# ©゙doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI ENGLISH)

## RELATIONS AND FUNCTIONS

## Exercise 11

1. Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set $A=\{1,2,3, \ldots .13,14\}$ defined as $R=\{(x, y): 3 x-y=0\}$
2. Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation $R$ is the set $N$ of natural numbers defined as $R=\{(x, y): y=x+5$ and $x<4\}$.

## Watch Video Solution

3. Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation $R$ in the set $A=\{1,2,3,4,5,6\}$ as $R=\{(x, y): y$ is divisible by $x\}$.

## - Watch Video Solution

4. Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set Z of all integers defined as $=\{(x, y): x-y$ is an integers \}
5. Determine whether each of the following relations are reflexive, symmetric and transitive :

Relation $R$ in the set $A$ of human beings in a town at a particular time given by
(a) $r=\{(x, y): x$ and $y$ works at the same place $\}$

## - Watch Video Solution

6. Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation $R$ in the set $A$ of human beings in a town at a particular time given by $R=\{(x, y)\}: x$ and $y$ live in the same locality $\}$

## - Watch Video Solution

7. Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R=\{(x, y)\}: x$ is exactly 7 cm taller than y$\}$

## - Watch Video Solution

8. Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R=\{(x, y): x$ is wife of y$\}$

## - Watch Video Solution

9. Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R=\{(x, y): x$ is father of y$\}$

## - Watch Video Solution

10. Show that the relation $R$ in the set $R$ of real number, defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.

## Watch Video Solution

11. Check whether the relation $R$ defined in the set $\{1,2,3,4,5,6\}$ as $R=\{(a, b)$ :
$b=a+1\}$ is reflexive , symmetric or transitive.

## - Watch Video Solution

12. Show that the relation R is R defined as $R=\{(a, b): a \leq b\}$ is reflexive and transitive but not symmetric.
13. Check whether the relation R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive , symmetric or transitive.

## - Watch Video Solution

14. Show that the relation $R$ in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

## - Watch Video Solution

15. Show that the relation $R$ in the set $A$ of all the books in a library of a college, given by $R=\{(x, y): \mathrm{x}$ and y have same number of pages $\}$ is an equivalence relation.

## - Watch Video Solution

16. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R\{(a, b):|a-b|$ is even $\}$, is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other all the elements of $\{2,4\}$ are related to each other. But no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.

## - Watch Video Solution

17. Show that each of the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$ given by
$R=\{(a, b):|a-b|$ is multiple of 4$\}$ is in equivelance.

## - Watch Video Solution

18. Show that each of the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$ given by
$R=\{(a, b): a=b\}$ is an equivalence relation. Find the set of all elements related to 1 each case.
19. Give an example of relation. Which is

Symmetric but neither reflexive nor transitive.

## - Watch Video Solution

20. Give an example of relation. Which is

Transitive but neither reflexive nor symmetric .

## - Watch Video Solution

21. Give an example of relation. Which is

Reflexive and symmetric but not transitive .
22. Give an example of relation. Which is

Reflexive and transitive but not symmetric.

## - Watch Video Solution

23. Give an example of relation. Which is

Symmetric and transitive but not reflexive.

## - Watch Video Solution

24. Show that the relation $R$ in the set $A$ of points in a plane give by $R=$ $\{(P, Q)$ : distance of the point $P$ from the origin is same as the distance of the point $Q$ from the origin\}, is an equivalence relation. Further, show that the set equivalence relation. Further, show that the set of all points related to a point $P \neq(0,0)$ is the circle passing through $P$ with origin as centre.
25. Show that the relation $R$ defined in the set $A$ of all triangles as $R=\left\{\left(T_{1}, T_{2}\right\} T_{1}\right.$ is similar to $\left.T_{2}\right\}$, is equivalence relation. Consider three right angle triangles $T_{1}$ with sides $3,4,5, T_{2}$ with sides $5,12,13$ and $T_{3}$ with sides $6,8,10$. Which triangles among $T_{1}, T_{2}$ and $T_{3}$ are related?

## - Watch Video Solution

26. Show that the relation $R$ defined in the set $A$ of all polygons as $R=\left\{\left(P_{1}, P_{2}\right): P_{1}\right.$ and $P_{2}$ have same number of sides $\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?

## - Watch Video Solution

27. Let $L$ be the set of all lines in XY plane and $R$ be the relation in $L$ defined as $R=\left\{\left(L_{1}, L_{2}\right\}: L_{1}\right.$ is parallel to $\left.L_{2}\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.
28. Let $R$ be the relation in the set $\{(1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1)(4,4),(1,3),(3,3),(3,2)\}$. Choose the correct answer.
A. $R$ is reflexive and symmetric but not transitive .
B. $R$ is reflexive and transitive but not symmetric.
C. R is symmetric and transitive but not reflexive.
D. $R$ is an equivalence relation.

## Answer: B

## - Watch Video Solution

29. Let $R$ be the relation on the set $N$ given by $R=\{(a, b): a=b-2, b>6\}$. Choose the correct answer.
B. $(3,8) \in R$
C. $(6,8) \in R$
D. $(8,7) \in R$

## Answer: C

## - Watch Video Solution

Exercise 12

1. Show that the function $\mathrm{f}: R \rightarrow R$, defined by $f(x)=\frac{1}{x}$ is one - one and onto, where R is the set of all non-zero real number . is the result true, if the domain $R$ is replaced by $N$ with co-domain being same as $R$ ?

## - Watch Video Solution

2. Check the injectiveity and surjectivity of the following functions :
$f: N \rightarrow N$ given by $f(x)=x^{2}$

## Watch Video Solution

3. Check the injectiveity and surjectivity of the following functions :
$f: Z \rightarrow Z$ given by $f(x)=x^{2}$

## - Watch Video Solution

4. Check the injectiveity and surjectivity of the following functions :
$f: R \rightarrow R$ given by $f(x)=x^{2}$

## ( Watch Video Solution

5. Check the injectiveity and surjectivity of the following functions :
$f: N \rightarrow N$ given by $f(x)=x^{3}$

## D Watch Video Solution

6. Check the injectiveity and surjectivity of the following functions :
$f: Z \rightarrow Z$ given by $f(x)=x^{3}$

## Watch Video Solution

7. Prove that the Greatest Integer Function $f: R \rightarrow R$, given by $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$, is neither one - one nor onto, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x .

## - Watch Video Solution

8. Show that the Modulus Function $f: R \rightarrow R$, given by $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$, is neither oneone nor onto, where $|\mathrm{x}|$ is x , if x is positive or 0 and $|\mathrm{x}|$ is -x , if $x$ is negative.

## - Watch Video Solution

9. Show that the Signum Function $f: R \rightarrow R$ given by
$f(x)=\left\{\begin{array}{ll}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{array}\right.$ is neither one - one nor onto.

## - Watch Video Solution

10. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from $A$ to $B$. Show that $f$ is one - one.

## - Watch Video Solution

11. In each of the following cases, state whether the function is one - one, onto or bijective. Justify your answer.
$f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=3-4 x$.

## - Watch Video Solution

12. In each of the following cases, state whether the function is one - one , onto or bijective. Justify your answer.
$f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=1+x^{2}$

## - Watch Video Solution

13. Let A and B be sets. Show that $f: A \times B \rightarrow B \times A$ such that $\mathrm{f}(\mathrm{a}, \mathrm{b})=$ (b,a) is bijecive function.

## - Watch Video Solution

14. Let : $f: N \rightarrow N$ be defined by $f(n)=\left\{\begin{array}{ll}\frac{n+1}{2} & \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2} & \text { if } \mathrm{n} \text { is even }\end{array}\right.$ for all $n \in N$.

State whether the function $f$ is bijective . Justify your answer.

## - Watch Video Solution

15. Let $\mathrm{A}=\mathrm{R}-\{3\}$ and $\mathrm{B}=\mathrm{R}-\{1\}$. Consider the function $f: A \rightarrow B$ defined by, $f(x)=\left(\frac{x-2}{x-3}\right)$ is f one - one and onto ?

## - Watch Video Solution

16. Let $f: R \rightarrow R$ be defined as $f(x)=x^{4}$. Choose the correct answer.
A. $f$ is one - one onto
B. $f$ is many - one onto
C. $f$ is one - one but not onto
D. $f$ is neither one - one nor onto

## Answer: D

## - Watch Video Solution

17. Let $f: R \rightarrow R$ be defined as $f(x)=3 x$. Choose the correct answer.
A. $f$ is one - one onto
B. f is many - one onto
C. $f$ is one - one but not onto
D. f is neither one - one nor onto

## Answer: A

## - Watch Video Solution

## Exercise 13

1. Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)$ and $g\{(1,3),(2,3),(5,1)\}$. Write down gof.

## - Watch Video Solution

2. Let $f, g$ and $h$ be functions from $R$ to $R$. Show that, $(f+g)$ oh $=$ foh + goh
(f.g) oh $=(\mathrm{foh})+(\mathrm{goh})$

## - Watch Video Solution

3. Find gof and fog , if
$f(x)=|x|$ and $g(x)=|5 x-2|$.

## Watch Video Solution

4. Find gof and fog , if
$f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

## - Watch Video Solution

5. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that fof $(\mathrm{x})=\mathrm{x}$, for all $x \neq \frac{2}{3}$. What is the inverse of $f$ ?
6. State with reason whether following functions have inverse :
$f:\{1,2,3,4\} \rightarrow\{10\}$ with $f:\{(1,10),(2,10),(3,10),(4,10)\}$

## - Watch Video Solution

7. State with reason whether following functions have inverse :
$g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with $g:\{(5,4),(6,3),(7,4),(8,2)\}$

## - Watch Video Solution

8. State with reason whether following functions have inverse : $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $h\{(2,7),(3,9),(4,11),(5,13)\}$

## ( Watch Video Solution

9. Show that $\mathrm{f}:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{x+2}$ is one - one. Find the inverse of the function $f:[-1,1] \rightarrow$ Range f .
(Hint: For $y \in$ Range $f, y=f(x)=\frac{x}{x+2}$, for some x in $[-1,1]$, i.e., $x=\frac{2 y}{1-y}$.

## - Watch Video Solution

10. Consider $f: R \rightarrow R$ given by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+3$. Show that f is invertible. Find inverse of $f$.

## - Watch Video Solution

11. Consider $f: R^{+} \rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$ show that f is f invertible with the inverse $f^{-1}$ of given by $f^{-1}(y)=\sqrt{y-4}$ where $R^{+}$ is set of all non-negative real numbers .

## Watch Video Solution

12. Consider $f: R_{+} \rightarrow[-5, \infty)$ given by $\mathrm{f}(\mathrm{x})=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(y)=\left(\frac{\sqrt{y+6}-1}{3}\right)$

## - Watch Video Solution

13. Let $f: X \rightarrow Y$ be an invertible function. Show that f has unique inverse .
(Hint : Suppose $g_{1}$ and $g_{2}$ are two inverse of f. Then for all $y \in Y,\left(f o g_{1}\right)(y)=I_{Y}(y)=\left(f o g_{2}\right)(y)$. Use one - one ness of f$)$.

## - Watch Video Solution

14. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $\mathrm{f}(1)=\mathrm{a}, \mathrm{f}(2)$ and $\mathrm{f}(3)=\mathrm{c}$. Find $f^{-1}$ and show that $\left(f^{-1}\right)^{-1}=f$.

## - Watch Video Solution

15. Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of $f^{-1}$ is f . i.e., $\left(f^{-1}\right)^{-1}=f$.
16. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$ then fof $(\mathrm{x})$ is
A. $x^{\frac{1}{3}}$
B. $x^{3}$
C. $x$
D. $\left(3-x^{2}\right)$

## Answer: C

## - Watch Video Solution

17. Let $f: R-\left\{-\frac{4}{3}\right\} \rightarrow R$ be a function defined as $f(x)=\frac{4 x}{3 x+4}$. The inverse of f is the map $\mathrm{g}:$ Range $f \rightarrow R-\left\{-\frac{4}{3}\right\}$ given by
A. $g(y)=\frac{3 y}{3-4 y}$
B. $g(y)=\frac{4 y}{4-3 y}$
C. $g(y)=\frac{4 y}{3-4 y}$
D. $g(y)=\frac{3 y}{4-3 y}$

## Answer: B

## - Watch Video Solution

18. Determine whether or not each of the definition of $*$ given below gives a binary operation. In the even that $*$ is not a binary operation, give justification for this .

On $Z^{+}$, define $*$ by $a{ }^{*} b=a-b$

## - Watch Video Solution

19. Determine whether or not each of the definition of $*$ given below gives a binary operation. In the even that $*$ is not a binary operation, give justification for this .

On $Z^{+}$, define $*$ by $a{ }^{*} b=a b$
20. Determine whether or not each of the definition of $*$ given below gives a binary operation. In the even that $*$ is not a binary operation, give justification for this.

On R , define $*$ by $a * b=a b^{2}$

## - Watch Video Solution

21. Determine whether or not each of the definition of $*$ given below gives a binary operation. In the even that $*$ is not a binary operation, give justification for this.

On $Z^{+}$, define $*$ by $a{ }^{*} b=|a-b|$

## - Watch Video Solution

22. Determine whether or not each of the definition of $*$ given below gives a binary operation. In the even that $*$ is not a binary operation,
give justification for this.
On $Z^{+}$, define $*$ by $a{ }^{*} b=a$

## - Watch Video Solution

23. For each opertion * difined below, determine whether $*$ isw binary, commutative or associative.
(i) On Z, define $a * b=a-b$
(ii) On Q, define $a * b=a b+1$
(iii) On Q, define $a * b=\frac{a b}{2}$
(iv) On $Z^{+}$, define $a * b=2^{a b}$
(v) On $Z^{+}$, define $a * b=a^{b}$
(vi) On $R-\{-1\}$, define $a * b=\frac{a}{b+1}$

## - Watch Video Solution

24. For each opertion $*$ difined below, determine whether $*$ isw binary, commutative or associative.
(i) On Z, define $a * b=a-b$
(ii) On Q, define $a * b=a b+1$
(iii) On Q , define $a * b=\frac{a b}{2}$
(iv) On $Z^{+}$, define $a * b=2^{a b}$
(v) On $Z^{+}$, define $a * b=a^{b}$
(vi) On $R-\{-1\}$, define $a * b=\frac{a}{b+1}$

## - Watch Video Solution

25. For each opertion $*$ difined below, determine whether $*$ isw binary, commutative or associative.
(i) On Z, define $a * b=a-b$
(ii) On Q, define $a * b=a b+1$
(iii) On Q, define $a * b=\frac{a b}{2}$
(iv) On $Z^{+}$, define $a * b=2^{a b}$
(v) On $Z^{+}$, define $a * b=a^{b}$
(vi) On $R-\{-1\}$, define $a * b=\frac{a}{b+1}$
26. For each opertion $*$ difined below, determine whether $*$ isw binary, commutative or associative.
(i) On Z, define $a * b=a-b$
(ii) On Q, define $a * b=a b+1$
(iii) On Q, define $a * b=\frac{a b}{2}$
(iv) On $Z^{+}$, define $a * b=2^{a b}$
(v) On $Z^{+}$, define $a * b=a^{b}$
(vi) On $R-\{-1\}$, define $a * b=\frac{a}{b+1}$

## - Watch Video Solution

27. For each operation * defined below, determine, whether $*$ is binary , commutative or associative.

On $Z^{+}$, define $a^{*} b=a b$
28. For each opertion $*$ difined below, determine whether $*$ isw binary, commutative or associative.
(i) On Z, define $a * b=a-b$
(ii) On Q, define $a * b=a b+1$
(iii) On Q, define $a * b=\frac{a b}{2}$
(iv) On $Z^{+}$, define $a * b=2^{a b}$
(v) On $Z^{+}$, define $a * b=a^{b}$
(vi) On $R-\{-1\}$, define $a * b=\frac{a}{b+1}$

## - Watch Video Solution

29. Consider the binary operation $\wedge$ on the set $\{1,2,3,4,5\}$ defined by $a \wedge b$ $=\min \{a, b\}$. Write the operation table of the operation $\wedge$.

## - Watch Video Solution

1. Consider a binary operation $*$ on the set $\{1,2,3,4,5\}$ given by the following multiplication table.
(i) Compute $\left(2^{*} 3\right)^{*} 4$ and $2^{*}\left(3^{*} 4\right)$
(ii) Is $*$ commutative ?
(iii) Compute $\left(2^{*} 3\right)^{*}\left(4^{*} 5\right)$
(Hint: use the following table )

| $*$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 2 | 1 | 2 | 1 |
| 3 | 1 | 1 | 3 | 1 | 1 |
| 4 | 1 | 2 | 1 | 4 | 1 |
| 5 | 1 | 1 | 1 | 1 | 5 |

[^0]2. Let $*$ be the binary operation on the set $\{1,2,3,4,5\}$ defined $a^{*} b=$ H.C.F of a and b ls the operation $*$ same as the operation $*$ defined in Exercise 4 above ? Justify your answer .

## - Watch Video Solution

3. Let $*$ be the binary operation on N given by $a * b=$ L.C.M. of a and b .

Find
5*7, $20 * 16$

## - Watch Video Solution

4. Let $*$ be the binary operation on N given by $a * b=$ L.C.M. of a and b .

Find
Is * commutative ?

## - Watch Video Solution

5. Let $*$ be the binary operation on N given by $a * b=$ L.C.M. of a and b .

Find

Is * associative?

## - Watch Video Solution

6. Let $*$ be the binary operation on N given by $a * b=$ L.C.M. of a and b .

Find
Find the identity of $*$ in N .

## - Watch Video Solution

7. Let $*$ be the binary operation on N given by $a * b=$ L.C.M. of a and b .

Find

Which elements of N are invertible for the operation $*$ ?
8. Is $*$ defined on the set $\{1,2,3,4,5\}$ by $a^{*} b=$ L.C.M. of a and b a binary operation ? Justify your answer.

## Watch Video Solution

9. Let $*$ be the binary operation on N defined by $a^{*} b=$ H.C.F of a and b . Is * commutative ? Is * associative ? Does there exist identity for this binary operation on N ?

## - Watch Video Solution

10. Let * be a binary operation on the set Q of rational numbers as follows :
$a^{*} b=a-b$
Find which of the binary operations are commutative and which are associative.
11. Let * be a binary operation on the set $Q$ of rational numbers as follows:
$a^{*} b=a^{2}+b^{2}$
Find which of the binary operations are commutative and which are associative.

## - Watch Video Solution

12. Let * be a binary operation on the set Q of rational numbers as follows:
$a^{*} b=a+a b$
Find which of the binary operations are commutative and which are associative.

## - Watch Video Solution

13. Let $*$ be a binary operation on the set Q of rational numbers as follows:
$a^{*} b=(a-b)^{2}$
Find which of the binary operations are commutative and which are associative.

## - Watch Video Solution

14. Let * be a binary operation on the set $Q$ of rational numbers as follows:
$a^{*} b=\frac{a b}{4}$
Find which of the binary operations are commutative and which are associative.

## - Watch Video Solution

15. Let * be a binary operation on the set Q of rational numbers as follows:
$a^{*} b=a b^{2}$

Find which of the binary operations are commutative and which are associative.

## - Watch Video Solution

16. Find which of the operations given above has identity.
$a^{*} b=a-b$

## - Watch Video Solution

17. Find which of the operations given above has identity.
$a^{*} b=a^{2}+b^{2}$

## - Watch Video Solution

18. For which values of $p$ does the pair of equations given below has unique solution?
$4 x+p y+8=0$
$2 x+2 y+2=0$

## - Watch Video Solution

19. Find which of the operations given above has identity.
$a^{*} b=(a-b)^{2}$

## - Watch Video Solution

20. Find which of the operations given above has identity.
$a^{*} b=\frac{a b}{4}$

## - Watch Video Solution

21. Find which of the operations given above has identity.
$a^{*} b=a b^{2}$
22. L $A=N \times N$ and $*$ be the binary operation on A defined by $(a, b)^{*}(c, d)=(a+c, b+d)$ Show that $\quad *$ is commutative and associative . Find the identity element for $*$ on A , if any.

## - Watch Video Solution

23. State whether the following statements are true or false . Justify .

For an arbitrary binary operation $*$ on a set $\mathrm{N}, a^{*} a=a \forall a \in N$.

## - Watch Video Solution

24. State whether the following statements are true or false . Justify . If $*$ is commutative binary operation on N , then $a^{*}\left(b^{*} c\right)=\left(c^{*} b\right)^{*} a$.

## - Watch Video Solution

25. Consider a binary operation $*$ on N defined as $a^{*} b=a^{3}+b^{3}$. Choose the correct answer.
A. Is $*$ both associative and commutative ?
B. Is $*$ commutative but not associative ?
C. Is * associative but not commutative ?
D. Is $*$ neither commutative nor associative?

## Answer: B

## - Watch Video Solution

## Miscellaneous Exercise 1

1. Let $f: R \rightarrow R$ be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that gof $=\mathrm{fog}=I_{g}$
2. Let $f: W \rightarrow W$ be defined as $\mathrm{f}(\mathrm{n})=\mathrm{n}-1$, if n is odd and $\mathrm{f}(\mathrm{n})=\mathrm{n}+1$, if n even. Show that $f$ is invertible. Find the inverse of $f$. Here, $W$ is the set all whole numbers.

## - Watch Video Solution

3. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $\mathrm{f}(\mathrm{f}(\mathrm{x}))$.

## - Watch Video Solution

4. Show that the function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one one and onto function.

## - Watch Video Solution

5. Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}$ is injective.
6. Give examples of two functions $f: N \rightarrow Z$ and $g: Z \rightarrow Z$ such that gof is injective but g is not injective.
(Hint : Consider $\mathrm{f}(\mathrm{x})=\mathrm{x}$ and $\mathrm{g}(\mathrm{x})=|\mathrm{x}|$ ).

## - Watch Video Solution

7. Give examples of two function $f: N \rightarrow N$ and $g: N \rightarrow N$ such that gof is onto but $f$ is not onto. (Hint: Consider $f(x)=x+1$ " and " $g(x)=\{x-1$ if $\mathrm{x}>11$ if $\mathrm{x}=1$.

## - Watch Video Solution

8. Given a non empty set $X$, consider $P(X)$ which is the set of all subsets of $X$. Define the relation $R$ in $P(X)$ as follows : For subsets $A, B$ in $P(X)$ ARB if and only if $A \subset B$. Is R an equivalence relation on $\mathrm{P}(\mathrm{X})$ ? Justify your answer.
9. Given a non - empty set, X , consider the binary operation *: $P(X) \times P(X) \rightarrow P(X)$ given by $A * B=A \cap B, \forall A, B$ in $\mathrm{P}(\mathrm{X})$, where $P(X)$ is the power set $X$. Show that $X$ is the identity element for this operation and X is the only invertible element in $\mathrm{P}(\mathrm{X})$ with respect to the operation * .

## - Watch Video Solution

10. Find the number of all onto functions from the set $\{1,2,3, \ldots . . ., n\}$ to itself.

## - Watch Video Solution

11. Let $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{T}=\{1,2,3\}$. Find $F^{-1}$ of the following functions F from S to T , if it exists.
$F=\{(a, 3),(b, 2),(c, 1)\}$
12. Let $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{T}=\{1,2,3\}$. Find $F^{-1}$ of the following functions F from $S$ to $T$, if it exists.
$F=\{(a, 2),(b, 1),(c, 1)\}$

## - Watch Video Solution

13. Consider the binary operations $* R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as $a * b|a-b|$ and $\mathrm{aob}=a, \forall a, b \in R$. Show that $*$ is commutative but not associative, o is associative but not commutative. Further, show that $\forall a, b, c \in R, a *(\mathrm{~b} \mathrm{o} \mathrm{c})=(a * b) o(a * c)$. [lf it is so , we say that the operation * distributes over the operation o]. Does o distribute over * ? Justify your answer.

## - View Text Solution

14. Given a non-empty set X , let $*: P(X) \times P(X) \rightarrow P(X)$ be defined as $A * B=(A-B) \cup(B-A), \forall A, B \in P(X)$. Show that the empty
set $\phi$ is the identity for the operation $*$ and all the elements A of $\mathrm{P}(\mathrm{X})$ are invertible with $\quad A^{-1}=A . \quad$ (Hint $(A-\phi) \cup(\phi-A)=a$ and $(A-A) \cup(A-A)=A * A=\phi)$

## - View Text Solution

15. Define a binary operation $*$ on the set $\{0,1,2,3,4,5\}$ as $a * b=\left\{\begin{array}{ll}a+b, & \text { if } a+b<6 \\ a+b-6, & \text { If } a+b \geq 6\end{array}\right.$ Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6 - a being the inverse of a.

## - Watch Video Solution

16. Let $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$ and $f, g: A \rightarrow B$ be functions defined
$f(x)=x^{2}-x, x \in R$ and $g(x)=2\left|x-\frac{1}{2}\right|-1, x \in R$. Are f and g equal ? Justify your answer.
(Hint : One may note that two functions $\mathrm{f}: A \rightarrow B$ and $g: A \rightarrow B$ such that $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a}) A a \in A$, are called equal functions).

## - Watch Video Solution

17. Let $A=\{1,2,3\}$. Then number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is
A. 1
B. 2
C. 3
D. 4

## Answer: A

## - Watch Video Solution

18. Let $A=\{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is
A. 1
B. 2
C. 3
D. 4

## Answer: B

## - Watch Video Solution

19. Let $f: R \rightarrow R$ be the Signum Function defined as
$f(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right.$ and $g: R \rightarrow R$ be the Greatest Integer Function given by $g(x)=[x]$, where $[x]$ is greatest integer less than or equal to $x$. Then , does $f o g$ and $g o f$ coincide in $(0,1]$ ?
A. Yes
B. No
C. Nothing can be said
D. Composite function does not exists

## Answer: B

## - Watch Video Solution

20. Number of binary operations on the set $\{a, b\}$ are
A. 10
B. 16
C. 20
D. 8

## Answer: B

## - Watch Video Solution

1. The relation $R$ defined in the set of real number $R$ is as follow :
$R\{(x, y): x-y+\sqrt{2}$ is an irrational number $\}$ Is R transitive relation ?

## - Watch Video Solution

2. Let $R$ be relation defined on the set of natural number $N$ as follows :
$R=\{(x, y): x \in N, y \in N, 2 x+y=41\}$. Find the domian and range of the relation $R$. Also verify whether $R$ is reflexive, symmetric and transitive.

## - Watch Video Solution

3. $A=\{(1,2,3, \ldots .10\}$ The relation R defined in the set A as R $=\{(x, y): y=2 x\}$. Show that R is not an equivalence relation.

## - Watch Video Solution

4. The relation R difined the set Z as $R=\{(x, y): x-y \in Z\}$ show that $R$ is an equivalence relation.

## Watch Video Solution

5. Show that the relation R defined by $(a, b) R(c, d) \Rightarrow a+d=b+c$ on the set $N \times N$ is an equivalence relation.

## - Watch Video Solution

6. R is relation in $N \times N$ as (a,b) $\mathrm{R}(\mathrm{c}, \mathrm{d}) \Leftrightarrow a d=b c$. Show that R is an equivalence relation.

## - Watch Video Solution

7. The relation R defined in the set N of natural number as $\forall n, \min N$ if on division by 5 each of the integers $n$ and $m$ leaves the remainder less
than 5 . Show that $R$ is equivalence relation. Also obtain the pairwise disjoint subset determined by R .

## - Watch Video Solution

8. Find the domain and range of the following function:
$f: R \rightarrow R, f(x)=-|x|$

## - Watch Video Solution

9. Find the domain and range of the following function:
$f: R \rightarrow R, f(x)=\frac{x^{2}-1}{x-1}, x \neq 1$

## - Watch Video Solution

10. Find the domain and range of the following function:
$f: R \rightarrow R, f(x)=\frac{1}{1-x^{2}}, x \neq \pm 1$
11. Find the domain and range of the following function:
$f: R \rightarrow R, f(x)=\sqrt{9-x^{2}}$

## - Watch Video Solution

12. Find the domain and range of the following function:
$f: R \rightarrow R, f(x)=\frac{2}{x-2}$

## - Watch Video Solution

13. $f: R \rightarrow R, f(x)=\left\{\begin{array}{ll}12 x+5 & x>1 \\ x-4 & x \leq 1\end{array} \quad\right.$ then find $f(0), f\left(-\frac{1}{2}\right), f(3), f(-5)$.
14. Check the injectivity and surjectivity of the following functions .
$f: R \rightarrow R, f(x)=x^{2}+7$

## - Watch Video Solution

15. Check the injectivity and surjectivity of the following functions .
$f: R \rightarrow R, f(x)=x^{3}$

## - Watch Video Solution

16. Check the injectivity and surjectivity of the following functions .
$f: R \rightarrow R, f(x)=x^{2}-2$

## - Watch Video Solution

17. Show that the function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one one and onto function.
18. $f: Z \rightarrow Z, f(n)=\left\{\begin{array}{lr}(n+2) & \text { if } \mathrm{n} \text { is even } \\ (2 n+1) & \text { if } \mathrm{n} \text { is odd }\end{array}\right.$

State whether the function $f$ is one - one and onto .

## - Watch Video Solution

19. $f: N \times N \rightarrow N, f((\mathrm{~m}, \mathrm{n}))=m+n$. If f one one and onto ?

## - Watch Video Solution

20. Show that $f: R \rightarrow R, f(x)=\frac{x}{x^{2}+1}$ is not one one and onto function.

## - Watch Video Solution

21. $f: R \rightarrow R, f(x)=x^{2}+1$. Find the preimage of 17 and -3 .
22. $f: R \rightarrow R, f(x)=\left\{\begin{array}{ll}2 x & x>3 \\ x^{2} & 1<x \leq 3 \\ 3 x & x \leq 1\end{array}\right.$ then find $\mathrm{f}(-1)+\mathrm{f}(2)+\mathrm{f}(4)$.

## Watch Video Solution

23. Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ a function, justify. If this is described by the relation, $g(x)=\alpha x+\beta$, then what values should be assigned to $\alpha$ and $\beta$ ?

## - Watch Video Solution

24. The functions $f$ and $g$ are defined as follow : $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$. Find the range of $f$ and $g$. Also find the composition function $f o g$ and $g o f$.

## - Watch Video Solution

25. For functions $f: A \rightarrow B$ and $g: B \rightarrow A, g o f=I_{A}$. Prove that f is one one and g onto functions.

## - Watch Video Solution

26. $f: R \rightarrow R, f(x)=x^{2}+2$ and $g: R \rightarrow R, g(x)=\frac{x}{x-1}$ then find fog and gof.

## - Watch Video Solution

27. $f: N \rightarrow R, f(x)=4 x^{2}+12 x+5$. Show that $f: N \rightarrow R$ is invertible function. Find the inverse of f .

## - Watch Video Solution

28. $f$ and $g$ are real valued function
$f(x)=x^{2}+x+7, x \in R$ and $g(x)=5 x-3, x \in R$. Find fog and
gof. Also find $(f \circ g)(2)$ and $(g \circ f)(1)$.

## - Watch Video Solution

29. If $f$ is greatest integer function and $g$ is a modulus functions the find.
$(g \circ f)\left(-\frac{1}{3}\right)-(f \circ g)\left(-\frac{1}{3}\right)$.

## - Watch Video Solution

30. $f: R \rightarrow R, f(x)=\frac{x}{\sqrt{1+x^{2}}}, \forall x \in R$. Then find (fofof) ( x ).

## - Watch Video Solution

31. $f: Z \rightarrow Z$ and $g: Z \rightarrow Z$. Defined as $f(n)=3 n \quad$ and $g(n)=\left\{\begin{array}{ll}\frac{n}{3}, & \text { If } \mathrm{n} \text { is a multiple of } 3 \\ 0, & \text { If } \mathrm{n} \text { is not a multiple of } 3\end{array} \forall n \in Z \quad\right.$ Then show that $g o f=I_{z}$ but $f o g \neq I_{z}$

## - Watch Video Solution

32. $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{2}+3, g: R \rightarrow R$ be defined by $\mathrm{g}(\mathrm{x})$
$=2 x-K$. If fog $=$ gof then find the value of $K$.

## - Watch Video Solution

33. $f: Z \rightarrow Z$ and $g: Z \rightarrow Z$ are defined as follow:
$f(n)=\left\{\begin{array}{ll}n+2 & \text { n even } \\ 2 n-1 & \text { n odd }\end{array}, g(n)=\left\{\begin{array}{ll}2 n & \mathrm{n} \text { even } \\ \frac{n-1}{2} & \mathrm{n} \text { odd }\end{array}\right.\right.$ Find fog and gof.

## - Watch Video Solution

34.     * is a binary operation on the set Q .
$a^{*} b=\frac{2 a+b}{4}$ then find $2^{*} 3$.

## - Watch Video Solution

35.     * is a binary operation on the set Q .
$a^{*} b=a+12 b+a b$ then find $2^{*} \frac{1}{3}$

## Watch Video Solution

36.     * is a binary operation on the set Q .
$a^{*} b=\frac{a}{2}+\frac{b}{3}$ then find $\frac{1}{2} * \frac{4}{5}$.

## - Watch Video Solution

37.     * is a binary operation o Z. If $x^{*} y=x^{2}+y^{2}+x y$ then find $\left[\left(1^{*} 2\right)+\left(0^{*} 3\right)\right]^{2}$.

## - Watch Video Solution

38.     * be a binary operation on R defined by
$a^{*} b=\frac{a}{4}+\frac{b}{7}, a, b \in R$.

Show that $*$ is not commutative and associative.

## - Watch Video Solution

39. Show that addition and multiplication are associative binary operation on R. But subtraction and division is not associative on $R$.

## - Watch Video Solution

40. Find the identity element, if it exists for the following operation. Also find the inverse if it exists.

On R defined $a^{*} b=\sqrt{a^{2}-b^{2}},|a|>|b|$.

## - Watch Video Solution

41. Find the identity element, if it exists for the following operation. Also find the inverse if it exists.

On Z defined $a^{*} b=a+b-2$.
42. Find the identity element, if it exists for the following operation. Also find the inverse if it exists.

On R $-\{1\}$ defined $a^{*} b=a+b-a b$.

## - Watch Video Solution

43. Find the identity element, if it exists for the following operation. Also find the inverse if it exists.

On $Q-\{0\}$ defined $a^{*} b=\frac{a b}{2}$.

## - Watch Video Solution

44. Find the identity element, if it exists for the following operation. Also find the inverse if it exists.

On $Q:\{-1\}$ defined $a^{*} b=a+b+a b$.
45. Find the identity element, if it exists for the following operation. Also find the inverse if it exists.

On $\mathrm{P}(\mathrm{X})$ defined $A^{*} B=A \cap B$, where $X \neq \phi$.

## - Watch Video Solution

46. Find the identity element, if it exists for the following operation. Also find the inverse if it exists.

On $\mathrm{P}(\mathrm{X})$ defined $A^{*} B=A \cup B$, where $X \neq \phi$.

## - Watch Video Solution

47. On $\mathrm{R}-\{-1\}$, a binary operation * defined by $a^{*} b=a+b+a b$ then find $a^{-1}$.
48. $*$ be a binary operation on a set $\{0,1,2,3,4\}$ defined by
$a * b= \begin{cases}a+b & \text { if } a+b<6 \\ a+b-6 & \text { if } a+b \geq 6\end{cases}$
Then find identity element of $*$.

## - Watch Video Solution

49. On $\mathrm{Z} *$ defined by $a * b=a+b+1$. Is $*$ associative ? Find identity element and inverse if it exists.

## - Watch Video Solution

50.     * be binary operation defined on a set R by $a * b=a+b-(a b)^{2}$. Show that $*$ is commutative, but it is not associative. Find the identity element for $*$.

## - Watch Video Solution

51. A binary operation * be defined on the set R by $a * b=a+b+a b$. Show that * is commutative, and it is also Associative.

## Watch Video Solution

52. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto, then $g o f: A \rightarrow C$ is also onto.

## - Watch Video Solution

53. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one- one, then gof: $A \rightarrow C$ is also one-one.

## - Watch Video Solution

54. $f: R \rightarrow R, f(x)=\cos x$ and $g: R \rightarrow R, g(x)=3 x^{2}$ then find the composite functions gof and fog.
55. Check the injectivity and surjectivity of the following function.
$f: R \rightarrow R, f(x)= \begin{cases}-x+1 & x \geq 0 \\ x^{2} & x<0\end{cases}$

## - Watch Video Solution

56. Check the injectivity and surjectivity of the following function .
$f: R \rightarrow R, f(x)= \begin{cases}2 x+1 & x \geq 0 \\ x^{2} & x<0\end{cases}$

## - Watch Video Solution

57. Check the injectivity and surjectivity of the following function .
$f: R \times R-\{0\} \rightarrow R, f(x, y)=\frac{x}{y}$

## - Watch Video Solution

58. Check the injectivity and surjectivity of the following function .
$f:[-1,1] \rightarrow[-1,1], f(x)=x|x|$

## - Watch Video Solution

59. Check the injectivity and surjectivity of the following function.
$f: N \rightarrow N \cup\{0\}, f(n)=n+(-1)^{n}$.

## - Watch Video Solution

60. Check the injectivity and surjectivity of the following function .
$f: N-\{1\} \rightarrow N, \mathrm{f}(\mathrm{n})=$ Greatest prime factor of n.

## - Watch Video Solution

61. $f: R \rightarrow(-1,1), f(x)=\frac{10^{x}-10^{x}}{10^{x}+10^{-x}}$. If inverse of $f^{-1}$ exists then find it.
62. $f: R^{+} \cup\{0\} \rightarrow R^{+} \cup\{0\}, f(x)=\sqrt{x}$.
$g: R \rightarrow R, g(x)=x^{2}-1$ then find fog.

## Watch Video Solution

63. $f: R-\left\{\frac{2}{3}\right\} \rightarrow R, f(x)=\frac{4 x+3}{6 x-4}$. Prove that (fof) $(\mathrm{x})=\mathrm{x}$, what is about $f^{-1}$ ?

## - Watch Video Solution

64. $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$
$f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
Is farelation from A to B ?
Give reason for your answer.
65. $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$
$f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
Is $f$ a function from $A$ to $B$ ?

Give reason for your answer.

## D Watch Video Solution

66. Let f be the subset of $Z \times Z$ defined by $f=\{(a b, a+b): a, b \in Z\}$. Is $f$ a function from $Z$ to $Z$ ? Justify your answer.

## D Watch Video Solution

## Textbook Based Mcqs

1. If a set $A$ has $m$ elements and a set $B$ has $n$ elements then the number of relation from a to $B$ is
A. $2^{m+n}$
B. $2^{m n}$
C. $m+n$
D. $m n$

## Answer: B

## - Watch Video Solution

2. A relation $R$ on a finite set having $n$ elements is reflexive. If $R$ has $m$ pairs then
A. $m \geq n$
B. $m \leq n$
C. $m=n$
D. None of these

## Answer: A

3. x and y are real numbers. If $x R y \Leftrightarrow x-y+\sqrt{5}$ is on irrational number then $R$ is $\qquad$ Relation .
A. Reflexive
B. Symmetric
C. Transitive
D. None of these

## Answer: A

## - Watch Video Solution

4. $A=\{1,2,3,4\}$. $A$ relation $R$ is $A$ is given by $F=\{(2,2),(3,3),(4,4),(1,2)\}$. Then R is relation.
A. Reflexive
B. Symmetric
C. Transitive
D. None of these

## Answer: C

## - Watch Video Solution

5. A relation $R$ is form set $A$ to $B$, and a relation $S$ is from set $B$ to $C$. Then relation SOR is from
A. Set $C$ to $A$
B. Set A to C
C. Does not exist
D. None of these

## Answer: B

6. Relation $R=\{(4,5),(1,4),(4,6),(7,6),(3,7)\}$ then $R^{-1} O R=\ldots \ldots$.
A. $\{(1,1),(4,4),(7,4),(4,7),(7,7)\}$
B. $\{(1,1),(4,4),(4,7),(7,4),(7,7),(3,3)\}$
C. $\{(1,5),(1,6),(3,6)\}$
D. None of these

## Answer: B

Watch Video Solution
7. Which of the graphs is not a graph of functions ?

A.


Answer: B

D Watch Video Solution
8. If $f(1)=1, f(n+1)=2 f(n)+1, n \geq 1$ then $\mathrm{f}(\mathrm{n})=$
A. $2^{n}+1$
B. $2^{n}$
C. $2^{n}-1$
D. $2^{n-1}-1$

## Answer: C

## - Watch Video Solution

9. A function $y=f(x)$ satisfies the condition $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}(x \neq 0)$ then $\mathrm{f}(\mathrm{x})=$
A. $-x^{2}+2$
B. $x^{2}-2$
C. $x^{2}-2, x \in R-\{0\}$
D. $x^{2}-2,|x| \in[2, \infty)$

## Answer: D

10. If $f(x+a y, x-a y)=a x y$ then $\mathrm{f}(\mathrm{x}, \mathrm{y})=\ldots . . .$.
A. $x y$
B. $x^{2}-a^{2} y^{2}$
C. $\frac{x^{2}-y^{2}}{4}$
D. $\frac{x^{2}-y^{2}}{a^{2}}$

## Answer: C

## - Watch Video Solution

11. For function $f(x)=\frac{\alpha x}{x+1}, x \neq-1$ if $\mathrm{fof}(\mathrm{x})=\mathrm{x}$ then $\alpha=\ldots . . . .$.
A. $\sqrt{2}$
B. -1
C. $\frac{1}{2}$
D. $-\sqrt{2}$

## D Watch Video Solution

12. For real valued functions f and $\mathrm{g}, \mathrm{f}(\mathrm{x})=2 \sin \left(\frac{\pi}{x}\right)$ and $g(x)=\sqrt{x}$. Then fog(4) - gof (6) = $\qquad$
A. 0
B. $\frac{1}{2}$
C. 1
D. $\frac{\sqrt{3}}{2}$

## Answer: C

## - Watch Video Solution

13. The domain of the real value function
$f(x)=\sqrt{5-4 x-x^{2}}+x^{2} \log (x+4)$ is
A. $-5 \leq x \leq 1$
B. $-5 \leq 4$ and $n \geq 1$
C. $-4<x \leq 1$
D. $\phi$

## Answer: C

## D Watch Video Solution

14. The domian of $\sin ^{-1}\left[\log _{3}\left(\frac{x}{3}\right)\right]$ is .......
A. $[1,9]$
B. $[-1,9]$
C. $[-9,1]$
D. $[-9,-1]$

## Answer: A

15. Range of the function $f(x)=\frac{x^{2}+x+2}{x^{2}+x+1}$ is......
A. $(1, \infty)$
B. $\left(1, \frac{11}{7}\right)$
C. $\left(1, \frac{7}{3}\right)$
D. $\left(1, \frac{7}{5}\right)$

## Answer: C

16. If $g(x)=x^{2}+x-2$ and $\frac{1}{2}(g \circ f)(x)=2 x^{2}-5 x+2$ then $f(X)=\ldots \ldots .$.
A. $2 x-3$
B. $2 x+3$
C. $2 x^{2}+3 x+1$
D. $2 x^{2}-3 x-1$

Answer: B

## - Watch Video Solution

17. $g(x)=1+\sqrt{x}$ and $f(g(x))=3+2 \sqrt{x}+x$ then $\mathrm{f}(\mathrm{x})=\ldots \ldots$.
A. $1+2 x^{2}$
B. $2+x^{2}$
C. $1+x$
D. $2+x$

## Answer: B

- Watch Video Solution

18. If real function $\mathrm{f}(\mathrm{x})=(x+1)^{2}$ and $g(x)=x^{2}+1$ then (fog) $(-3)=$
A. 121
B. 112
C. 211
D. 111

## Answer: A

## - Watch Video Solution

19. $f(x)=\cot ^{-1} x: R^{+} \rightarrow(0, \pi)$ and $g(x)=2 x-x^{2}: R \rightarrow R$ then the range of $f(g(x))$ is
A. $\left(0, \frac{\pi}{2}\right)$
B. $\left(0, \frac{\pi}{4}\right)$
C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$
D. $\left\{\frac{\pi}{4}\right\}$

Answer: C

## - Watch Video Solution

20. The domian of f is $[-5,7]$ and $\mathrm{g}(\mathrm{x})=|2 \mathrm{x}+5|$ then the domian of (fog) ( x ) is $\qquad$
A. $[-4,1]$
B. $[-5,1]$
C. $[-6,1]$
D. None of these

## Answer: C

21. A set $A$ has 3 elements and $a$ set $B$ has 4 elements. The number of one one function defined from set $A$ to $B$ is $\qquad$
A. 144
B. 12
C. 24
D. 64

## Answer: C

## - Watch Video Solution

22. $f: R \rightarrow R, f(x)=(x-1)(x-2)(x-3)$ then f is ........
A. One - one but not onto.
B. Onto but not one - one
C. One - one and onto.
D. Neither one one nor onto.

## - Watch Video Solution

23. $f: N \rightarrow N, f(n)=(n+5)^{2}, n \in N$, then the function f is $\qquad$
A. Neither one one nor onto
B. One one and onto
C. One one but not onto
D. Onto but not one one.

## Answer: B

## Watch Video Solution

24. $f:[0, \infty) \rightarrow[0, \infty), f(x)=\frac{x}{1+x}$ then the function f is
A. One one and onto
B. One one but not onto
C. Onto but not one one
D. Neither one one nor onto.

## Answer: B

## - Watch Video Solution

25. $f(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}+a x+b, \forall x \in R$. If $(\mathrm{x})$ is one one function then the minimum value of $a$ is
A. $\frac{1}{4}$
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{8}$

## Answer: A

26. $f(x)=x^{2}-2 x-1, \forall x \in R, f:(-\infty, \infty] \rightarrow[b, \infty)$ is one one and onto function then $b=\ldots . . . . . . .$.
A. -2
B. -1
C. 0
D. 1

## Answer: B

27. $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+2$. The inverse of $\mathrm{f}(\mathrm{x})$ is ........
A. $\log _{e}\left(\frac{x-2}{x-1}\right)^{\frac{1}{2}}$
B. $\log _{e}\left(\frac{x-1}{3-x}\right)^{\frac{1}{2}}$
C. $\log _{e}\left(\frac{x}{2-x}\right)^{\frac{1}{2}}$
D. $\log _{e}\left(\frac{x-1}{x+1}\right)^{-\frac{1}{2}}$

## Answer: B

## - Watch Video Solution

28. $f:(2,4) \rightarrow(1,3), f(x)=x-\left[\frac{x}{2}\right]$, where [.] is a greatest integer function then $f^{-1}(x)=\ldots . .$.
A. 2 x
B. $x+\left[\frac{x}{2}\right]$
C. $x+1$
D. does not exist

## Answer: C

29. $f:[2, \infty) \rightarrow y, f(x)=x^{2}-4 x+5$ is a one and Onto function. If $y \in[a, \infty)$ then the value of a is
A. 2
B. 1
C. $-\infty$
D. -1

## Answer: B

## - Watch Video Solution

30. $f: N \rightarrow N, f(x)=x+(-1)^{x-1}$ then $f^{-1}(x)=\ldots \ldots$.
A. $x y$
B. $x-1$
C. $x-(-1)^{x-1}$
D. $x+(-1)^{x-1}$

## - Watch Video Solution

31. $a>1$ is a real number $f(x)=\log _{a} x^{2}$, where $x>0$ If $f^{-1}(x)$ is a inverse of $\mathrm{f}(\mathrm{x})$ and b and c are real numbers then $f^{-1}(b+c)=\ldots . .$.
A. $f^{-1}(b) . f^{-1}(c)$
B. $f^{-1}(b)+f^{-1}(c)$
C. $\frac{1}{f(b+)}$
D. None of these

## Answer: A

## - Watch Video Solution

32. $f: R \rightarrow R, f(x)=2 x+|\cos x|$ then f is ......... function.
A. One one and onto
B. One one but not onto
C. Neither one one nor onto
D. Not one one but onto

## Answer: A

## D Watch Video Solution

33. The number of onto function from set $\{1,2,3,4\}$ to $\{3,4,7\}$ is .......
A. 18
B. 36
C. 64
D. None of these

## Answer: B

34. Match the Section (A) with the Section (B) properly.

| Section (A) | Section (B) |  |  |
| :--- | :--- | :--- | :--- |
| (1) | $f(x)=\sin \left(\tan ^{-1} x\right)$ | (A) | $f^{-1}(x)=-\log _{2}(1-x)$ |
| (2) | $f(x)=1-2^{-x}$ | (B) | $f^{-1}(x)=\left(5-x^{2}\right)^{\frac{1}{2}}$ |
| (3) | $f(x)=2^{\frac{x}{x-1}}$ | (C) | $f^{-1}(x)=\frac{x}{\sqrt{1-x^{2}}}$ |
| (4) | $f(x)=\left(5-x^{2}\right)^{\frac{1}{2}}$ | (D) | $f^{-1}(x)=\frac{\log _{2} x}{\log _{2} x-1}$ |

A. $1 \rightarrow A, 2 \rightarrow D, 3 \rightarrow B, 4 \rightarrow C$
B. $1 \rightarrow C, 2 \rightarrow A, 3 \rightarrow D, 4 \rightarrow B$
C. $1 \rightarrow A, 2 \rightarrow C, 3 \rightarrow B, 4 \rightarrow D$
D. $1 \rightarrow C, 2 \rightarrow B, 3 \rightarrow D, 4 \rightarrow A$

## Answer: B

35. $f:[0,3] \rightarrow[1,29], f(x)=2 x^{3}-15 x^{2}+36 x+1$ then f is function.
A. One one and onto
B. One one but not onto
C. Neither one one nor onto
D. Not one one but onto

## Answer: B

## - Watch Video Solution

36. $\mathrm{f}(\mathrm{x}, \mathrm{y})=(\max (x, y))^{(\min (x, y))}$ and $\mathrm{g}(\mathrm{x}, \mathrm{y})=\max (\mathrm{x}, \mathrm{y})-\min (\mathrm{x}, \mathrm{y})$ then $f\left(g\left(-1,-\frac{3}{2}\right), g(-4,-1.75)\right)=\ldots \ldots \ldots$
A. 0.5
B. -0.5
C. 1
D. 1.5

Answer: D

## - Watch Video Solution

37. Let $A=\{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is
A. 1
B. 2
C. 3
D. 8

## Answer: B

## - Watch Video Solution

38. S is defined in Z by $(x, y) \in S \Leftrightarrow|x-y| \leq 1$. S is .........
A. Reflexive and transitive but not symmetric.
B. Reflexive and symmetric but not transitive.
C. symmetric and transitive but not reflexive.
D. an equivalence relation

## Answer: B

## - Watch Video Solution

39. If S is defined on R by $(\mathrm{x}, \mathrm{y}) \in R \Leftrightarrow x y \geq 0$. Then S is $\qquad$
A. an equivalence relation
B. reflexive only
C. symmetric only
D. transitive only

## Answer: A

40. Which of the following defined on $Z$ is not an equivalence relation ?
A. $(x, y) \in S \Leftrightarrow x \geq y$
B. $(x, y) \in S \Leftrightarrow x=y$
C. $(x, y) \in S \leftrightarrow x-y$ is a multiple of 3
D. $(x, y) \in S$ if $|x-y|$ is even

## Answer: A

## - Watch Video Solution

41. If $a * b=\frac{a b}{3}$ on $Q^{+}$then the inverse of $a(a \neq 0)$ for $*$ is ......
A. $\frac{3}{a}$
B. $\frac{9}{a}$
C. $\frac{1}{a}$
D. $\frac{2}{a}$

## Answer: B

## - Watch Video Solution

42. The number of binary operation on $\{1,2,3, \ldots \ldots, n\}$ is
A. $2^{n}$
B. $n^{n^{2}}$
C. $n^{3}$
D. $n^{2 n}$

## Answer: B

## - Watch Video Solution

43. If $a * b=a+b$ on $\mathrm{R}-\{1\}$, then $a^{-1}$ is
A. $a^{3}$
B. $\frac{1}{a}$
C. $\frac{-a}{a+1}$
D. $\frac{1}{a^{2}}$

## Answer: C

## D Watch Video Solution

44. For $a * b=a+b+10$ on Z , the identity element is ........
A. 0
B. -5
C. -10
D. 1

## Answer: C

45. $f: R-\{q\} \rightarrow R-\{1\}, f(x)=\frac{x-p}{x-q}, p \neq q$, then f is
A. one - one and onto .
B. many - one and not onto .
C. one - one and not onto .
D. many - one and onto .

## Answer: A

## - Watch Video Solution

46. Check the injectivity and surjectivity of the following function.
$f:[-1,1] \rightarrow[-1,1], f(x)=x|x|$
A. one - one and onto .
B. many - one and onto .
C. many - one and not onto .
D. one - one and not onto.

## Answer: A

## - Watch Video Solution

47. $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]$ is a bijection , if ......
A. $f(x)=|x|$
B. $f(x)=\sin x$
C. $f(x)=x^{2}$
D. $f(x)=\cos x$

## Answer: B

## - Watch Video Solution

48. $f: R \rightarrow R, f(x)=x^{2}+2 x+3$ is
A. one - one but not onto.
B. onto but not one - one
C. onto but not one one
D. many - one and not onto .

## Answer: D

## - Watch Video Solution

49. If $a * b=a^{2}+b^{2}$ on $Z$, then $*$ is $\qquad$
A. commutative and associative.
B. commutative and not associative.
C. not commutative and associative.
D. neither commutative nor associative.

## Answer: B

50. If $a * b=a+b-a b$ on $Q^{+}$, then the identity and the inverse of a for * are respectively
A. 0 and $\frac{a}{a-1}$
B. 1 and $\frac{a-1}{a}$
C. -1 and $a$
D. $0, \frac{1}{a}$

## Answer: A

## - Watch Video Solution

51. If $a * b=\frac{a b}{3}$ on $Q^{+}$, then $3 *\left(\frac{1}{5} * \frac{1}{2}\right)$ is .......
A. $\frac{5}{160}$
B. $\frac{1}{30}$
C. $\frac{3}{160}$
D. $\frac{3}{60}$

## Answer: B

## - Watch Video Solution

52. If $\Delta$ is defined on $P(X)(X \neq \phi)$ by, $A \delta B=(A \cup B)-(A \cap B)$, then $\qquad$
A. identity for $\Delta$ is $\phi$ and inverse of A is A .
B. identity for $\Delta$ is A and inverse of A is $\phi$.
C. identity for $\Delta$ is $\mathrm{A}^{\prime}$ and inverse of A is A .
D. identity for $\Delta$ is X and inverse of A is $\phi$.

## Answer: A

## - Watch Video Solution

53. S is defined on $N \times N$ by $((a, b),(c, d) \in S \Leftrightarrow a+d=b+c \ldots \ldots$.
A. $S$ is reflexive, but not symmetric
B. $S$ is reflexive, and transitive only
C. $S$ is an equivalence relation
D. $S$ is transitive only

## Answer: C

## - Watch Video Solution

54. If $f: R^{+} \rightarrow R, f(x)=\frac{x}{x+1}$ is
A. one - one and onto .
B. one - one and not onto .
C. not one - one and not onto.
D. Onto but not one - one.

## Answer: B

## - Watch Video Solution

55. 

$f: R \rightarrow R, f(x)=[x], g: R \rightarrow R, g(x)=\sin x, h: R \rightarrow R, h(x)=2 x$
, then ho(gof) =
A. $\sin [x]$
B. $[\sin 2 x]$
C. $2(\sin [x])$
D. $\sin 2[x]$

## Answer: C

56. $f: R \rightarrow R, f(x)=\left\{\begin{array}{ll}-1 & x<0 \\ 0 & x=0 \\ 1 & x>0\end{array} \quad g: R \rightarrow R, g(x)=1+\mathrm{x}-[\mathrm{x}]\right.$ then for all $\mathrm{x}, \mathrm{f}(\mathrm{g}(\mathrm{x}))=$
A. 1
B. 2
C. 0
D. -1

## Answer: A

57. If $f:\{x \mid x \geq 1, \mathrm{x} \in R\} \rightarrow\{x \mid x \geq 2, x \in R\} \mathrm{f}(\mathrm{x})=x+\frac{1}{x}$ then $f^{-1}(x)=$
A. $\frac{x+\sqrt{x^{2}-4}}{2}$
B. $\frac{x-\sqrt{x}^{2}-4}{2}$
C. $\frac{x^{2}+1}{x}$
D. $\sqrt{x^{2}-4}$

## Answer: A

## - Watch Video Solution

58. $f: R \rightarrow R, f(x)=\frac{x}{\sqrt{1+x^{2}}}, \forall x \in R$. Then find (fofof) (x).
A. $\frac{x}{1+x^{2}}$
B. $\frac{1+x^{2}}{x}$
C. $\frac{x}{\sqrt{1+2 x^{2}}}$
D. $\frac{x}{\sqrt{1+3 x^{2}}}$

## Answer: D

## D Watch Video Solution

59. $f: R \rightarrow R, f(x)=x^{2}, g: R \rightarrow R, g(x)=2^{x}$
$\{x \mid(f \circ g)(x)=(g \circ f)(x)\}=$
A. $\{0\}$
B. $\{0,1\}$
C. R
D. $\{0,2\}$

## Answer: D

## - Watch Video Solution

60. The relation S on
set $\quad\{1,2,3,4,5\}$
is
$S=\{(1,1),(2,2),(3,3),(4,4),(5,5)\}$. The S is
A. Only symmetric
B. Only reflexive
C. Only transitive
D. Equivalence relation

## Answer: D

## - Watch Video Solution

61. The function $f: R \rightarrow R, f(x)=5 x+7$ then the function f is
A. One one and onto
B. One one and not onto
C. Onto but not one one
D. Neither one one nor onto.

## Answer: A

## - Watch Video Solution

62. The number of binary operation on set $\{1,2\}$ is .......
A. 8
B. 16
C. 2
D. 4

## Answer: B

## - Watch Video Solution

63. The function $f: R^{+} \rightarrow R^{+}, f(x)=x^{3}, g: R^{+} \rightarrow R^{+}, g(x)=x^{\frac{1}{3}}$ then $(f o g)(x)=$
A. $x^{3}$
B. $\frac{1}{x}$
C. $\sqrt[3]{x}$
D. $x$
64. $a * b=a^{2}+b^{2}+a b+2$ on Z then $3 * 4=\ldots . .$.
A. 39
B. 40
C. 25
D. 41

## Answer: A

## Watch Video Solution

## Textbook Illustrations For Practice Work

1. Let $A$ be the set of all students of a boys school. Show that the relation R in A given by $R=\{(a, b): a$ is sister of b$\}$ is the empty relation and
$R^{\prime}=\{(a, b):$ the difference between heights of a and b is less than 3 meters $\}$ is the universal relation.

## - Watch Video Solution

2. Let $T$ be the set of all triangles in a plane with $R$ a relation in $T$ given by $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruent to $\left.T_{2}\right\}$ Show that R is an equivalence relation.

## - Watch Video Solution

3. Let $L$ be the set of all lines in a plane and $R$ be the relation in $L$ defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is perpendicular to $\left.L_{2}\right\}$. Show that R is symmetric but neither reflexive nor transitive.

## - Watch Video Solution

4. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2) .,(2,3)\} \quad$ is reflexive but neither symmetric nor transitive.

## - Watch Video Solution

5. Show that the relation $R$ in the set $Z$ of intergers given by
$R=\{(a, b): 2$ divides $\mathrm{a}-\mathrm{b}\}$
is an equivalence relation.

## - Watch Video Solution

6. Let R be the realtion defined in the set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b)$ : both a and b are either odd or even $\}$. Show that R is an equivalance relation. further, show that all the elements of the subset $\{1,3,5,7\}$ are related to each other and all elements of subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.
7. Let A be the set of all 50 students of Class X in a school. Let $\mathrm{f}: A \rightarrow N$ be function defined by $f(x)=$ roll number of the student $x$. Show that $f$ is one-one but not onto.

## - Watch Video Solution

8. Show that the function $f: N \rightarrow N$, given by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$, is one-one but not onto.

## - Watch Video Solution

9. Prove that the function $f: R \rightarrow R$, given by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$, is one-one and onto.

## - Watch Video Solution

10. Show that the function $f: N \rightarrow N$, given by $\mathrm{f}(1)=\mathrm{f}(2)=1$ and $\mathrm{f}(\mathrm{x})=\mathrm{x}$ 1 , for every $x>2$, is onto but not one-one.

## - Watch Video Solution

11. Show that the function $\mathrm{f}: R \rightarrow R$, defined as $f(x)=x^{2}$, is neither one-one nor onto.

## - Watch Video Solution

12. Show that $f: N \rightarrow N$, given by
$f(x)=\left\{\begin{array}{ll}x+1 & \text { if } \mathrm{x} \text { is odd } \\ x-1 & \text { if } \mathrm{x} \text { is even }\end{array}\right.$ is both one - one and onto.

## - Watch Video Solution

13. Show that an onto function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ is always one-one.
14. Show that a one-one function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ must be onto.

## - Watch Video Solution

15. Let $f:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$ and $g:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be functions defined as $f(2)=3, f(3)=4, f(4)=f(5)=5$ and $g(3)=g(4)=7$ and $g(5)=g(9)=11$. Find gof.

## - Watch Video Solution

16. Find goo and fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$. Show that gof $\neq$ fog.

## - Watch Video Solution

17. Show that if $f: R-\left\{\frac{7}{5}\right\} \rightarrow R-\left\{\frac{3}{5}\right\} \quad$ is defined by $f(x)=\frac{3 x+4}{5 x-7}$ and $g: R-\left\{\frac{3}{5}\right\} \rightarrow R-\left\{\frac{7}{5}\right\} \quad$ is defined by
$g(x)=\frac{7 x+4}{5 x-3} \quad, \quad$ then $\quad$ fog $\quad=I_{A}$ and $g o f=I_{B}, \quad$ where $A=R-\left\{\frac{3}{5}\right\}, B=R-\left\{\frac{7}{5}\right\}, I_{A}(x)=x, \forall x \in A, I_{B}(x)=x, \forall x \in 1$ are called identity functions on sets $A$ and $B$, respectively .

## - Watch Video Solution

18. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one- one, then gof: $A \rightarrow C$ is also one-one.

## - Watch Video Solution

19. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto, then $g o f: A \rightarrow C$ is also onto.

## - Watch Video Solution

20. Consider functions $f$ and $g$ such that composite gof is defined and is oneone. Are $f$ and $g$ both necessarily one-one.
21. Are fand g both necessarily onto, if gof is onto?

## - Watch Video Solution

22. Let $f:\{1,2,3\} \rightarrow\{a, b, c\}$ be one-one and onto function given by $\mathrm{f}(1)$
$=a, f(2)=b$ and $f(3)=C$. Show that there exists $a$ function $g:\{a, b, c\} \rightarrow\{1,2,3\}$ such that gof $=I_{x}$ and $f o g=I_{Y}$, where $\mathrm{X}=$ $\{1,2,3\}$ and $Y=\{a, b, c\}$,

## - Watch Video Solution

23. Let $f: N \rightarrow Y$ be a function defined as $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+3$, where, $\mathrm{Y}=\{$ $y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible. Find the inverse.
24. Let $\mathrm{Y}=\left\{n^{2}: n \in N\right\} \subset N$ Consider $f: N \rightarrow Y$ as $\mathrm{f}(\mathrm{n})=n^{2}$. Show that $f$ is invertible. Find the inverse of $f$.

## - Watch Video Solution

25. Let $f^{\prime}: N \rightarrow R$ be a function defined as $f^{\prime}(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$, where, S is the range of f , is invertible. Find the inverse of $f$.

## - Watch Video Solution

26. Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R \quad$ defined as $f(x)=2 x, g(y)=3 y+4$ and $h(z)=\sin z, \forall x, y$ and $z$ in N . Show that $h o(g o f)=(h o g) o f$.

## - Watch Video Solution

27. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow$ \{apple, ball, cat $\}$ defined as $f(1)=a, f(2)=b, f(3)=c, g(a)=$ apple,$g(b)=$ ball and g (c )= cat. Show that $\mathrm{f}, \mathrm{g}$ and gof are invertible. Find out $f^{-1}, g^{-1}$ and (gof) ${ }^{-1}$ and show that (gof) ${ }^{-1}=f^{-1} \mathrm{og}^{-1}$.

## - Watch Video Solution

28. Let $\mathrm{S}=\{1,2,3\}$. Determine whether the functions $f: S \rightarrow S$ defined as below have inverses. Find $f^{-1}$, if it exists.

Note : Here we accept that inverse at function is unique.
$f=\{(1,1),(2,2),(3,3)\}$

## - Watch Video Solution

29. Let $\mathrm{S}=\{1,2,3\}$. Determine whether the functions $f: S \rightarrow S$ defined as below have inverses. Find $f^{-1}$, if it exists.

Note : Here we accept that inverse at function is unique.
$f=\{(1,2),(2,1),(3,1)\}$

## (D) Watch Video Solution

30. Let $\mathrm{S}=\{1,2,3\}$. Determine whether the functions $f: S \rightarrow S$ defined as below have inverses. Find $f^{-1}$, if it exists.

Note : Here we accept that inverse at function is unique.
$f=\{(1,3),(3,2),(2,1)\}$

## - Watch Video Solution

31. Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary operation on R. Further, show that division is a binary operation on the set $R^{*}$ of nonzero real numbers.

## - Watch Video Solution

32. Show that subtraction and division are not binary operations on N .
33. Show that $*: R \times R \rightarrow R$ given by $(a, b) \rightarrow a+4 b^{2}$ is a binary operation.

## - Watch Video Solution

34. Let $P$ be the set of all subsets of a given set $X$. Show that $\cup: P \times P \rightarrow P$ given by $(A, B) \rightarrow A \cup B$ and $\cap: P \times P \rightarrow P$ given by ( $\mathrm{A}, \mathrm{B}$ ) $\rightarrow r A \cap B$ are binary operations on the set P .

## - Watch Video Solution

35. Show that the $V V: R \times R \rightarrow R$ given by $(a, b) \rightarrow \max \{\mathrm{a}, \mathrm{b}\}$ and the $\wedge: R \times R \rightarrow R$ given by $(a, b) \rightarrow \min \{\mathrm{a}, \mathrm{b}\}$ are binary operations.

## - Watch Video Solution

36. Show that $+: R \times R \rightarrow R$ and $\times: R \times R \rightarrow R$ are commutative binary operations, but :: $R \times R \rightarrow R$ and $\div i d: R^{*} \times R^{*} \rightarrow R^{*}$ are not commutative.

## - Watch Video Solution

37. Show that $*: R \times R \rightarrow R$ defined by $a^{*} b=a+2 b$ is not commutative.

## - Watch Video Solution

38. Show that addition and multiplication are associative binary operation on R. But subtraction is not associative on $R$. Division is not associative on $R^{*}$

## - Watch Video Solution

39. Show that * $: R \times R \rightarrow R$ given by $a^{*} b \rightarrow a+2 b$ is not associative.

## - Watch Video Solution

40. Show that zero is the identity for addition on $R$ and 1 is the identity for multiplication on $R$. But there is no identity element for the operations $-: R \times R \rightarrow R$ and $\div i d R \times R \rightarrow R$.

## - Watch Video Solution

41. Show that $-a$ is the inverse of a for the addition operation ' + ' on R and $\frac{1}{a}$ is the inverse of $a \neq 0$ for the multiplication operation $x$ on R .

## - Watch Video Solution

42. Show that -a is not the inverse of $a \in N$ for the addition operation + on $N$ and $\frac{1}{a}$ not the inverse of $a \in N$ for multiplication operation on
$N$, for $a \neq 1$.

## - Watch Video Solution

43. If $R_{1}$ and $R_{2}$ are equivalence relations in a set A , show that $R_{1} \cap R_{2}$ is also an equivalence relation.

## - Watch Video Solution

44. Let $R$ be a relation on the set $A$ of ordered pairs of positive integers defined by $(x, y) R(u, v)$ if and only if $x v=y u$. Show that $R$ is an equivalence relation.

## - Watch Video Solution

45. Let $X=\{1,2,3,4,5,6,7,8,9)$. Let $R_{1}$ be a relation in $X$ given by $R_{1}=\{(x, y): x-y$ is divisible by 3$\}$ and R , be another relation on X
given by $R_{2}=\{(x, y):\{x, y\} \subset\{1,4,7\}\}$ or $\{x, y\} \subset\{2,5,8\}$ or $\{x, y\} \subset\{3,6,9\}$. Show that $R_{1}=R_{2}$.

## - Watch Video Solution

46. Let $f: X \rightarrow Y$ be a function. Define a relation $R$ in $X$ given by $R=\{(a, b): f(a)=f(b)\}$. Examine whether $R$ is an equivalence relation or not.

## - Watch Video Solution

47. Determine which of the following binary operations on the set R are associative and which are commutative :
$a^{*} b=1, \forall a, b \in R$

## - Watch Video Solution

48. Determine which of the following binary operations on the set $R$ are associative and which are commutative :
$a^{*} b=\frac{(a+b)}{2}, \forall a, b \in R$

## - Watch Video Solution

49. Find the number of all one-one functions from set $\mathrm{A}=\{1,2,3\}$ to itself.

## - Watch Video Solution

50. Let $A=\{1,2,3\}$ Then show that the number of relations containing $(1,2)$ and $(2,3)$ which are reflexive and transitive but not symmetric is three.

## - Watch Video Solution

51. Show that the number of equivalence relation in the set $\{1,2,3\}$ containing $(1,2)$ and ( 2,1 ) is two.

## - Watch Video Solution

52. Show that the number of binary operations on $\{1,2\}$ having 1 as identity and having 2 as the inverse. of 2 is exactly one.

## - Watch Video Solution

53. Consider the identity function $I_{N}: N \rightarrow N$ defined as $I_{N}(x)=x, \forall x \in N$. Show that although $I_{N}$ is onto but $I_{N}+I_{N}: N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=I_{N}(x)+I_{N}(x)=x+x=2 x$ is not onto.

## - Watch Video Solution

54. Consider a function $\mathrm{f}:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and g : $\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $\mathrm{g}(\mathrm{x})=\cos \mathrm{x}$. Show that f and g are one-one, but $\mathrm{f}+\mathrm{g}$ is not one-one.

## - Watch Video Solution

## Solutions Of Ncert Exemplar Problems Short Answer Type Questions

1. Let $A=\{a, b, c\}$ and the relation R be defined on A as follows : $R=\{(a, a),(b, c),(a, b)\}$ Then , write minimum number of ordered pairs to be added in $R$ to make $R$ reflexive and transitive.

## - Watch Video Solution

2. Let $D$ be the domain of the real valued function $f$ defined by $f(x)=\sqrt{25-x^{2}}$. Then, write D.
3. If $f, g: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=x^{2}-2, \forall x \in R$, respectively. Find gof .

## - Watch Video Solution

4. Let $f: R \rightarrow R$ be the function defined by $f(x)=2 x-2, \forall x \in R$. Write $f^{-1}$.

## - Watch Video Solution

5. If $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and the function $\mathrm{f}=\{(a, b),(b, d),(c, a),(d, c)\}$. Write $f^{-1}$.

## - Watch Video Solution

6. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $\mathrm{f}(\mathrm{f}(\mathrm{x}))$.
7. Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ a function, justify. If this is described by the relation, $g(x)=\alpha x+\beta$, then what values should be assigned to $\alpha$ and $\beta$ ?

## - Watch Video Solution

8. Are the following set of ordered pairs functions ? If so examine whether the mapping is injective or surjective .
$\{(x, y): x$ is a person, $y$ is the mother of $x\}$

## - Watch Video Solution

9. Are the following set of ordered pairs functions ? If so examine whether the mapping is injective or surjective .
$\{(x, y): x$ is a person, $y$ is the mother of $x\}$
10. If the mappings $f$ and $g$ are given be $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$, write fog.

## Watch Video Solution

11. Let $C$ be the set of complex numbers. Prove that the mapping $f: C \rightarrow R$ given by $f(z)=|z|, \forall z \in C$, is neither one - one nor onto.

## - Watch Video Solution

12. Let the function $f: R \rightarrow R$ be defined by $f(x)=\cos x, \mathrm{AA} \times$ in R `. Show that f is nether one - one nor onto .

## - Watch Video Solution

13. Let $X=\{1,2,3\}$ and $Y=\{4,5\}$. Find whether the following subsets of $X \times Y$ are functions form X to Y or not .
$f=\{(1,4),(1,5),(2,4),(3,5)\}$

## - Watch Video Solution

14. Let $X=\{1,2,3\}$ and $Y=\{4,5\}$. Find whether the following subsets of $X \times Y$ are functions form X to Y or not .
$g=\{(1,4),(2,4),(3,4)\}$

## - Watch Video Solution

15. Let $X=\{1,2,3\}$ and $Y=\{4,5\}$. Find whether the following subsets of $X \times Y$ are functions form X to Y or not.
$h=\{(1,4),(2,5),(3,5)\}$

## - Watch Video Solution

16. Let $X=\{1,2,3\}$ and $Y=\{4,5\}$. Find whether the following subsets of $X \times Y$ are functions form X to Y or not.
$k=\{(1,4),(2,5)\}$

## - Watch Video Solution

17. If functions $f: A \rightarrow B$ and $g: B \rightarrow A$ satisfy gof $=I_{A}$, then show that $f$ is one one and $g$ is onto.

## - Watch Video Solution

18. Let $f: R \rightarrow R$ be the function defined by $f(x)=\frac{1}{2-\cos x}, \forall x \in R$ . Then , find the range of $f$.

## - Watch Video Solution

19. Let n be a fixed positive integer. Defiene a relation R in Z as follows :
$\forall a, b \in Z, a R b$ if and only if $\mathrm{a}-\mathrm{b}$ divisible by n . Show that R is equivalance relation.

## Solutions Of Ncert Exemplar Problems Long Answer Type Questions

1. If $A=\{1,2,3,4\}$, define relations on A which have properties of being :

Reflexive , transitive but not symmetric

## - Watch Video Solution

2. If $A=\{1,2,3,4\}$, define relations on A which have properties of being :

Symmetric but neither reflexive nor transitive

## - Watch Video Solution

3. If $A=\{1,2,3,4\}$, define relations on A which have properties of being :

Reflexive , symmetric and transitive .

## (D) Watch Video Solution

4. Let $R$ be relation defined on the set of natural number $N$ as follows : $R=\{(x, y): x \in N, y \in N, 2 x+y=41\}$. Find the domian and range of the relation $R$. Also verify whether $R$ is reflexive, symmetric and transitive.

## Watch Video Solution

5. Given $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of each of the following :

An injective mapping from $A$ to $B$.

## - Watch Video Solution

6. Given $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of each of the following :

A mapping from $A$ to $B$ which is not injective.
7. Given $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of each of the following :

A mapping from $B$ to $A$.

## - Watch Video Solution

8. Give an example of a map

Which is one - one but not onto

## - Watch Video Solution

9. Give an example of a map

Which is not one - one but onto
10. Give an example of a map

Which is neither one - one nor onto.

## - Watch Video Solution

11. Let $\mathrm{A}=\mathrm{R}-\{3\}, \mathrm{B}=\mathrm{R}-\{1\}$. If $f: A \rightarrow B$ be defined $f(x)=\frac{x-2}{x-3} \forall x \in A$. Then show that f is bijective.

## - Watch Video Solution

12. Let $A=[-1,1]$. Then , discuss whether the following functions defined on

A are one - one , onto or bijective.
$f(x)=\frac{x}{2}$

## - Watch Video Solution

13. Let $A=[-1,1]$. Then , discuss whether the following functions defined on A are one - one, onto or bijective.
$g(x)=|x|$

## - Watch Video Solution

14. Check the injectivity and surjectivity of the following function .
$f:[-1,1] \rightarrow[-1,1], f(x)=x|x|$

## - Watch Video Solution

15. Let $A=[-1,1]$. Then , discuss whether the following functions defined on

A are one - one, onto or bijective.
$k(x)=x^{2}$

## - Watch Video Solution

16. Each of the following defines a relation of N :
x is greater than $\mathrm{y}, \mathrm{x}, \mathrm{y} \in N$.

Determine which of the above relations are reflexive, symmetric and transitive .

## - Watch Video Solution

17. Each of the following defines a relation of N :
$x+y=10, x, y \in N$
Determine which of the above relations are reflexive, symmetric and transitive .

## - Watch Video Solution

18. Each of the following defines a relation of N :
x . y is square of an integer $x, y \in N$.
Determine which of the above relations are reflexive, symmetric and transitive.

## - Watch Video Solution

19. Each of the following defines a relation of N :
$x+4 y=10, x, y \in N$
Determine which of the above relations are reflexive, symmetric and transitive .

## - Watch Video Solution

20. Let $A=\{1,2,3 \ldots \ldots .9\}$ and R be the relation in $A \times A$ defined by (a,b) $\mathrm{R},(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$ for $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})$ in $A \times A$. Prove that R is an equivalence relation and also obtain the equivalent class [(2,5)].

## - Watch Video Solution

21. Using the definition, prove that the function $\mathrm{F}: A \rightarrow B$ is invertible if and only if f is both one -one and onto.

## - Watch Video Solution

22. Functions $f, g: R \rightarrow R$ are defined ,respectively, by $f(x)=x^{2}+3 x+1, g(x)=2 x-3$, find fog

## - Watch Video Solution

23. Functions $f, g: R \rightarrow R$ are defined ,respectively, by $f(x)=x^{2}+3 x+1, g(x)=2 x-3$, find $g \circ f$.

## - Watch Video Solution

24. Functions $f, g: R \rightarrow R$ are defined ,respectively, by $f(x)=x^{2}+3 x+1, g(x)=2 x-3$, find $f o f$.

## - Watch Video Solution

25. Functions $f, g: R \rightarrow R$ are defined ,respectively, by $f(x)=x^{2}+3 x+1, g(x)=2 x-3$, find $g \circ g$.

## Watch Video Solution

26. Let * be the binary operation defined on Q. Find which of the following binary operations are commutative. $a * b=a-b, \forall a, b \in Q$

## - Watch Video Solution

27. Let * be the binary operation defined on Q . Find which of the following binary operations are commutative.
$a * b=a^{2}+b^{2}, \forall a, b \in Q$

## - Watch Video Solution

28. Let * be the binary operation defined on Q . Find which of the following binary operations are commutative.
$a * b=a+a b, \forall a, b \in Q$

## - Watch Video Solution

29. Let * be the binary operation defined on Q . Find which of the following binary operations are commutative.
$a * b=(a-a b)^{2}, \forall a, b \in Q$

## - Watch Video Solution

30. If $*$ be binary operation defined on R by $a * b=1+a b, \forall a, b \in R$.

Then the operation $*$ is
(i) Commutative but not associative.
(ii) Associative but not commutative .
(iii) Neither commutative nor associative .
(iv) Both commutative and associative.

## Solutions Of Ncert Exemplar Problems Objective Type Questions

1. Let $T$ be set of all triangle in the Euclidean plane, and let a relation $R$ on T be defined as aRb if a is congruent tob, $\forall \mathrm{a}, b \in T$. Then, R is ....
A. Reflexive but not transitive
B. Transitive but not symmetric
C. Equivalence
D. None of these

## Answer: C

## - Watch Video Solution

2. Consider the non-empty set consisting of children in a family and a relation $R$ defined as $a R b$, if $a$ is brother of $b$. Then , $R$ is
A. Symmetric but not transitive
B. Transitive but not symmetric
C. Neither symmetric not transitive
D. Both symmetric and transitive

## Answer: B

## D Watch Video Solution

3. The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are
A. 1
B. 2
C. 3
D. 7
4. If the relation $R$ on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$. Then,$R$ is $\qquad$
A. Reflexive
B. Transitive
C. Symmetric
D. None of these

## Answer: B

## - Watch Video Solution

5. Let us define a relation R in R as Rb if $a \geq b$. Then, R is
A. an equivalence relation
B. reflexive, Transitive but not symmetric
C. symmetric , transitive but not reflexive
D. neither transitive nor reflexive but symmetric .

## Answer: B

## - Watch Video Solution

6. If $\mathrm{A}=\{1,2,3\}$ and consider the relation $\mathrm{R}=\{(1,1),(2,2),(3,3),(1,2),(2,3)$, $(1,3)$ ) . Then R is $\qquad$
A. reflexive but not symmetric
B. reflexive but not transitive
C. symmetric and transitive
D. neither symmetric, nor transitive

## Answer: A

## - Watch Video Solution

7. The identity element for the binary operation * defined on $Q \sim\{0\}$ as $a * b=\frac{a b}{2}, \forall a, b \in Q-\{0\}$ is
A. 1
B. 0
C. 2
D. None of these

## Answer: C

## - Watch Video Solution

8. If the set A contains 5 elements and the set B contains 6 elements, then the number of one -one and onto mapping from $A$ to $B$ is ....
A. 720
B. 120
C. 0
D. None of these

## Answer: C

## - Watch Video Solution

9. If $A=\{1,2,3 \ldots, n\}$ and $B=\{a, b\}$ Then, the number of subjection from $A$ into $B$ is $\qquad$
A. ${ }^{n} P_{2}$
B. $2^{n}-2$
C. $2^{n}-1$
D. None of these

## Answer: D

## - Watch Video Solution

10. If $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{x}, \forall x \in R$. Then , f is .........
A. one-one
B. onto
C. bijective
D. $f$ is not defined

## Answer: D

## - Watch Video Solution

11. 

Let
$f: R \rightarrow R$
be
defined
by
$f(x)=3 x^{2}-5$ and $g: R \rightarrow R, g(x)=\frac{x}{x^{2}+1}$ Then gof is.
A. $\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}$
B. $\frac{3 x^{2}-5}{9 x^{4}-6 x^{2}+26}$
C. $\frac{3 x^{2}}{x^{4}+2 x^{2}-4}$
D. $\frac{3 x^{2}}{9 x^{4}+30 x^{2}-2}$

## D Watch Video Solution

12. Which of the following functions from $Z$ into $Z$ are bijections ?
A. $f(x)=x^{3}$
B. $f(x)=x+2$
C. $f(x)=2 x+1$
D. $f(x)=x^{2}+1$

## Answer: B

## Watch Video Solution

13. If $f: R \rightarrow R$ be the functions defined by $f(x)=x^{3}+5$, then $f^{-1}(x)$ is $\qquad$
A. $(x+5)^{\frac{1}{3}}$
B. $(x-5)^{\frac{1}{3}}$
C. $(5-x)^{\frac{1}{3}}$
D. $5-x$

## Answer: B

## - Watch Video Solution

14. If $f: A \rightarrow B$ and $g: B \rightarrow C$ be the bijective functions, then $(g o f)^{-1}$ is $\qquad$
A. $f^{-1} \mathrm{og}^{-1}$
B. fog
C. $g^{-1} \mathrm{of}^{-1}$
D. gof
15. If $f: R-\left\{\frac{3}{5}\right\} \rightarrow R$ be defined by $f(x)=\frac{3 x+2}{5 x-3}$, then
A. $f^{-1}(x)=f(x)$
B. $f^{-1}(x)=-f(x)$
C. $\operatorname{fof}(x)=-x$
D. $f^{-1}(x)=\frac{1}{19} f(x)$

## Answer: A

## - Watch Video Solution

16. If $f:[0,1] \rightarrow[0,1]$ be difined by $f(x)= \begin{cases}x & \text { if } \mathrm{x} \text { is rational } \\ 1-x & \text { if } \mathrm{x} \text { is irrational }\end{cases}$ then $\operatorname{fof}(x)$ is
A. constant
B. $1+x$
C. $x$
D. None of these

## Answer: C

## - Watch Video Solution

17. If $f:\left[(2, \infty) \rightarrow R\right.$ be the function defined by $f(x)=x^{2}-4 x+5$, then the range of $f$ is $\qquad$
A. R
B. $[1, \infty)$
C. $[4, \infty)$
D. $[5, \infty)$

## Answer: B

18. If $f: N \rightarrow R$ be the function defined by $f(x)=\frac{2 x-1}{2}$ and $g: Q \rightarrow R$ be another function defined by $g(x)=x+2$. Then , gof $\left(\frac{3}{2}\right)$ is .......
A. 1
B. -1
C. 3
D. None of these

## Answer: D

## - Watch Video Solution

19. $f: R \rightarrow R, f(x)=\left\{\begin{array}{ll}2 x & x>3 \\ x^{2} & 1<x \leq 3 \\ 3 x & x \leq 1\end{array}\right.$ then find $\mathrm{f}(-1)+\mathrm{f}(2)+\mathrm{f}(4)$.
A. 9
B. 14
C. 5
D. None of these

## Answer: A

## - Watch Video Solution

20. If $f: R \rightarrow R$ be given by $\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$, then $f^{-1}(1)$ is .......
A. $\frac{\pi}{4}$
B. $\left\{n \pi+\frac{\pi}{4}: n \in Z\right\}$
C. Does not exist
D. None of these

## Answer: A

## - Watch Video Solution

Solutions Of Ncert Exemplar Problems Fillers

1. Let the relation $R$ be defined in $N$ by $a R b$, if $2 a+3 b=30$. Then , $R=$

## - Watch Video Solution

2. If the relation R be defined on the set $A=\{1,2,3,4,5\}$ by $R=\left\{(a, b):\left|a^{2}-b^{2}\right|<8\right\}$. Then , R is given by

## - Watch Video Solution

3. The functions f and g are defined as follow : $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$. Find the range of $f$ and $g$. Also find the composition function fog and gof.

## - Watch Video Solution

4. $f: R \rightarrow R, f(x)=\frac{x}{\sqrt{1+x^{2}}}, \forall x \in R$. Then find (fofof) ( x ).

## - Watch Video Solution

5. If $f(x)=\left[4-(x-7)^{3}\right]$, then $f^{-1}(x)=\ldots \ldots \ldots$

## - Watch Video Solution

Solutions Of Ncert Exemplar Problems True False

1. Let $R=\{(3,1),(1,3),(3,3)\}$ be a relation defined on the set $A=\{1,2,3\}$. Then , R is symmetric , transitive but not reflexive.

## - Watch Video Solution

2. If $f: R \rightarrow R$ be the function defined by $f(x)=\sin (3 x+2) \forall x \in R$. Then , f is invertible.
3. Every relation which is symmetric and transitive is also reflexive.

## - Watch Video Solution

4. An integer $m$ is said to be related to another integer $n$ if $m$ is a integral multiple of $n$. This relation in $Z$ is reflexive, symmetric and transitive.

## - Watch Video Solution

5. If $A=\{0,1\}$ and N be the set of natural numbers. Then , the mapping $f: N \rightarrow A$ defined by $f(2 n-1)=0, f(2 n)=1, \forall n \in N$, is onto.

## - Watch Video Solution

6. The relation R on the set $A=\{1,2,3\}$ defined as $\mathrm{R}=$ $\{(1,1),(1,2),(2,1),(3,3)\}$ is reflexive , symmetric and transitive.

## - Watch Video Solution

7. The composition of function is commutative .

## - Watch Video Solution

8. The composition of function is associative.

## - Watch Video Solution

9. Every function is invertible.

## - Watch Video Solution

10. A binary operation on a set has always the identity element.

## - Watch Video Solution

## Practice Paper 1 Section A

1. Which of the following defined on $Z$ is not an equivalence relation ?
A. $(x, y) \in S \Leftrightarrow x \geq y$
B. $(x, y) \in S \Leftrightarrow x=y$
C. $(x, y) \in S \leftrightarrow x-y$ is a multiple of 3
D. If $|x-y|$ is even $\Leftrightarrow(x, y) \in S$

Answer:

## - Watch Video Solution

2. The number of binary operation on $\{1,2,3, \ldots \ldots, n\}$ is
A. $2^{n}$
B. $n^{n^{2}}$
C. $n^{3}$
D. $n^{2 n}$

## Answer:

## - Watch Video Solution

3. If $a * b=a^{2}+b^{2}$ is on Z then , $(2 * 3) * 4=\ldots \ldots$.
A. 13
B. 16
C. 185
D. 31

## Answer:

## D Watch Video Solution

4. $\mathrm{A}=\{1,2\}$, the number of one - one functions on $A \rightarrow A$ is $\qquad$
A. 1
B. 2
C. 3
D. 4

## Answer:

5. $*$ is defined by $a * b=a+b-1$ on Z , then identity element for $*$ is
A. 1
B. 0
C. -1
D. 2

## Answer:

## - Watch Video Solution

## Practice Paper 1 Section B

1. If $\mathrm{f}(\mathrm{x})=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$ then find gof and fog.

## - Watch Video Solution

2. Let $*$ be the binary operation on Q define $a * b=a+a b$. Is $*$ commutative ? Is $*$ associative ?
3. Let $f: R \rightarrow R$ be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that gof $=\mathrm{fog}=I_{g}$

## - Watch Video Solution

4. Let $A=\{1,2,3\}$. Then number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is

## - Watch Video Solution

## Practice Paper 1 Section C

1. Let $T$ be the set of all triangles in a plane with $R$ a relation in $T$ given by $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruent to $\left.T_{2}\right\}$ Show that R is an equivalence relation.
2. Prove that binary operation on set R defined as $a * b=a+2 b$ does not obey associative rule.

## - Watch Video Solution

3. Let $f^{\prime}: N \rightarrow R$ be a function defined as $f^{\prime}(x)=4 x^{2}+12 x+15$.

Show that $f: N \rightarrow S$, where, S is the range of f , is invertible. Find the inverse of $f$.

## - Watch Video Solution

4. If $f: A \rightarrow B$ and $g: B \rightarrow C$ be the bijective functions, then $(g o f)^{-1}$ is $\qquad$

## - Watch Video Solution

5. Show that $f: R_{+} \rightarrow R_{+}, f(x)=\frac{1}{x}$ is one to one and onto function.

## - Watch Video Solution

## Practice Paper 1 Section D

1. Let $: f: N \rightarrow N$ be defined by $f(n)=\left\{\begin{array}{ll}\frac{n+1}{2} & \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2} & \text { if } \mathrm{n} \text { is even }\end{array}\right.$ for all $n \in N$.

State whether the function $f$ is bijective . Justify your answer.

## - Watch Video Solution

2. $f: Z \rightarrow Z$ and $g: Z \rightarrow Z$ are defined as follow:
$f(n)=\left\{\begin{array}{ll}n+2 & \mathrm{n} \text { even } \\ 2 n-1 & \mathrm{n} \text { odd }\end{array}, g(n)=\left\{\begin{array}{ll}2 n & \mathrm{n} \text { even } \\ \frac{n-1}{2} & \mathrm{n} \text { odd }\end{array}\right.\right.$ Find fog and gof.

## - Watch Video Solution


[^0]:    - Watch Video Solution

