

# MATHS

# BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI ENGLISH)

# **RELATIONS AND FUNCTIONS**

### Exercise 11

**1.** Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set  $A=\{1,2,3,\ldots.13,14\}$  defined as  $R=\{(x,y)\!:\!3x-y=0\}$ 

**2.** Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R is the set N of natural numbers defined as R = {(x,y): y = x + 5and x < 4 }.

Watch Video Solution

**3.** Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set A =  $\{1,2,3,4,5,6\}$  as R =  $\{(x,y):y \text{ is divisible by } x\}$ .

Watch Video Solution

**4.** Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set Z of all integers defined as ={(x, y): x - y is an

integers }

**5.** Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set A of human beings in a town at a particular time given by

(a)  $r = \{(x, y) : x ext{ and } y ext{ works at the same place } \}$ 

Watch Video Solution

**6.** Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set A of human beings in a town at a particular time

given by

R = {(x,y)} : x and y live in the same locality }

**7.** Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set A of human beings in a town at a particular time given by

 $R = \{(x,y)\} : x \text{ is exactly 7 cm taller than } y \}$ 

Watch Video Solution

**8.** Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set A of human beings in a town at a particular time

given by

 $R = \{(x,y)\!:\! x ext{ is wife of y} \}$ 

Watch Video Solution

**9.** Determine whether each of the following relations are reflexive , symmetric and transitive :

Relation R in the set A of human beings in a town at a particular time given by

 $R = \{(x,y) \colon \! x ext{ is father of y} \}$ 

Watch Video Solution

10. Show that the relation R in the set R of real number , defined as  $R = \{(a, b) : a \le b^2\}$  is neither reflexive nor symmetric nor transitive.

Watch Video Solution

**11.** Check whether the relation R defined in the set  $\{1,2,3,4,5,6\}$  as R =  $\{(a,b) :$ 

b = a +1 } is reflexive , symmetric or transitive.



12. Show that the relation R is R defined as  $R = \{(a, b) : a \le b\}$  is reflexive and transitive but not symmetric.

13. Check whether the relation R defined by  $R=ig\{(a,b)\!:\!a\leq b^3ig\}$  is reflexive , symmetric or transitive.

Watch Video Solution

14. Show that the relation R in the set  $\{1, 2, 3\}$  given by  $R = \{(1, 2), (2, 1)\}$  is symmetric but neither reflexive nor transitive.



**15.** Show that the relation R in the set A of all the books in a library of a college , given by  $R = \{(x, y) : x \text{ and } y \text{ have same number of pages} \}$  is an equivalence relation.



**16.** Show that the relation R in the set  $A = \{1, 2, 3, 4, 5\}$  given by  $R\{(a, b) : |a - b| \text{ is even }\}$ , is an equivalence relation. Show that all the elements of  $\{1,3,5\}$  are related to each other all the elements of  $\{2,4\}$  are related to each other. But no element of  $\{1,3,5\}$  is related to any element of  $\{2,4\}$ .

Watch Video Solution

17. Show that each of the relation R in the set  $A=\{x\in Z\colon 0\leq x\leq 12\}$ 

given by

 $R = \{(a, b) : |a - b| \text{ is multiple of 4}\}$  is in equivelance.

Watch Video Solution

18. Show that each of the relation R in the set  $A=\{x\in Z\colon 0\leq x\leq 12\}$ 

given by

 $R = \{(a,b) : a = b\}$  is an equivalence relation . Find the set of all

elements related to 1 each case.



19. Give an example of relation . Which is

Symmetric but neither reflexive nor transitive.

Watch Video Solution

20. Give an example of relation . Which is

Transitive but neither reflexive nor symmetric .

Watch Video Solution

21. Give an example of relation . Which is

Reflexive and symmetric but not transitive .

22. Give an example of relation . Which is

Reflexive and transitive but not symmetric.



23. Give an example of relation . Which is

Symmetric and transitive but not reflexive.

Watch Video Solution

**24.** Show that the relation R in the set A of points in a plane give by R =  $\{(P,Q) : \text{distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set equivalence relation . Further, show that the set of all points related to a point <math>P \neq (0, 0)$  is the circle passing through P with origin as centre.

**25.** Show that the relation R defined in the set A of all triangles as  $R = \{(T_1, T_2\}T_1 \text{ is similar to } T_2 \}$ , is equivalence relation. Consider three right angle triangles  $T_1$  with sides 3,4,5,  $T_2$  with sides 5,12, 13 and  $T_3$  with sides 6, 8, 10. Which triangles among  $T_1, T_2$  and  $T_3$  are related?

### Watch Video Solution

**26.** Show that the relation R defined in the set A of all polygons as  $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same number of sides}\}$ , is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5?

### Watch Video Solution

**27.** Let L be the set of all lines in XY plane and R be the relation in L defined as  $R = \{(L_1, L_2\}: L_1 \text{ is parallel to } L_2 \}$ . Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

**28.** Let R be the relation in the set  $\{(1, 2, 3, 4\}$  given by  $R = \{(1, 2), (2, 2), (1, 1)(4, 4), (1, 3), (3, 3), (3, 2)\}$ . Choose the correct answer.

A. R is reflexive and symmetric but not transitive .

B. R is reflexive and transitive but not symmetric.

C. R is symmetric and transitive but not reflexive.

D. R is an equivalence relation.

#### Answer: B

Watch Video Solution

29. Let R be the relation on the set N given by  $R = \{(a, b) : a = b - 2, b > 6\}$ . Choose the correct answer.

A.  $(2,4)\in R$ 

#### Answer: C

**Watch Video Solution** 

# Exercise 12

**1.** Show that the function  $f: R \to R$ , defined by  $f(x) = \frac{1}{x}$  is one - one and onto , where R is the set of all non - zero real number . is the result true, if the domain R is replaced by N with co-domain being same as R ?

# Watch Video Solution

2. Check the injectiveity and surjectivity of the following functions :

$$f\!:\!N o N$$
 given by  $f(x)=x^2$ 

3. Check the injectiveity and surjectivity of the following functions :

 $f{:}\,Z
ightarrow Z$  given by  $f(x)=x^2$ 

Watch Video Solution

4. Check the injectiveity and surjectivity of the following functions :

 $f\!:\!R o R$  given by  $f(x)=x^2$ 

Watch Video Solution

5. Check the injectiveity and surjectivity of the following functions :

 $f{:}N o N$  given by  $f(x) = x^3$ 

6. Check the injectiveity and surjectivity of the following functions :

 $f{:}Z
ightarrow Z$  given by  $f(x)=x^3$ 



7. Prove that the Greatest Integer Function  $f\colon R o R$ , given by f(x) = [x], is neither one - one nor onto , where [x] denotes the greatest integer less than or equal to x.

Watch Video Solution

**8.** Show that the Modulus Function  $f \colon R \to R$ , given by f(x) = |x| , is

neither one one nor onto , where |x| is x, if x is positive or 0 and |x| is - x, if

x is negative.





**10.** Let  $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$  and let  $f = \{(1, 4), (2, 5), (3, 6)\}$ 

be a function from A to B. Show that f is one - one.

Watch Video Solution

11. In each of the following cases, state whether the function is one - one,

onto or bijective. Justify your answer.

 $f \colon R o R$  defined by f(x) = 3 - 4x.

12. In each of the following cases , state whether the function is one - one

, onto or bijective. Justify your answer.

 $f\!:\!R o R$  defined by f(x) =  $1+x^2$ 



13. Let A and B be sets. Show that  $f \colon A imes B o B imes A$  such that f(a,b) =

(b,a) is bijecive function.

Watch Video Solution

**14.** Let 
$$: f: N \to N$$
 be defined by  $f(n) = \begin{cases} \frac{n+1}{2} & \text{if n is odd} \\ \frac{n}{2} & \text{if n is even} \end{cases}$  for all

 $n\in N$  .

State whether the function f is bijective . Justify your answer.

15. Let A = R - {3} and B = R - {1}. Consider the function  $f: A \rightarrow B$  defined

by , 
$$f(x)=\left(rac{x-2}{x-3}
ight)$$
 is f one - one and onto ?

## Watch Video Solution

16. Let  $f\colon R o R$  be defined as  $f(x)=x^4$  . Choose the correct answer.

A. f is one - one onto

B. f is many - one onto

C. f is one - one but not onto

D. f is neither one - one nor onto

#### Answer: D



17. Let  $f \colon R o R$  be defined as f(x) = 3x. Choose the correct answer.

A. f is one - one onto

B. f is many - one onto

C. f is one - one but not onto

D. f is neither one - one nor onto

#### Answer: A

**Watch Video Solution** 

# Exercise 13

1. Let  $f: \{1,3,4\} \to \{1,2,5\}$  and  $g: \{1,2,5\} \to \{1,3\}$  be given by

 $f = \{(1, 2), (3, 5), (4, 1) \text{ and } g\{(1, 3), (2, 3), (5, 1)\}$ . Write down gof.

# Watch Video Solution

2. Let f, g and h be functions from R to R. Show that , (f +g) oh = foh +

(f.g) oh = (foh)+ (goh)



$$f(x) = 8x^3 \, ext{ and } \, g(x) = x^{rac{1}{3}}$$

Watch Video Solution

5. If 
$$f(x)=rac{4x+3}{6x-4}, x
eqrac{2}{3}$$
 , show that fof (x) = x, for all  $x
eqrac{2}{3}$  . What

is the inverse of f?

6. State with reason whether following functions have inverse :

 $f \colon \{1, 2, 3, 4\} \to \{10\}$  with  $f \colon \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ 



7. State with reason whether following functions have inverse :

 $g \colon \{5, 6, 7, 8\} o \{1, 2, 3, 4\}$  with  $g \colon \{(5, 4), (6, 3), (7, 4), (8, 2)\}$ 

Watch Video Solution

8. State with reason whether following functions have inverse :

 $h \colon \{2, 3, 4, 5\} \to \{7, 9, 11, 13\}$  with  $h\{(2, 7), (3, 9), (4, 11), (5, 13)\}$ 

# Watch Video Solution

**9.** Show that f : [-1,1]  $\to R$  , given by  $f(x)=rac{x}{x+2}$  is one - one . Find the inverse of the function  $f\colon [-1,1] o$  Range f.

(Hint: For  $y\in ext{ Range } f,y=f(x)=rac{x}{x+2}, ext{ for some x in [-1,1]}$  , i.e.,  $x=rac{2y}{1-u}$  ).

Watch Video Solution

**10.** Consider  $f \colon R o R$  given by f(x) = 4x +3. Show that f is invertible. Find

inverse of f.

Watch Video Solution

11. Consider  $f: R^+ \to [4, \infty]$  given by  $f(x) = x^2 + 4$  show that f is f invertible with the inverse  $f^{-1}$  of given by  $f^{-1}(y) = \sqrt{y-4}$  where  $R^+$ is set of all non - negative real numbers .

# Watch Video Solution

12. Consider  $f\!:\!R_+
ightarrow [-5,\infty)$  given by f(x) =  $9x^2+6x-5$ . Show that

f is invertible with 
$$f^{-1}(y) = \left(rac{\sqrt{y+6}-1}{3}
ight)$$

13. Let  $f \colon X \to Y$  be an invertible function . Show that f has unique inverse .

(Hint : Suppose  $g_1$  and  $g_2$  are two inverse of f. Then for all $y\in Y, (fog_1)(y)=I_Y(y)=(fog_2)(y).$  Use one - one ness of f).

Watch Video Solution

14. Consider  $f: \{1, 2, 3\} \to \{a, b, c\}$  given by f(1) = a, f(2) and f(3) = c . Find  $f^{-1}$  and show that  $(f^{-1})^{-1} = f$ .

Watch Video Solution

15. Let  $f\colon X o Y$  be an invertible function . Show that the inverse of  $f^{-1}$  is f. i.e.,  $\left(f^{-1}
ight)^{-1}=f.$ 

16. If  $f\!:\!R o R$  be given by  $f(x)=\left(3-x^3
ight)^{rac{1}{3}}$  then fof (x) is

A.  $x^{\frac{1}{3}}$ B.  $x^{3}$ C. x

D.  $\left(3-x^2
ight)$ 

#### Answer: C

Watch Video Solution

**17.** Let  $f: R - \left\{-\frac{4}{3}\right\} \to R$  be a function defined as  $f(x) = \frac{4x}{3x+4}$ . The inverse of f is the map g : Range  $f \to R - \left\{-\frac{4}{3}\right\}$  given by

A. 
$$g(y)=rac{3y}{3-4y}$$
  
B.  $g(y)=rac{4y}{4-3y}$   
C.  $g(y)=rac{4y}{3-4y}$ 

$$\mathsf{D}.\,g(y)=\frac{3y}{4-3y}$$

#### Answer: B



**18.** Determine whether or not each of the definition of \* given below gives a binary operation. In the even that \* is not a binary operation , give justification for this .

On 
$$Z^+$$
 , define  $\ast\,$  by  $a\,$   $\,$   $\ast\,$   $\,$   $b=a-b$ 



**19.** Determine whether or not each of the definition of \* given below gives a binary operation. In the even that \* is not a binary operation , give justification for this .

On  $Z^+$  , define \* by a \* b = ab

**20.** Determine whether or not each of the definition of \* given below gives a binary operation. In the even that \* is not a binary operation , give justification for this .

On R , define \* by a \*  $b = ab^2$ 

Watch Video Solution

**21.** Determine whether or not each of the definition of \* given below gives a binary operation. In the even that \* is not a binary operation , give justification for this .

On  $Z^+$  , define \* by a \* b = |a - b|

Watch Video Solution

**22.** Determine whether or not each of the definition of \* given below gives a binary operation. In the even that \* is not a binary operation ,

give justification for this .

On  $Z^+$  , define  $\, * \,$  by  $a \,$   $\, * \,$  b = a

### Watch Video Solution

23. For each opertion \* difined below, determine whether \* isw binary, commutative or associative. (i) On Z, define a \* b = a - b

- (ii) On Q, define a \* b = ab + 1
- (iii) On Q, define  $a * b = \frac{ab}{2}$
- (iv) On  $Z^{\,+},\,$  define  $a\,*\,b\,=\,2^{ab}$
- (v) On  $Z^+,\,\,$  define  $a*b=a^b$
- (vi) On  $R-\{-1\},$  define  $a*b=rac{a}{b+1}$

# Watch Video Solution

**24.** For each opertion \* difined below, determine whether \* isw binary, commutative or associative.

(i) On Z, define a \* b = a - b(ii) On Q, define a \* b = ab + 1(iii) On Q, define  $a * b = \frac{ab}{2}$ (iv) On  $Z^+$ , define  $a * b = 2^{ab}$ (v) On  $Z^+$ , define  $a * b = a^b$ (vi) On  $R - \{-1\}$ , define  $a * b = \frac{a}{b+1}$ 

**25.** For each opertion \* difined below, determine whether \* isw binary, commutative or associative.

- (i) On Z, define  $a \ast b = a b$
- (ii) On Q, define a \* b = ab + 1

- (iii) On Q, define  $a * b = \frac{ab}{2}$
- (iv) On  $Z^+,\,$  define  $a*b=2^{ab}$
- (v) On  $Z^+,\,$  define  $a*b=a^b$
- (vi) On  $R-\{-1\},$  define  $a*b=rac{a}{b+1}$

**26.** For each opertion \* difined below, determine whether \* isw binary, commutative or associative.

(i) On Z, define a \* b = a - b(ii) On Q, define a \* b = ab + 1(iii) On Q, define  $a * b = \frac{ab}{2}$ (iv) On  $Z^+$ , define  $a * b = 2^{ab}$ (v) On  $Z^+$ , define  $a * b = a^b$ (vi) On  $R - \{-1\}$ , define  $a * b = \frac{a}{b+1}$ 

Watch Video Solution

27. For each operation \* defined below, determine , whether \* is binary

, commutative or associative.

On  $Z^+$  , define  $a^{ullet b} = ab$ 

**28.** For each opertion \* difined below, determine whether \* isw binary, commutative or associative.

(i) On Z, define a \* b = a - b(ii) On Q, define a \* b = ab + 1(iii) On Q, define  $a * b = \frac{ab}{2}$ (iv) On  $Z^+$ , define  $a * b = 2^{ab}$ (v) On  $Z^+$ , define  $a * b = a^b$ (vi) On  $R - \{-1\}$ , define  $a * b = \frac{a}{b+1}$ 

Watch Video Solution

**29.** Consider the binary operation  $\land$  on the set {1,2,3,4,5} defined by  $a \land b$ 

= min {a,b} . Write the operation table of the operation  $\land$  .





**1.** Consider a binary operation \* on the set {1,2,3,4,5} given by the following multiplication table.

(i) Compute  $(2^*3)^*4$  and  $2^*(3^*4)$ 

(ii) Is \* commutative ?

(iii) Compute  $(2^*3)^*(4^*5)$ 

(Hint: use the following table )

| * | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 2 | 1 | 2 | 1 |
| 3 | 1 | 1 | 3 | 1 | 1 |
| 4 | 1 | 2 | 1 | 4 | 1 |
| 5 | 1 | 1 | 1 | 1 | 5 |

**2.** Let \* be the binary operation on the set {1,2,3,4,5} defined  $a^*b$  = H.C.F of a and b Is the operation \* same as the operation \* defined in Exercise 4 above ? Justify your answer .

| Watch.  | Video | <b>Solution</b> |
|---------|-------|-----------------|
| vvalcii | video | SOLUTION        |
|         |       |                 |

**3.** Let \* be the binary operation on N given by a \* b = L.C.M. of a and b.

Find

5\*7, 20\*16

Watch Video Solution

**4.** Let \* be the binary operation on N given by a \* b = L.C.M. of a and b.

Find

Is \* commutative?

**5.** Let \* be the binary operation on N given by a \* b = L.C.M. of a and b.

Find

Is \* associative?

Watch Video Solution

**6.** Let \* be the binary operation on N given by a \* b = L.C.M. of a and b.

Find

Find the identity of \* in N.

Watch Video Solution

**7.** Let \* be the binary operation on N given by a \* b = L.C.M. of a and b.

Find

Which elements of N are invertible for the operation \* ?

**8.** Is \* defined on the set  $\{1, 2, 3, 4, 5\}$  by a\*b = L.C.M. of a and b a binary operation ? Justify your answer.



**9.** Let \* be the binary operation on N defined by  $a^*b$  = H.C.F of a and b . Is \* commutative ? Is \* associative ? Does there exist identity for this binary operation on N ?

Watch Video Solution

**10.** Let \* be a binary operation on the set Q of rational numbers as follows :

 $a^*b = a - b$ 

Find which of the binary operations are commutative and which are associative.

**11.** Let \* be a binary operation on the set Q of rational numbers as follows :

 $a^*b = a^2 + b^2$ 

Find which of the binary operations are commutative and which are associative.

Watch Video Solution

**12.** Let \* be a binary operation on the set Q of rational numbers as follows :

 $a^*b = a + ab$ 

Find which of the binary operations are commutative and which are associative.



**13.** Let \* be a binary operation on the set Q of rational numbers as

follows :

 $a^*b = (a - b)^2$ 

Find which of the binary operations are commutative and which are associative.



**14.** Let \* be a binary operation on the set Q of rational numbers as follows :

$$a^*b = rac{ab}{4}$$

Find which of the binary operations are commutative and which are associative.

Watch Video Solution

**15.** Let \* be a binary operation on the set Q of rational numbers as follows :

 $a^*b = ab^2$ 

Find which of the binary operations are commutative and which are associative.



17. Find which of the operations given above has identity.

$$a^*b = a^2 + b^2$$

Watch Video Solution

**18.** For which values of p does the pair of equations given below has unique solution ?



2x + 2y + 2 = 0

Watch Video Solution

19. Find which of the operations given above has identity.

$$a^*b = (a - b)^2$$

Watch Video Solution

20. Find which of the operations given above has identity.

$$a^*b = \frac{ab}{4}$$

Watch Video Solution

21. Find which of the operations given above has identity.

$$a^*b = ab^2$$

**22.** L  $A = N \times N$  and \* be the binary operation on A defined by  $(a, b)^*(c, d) = (a + c, b + d)$  Show that \* is commutative and associative. Find the identity element for \* on A, if any.

Watch Video Solution

23. State whether the following statements are true or false . Justify .

For an arbitrary binary operation \* on a set N,  $a^*a = a \, \forall a \in N$ .

Watch Video Solution

24. State whether the following statements are true or false . Justify .

If \* is commutative binary operation on N, then  $a^*(b^*c) = (c^*b)^*a$ .

**25.** Consider a binary operation \* on N defined as  $a^*b = a^3 + b^3$ . Choose the correct answer.

A. Is \* both associative and commutative ?

B. Is \* commutative but not associative ?

C. Is \* associative but not commutative ?

D. Is \* neither commutative nor associative ?

## Answer: B

Watch Video Solution

Miscellaneous Exercise 1

1. Let  $f \colon R o R$  be defined as f(x) = 10x + 7. Find the function

 $g\!:\!R
ightarrow R$  such that gof = fog =  $I_g$ 

**2.** Let  $f: W \to W$  be defined as f(n) = n - 1, if n is odd and f(n) = n + 1, if n even. Show that f is invertible. Find the inverse of f. Here, W is the set all whole numbers.

Watch Video Solution

**3.** If  $f\!:\!R o R$  is defined by  $f(x)=x^2-3x+2$  , find f(f(x)).

Watch Video Solution

**4.** Show that the function  $f \colon R o \{x \in R \colon -1 < x < 1\}$  defined by

 $f(x)=rac{x}{1+|x|}, x\in R$  is one one and onto function.

# Watch Video Solution

5. Show that the function  $f\colon R o R$  given by  $f(x)=x^3$  is injective.

**6.** Give examples of two functions  $f\colon N o Z$  and  $g\colon Z o Z$  such that gof is injective but g is not injective.

(Hint : Consider f(x) = x and g(x) = |x|).

Watch Video Solution

7. Give examples of two function  $f: N \to N$  and  $g: N \to N$  such that gof is onto but f is not onto. (Hint: Consider f(x) = x+1 " and "g(x) = {x-1 if x>1 1 if x=1.

**Watch Video Solution** 

**8.** Given a non empty set X , consider P(X) which is the set of all subsets of X. Define the relation R in P(X) as follows : For subsets A , B in P(X) ARB if and only if  $A \subset B$ . Is R an equivalence relation on P(X) ? Justify your answer.

**9.** Given a non - empty set, X , consider the binary operation  $*: P(X) \times P(X) \rightarrow P(X)$  given by  $A * B = A \cap B$ ,  $\forall A, B$  in P(X) , where P(X) is the power set X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation \*.

Watch Video Solution

**10.** Find the number of all onto functions from the set {1,2,3,.....,n} to itself.

Watch Video Solution

**11.** Let S = {a,b,c} and T = {1,2,3}. Find  $F^{-1}$  of the following functions F

from S to T, if it exists.

 $F=\{(a,3),(b,2),(c,1)\}$ 

**12.** Let S = {a,b,c} and T = {1,2,3}. Find  $F^{-1}$  of the following functions F from S to T , if it exists .

 $F = \{(a,2),(b,1),(c,1)\}$ 

#### Watch Video Solution

**13.** Consider the binary operations  $*R \times R \to R$  and  $o: R \times R \to R$ defined as a \* b|a - b| and  $a \circ b = a$ ,  $\forall a, b \in R$ . Show that \* is commutative but not associative, o is associative but not commutative. Further, show that  $\forall a, b, c \in R, a * (b \circ c) = (a * b)o(a * c)$ . [If it is so , we say that the operation \* distributes over the operation o]. Does o distribute over \*? Justify your answer.

## View Text Solution

14. Given a non - empty set X , let \*: P(X) imes P(X) o P(X) be defined as  $A * B = (A - B) \cup (B - A), \ orall A, B \in P(X).$  Show that the empty set  $\phi$  is the identity for the operation \* and all the elements A of P(X) are invertible with  $A^{-1} = A$ . (Hint :  $(A - \phi) \cup (\phi - A) = a$  and  $(A - A) \cup (A - A) = A * A = \phi$ ) View Text Solution

**15.** Define a binary operation \* on the set  $\{0, 1, 2, 3, 4, 5\}$  as  $a * b = \begin{cases} a + b, & \text{if } a + b < 6 \\ a + b - 6, & \text{If } a + b \ge 6 \end{cases}$  Show that zero is the identity for this operation and each element  $a \neq 0$  of the set is invertible with 6 - a being the inverse of a.

# Watch Video Solution

16. Let  $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$  and  $f, g: A \to B$  be functions defined  $f(x) = x^2 - x, x \in R$  and  $g(x) = 2 \left| x - \frac{1}{2} \right| - 1, x \in R$ . Are f and g

equal ? Justify your answer.

(Hint : One may note that two functions  $\mathsf{f}:A o B\,\,\mathrm{and}\,\,g{:}A o B$  such

that f (a) = g(a)  $Aa \in A$ , are called equal functions).



**17.** Let A =  $\{1,2,3\}$ . Then number of relations containing (1,2) and (1,3) which

are reflexive and symmetric but not transitive is

A. 1

B. 2

C. 3

D. 4

Answer: A



18. Let A = {1,2,3}. Then number of equivalence relations containing (1,2) is

| A. 1 |  |
|------|--|
| B. 2 |  |
| C. 3 |  |
|      |  |

### Answer: B

D. 4

> Watch Video Solution

19. Let 
$$f: R \to R$$
 be the Signum Function defined as  $f(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$  and  $g: R \to R$  be the Greatest Integer Function

given by g(x) = [x], where [x] is greatest integer less than or equal to x.

Then , does fog and gof coincide in (0,1] ?

A. Yes

B. No

C. Nothing can be said

D. Composite function does not exists

## Answer: B



D. 8

#### Answer: B





1. The relation R defined in the set of real number R is as follow :

 $R\{(x,y): x-y+\sqrt{2} ext{ is an irrational number}\}$ 

Is R transitive relation ?

Watch Video Solution

2. Let R be relation defined on the set of natural number N as follows :  $R = \{(x, y) : x \in N, y \in N, 2x + y = 41\}$ . Find the domian and range of the relation R . Also verify whether R is reflexive, symmetric and transitive.

Watch Video Solution

**3.**  $A = \{(1, 2, 3, .....10)\}$  The relation R defined in the set A as R

 $= \{(x, y): y = 2x\}$ . Show that R is not an equivalence relation.

**4.** The relation R difined the set Z as  $R = \{(x, y) : x - y \in Z\}$  show that

R is an equivalence relation.



5. Show that the relation R defined by  $(a,b)R(c,d) \Rightarrow a+d=b+c$  on

the set N imes N is an equivalence relation.

Watch Video Solution

6. R is relation in N imes N as (a,b) R (c,d)  $\, \Leftrightarrow \, ad = bc$ . Show that R is an

equivalence relation.



7. The relation R defined in the set N of natural number as  $\forall n, \min N$  if on division by 5 each of the integers n and m leaves the remainder less than 5. Show that R is equivalence relation. Also obtain the pairwise disjoint subset determined by R.



$$f{:}R
ightarrow R, f(x)=|-x|$$

Watch Video Solution

Watch Video Solution

9. Find the domain and range of the following function :

$$f\!:\!R o R, f(x)=rac{x^2-1}{x-1}, x
eq 1$$

# Watch Video Solution

10. Find the domain and range of the following function :

$$f{:}R
ightarrow R, f(x)=rac{1}{1-x^2}, x
eq\,\pm\,1$$

11. Find the domain and range of the following function :

$$f{:}R
ightarrow R, f(x)=\sqrt{9-x^2}$$

Watch Video Solution

12. Find the domain and range of the following function :

$$f\!:\!R o R, f(x)=rac{2}{x-2}$$

Watch Video Solution

**13.** 
$$f: R \to R, f(x) = \begin{cases} 12x+5 & x>1 \\ x-4 & x \le 1 \end{cases}$$
 then find  $f(0), f\left(-\frac{1}{2}\right), f(3), f(-5).$ 

14. Check the injectivity and surjectivity of the following functions .

$$f{:}R
ightarrow R, f(x)=x^2+7$$

Watch Video Solution

15. Check the injectivity and surjectivity of the following functions .

$$f\!:\!R o R, f(x)=x^3$$

Watch Video Solution

16. Check the injectivity and surjectivity of the following functions .

$$f{:}R
ightarrow R, f(x)=x^2-2$$

m

# Watch Video Solution

17. Show that the function  $f\!:\!R o \{x \in R \colon -1 < x < 1\}$  defined by

$$f(x)=rac{x}{1+|x|}, x\in R$$
 is one one and onto function.

18. 
$$f: Z o Z, f(n) = egin{cases} (n+2) & ext{if n is even} \\ (2n+1) & ext{if n is odd} \end{cases}$$

State whether the function f is one - one and onto .

Watch Video Solution

19.  $f \colon N imes N o N, f((\mathrm{m,n})) = m+n$  . If f one one and onto ?

Watch Video Solution

**20.** Show that  $f\!:\!R o R, f(x)=rac{x}{x^2+1}$  is not one one and onto

function.

Watch Video Solution

**21.**  $f \colon R o R, \, f(x) = x^2 + 1.$  Find the preimage of 17 and -3.

$${f 22.}\ f{:}\ R o R,\ f(x)= egin{cases} 2x & x>3\ x^2 & 1< x\leq 3\ 3x & x\leq 1 \end{cases}$$
 then find f (-1) + f(2) + f(4) .

Watch Video Solution

**23.** Is  $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$  a function, justify. If this is described by the relation,  $g(x) = \alpha x + \beta$ , then what values should be assigned to  $\alpha$  and  $\beta$ ?

# Watch Video Solution

24. The functions f and g are defined as follow :  $f = \{(1, 2), (3, 5), (4, 1)\}$  and  $g = \{(2, 3), (5, 1), (1, 3)\}$ . Find the range of f and g. Also find the composition function fog and gof. **25.** For functions f:A 
ightarrow B and  $g:B 
ightarrow A, \, gof = I_A$  . Prove that f is

one one and g onto functions .



**26.**  $f \colon R o R, f(x) = x^2 + 2$  and  $g \colon R o R, g(x) = rac{x}{x-1}$  then find

fog and gof.

Watch Video Solution

27.  $f\!:\!N o R,\,f(x)=4x^2+12x+5.$  Show that  $f\!:\!N o R$  is invertible

function . Find the inverse of f.



28. f and g are real valued function 
$$f(x)=x^2+x+7, x\in R ext{ and } g(x)=5x-3, x\in R$$
 . Find fog and

gof. Also find (fog)(2) and (gof)(1).



**29.** If f is greatest integer function and g is a modulus functions the find .

$$(gof)\left(-rac{1}{3}
ight)-(fog)\left(-rac{1}{3}
ight).$$

Watch Video Solution

**30.** 
$$f\!:\!R o R,\,f(x)=rac{x}{\sqrt{1+x^2}},\,orall x\in R.$$
 Then find (fofof) (x).

Watch Video Solution

**31.** 
$$f: Z \to Z$$
 and  $g: Z \to Z$ . Defined as  $f(n) = 3n$  and  $g(n) = \begin{cases} \frac{n}{3}, & \text{If n is a multiple of 3} \\ 0, & \text{If n is not a multiple of 3} \end{cases} \forall n \in Z$  Then show that  $gof = I_z$  but  $fog \neq I_z$ 

32.  $f\!:\!R o R$  be defined by  $f(x)=rac{x}{2}+3,g\!:\!R o R$  be defined by g(x)

= 2x - K. If fog = gof then find the value of K.



**34.** \* is a binary operation on the set Q.

$$a^{*}b=rac{2a+b}{4}$$
 then find 2\*3.

**35.** \* is a binary operation on the set Q.

 $a^{*}b = a + 12b + ab$  then find  $2^{*}rac{1}{3}$ 

# Watch Video Solution

$$a^{st}b=rac{a}{2}+rac{b}{3}$$
 then find  $rac{1}{2}{st}rac{4}{5}.$ 

Watch Video Solution

37. \* is a binary operation o Z. If  $x^*y = x^2 + y^2 + xy$  then find  $[(1^*2) + (0^*3)]^2.$ 

# Watch Video Solution

38. \* be a binary operation on R defined by

$$a^{st}b=rac{a}{4}+rac{b}{7},a,b\in R.$$

Show that \* is not commutative and associative.



**39.** Show that addition and multiplication are associative binary operation on R. But subtraction and division is not associative on R.

Watch Video Solution

**40.** Find the identity element , if it exists for the following operation . Also find the inverse if it exists.

On R defined 
$$a^*b=\sqrt{a^2-b^2}, |a|>|b|.$$

Watch Video Solution

**41.** Find the identity element , if it exists for the following operation . Also find the inverse if it exists.

On Z defined  $a^*b = a + b - 2$ .

42. Find the identity element , if it exists for the following operation . Also

find the inverse if it exists.

On R - {1} defined  $a^*b = a + b - ab$ .

Watch Video Solution

**43.** Find the identity element , if it exists for the following operation . Also

find the inverse if it exists.

On Q -{0} defined 
$$a^*b=rac{ab}{2}$$
 .

Watch Video Solution

44. Find the identity element, if it exists for the following operation . Also

find the inverse if it exists.

On Q - {-1} defined 
$$a^*b = a + b + ab$$
.

45. Find the identity element , if it exists for the following operation . Also

find the inverse if it exists.

On P(X) defined  $A^*B = A \cap B$ , where  $X \neq \phi$  .

Watch Video Solution

46. Find the identity element, if it exists for the following operation. Also

find the inverse if it exists.

On P(X) defined  $A^*B = A \cup B$ , where  $X \neq \phi$  .

Watch Video Solution

**47.** On R - {-1}, a binary operation \* defined by  $a^*b = a + b + ab$  then find  $a^{-1}$ .

**48.** \* be a binary operation on a set  $\{0, 1, 2, 3, 4\}$  defined by

$$a*b=egin{cases} a+b & ext{if} \;\; a+b < 6\ a+b-6 & ext{if} \;\; a+b \geq 6 \end{cases}$$

Then find identity element of \*.

# **Watch Video Solution**

**49.** On Z \* defined by a \* b = a + b + 1. Is \* associative ? Find identity

element and inverse if it exists.

Watch Video Solution

**50.** \* be binary operation defined on a set R by  $a * b = a + b - (ab)^2$ .

Show that \* is commutative, but it is not associative. Find the identity element for \*.

**51.** A binary operation \* be defined on the set R by a \* b = a + b + ab.

Show that \* is commutative, and it is also Associative.



**52.** Show that if  $f: A \to B$  and  $g: B \to C$  are onto, then  $gof: A \to C$  is

also onto.

Watch Video Solution

**53.** Show that if  $f: A \to B$  and  $g: B \to C$  are one- one, then gof:

A 
ightarrow C is also one-one.

Watch Video Solution

**54.**  $f \colon R o R, f(x) = \cos x ext{ and } g \colon R o R, g(x) = 3x^2$  then find the

composite functions gof and fog.



55. Check the injectivity and surjectivity of the following function .

$$f{:}\,R
ightarrow R,\,f(x)=egin{cases} -x+1 & x\geq 0\ x^2 & x<0 \end{cases}$$

Watch Video Solution

56. Check the injectivity and surjectivity of the following function .

$$f\!:\!R o R, f(x)=egin{cases} 2x+1 & x\geq 0\ x^2 & x<0 \end{cases}$$

Watch Video Solution

57. Check the injectivity and surjectivity of the following function .

$$f\!:\!R imes R-\{0\} o R, f(x,y)=rac{x}{y}$$

58. Check the injectivity and surjectivity of the following function .

$$f \colon [\, -1, 1] o [\, -1, 1], f(x) = x |x|$$

59. Check the injectivity and surjectivity of the following function .

$$f\!:\!N o N\cup\{0\},f(n)=n+(\,-1)^n.$$

Watch Video Solution

60. Check the injectivity and surjectivity of the following function .

 $f\colon N-\{1\} o N, \;$ f(n) = Greatest prime factor of n .

61. 
$$f \colon R o (-1,1), f(x) = rac{10^x - 10^x}{10^x + 10^{-x}}.$$
 If inverse of  $f^{-1}$  exists then

find it .



**62.** 
$$f : R^+ \cup \{0\} \to R^+ \cup \{0\}, f(x) = \sqrt{x}.$$

 $g{:}\,R
ightarrow R, g(x)=x^2-1$  then find fog .

Watch Video Solution

**63.** 
$$f: R - \left\{\frac{2}{3}\right\} \to R, f(x) = \frac{4x+3}{6x-4}$$
. Prove that (fof) (x) = x , what is about  $f^{-1}$ ?

Watch Video Solution

**64.** A = {1,2,3,4} , B = {1,5,9,11,15,16}

$$f = \{(1,5), (2,9), (3,1), (4,5), (2,11)\}$$

Is f a relation from A to B?

Give reason for your answer.



**65.** A = {1,2,3,4} , B = {1,5,9,11,15,16}

$$f = \{(1,5), (2,9), (3,1), (4,5), (2,11)\}$$

Is f a function from A to B?

Give reason for your answer.

Watch Video Solution

**66.** Let f be the subset of  $Z \times Z$  defined by  $f = \{(ab, a + b) : a, b \in Z\}$ .

Is f a function from Z to Z? Justify your answer.

Watch Video Solution

**Textbook Based Mcqs** 

**1.** If a set A has m elements and a set B has n elements then the number of relation from a to B is .....

 $\mathsf{B}.\,2^{mn}$ 

 $\mathsf{C}.m+n$ 

 $\mathsf{D}.\,mn$ 

#### Answer: B

Watch Video Solution

2. A relation R on a finite set having n elements is reflexive. If R has m

pairs then .....

A.  $m \geq n$ 

 $\mathsf{B}.\,m\leq n$ 

 $\mathsf{C}.\,m=n$ 

D. None of these

#### Answer: A

**3.** x and y are real numbers . If  $xRy \Leftrightarrow x-y+\sqrt{5}$  is on irrational number then R is ....... Relation .

A. Reflexive

B. Symmetric

C. Transitive

D. None of these

#### Answer: A



## A. Reflexive

B. Symmetric

C. Transitive

D. None of these

Answer: C

Watch Video Solution

5. A relation R is form set A to B , and a relation S is from set B to C . Then

relation SOR is from ......

A. Set C to A

B. Set A to C

C. Does not exist

D. None of these

Answer: B

**6.** Relation  $R = \{(4,5), (1,4), (4,6), (7,6), (3,7)\}$  then  $R^{-1}OR =$  .....

A. 
$$\{(1, 1), (4, 4), (7, 4), (4, 7), (7, 7)\}$$

 $\mathsf{B}.\,\{(1,\,1),\,(4,\,4),\,(4,\,7),\,(7,\,4),\,(7,\,7),\,(3,\,3)\}$ 

 $\mathsf{C}.\,\{(1,\,5),\,(1,\,6),\,(3,\,6)\}$ 

D. None of these

### Answer: B

Watch Video Solution

7. Which of the graphs is not a graph of functions ?











#### Answer: B

Watch Video Solution

**8.** If f(1)=1, f(n+1)=2f(n)+1,  $n\geq 1$  then f(n) = .....

 $\mathsf{A.}\,2^n+1$ 

 $B.2^n$ 

 $C. 2^n - 1$ 

D. 
$$2^{n-1} - 1$$

Answer: C



9. A function 
$$y = f(x)$$
 satisfies the condition  
 $f\left(x+rac{1}{x}
ight) = x^2 + rac{1}{x^2}(x
eq 0)$  then f(x) = ......  
A.  $-x^2+2$   
B.  $x^2-2$   
C.  $x^2-2, x \in R-\{0\}$   
D.  $x^2-2, |x| \in [2,\infty)$ 

# Answer: D

10. If f(x+ay,x-ay)=axy then f(x,y) = .....

A. xy B.  $x^2-a^2y^2$ C.  $\displaystyle \frac{x^2-y^2}{4}$ D.  $\displaystyle \frac{x^2-y^2}{a^2}$ 

## Answer: C

Watch Video Solution

11. For function 
$$f(x)=rac{lpha x}{x+1}, x
eq -1$$
 if fof(x) = x then  $lpha=$  .....

A. 
$$\sqrt{2}$$

 $\mathsf{B.}-1$ 

C. 
$$\frac{1}{2}$$

 $\mathsf{D.}-\sqrt{2}$ 



12. For real valued functions f and g, f(x) = 2sin  $\left(\frac{\pi}{x}\right)$  and  $g(x) = \sqrt{x}$ . Then fog(4) - gof (6) = .....



D. 
$$\frac{\sqrt{3}}{2}$$

# Answer: C



A. 
$$-5 \leq x \leq 1$$
  
B.  $-5 \leq 4$  and  $n \geq 1$   
C.  $-4 < x \leq 1$   
D.  $\phi$ 

# Answer: C

Watch Video Solution

14. The domian of 
$$\sin^{-1} \Bigl[ \log_3 \Bigl( rac{x}{3} \Bigr) \Bigr]$$
 is .....

A. [1,9]

 $\mathsf{B.}\left[\,-\,1,\,9\right]$ 

 $\mathsf{C}.\,[\,-\,9,\,1]$ 

D. [-9, -1]

# Answer: A

15. Range of the function  $f(x)=rac{x^2+x+2}{x^2+x+1}$  is.....

A. 
$$(1, \infty)$$
  
B.  $\left(1, \frac{11}{7}\right)$   
C.  $\left(1, \frac{7}{3}\right)$   
D.  $\left(1, \frac{7}{5}\right)$ 

#### Answer: C

Watch Video Solution

**16.** If 
$$g(x) = x^2 + x - 2$$
 and  $\frac{1}{2}(gof)(x) = 2x^2 - 5x + 2$  then f(X) =.....

A. 
$$2x-3$$

B.2x + 3

 $C. 2x^2 + 3x + 1$ 

D. 
$$2x^2 - 3x - 1$$

Watch Video Solution

17. 
$$g(x) = 1 + \sqrt{x} ext{ and } f(g(x)) = 3 + 2\sqrt{x} + x$$
 then f(x) = .....

A.  $1 + 2x^2$ B.  $2 + x^2$ 

- $\mathsf{C.1} + x$

 $\mathsf{D.}\,2+x$ 

Answer: B

18. If real function f(x)  $= \left(x+1
ight)^2$  and  $g(x) = x^2+1$  then (fog) (-3) =

A. 121

.....

B. 112

C. 211

D. 111

# Answer: A

19. 
$$f(x) = \cot^{-1}x : R^+ \to (0,\pi)$$
 and  $g(x) = 2x - x^2 : R \to R$  then  
the range of f(g(x)) is .....

A. 
$$\left(0, \frac{\pi}{2}\right)$$
  
B.  $\left(0, \frac{\pi}{4}\right)$   
C.  $\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$ 

# $\mathsf{D}.\left\{\frac{\pi}{4}\right\}$

# Answer: C



**20.** The domian of f is [-5,7] and g(x) = |2x+5| then the domian of (fog) (x)

is .....

- A. [-4, 1]
- $\mathsf{B}.\,[\,-5,1]$
- $\mathsf{C}.\,[\,-\,6,\,1]$
- D. None of these

# Answer: C

21. A set A has 3 elements and a set B has 4 elements . The number of one

one function defined from set A to B is ......

A. 144

B. 12

C. 24

D. 64

# Answer: C

Watch Video Solution

22. 
$$f\colon R o R,$$
  $f(x)=(x-1)(x-2)(x-3)$  then f is .....

A. One - one but not onto.

B. Onto but not one - one

C. One - one and onto.

D. Neither one one nor onto.



23. 
$$f\!:\!N o N,$$
  $f(n)=(n+5)^2,$   $n\in N$  , then the function f is .....

A. Neither one one nor onto

B. One one and onto

C. One one but not onto

D. Onto but not one one.

#### Answer: B

Watch Video Solution

**24.**  $f \colon [0,\infty) o [0,\infty), \, f(x) = rac{x}{1+x}$  then the function f is .....

A. One one and onto

- B. One one but not onto
- C. Onto but not one one
- D. Neither one one nor onto.

Watch Video Solution

25. 
$$f(x)=rac{x^3}{3}+rac{x^2}{2}+ax+b,\,orall x\in R.$$
 If (x) is one one function then

the minimum value of a is ......

A.  $\frac{1}{4}$ B. 1 C.  $\frac{1}{2}$ D.  $\frac{1}{8}$ 

#### Answer: A

**26.**  $f(x)=x^2-2x-1,\ orall x\in R, f\colon (-\infty,\infty] o [b,\infty)$  is one one and onto function then b=....

A. - 2

 $\mathsf{B.}-1$ 

C. 0

D. 1

Answer: B

27. 
$$f(x) = rac{e^x - e^{-x}}{e^x + e^{-x}} + 2$$
. The inverse of f(x) is .....  
A.  $\log_e \left(rac{x-2}{x-1}
ight)^{rac{1}{2}}$   
B.  $\log_e \left(rac{x-1}{3-x}
ight)^{rac{1}{2}}$   
C.  $\log_e \left(rac{x}{2-x}
ight)^{rac{1}{2}}$ 

$$\mathsf{D}.\log_e\left(rac{x-1}{x+1}
ight)^{-rac{1}{2}}$$



**28.** 
$$f:(2,4) o (1,3), f(x) = x - \left\lfloor \frac{x}{2} \right\rfloor$$
 , where [.] is a greatest integer function then  $f^{-1}(x)$  = .....

A. 2x

 $\mathsf{B.}\,x+\left[\frac{x}{2}\right]$ 

 $\mathsf{C}.\,x+1$ 

D. does not exist

# Answer: C

**29.**  $f\colon [2,\infty) o y,\, f(x)=x^2-4x+5$  is a one and Onto function . If  $y\in [a,\infty)$  then the value of a is ......

A. 2

B. 1

 $C. -\infty$ 

 $\mathsf{D.}-1$ 

#### Answer: B

Watch Video Solution

**30.** 
$$f:N
ightarrow N,$$
  $f(x)=x+(-1)^{x-1}$  then  $f^{-1}(x)=....$ 

A. xy

B. x - 1

C.  $x - (-1)^{x-1}$ 

D.  $x + (-1)^{x-1}$ 

#### Answer: D



**31.** a>1 is a real number  $f(x)=\log_a x^2$  , where x>0 If  $f^{-1}(x)$  is a inverse of f(x) and b and c are real numbers then  $f^{-1}(b+c)$  = .....

A. 
$$f^{-1}(b)$$
.  $f^{-1}(c)$   
B.  $f^{-1}(b) + f^{-1}(c)$   
C.  $\frac{1}{f(b+)}$ 

D. None of these

#### Answer: A



**32.**  $f\!:\!R o R,\,f(x)=2x+|\!\cos x|$  then f is ...... function .

A. One one and onto

- B. One one but not onto
- C. Neither one one nor onto
- D. Not one one but onto

#### Answer: A

Watch Video Solution

# **33.** The number of onto function from set $\{1, 2, 3, 4\}$ to $\{3, 4, 7\}$ is .....

A. 18

B. 36

C. 64

D. None of these

#### Answer: B

**34.** Match the Section (A) with the Section (B) properly.

| Section (A) |                                  | Section (B) |                                             |
|-------------|----------------------------------|-------------|---------------------------------------------|
| (1)         | $f(x) = \sin(\tan^{-1} x)$       | (A)         | $f^{-1}(x) = -\log_2(1-x)$                  |
| (2)         | $f(x) = 1 - 2^{-x}$              | (B)         | $f^{-1}(x) = (5 - x^2)^{\frac{1}{2}}$       |
| (3)         | $f(x)=2^{\frac{x}{x-1}}$         | (C)         | $f^{-1}(x)=\frac{x}{\sqrt{1-x^2}}$          |
| (4)         | $f(x) = (5 - x^2)^{\frac{1}{2}}$ | (D)         | $f^{-1}(x) = \frac{\log_2 x}{\log_2 x - 1}$ |

A. 
$$1 
ightarrow A, 2 
ightarrow D, 3 
ightarrow B, 4 
ightarrow C$$
  
B.  $1 
ightarrow C, 2 
ightarrow A, 3 
ightarrow D, 4 
ightarrow B$ 

C. 
$$1 
ightarrow A, 2 
ightarrow C, 3 
ightarrow B, 4 
ightarrow D$$

D. 
$$1 o C, 2 o B, 3 o D, 4 o A$$

View Text Solution

**35.**  $f:[0,3] \rightarrow [1,29], f(x) = 2x^3 - 15x^2 + 36x + 1$  then f is ......

A. One one and onto

B. One one but not onto

C. Neither one one nor onto

D. Not one one but onto

#### Answer: B

Watch Video Solution

**36.**  $f(x,y) = (\max(x, y))^{(\min(x, y))}$  and  $g(x,y) = \max(x,y) - \min(x,y)$  then  $f\left(g\left(-1, -\frac{3}{2}\right), g(-4, -1.75)\right) = \dots$ 

A.0.5

B.-0.5

C. 1

 $\mathsf{D}.\,1.5$ 

# Answer: D



# **37.** Let A = {1,2,3}. Then number of equivalence relations containing (1,2) is

A. 1

- B. 2
- C. 3

D. 8

#### Answer: B



38. S is defined in Z by  $(x,y)\in S \Leftrightarrow |x-y|\leq 1.$  S is ......

A. Reflexive and transitive but not symmetric.

B. Reflexive and symmetric but not transitive.

C. symmetric and transitive but not reflexive.

D. an equivalence relation

#### Answer: B

Watch Video Solution

**39.** If S is defined on R by (x,y)  $\in R \Leftrightarrow xy \geq 0$  . Then S is .....

A. an equivalence relation

B. reflexive only

C. symmetric only

D. transitive only

#### Answer: A



40. Which of the following defined on Z is not an equivalence relation ?

A. 
$$(x,y)\in S\Leftrightarrow x\geq y$$

- $\texttt{B.}\,(x,y)\in S\Leftrightarrow x=y$
- C.  $(x,y)\in S\leftrightarrow x-y$  is a multiple of 3

D.  $(x,y)\in S$  if |x-y| is even

#### Answer: A

**41.** If 
$$a * b = \frac{ab}{3}$$
 on  $Q^+$  then the inverse of  $a(a \neq 0)$  for  $*$  is .....  
A.  $\frac{3}{a}$   
B.  $\frac{9}{a}$   
C.  $\frac{1}{a}$ 

 $\mathsf{D}.\,\frac{2}{a}$ 

# Answer: B



# **42.** The number of binary operation on $\{1, 2, 3, ...., n\}$ is .....

A.  $2^n$ 

 $\mathsf{B.}\,n^{n^2}$ 

 $\mathsf{C}.\,n^3$ 

D.  $n^{2n}$ 

#### Answer: B



**43.** If 
$$a * b = a + b$$
 on R - {1} , then  $a^{-1}$  is .....

A. 
$$a^{3}$$
  
B.  $\frac{1}{a}$   
C.  $\frac{-a}{a+1}$   
D.  $\frac{1}{a^{2}}$ 

# Answer: C



# **44.** For a \* b = a + b + 10 on Z , the identity element is ......

A. 0

 $\mathsf{B.}-5$ 

C. - 10

D. 1

# Answer: C

45.  $f{:}R-\{q\}
ightarrow R-\{1\},$   $f(x)=rac{x-p}{x-q},$  p
eq q, then f is .....

A. one - one and onto .

B. many - one and not onto .

C. one - one and not onto .

D. many - one and onto .

#### Answer: A

Watch Video Solution

46. Check the injectivity and surjectivity of the following function .

$$f \colon [\, -1, 1] o [\, -1, 1], f(x) = x |x|$$

A. one - one and onto .

B. many - one and onto .

C. many - one and not onto .

D. one - one and not onto.

# Answer: A



47. 
$$f:\left[-rac{\pi}{2},rac{\pi}{2}
ight]
ightarrow\left[-1,1
ight]$$
 is a bijection , if .....  
A.  $f(x)=|x|$   
B.  $f(x)=\sin x$   
C.  $f(x)=x^2$   
D.  $f(x)=\cos x$ 

#### Answer: B

48. 
$$f \colon R o R, \, f(x) = x^2 + 2x + 3$$
 is .....

A. one - one but not onto.

B. onto but not one - one

C. onto but not one one

D. many - one and not onto .

#### Answer: D

Watch Video Solution

**49.** If 
$$a * b = a^2 + b^2$$
 on Z , then  $*$  is .....

A. commutative and associative.

B. commutative and not associative.

C. not commutative and associative.

D. neither commutative nor associative.

#### Answer: B



**50.** If a \* b = a + b - ab on  $Q^+$  , then the identity and the inverse of a for \* are respectively .....

A. 0 and 
$$\frac{a}{a-1}$$
  
B. 1 and  $\frac{a-1}{a}$   
C. -1 and a  
D. 0,  $\frac{1}{a}$ 

#### Answer: A

**51.** If 
$$a * b = \frac{ab}{3}$$
 on  $Q^+$ , then  $3 * \left(\frac{1}{5} * \frac{1}{2}\right)$  is .....  
A.  $\frac{5}{160}$   
B.  $\frac{1}{30}$   
C.  $\frac{3}{160}$ 

D. 
$$\frac{3}{60}$$



52. If  $\Delta$  is defined on  $P(X)(X 
eq \phi)$  by ,  $A\delta B = (A \cup B) - (A \cap B)$  , then .....

A. identity for  $\Delta$  is  $\phi$  and inverse of A is A.

B. identity for  $\Delta$  is A and inverse of A is  $\phi$  .

C. identity for  $\Delta$  is A' and inverse of A is A.

D. identity for  $\Delta$  is X and inverse of A is  $\phi$  .

Answer: A

53. S is defined on N imes N by  $((a,b),(c,d)\in S \Leftrightarrow a+d=b+c.....$  .

A. S is reflexive , but not symmetric

B. S is reflexive , and transitive only

C. S is an equivalence relation

D. S is transitive only

# Answer: C

Watch Video Solution

54. If 
$$f\!:\!R^+ o R,$$
  $f(x)=rac{x}{x+1}$  is .....

A. one - one and onto .

B. one - one and not onto .

C. not one - one and not onto.

D. Onto but not one - one.



# 55.

lf

 $f\!:\!R o R,\,f(x)=[x],g\!:\!R o R,\,g(x)=\sin x,\,h\!:\!R o R,\,h(x)=2x$  , then ho(gof) = .....

A.  $\sin[x]$ 

 $\mathsf{B}.\left[\sin 2x\right]$ 

 $\mathsf{C.2}(\sin[x])$ 

 $\mathsf{D}.\sin 2[x]$ 

# Answer: C

56. 
$$f: R \to R, f(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$
  $g: R \to R, g(x) = 1 + x - [x]$ 

then for all  $x, f(g(x)) = \dots$ 

A. 1

B. 2

C. 0

 $\mathsf{D}.-1$ 

Answer: A

57. If 
$$f\colon \{x\mid x\geq 1, \mathrm{x}\in R\} o \{x\mid x\geq 2, x\in R\}$$
 f(x) =  $x+rac{1}{x}$  then  $f^{-1}(x)$  = .....

A. 
$$rac{x+\sqrt{x^2-4}}{2}$$
  
B.  $rac{x-\sqrt{x}^2-4}{2}$ 

C. 
$$rac{x^2+1}{x}$$
  
D.  $\sqrt{x^2-4}$ 

Answer: A



58. 
$$f{:}\,R o R,\,f(x)=rac{x}{\sqrt{1+x^2}},\,orall x\in R.$$
 Then find (fofof) (x).

A. 
$$\frac{x}{1+x^2}$$
  
B. 
$$\frac{1+x^2}{x}$$
  
C. 
$$\frac{x}{\sqrt{1+2x^2}}$$
  
D. 
$$\frac{x}{\sqrt{1+3x^2}}$$

Answer: D

59. 
$$f: R \to R, f(x) = x^2, g: R \to R, g(x) = 2^x$$
, then  $\{x \mid (fog)(x) = (gof)(x)\}$  = ......  
A.  $\{0\}$   
B.  $\{0, 1\}$   
C. R  
D.  $\{0, 2\}$ 

# Answer: D

Watch Video Solution

60. The relation S on set  $\{1, 2, 3, 4, 5\}$  is  $S = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\}$ . The S is ......

# A. Only symmetric

B. Only reflexive

C. Only transitive

D. Equivalence relation

#### Answer: D



**61.** The function  $f\!:\!R o R,\,f(x)=5x+7$  then the function f is ......

A. One one and onto

B. One one and not onto

C. Onto but not one one

D. Neither one one nor onto.

#### Answer: A



**62.** The number of binary operation on set  $\{1,2\}$  is .....

| A. 8  |  |
|-------|--|
| B. 16 |  |
| C. 2  |  |
| D. 4  |  |

Watch Video Solution

63. The function  $f\!:\!R^+ o R^+, f(x)=x^3, g\!:\!R^+ o R^+, g(x)=x^{rac{1}{3}}$  then (fog)(x) = .....

A. 
$$x^{3}$$
  
B.  $\frac{1}{x}$   
C.  $\sqrt[3]{x}$ 

D. x

# Answer: D

**64.** 
$$a * b = a^2 + b^2 + ab + 2$$
 on Z then  $3 * 4$  = .....

A. 39

B.40

C. 25

D. 41

Answer: A

Watch Video Solution

# **Textbook Illustrations For Practice Work**

**1.** Let A be the set of all students of a boys school. Show that the relation R in A given by  $R = \{(a, b) : a \text{ is sister of b}\}$  is the empty relation and  $R' = \{(a, b): \text{ the difference between heights of a and b is less than 3 meters } is the universal relation.}$ 



**2.** Let T be the set of all triangles in a plane with R a relation in T given by  $R = \{(T_1, T_2): T_1 \text{ is congruent to } T_2\}$  Show that R is an equivalence relation.

Watch Video Solution

**3.** Let L be the set of all lines in a plane and R be the relation in L defined

as  $R = \{(L_1, L_2) : L_1 \text{ is perpendicular to } L_2 \}$ . Show that R is symmetric

but neither reflexive nor transitive.

4. Show that the relation R in the set  $\{1, 2, 3\}$  given by  $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$  is reflexive but neither symmetric nor transitive.



5. Show that the relation R in the set Z of intergers given by

 $R = \{(a, b) : 2 ext{ divides a-b } \}$ 

is an equivalence relation.

Watch Video Solution

**6.** Let R be the realtion defined in the set  $A = \{1, 2, 3, 4, 5, 6, 7\}$  by  $R = \{(a, b):$  both a and b are either odd or even}. Show that R is an equivalance relation. further, show that all the elements of the subset  $\{1, 3, 5, 7\}$  are related to each other and all elements of subset  $\{2, 4, 6\}$  are related to each other, but no element of the subset  $\{1, 3, 5, 7\}$  is related to any element of the subset  $\{2, 4, 6\}$ .



be function defined by f(x) = roll number of the student x. Show that f is one-one but not onto.

> Watch Video Solution

**8.** Show that the function f:N o N , given by f(x) = 2x, is one-one but

not onto.

Watch Video Solution

**9.** Prove that the function  $f: R \to R$  , given by f(x) = 2x, is one-one and

onto.

**10.** Show that the function  $f\colon N o N$  , given by f(1) = f(2) = 1 and f(x) = x -

1, for every x>2 , is onto but not one-one.



## Watch Video Solution

13. Show that an onto function  $f \colon \{1,2,3\} o \{1,2,3\}$  is always one-one.

14. Show that a one-one function  $f \colon \{1,2,3\} o \{1,2,3\}$  must be onto.



**15.** Let  $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$  and  $g: \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$  be functions defined as f (2) = 3, f(3) = 4, f(4) = f(5) = 5 and g(3) = g(4) = 7 and g(5) = g(9) = 11. Find gof.

Watch Video Solution

16. Find gof and fog, if  $f\colon R o R$  and  $g\colon R o R$  are given by  $f(x)=\cos x$  and  $g(x)=3x^2$  . Show that gof eq fog.

17. Show that if 
$$f: R - \left\{\frac{7}{5}\right\} \to R - \left\{\frac{3}{5}\right\}$$
 is defined by  $f(x) = \frac{3x+4}{5x-7}$  and  $g: R - \left\{\frac{3}{5}\right\} \to R - \left\{\frac{7}{5}\right\}$  is defined by

$$g(x)=rac{7x+4}{5x-3}$$
 , then fog  $=I_A$  and  $gof=I_B,$  where  $A=R-iggl\{rac{3}{5}iggr\},B=R-iggl\{rac{7}{5}iggr\},I_A(x)=x,\,orall x\in A,I_B(x)=x,\,orall x\in B$ 

are called identity functions on sets A and B , respectively .

# Watch Video Solution

- **18.** Show that if  $f: A \to B$  and  $g: B \to C$  are one- one, then gof:
- A 
  ightarrow C is also one-one.

Watch Video Solution

19. Show that if  $f \colon A o B$  and  $g \colon B o C$  are onto, then  $gof \colon A o C$  is

also onto.



20. Consider functions f and g such that composite gof is defined and is

oneone. Are f and g both necessarily one-one.

**21.** Are fand g both necessarily onto, if gof is onto?

# Watch Video Solution

**22.** Let  $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$  be one-one and onto function given by f(1) = a, f(2) = b and f(3) = C. Show that there exists a function  $g: \{a, b, c\} \rightarrow \{1, 2, 3\}$  such that gof  $= I_x$  and  $fog = I_Y$ , where X =  $\{1,2,3\}$  and Y =  $\{a,b,c\}$ ,

## Watch Video Solution

23. Let f:N o Y be a function defined as f(x) = 4x + 3, where, Y = { $y\in N: y=4x+3$  for some  $x\in N$ }. Show that f is invertible. Find the inverse.

**24.** Let Y =  $ig\{n^2 \colon n \in Nig\} \subset N$  Consider  $f \colon N o Y$  as f(n) =  $n^2$  . Show that

f is invertible. Find the inverse of f.



25. Let f':N o R be a function defined as  $f'(x)=4x^2+12x+15$  . Show that f:N o S , where, S is the range of f, is invertible. Find the inverse of f.

Watch Video Solution

**26.** Consider  $f: N \to N, g: N \to N \text{ and } h: N \to R$  defined as

f(x) = 2x, g(y) = 3y + 4 and  $h(z) = \sin z, \forall x, y \text{ and } z$  in N. Show that ho(gof) = (hog)of.

**27.** Consider  $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$  and  $g: \{a, b, c\} \rightarrow \{\text{apple, ball, cat}\}$ defined as f(1) = a, f(2) = b, f(3) = c, g(a) = apple,g(b) = ball and g(c) = cat. Show that f, g and gof are invertible. Find out  $f^{-1}, g^{-1}$  and  $(\text{gof})^{-1}$  and show that  $(\text{gof})^{-1} = f^{-1}og^{-1}$ .

Watch Video Solution

**28.** Let S = {1, 2, 3}. Determine whether the functions  $f: S \to S$  defined as below have inverses. Find  $f^{-1}$ , if it exists.

Note : Here we accept that inverse at function is unique.

$$f = \{(1,1),(2,2),(3,3)\}$$

Watch Video Solution

**29.** Let S = {1, 2, 3}. Determine whether the functions  $f: S \to S$  defined as below have inverses. Find  $f^{-1}$ , if it exists.

Note : Here we accept that inverse at function is unique.

 $f=\{(1,2),(2,1),(3,1)\}$ 

**30.** Let S = {1, 2, 3}. Determine whether the functions  $f: S \to S$  defined as below have inverses. Find  $f^{-1}$ , if it exists.

Note : Here we accept that inverse at function is unique.

 $f=\{(1,3),(3,2),(2,1)\}$ 

Watch Video Solution

**31.** Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary operation on R. Further, show that division is a binary operation on the set  $R^*$  of nonzero real numbers.

Watch Video Solution

**32.** Show that subtraction and division are not binary operations on N.



33. Show that  $\ st: R imes R o R$  given by  $(a,b) o a + 4b^2$  is a binary operation.

Watch Video Solution

**34.** Let P be the set of all subsets of a given set X. Show that  $\cup : P \times P \to P$  given by  $(A, B) \to A \cup B$  and  $\cap : P \times P \to P$  given by (A, B)  $\to rA \cap B$  are binary operations on the set P.

## Watch Video Solution

**35.** Show that the VV : R imes R o R given by  $(a,b) o \,$  max {a, b} and the

 $\wedge: R imes R o R$  given by  $(a, b) o \min$  {a, b} are binary operations.

**36.** Show that  $+: R \times R \to R$  and  $\times : R \times R \to R$  are commutative binary operations, but  $-: R \times R \to R$  and  $\div id: R^* \times R^* \to R^*$  are not commutative.



**37.** Show that \*: R imes R o R defined by  $a^*b = a + 2b$  is not commutative.

Watch Video Solution

**38.** Show that addition and multiplication are associative binary operation on R. But subtraction is not associative on R . Division is not associative on  $R^*$ 



**39.** Show that  ${}^*: R imes R o R$  given by  $a^*b o a + 2b$  is not associative.



**40.** Show that zero is the identity for addition on R and 1 is the identity for multiplication on R. But there is no identity element for the operations  $-: R \times R \to R$  and  $\div idR^{\cdot} \times R^{\cdot} \to R$ .

Watch Video Solution

**41.** Show that -a is the inverse of a for the addition operation '+' on R and  $\frac{1}{a}$  is the inverse of  $a \neq 0$  for the multiplication operation x on R.



**42.** Show that -a is not the inverse of  $a \in N$  for the addition operation + on N and  $rac{1}{a}$  not the inverse of  $a \in N$  for multiplication operation on





**43.** If  $R_1 \,\, {
m and} \,\, R_2$  are equivalence relations in a set A, show that  $R_1 \cap R_2$ 

is also an equivalence relation.

Watch Video Solution

**44.** Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) R (u, v) if and only if xv=yu. Show that R is an equivalence relation.

Watch Video Solution

**45.** Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Let  $R_1$  be a relation in X given by  $R_1 = \{(x, y) : x - y \text{ is divisible by 3}\}$  and R, be another relation on X

given by  $R_2=\{(x,y)\colon \{x,y\}\subset \{1,4,7\}\}$  or  $\{x,y\}\subset \{2,5,8\}$  or  $\{x,y\}\subset \{3,6,9\}$  . Show that  $R_1=R_2$  .

### Watch Video Solution

**46.** Let  $f: X \to Y$  be a function. Define a relation R in X given by  $R = \{(a, b): f(a) = f(b)\}$ . Examine whether R is an equivalence relation or not.

Watch Video Solution

**47.** Determine which of the following binary operations on the set R are

associative and which are commutative :

 $a^*b=1,\,orall a,b\in R$ 

48. Determine which of the following binary operations on the set R are

associative and which are commutative :

$$a^*b=rac{(a+b)}{2},\,orall a,b\in R$$

Watch Video Solution

**49.** Find the number of all one-one functions from set A = {1, 2, 3} to itself.

Watch Video Solution

**50.** Let  $A = \{1, 2, 3\}$  Then show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is

three.



**51.** Show that the number of equivalence relation in the set  $\{1, 2, 3\}$  containing (1, 2) and (2, 1) is two.



**52.** Show that the number of binary operations on  $\{1, 2\}$  having 1 as identity and having 2 as the inverse. of 2 is exactly one.

Watch Video Solution

53. Consider the identity function  $I_N:N o N$  defined as  $I_N(x)=x,\ orall x\in N.$  Show that although  $I_N$  is onto but  $I_N+I_N:N o N$  defined as  $(I_N+I_N)(x)=I_N(x)+I_N(x)=x+x=2x$  is not onto.

**54.** Consider a function  $f: \left[0, \frac{\pi}{2}\right] \to R$  given by  $f(x) = \sin x$  and  $g: \left[0, \frac{\pi}{2}\right] \to R$  given by  $g(x) = \cos x$ . Show that f and g are one-one, but f+g is not one-one.



Solutions Of Ncert Exemplar Problems Short Answer Type Questions

1. Let  $A = \{a, b, c\}$  and the relation R be defined on A as follows :  $R = \{(a, a), (b, c), (a, b)\}$  Then , write minimum number of ordered pairs to be added in R to make R reflexive and transitive.

Watch Video Solution

**2.** Let D be the domain of the real valued function f defined by  $f(x) = \sqrt{25 - x^2}$  . Then , write D .

3. If  $f,g\colon R o R$  be defined by f(x) = 2x + 1 and g(x)  $=x^2-2,\ orall x\in R$  , respectively . Find gof .



5. If A = {a,b,c,d} and the function f = {(a, b), (b, d), (c, a), (d, c)}. Write

 $f^{-1}$ .

Watch Video Solution

6. If  $f\!:\!R o R$  is defined by  $f(x)=x^2-3x+2$  , find f(f(x)).

7. Is  $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$  a function, justify. If this is described by the relation,  $g(x) = \alpha x + \beta$ , then what values should be assigned to  $\alpha$  and  $\beta$ ?

Watch Video Solution

8. Are the following set of ordered pairs functions ? If so examine whether

the mapping is injective or surjective.

{(x,y) : x is a person, y is the mother of x }

Watch Video Solution

9. Are the following set of ordered pairs functions ? If so examine whether

the mapping is injective or surjective .

{(x,y) : x is a person, y is the mother of x }





11. Let C be the set of complex numbers . Prove that the mapping  $f\colon C o R$  given by  $f(z)=|z|,\ orall z\in C$  , is neither one - one nor onto .

Watch Video Solution

12. Let the function  $f\colon R o R$  be defined by  $f(x)=\cos x$  , AA x in R `.

Show that f is nether one - one nor onto .



**13.** Let  $X = \{1,2,3\}$  and  $Y = \{4,5\}$ . Find whether the following subsets of

X imes Y are functions form X to Y or not .

$$f=\{(1,4),(1,5),(2,4),(3,5)\}$$



14. Let  $X = \{1,2,3\}$  and  $Y = \{4,5\}$ . Find whether the following subsets of

X imes Y are functions form X to Y or not .

 $g=\{(1,4),(2,4),(3,4)\}$ 

Watch Video Solution

**15.** Let  $X = \{1,2,3\}$  and  $Y = \{4,5\}$ . Find whether the following subsets of

X imes Y are functions form X to Y or not .

 $h = \{(1,4),(2,5),(3,5)\}$ 

#### Watch Video Solution

16. Let  $X = \{1,2,3\}$  and  $Y = \{4,5\}$ . Find whether the following subsets of

 $X \times Y$  are functions form X to Y or not .



18. Let  $f\colon R o R$  be the function defined by  $f(x)=rac{1}{2-\cos x},\ orall x\in R$ 

. Then , find the range of f .

Watch Video Solution

**19.** Let n be a fixed positive integer. Defiene a relation R in Z as follows :  $\forall a, b \in Z, aRb$  if and only if a - b divisible by n. Show that R is equivalance relation. 1. If  $A=\{1,2,3,4\}$  , define relations on A which have properties of being

Reflexive , transitive but not symmetric

Watch Video Solution

2. If  $A=\{1,2,3,4\}$  , define relations on A which have properties of

being :

:

Symmetric but neither reflexive nor transitive



3. If  $A = \{1, 2, 3, 4\}$  , define relations on A which have properties of being :

Reflexive, symmetric and transitive.

4. Let R be relation defined on the set of natural number N as follows :  $R = \{(x, y) : x \in N, y \in N, 2x + y = 41\}$ . Find the domian and range of the relation R . Also verify whether R is reflexive, symmetric and transitive.

Watch Video Solution

5. Given A =  $\{2,3,4\}$ , B =  $\{2,5,6,7\}$ . Construct an example of each of the

following :

An injective mapping from A to B.



**6.** Given  $A = \{2,3,4\}$ ,  $B = \{2,5,6,7\}$ . Construct an example of each of the following :

A mapping from A to B which is not injective.

7. Given  $A = \{2,3,4\}$ ,  $B = \{2,5,6,7\}$ . Construct an example of each of the

following :

A mapping from B to A.

Watch Video Solution

8. Give an example of a map

Which is one - one but not onto

Watch Video Solution

**9.** Give an example of a map

Which is not one - one but onto

#### **10.** Give an example of a map

Which is neither one - one nor onto.



11. Let A = R - {3} , B = R - {1} . If f:A o B be defined  $f(x)=rac{x-2}{x-3} \, orall x \in A.$  Then show that f is bijective.

Watch Video Solution

12. Let A = [-1,1]. Then, discuss whether the following functions defined on

A are one - one , onto or bijective.

$$f(x)=rac{x}{2}$$

**13.** Let A = [-1,1]. Then, discuss whether the following functions defined on

A are one - one , onto or bijective.



**15.** Let A = [-1,1] . Then , discuss whether the following functions defined on A are one - one , onto or bijective.

$$k(x) = x^2$$

Watch Video Solution

16. Each of the following defines a relation of N :

x is greater than y,x, y  $\in N$ .

Determine which of the above relations are reflexive , symmetric and transitive .

**O** Watch Video Solution

17. Each of the following defines a relation of N :

 $x+y=10, x, y\in N$ 

Determine which of the above relations are reflexive , symmetric and

transitive .

Watch Video Solution

18. Each of the following defines a relation of N :

x. y is square of an integer  $x,y\in N.$ 

Determine which of the above relations are reflexive , symmetric and transitive .

**19.** Each of the following defines a relation of N :

 $x+4y=10, x, y\in N$ 

Determine which of the above relations are reflexive , symmetric and transitive .

Watch Video Solution

**20.** Let  $A = \{1, 2, 3, ..., 9\}$  and R be the relation in  $A \times A$  defined by

(a,b) R , (c,d) if a + d = b + c for (a,b) , (c,d) in  $A \times A$  . Prove that R is an

equivalence relation and also obtain the equivalent class [(2,5)].

> Watch Video Solution

**21.** Using the definition ,prove that the function  $F: A \rightarrow B$  is invertible if

and only if f is both one -one and onto.

22. Functions 
$$f, g: R \to R$$
 are defined ,respectively, by  $f(x) = x^2 + 3x + 1, g(x) = 2x - 3$ , find fog  
Watch Video Solution  
23. Functions  $f, g: R \to R$  are defined ,respectively, by

$$f(x) = x^2 + 3x + 1, g(x) = 2x - 3, ext{ find } gof.$$

Watch Video Solution

24. Functions  $f,g\!:\!R o R$  are defined ,respectively, by

$$f(x) = x^2 + 3x + 1, g(x) = 2x - 3$$
, find fof.



**26.** Let \* be the binary operation defined on Q. Find which of the following binary operations are commutative.

 $a*b=a-b,\,orall a,b\in Q$ 

Watch Video Solution

**27.** Let \* be the binary operation defined on Q. Find which of the following binary operations are commutative.

$$a*b=a^2+b^2,\,orall a,b\in Q$$

**28.** Let \* be the binary operation defined on Q. Find which of the following binary operations are commutative.

 $a*b=a+ab,\,orall a,b\in Q$ 



**29.** Let \* be the binary operation defined on Q. Find which of the following binary operations are commutative.

$$a*b=(a-ab)^2,\,orall a,b\in Q$$

Watch Video Solution

**30.** If \* be binary operation defined on R by  $a*b=1+ab, \ orall a, b\in R$  .

Then the operation \* is

- (i) Commutative but not associative.
- (ii) Associative but not commutative .
- (iii) Neither commutative nor associative .
- (iv) Both commutative and associative.

Solutions Of Ncert Exemplar Problems Objective Type Questions

1. Let T be set of all triangle in the Euclidean plane , and let a relation R on

T be defined as aRb if a is congruent to $b,~orall {
m a}, b\in T$  . Then, R is ....

A. Reflexive but not transitive

B. Transitive but not symmetric

C. Equivalence

D. None of these

#### Answer: C



2. Consider the non-empty set consisting of children in a family and a

relation R defined as aRb, if a is brother of b. Then , R is ......

- A. Symmetric but not transitive
- B. Transitive but not symmetric
- C. Neither symmetric not transitive
- D. Both symmetric and transitive

#### Answer: B

Watch Video Solution

## **3.** The maximum number of equivalence relations on the set A = {1,2,3} are

A. 1

.....

B. 2

C. 3

D. 7

### Answer: D

4. If the relation R on the set  $\{1,2,3\}$  be defined by R =  $\{(1,2)\}$ . Then , R is .....

A. Reflexive

**B.** Transitive

C. Symmetric

D. None of these

Answer: B

Watch Video Solution

5. Let us define a relation R in R as aRb if  $a \geq b$  . Then, R is ......

A. an equivalence relation

B. reflexive , Transitive but not symmetric

C. symmetric , transitive but not reflexive

D. neither transitive nor reflexive but symmetric .

## Answer: B



**6.** If A =  $\{1,2,3\}$  and consider the relation R =  $\{(1,1), (2,2), (3,3), (1,2), (2,3), (2,3), (3,3), (1,2), (2,3), (3,3), (1,2), (2,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,3), (3,$ 

(1,3)}. Then R is .....

A. reflexive but not symmetric

B. reflexive but not transitive

C. symmetric and transitive

D. neither symmetric, nor transitive

#### Answer: A

7. The identity element for the binary operation \* defined on Q-{0} as  $a * b = \frac{ab}{2}$ ,  $\forall a, b \in Q - \{0\}$  is ..... A. 1 B. 0 C. 2

D. None of these

## Answer: C

Watch Video Solution

 ${\bf 8.}$  If the set A contains 5 elements and the set B contains 6 elements ,

then the number of one -one and onto mapping from A to B is ....

A. 720

B. 120

C. 0

## D. None of these

#### Answer: C



9. If  $A=\{1,2,3...,n\}$  and  $B=\{a,b\}$  Then , the number of subjection from A into B is .....

A.  $^{n}P_{2}$ 

 $B. 2^n - 2$ 

 $C. 2^n - 1$ 

D. None of these

Answer: D

10. If  $f\!:\!R o R$  be defined by  $f(x)=rac{1}{x},\ orall x\in R$  . Then , f is ......

A. one-one

B. onto

C. bijective

D. f is not defined

#### Answer: D

11. Let 
$$f: R \to R$$
 be defined by  
 $f(x) = 3x^2 - 5$  and  $g: R \to R, g(x) = \frac{x}{x^2 + 1}$  Then gof is ......  
A.  $\frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$   
B.  $\frac{3x^2 - 5}{9x^4 - 6x^2 + 26}$   
C.  $\frac{3x^2}{x^4 + 2x^2 - 4}$   
D.  $\frac{3x^2}{9x^4 + 30x^2 - 2}$ 

## Answer: A



12. Which of the following functions from Z into Z are bijections ?

A. 
$$f(x) = x^3$$

B. 
$$f(x) = x + 2$$

$$\mathsf{C}.\,f(x)=2x+1$$

D. 
$$f(x) = x^2 + 1$$

#### Answer: B

Watch Video Solution

13. If  $f\!:\!R o R$  be the functions defined by  $f(x)=x^3+5$  , then  $f^{\,-1}(x)$ 

is .....

A. 
$$(x + 5)^{\frac{1}{3}}$$
  
B.  $(x - 5)^{\frac{1}{3}}$   
C.  $(5 - x)^{\frac{1}{3}}$   
D.  $5 - x$ 

#### Answer: B

Watch Video Solution

14. If  $f \colon A o B$  and  $g \colon B o C$  be the bijective functions , then  $(gof)^{-1}$  is .....

A.  $f^{-1}$ og $^{-1}$ 

B. fog

 $\mathsf{C}.\,g^{-1}\mathrm{of}^{-1}$ 

D. gof

#### Answer: A

15. If 
$$f: R - \left\{\frac{3}{5}\right\} \to R$$
 be defined by  $f(x) = \frac{3x+2}{5x-3}$ , then .....  
A.  $f^{-1}(x) = f(x)$   
B.  $f^{-1}(x) = -f(x)$   
C.  $fof(x) = -x$   
D.  $f^{-1}(x) = \frac{1}{19}f(x)$ 

#### Answer: A

Watch Video Solution

16. If  $f:[0,1] \to [0,1]$  be difined by  $f(x) = \begin{cases} x & ext{if x is rational} \\ 1-x & ext{if x is irrational} \end{cases}$  then fof(x) is .....

## A. constant

B. 1 + x

С. х

D. None of these

Answer: C

Watch Video Solution

17. If  $f\colon [(2,\infty) o R$  be the function defined by  $f(x)=x^2-4x+5,$  then the range of f is .....

## A. R

- $\mathsf{B}.\left[1,\infty
  ight)$
- $\mathsf{C}.\,[4,\infty)$
- $\mathsf{D}.\left[5,\infty
  ight)$

#### Answer: B

18. If 
$$f:N o R$$
 be the function defined by  $f(x)=rac{2x-1}{2}$  and  $g:Q o R$  be another function defined by  $g(x)=x+2.$  Then , gof  $\left(rac{3}{2}
ight)$  is .....

A. 1

 $\mathsf{B.}-1$ 

C. 3

D. None of these

#### Answer: D

Watch Video Solution

19. 
$$f \colon R o R, f(x) = \left\{egin{array}{ccc} 2x & x > 3 \ x^2 & 1 < x \leq 3 \ 3x & x \leq 1 \end{array} 
ight.$$
 then find f (-1) + f(2) + f(4) .

A. 9

B. 14

C. 5

D. None of these

Answer: A

Watch Video Solution

**20.** If  $f \colon R o R$  be given by f(x) = tan x , then  $f^{-1}(1)$  is .....

A. 
$$rac{\pi}{4}$$
  
B.  $\left\{ n\pi + rac{\pi}{4} \colon n \in Z 
ight\}$ 

- C. Does not exist
- D. None of these

#### Answer: A

Watch Video Solution

Solutions Of Ncert Exemplar Problems Fillers



**3.** The functions f and g are defined as follow :  $f = \{(1, 2), (3, 5), (4, 1)\}$ and  $g = \{(2, 3), (5, 1), (1, 3)\}$ . Find the range of f and g. Also find the composition function fog and gof.

4. 
$$f{:}\,R o R,\,f(x)=rac{x}{\sqrt{1+x^2}},\,orall x\in R.$$
 Then find (fofof) (x).

Watch Video Solution

5. If 
$$f(x)=\left[4-\left(x-7
ight)^{3}
ight]$$
 , then  $f^{-1}(x)=.....$ 

Watch Video Solution

Solutions Of Ncert Exemplar Problems True False

- 1. Let  $R = \{(3, 1), (1, 3), (3, 3)\}$  be a relation defined on the set
- $A = \{1, 2, 3\}$  . Then , R is symmetric , transitive but not reflexive.

## Watch Video Solution

**2.** If  $f \colon R \to R$  be the function defined by  $f(x) = \sin(3x+2) \, orall x \in R.$ 

Then, f is invertible.





10. A binary operation on a set has always the identity element.



1. Which of the following defined on Z is not an equivalence relation ?

- A.  $(x,y)\in S\Leftrightarrow x\geq y$
- $\texttt{B.}\,(x,y)\in S\Leftrightarrow x=y$
- C.  $(x,y)\in S\leftrightarrow x-y$  is a multiple of 3
- D. If |x-y| is even  $\,\, \Leftrightarrow \, (x,y) \in S$

#### Answer:

**2.** The number of binary operation on  $\{1, 2, 3, ...., n\}$  is .....

A.  $2^{n}$ B.  $n^{n^{2}}$ C.  $n^{3}$ D.  $n^{2n}$ 

#### Answer:

Watch Video Solution

**3.** If  $a * b = a^2 + b^2$  is on Z then , (2 \* 3) \* 4 = .....

A. 13

B. 16

C. 185

D. 31

#### Answer:



#### Answer:



5. st is defined by a st b = a + b - 1 on Z , then identity element for  $\ st$  is

#### •••••

A. 1

B. 0

C. -1

D. 2

#### Answer:

Watch Video Solution

Practice Paper 1 Section B

1. If f(x) =  $8x^3$  and  $g(x) = x^{rac{1}{3}}$  then find gof and fog .

# Watch Video Solution

2. Let \* be the binary operation on Q define a \* b = a + ab. Is \* commutative ? Is \* associative ?

**3.** Let  $f: R \to R$  be defined as f(x) = 10x + 7. Find the function

 $g\!:\!R o R$  such that gof = fog =  $I_g$ 

Watch Video Solution

**4.** Let A = {1,2,3}. Then number of relations containing (1,2) and (1,3) which

are reflexive and symmetric but not transitive is

Watch Video Solution

**Practice Paper 1 Section C** 

**1.** Let T be the set of all triangles in a plane with R a relation in T given by  $R = \{(T_1, T_2): T_1 \text{ is congruent to } T_2\}$  Show that R is an equivalence relation. **2.** Prove that binary operation on set R defined as a \* b = a + 2b does not obey associative rule.

3. Let f':N o R be a function defined as  $f'(x)=4x^2+12x+15$  . Show that f:N o S , where, S is the range of f, is invertible. Find the inverse of f.

Watch Video Solution

**4.** If  $f: A \to B$  and  $g: B \to C$  be the bijective functions , then  $(gof)^{-1}$ 

is .....

5. Show that  $f\!:\!R_+ o R_+, f(x)=rac{1}{x}$  is one to one and onto function.

## Watch Video Solution

**Practice Paper 1 Section D** 

**1.** Let 
$$: f: N \to N$$
 be defined by  $f(n) = \begin{cases} rac{n+1}{2} & ext{if n is odd} \\ rac{n}{2} & ext{if n is even} \end{cases}$  for all

 $n\in N$  .

State whether the function f is bijective . Justify your answer.

**2.**  $f: Z \to Z ext{ and } g: Z \to Z$  are defined as follow :

$$f(n) = egin{cases} n+2 & ext{n even} \\ 2n-1 & ext{n odd} \end{cases}, g(n) = egin{cases} 2n & ext{n even} \\ rac{n-1}{2} & ext{n odd} \end{cases}$$
 Find fog and gof.