrt{x \sin x}}$$

C.
$$\frac{x \cos x + \sin x}{2\sqrt{x \sin x}}$$

D.
$$\frac{1}{2\sqrt{x\sin x}}$$

$$2. \frac{d}{dx} \left(\tan^{-1}x + \cot^{-1}x \right) = \dots$$

A. 0

B.
$$\frac{1}{1+x^2}$$

C. $-\frac{1}{1+x^2}$

D. Does not exist

Watch Video Solution

3.
$$\frac{d}{dx}(a^a) = \dots (a > 0)$$

A. $a^{a}(1 + \log a)$

B. 0

C. *a*^{*a*}

D. Does not exist

Watch Video Solution

4.
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
 then $\frac{dy}{dx} = \dots$

A.
$$\frac{y}{x}$$

B. $\sqrt{\frac{y}{x}}$
C. $-\sqrt{\frac{y}{x}}$
D. $-\sqrt{\frac{x}{y}}$

5. If
$$2t = v^2$$
 then $\frac{dv}{dt} = \dots$
A. 0
B. $\frac{1}{v}$
C. $\frac{1}{2}$
D. $-\frac{1}{v^2}$

$$\mathbf{6.} \ \frac{d}{dx} \left(\sqrt{x \sin x} \right) = \dots (0 < x < \pi)$$

A.
$$\frac{x\sin x + \cos x}{\sqrt{x\sin x}}$$

B.
$$\frac{x\cos x}{2\sqrt{x\sin x}}$$

C.
$$\frac{x\cos x + \sin x}{2\sqrt{x\sin x}}$$

D.
$$\frac{1}{2\sqrt{x\sin x}}$$

7.
$$\frac{d}{dx} \left(\tan^{-1}x + \cot^{-1}x \right) = \dots$$

B.
$$\frac{1}{1+x^2}$$

C. $-\frac{1}{1+x^2}$

D. Does not exist

D Watch Video Solution

$$\mathbf{8.} \frac{d}{dx} \left(a^a \right) = \dots (a > 0)$$

A. $a^{a}(1 + \log a)$

B. 0

C. *a*^{*a*}

D. Does not exist

9.
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
 then $\frac{dy}{dx} = \dots$

A.
$$-\frac{1}{x}$$

B. $\sqrt{\frac{y}{x}}$
C. $-\sqrt{\frac{y}{x}}$
D. $-\sqrt{\frac{x}{y}}$

10. If
$$2t = v^2$$
 then $\frac{dv}{dt} = \dots$.

A. 0
B.
$$\frac{1}{v}$$

C. $\frac{1}{2}$
D. $-\frac{1}{v^2}$

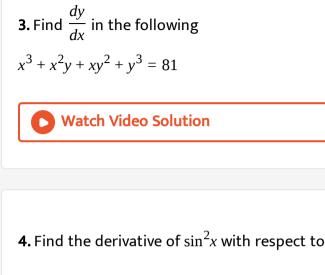
Practice Paper - 5 (Section- B)

1. If
$$x^y = e^{x-y}$$
, then find $\frac{dy}{dx}$

Watch Video Solution

2. $f(x) = \begin{cases} kx + 1, & x \le \pi \\ \cos x & x > \pi \end{cases}$ If the function f(x) is continuous at $x = \pi$, then

find the value of k.



4. Find the derivative of $\sin^2 x$ with respect to $e^{\cos x}$

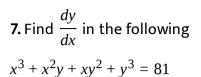
Watch Video Solution

5. If
$$x^y = e^{x-y}$$
, then find $\frac{dy}{dx}$

Watch Video Solution

6. $f(x) = \begin{cases} kx + 1, & x \le \pi \\ \cos x & x > \pi \end{cases}$ If the function f(x) is continuous at $x = \pi$, then

find the value of k.



8. Find the derivative of $\sin^2 x$ with respect to $e^{\cos x}$

Watch Video Solution

Practice Paper -5 (Section-C)

1. Verify Mean Value Theorem, if $f(x) = x^3 - 5x^2 - 3x$ in the interval [a, b],

where a=1 and b=3. Find all $c \in (1, 3)$ for which f'(c)= 0

2. Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3

is not differentiable at x=1 and x=2.

3. If x and y are connected parametrically by the equations without eliminating the parameter, find $\frac{dy}{dx}$ $x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$

Watch Video Solution

4. Find
$$\frac{dy}{dx}$$
 in the following
 $y = \sin^{-1}\left(2x\sqrt{1-x^2}\right), -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

5. Find
$$\frac{dy}{dx}$$
, $y = x^{\sin x} + (\sin x)^{\cos x}$

6. Verify Mean Value Theorem, if $f(x) = x^3 - 5x^2 - 3x$ in the interval [a, b],

where a=1 and b=3. Find all $c \in (1, 3)$ for which f'(c)= 0

Watch Video Solution

7. Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3

is not differentiable at x=1 and x=2.

Watch Video Solution

8. If x and y are connected parametrically by the equations without eliminating the parameter, find $\frac{dy}{dx}$ $x = a(\cos\theta + \theta \sin\theta), y = a(\sin\theta - \theta \cos\theta)$

9. Find
$$\frac{dy}{dx}$$
 in the following
 $y = \sin^{-1}\left(2x\sqrt{1-x^2}\right), -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

10. Find
$$\frac{dy}{dx}$$
, $y = x^{\sin x} + (\sin x)^{\cos x}$

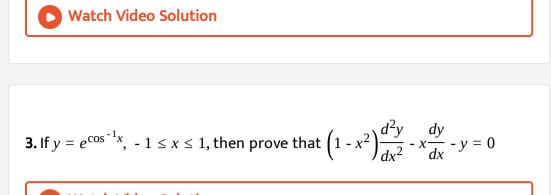
Watch Video Solution

Practice Paper - 5 (Section-D)

1. If
$$y = e^{\cos^{-1}x}$$
, $-1 \le x \le 1$, then prove that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - y = 0$

Watch Video Solution

2. Differentiate w.r.t x the function $0 < x < \frac{\pi}{2}$, $\cot^{-1}\left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right]$



4. Prove that :

$$\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) = \frac{x}{2}, x \in \left(0, \frac{\pi}{4}\right)$$