

MATHS

BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI ENGLISH)

VECTOR ALGEBRA

Practice Work

- 1. Represent graphically :
- (i) A displacement of 50 km., 30 $^{\circ}$ West of Sout.
- (ii) A displacement of 70 km., 40 $^\circ\,$ West of North.
- (iii) A displacement of 50 km., 45 $^\circ$ North of East.

(iii) 50 m/sec^2 (iv) 10 Newton

(v) 20 m/sec towards north (vi) 15 Kg.

3. Classify the following gas scalar and vector quantities : (i) Distance (ii) Displacement (iii) Force (iv) Velocity (v) Time (vi) Speed

- 4. If figure, identify the following vectors :
- (i) Collinear
- (ii) Equal
- (iii) Coinitial

(iv) Collinear but not equal

5. Answer the folliwng as true of false.

- (i) \vec{a} and \vec{a} and collinear.
- (ii) Zero vector is unique.

(iii) Two collinear vectors with equal magnitude are not

equal.

Watch Video Solution

6. Compute the magnitude of the following vectors :

(i)
$$\vec{a} = 2\hat{i} + 3\hat{j} + \sqrt{3}\hat{k}$$

(ii)
$$\vec{b} = 3\hat{i} - 4\hat{k}$$

(iii) $\vec{c} = \hat{i} + \hat{j} - 4\hat{k}$

7. Find the unit vector in the direction of the vector $2\hat{i} - 2\hat{j} + \hat{k}$.

Watch Video Solution

8. Write the scalar and vector components of the vector with initial point (-2, 1, 0) and terminal point (1, -5, 7).

9. Find a vector in the direction of the vector (3, -2, 2)

which has magnitude $2\sqrt{17}$ units.

10. For given vectors $\vec{a} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j}$ find

the unit vectors in the direction of the vector $\vec{a} + 2\vec{b}$.

Watch Video Solution

11. The position vector of a point A is (3, 4, -5) Find,

(i) Distance of a point A from XY-plane.

(ii) Distance of a point A from X-axis.

(iii) Distance of a point A from origin.

13. In
$$R^3$$
, $\vec{x} = (2, 3, 6)$, $\vec{y} = (6, -2, 3)$ and $\vec{z} = (3, 6, -2)$,

then find $2\vec{x} + \vec{y} - \vec{z}$.

14. Find a vector in the opposite direction of a vector $-3\hat{i} + 2\sqrt{3}\hat{j} - 2\hat{k}$ which has magnitude 20 units.

15. For given vectors, $\vec{a} = \hat{i} + 2\hat{j}$ and $\vec{b} = \hat{i} + 2\hat{k}$, find the

unit vector in the direction of the vector $3\vec{a} - 2\vec{b}$.

Watch Video Solution

16. The position vector of the points A and B are respectively \vec{a} and \vec{b} . Find the position vectors of the points which divide AB in trisection.

17. The position vectors of the points (1, -1) and (- 2, *m*) are \vec{a} and \vec{b} respectively. If \vec{a} and \vec{b} are collinear then find the value of m.

Watch Video Solution

18. If a vector makes angles α , β and γ with OX, OY and

OZ respectively, prove that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$.

19. Show that the direction cosines of a vector equally

inclined to the axes OX,OY and OZ are $\pm \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

- **20.** A vector \vec{r} has length 21 and directi9on ratio
- 2, 3, 6. Find the direction cosines and components of
- \vec{r} given that \vec{r} makes an acute angle with X- axis.

21. If \vec{a} and \vec{b} are non-collinear vectors find the value of

x for which vectors $\vec{\alpha} = (x - 2)\vec{a} + \vec{b}$ and $\vec{\beta} = (3 + 2x)\vec{a} - 2\vec{b}$ are collinear.

Watch Video Solution

22. Prove that the points $\hat{i} - \hat{j}$, $4\hat{i} + 3\hat{j} + \hat{k}$ and $2\hat{i} - 4\hat{j} + 5\hat{k}$ are vertices of a right angled triangle.

Watch Video Solution

23. If $PQ = 3\hat{i} + 2\hat{j} - \hat{k}$ and the co-ordinates of P is (1, -1,

2) then find the co-ordinates of Q.

(0, 0, 2). Show that $\triangle ABC$ is isosceles.

Watch Video Solution

25. $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ are adjacent side

of a parallelogram then find the unit vector in the direction of the diagonal of the parallelogram.

26. If
$$\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$$
 and $\vec{b} = 3\hat{i} + 2\hat{j} - \hat{k}$ then find $\vec{a} + 3\vec{b} \cdot (2\vec{a} - \vec{b})$.

Watch Video Solution

27. Find the angle between the vector $2\hat{i} - 3\hat{j} + \hat{k}$ and

 $\hat{i} + \hat{j} - 2\hat{k}.$

Watch Video Solution

28. If $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$ then show that

 $(\vec{a} + \vec{b})$ is a perpendicular to the vector $\vec{a} - \vec{b}$.

29. If
$$\vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}$$
, $\vec{b} = \hat{i} - 3\hat{k}$ and $\vec{c} = \hat{i} + 2\hat{j}$ then find
(i) $\vec{a} \cdot \vec{b}$ (ii) $(\vec{a} + \vec{b}) \cdot \vec{c}$
(iii) $(\vec{a} - \vec{b}) \cdot (\vec{b} - \vec{c})$
(iv) $(\vec{a} + 2\vec{b}) \cdot \vec{b}$
(v) $(\vec{a} - 3\vec{c}) \cdot (2\vec{a} + \vec{b})$

Watch Video Solution

30. Find the projection of the vector $7\hat{i} + \hat{j} - 4\hat{k}$ on the vector $2\hat{i} + 6\hat{j} + 3\hat{k}$.

31. For two vectors \vec{a} and \vec{b} , $|\vec{a}| = 4$, $|\vec{b}| = 3$ and

 \vec{a} . $\vec{b} = 6$ find the angle between \vec{a} and \vec{b} .

32.
$$\vec{a} = \lambda \hat{i} + 3\hat{j} + 2\hat{k}, \vec{b} = \hat{i} - \hat{j} + 3\hat{k}$$
. If \vec{a} and \vec{b} are

perpendicular to each other then find the value of λ .

Watch Video Solution

33. $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$. If the vector \vec{a}

and \vec{b} are parallel then find the value of P.

34. If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ are position vectors of points A,B,C and D respectively, then find the angle between AB and CD. Deduce that \vec{AB} and CD are collinear.

Watch Video Solution

35. If
$$(\vec{a} - \vec{b})$$
. $(\vec{a} + \vec{b}) = 27$ and $|\vec{a}| = 2|\vec{b}|$ the find $|\vec{a}|$ and $|\vec{b}|$.

36. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence, the components of \vec{a} .

Watch Video Solution

37. A unit vector \vec{a} is perpendicualr to the vectors

 $\hat{i} + 2\hat{j} - \hat{k}$ and $3\hat{i} - \hat{j} + \hat{k}$ then find the components of \vec{a} .

Watch Video Solution

38. Find the values of 'a' for which the vector $\vec{r} = (a^2 - 4)\hat{i} + 2\hat{j} - (a^2 - 9)\hat{k}$ makes acute angles with

and $2\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5 and 8 respectively. Find the vector.

41. If
$$|\vec{a}| = 2$$
, $|\vec{b}| = 5$ and $\vec{a} \cdot \vec{b} = 10$ then find $|\vec{a} - \vec{b}|$.

Watch Video Solution

42. If
$$\vec{a} = 5\hat{i} - \hat{j} + 7\hat{k}$$
 and $\vec{b} = \hat{i} - \hat{j} + \lambda\hat{k}$. If $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicualr to each other then find the value of λ .

Watch Video Solution

43. Express the vector $2\hat{i} + 3\hat{j} + \hat{k}$ as the sum of two vectors, one vector is perpendicual to $2\hat{i} - 4\hat{j} + \hat{k}$ and the other vector is parallel to $2\hat{i} - 4\hat{j} + \hat{k}$.

44. *A*(0, -1, -2), *B*(3, 1, 4) and *C*(5, 7, 1) are vertices of

 $\triangle ABD$ then find the measure of $\angle A$.

45. Prove that the angle in a semicircle is right angle.

(By vector method)

46. Using vector method prove that in a right angled teriangle, the midpoint of the hypotenuse is equidistance from the vertices of the triangle.

47. If
$$\vec{a} + \vec{b} + \vec{c} = 0$$
 and $|\vec{a}| = 6$, $|\vec{b}| = 5$, $|\vec{c}| = 7$ then

find the angle between the vectors \vec{b} and \vec{c} .

48. The vectors of two sides of the triangle are $\vec{a} = 3\hat{i} + 6\hat{j} - 2\hat{k}$ and $\vec{b} = 4\hat{i} - \hat{j} + 3\hat{k}$ then find all the

51. If
$$|\vec{a} + \vec{b}| = 60$$
, $|\vec{a} - \vec{b}| = 40$ and $|\vec{b}| = 46$ find $|\vec{a}|$.

Watch Video Solution

52. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}| = 3, |\vec{b}| = 4, |\vec{c}| = 5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a} + \vec{b} + \vec{c}|$.

Watch Video Solution

53. Find the value of c for which the vectors $\vec{a} = (c \log_2 x)\hat{i} - 6\hat{j} + 3\hat{k}$ and

$$\vec{b} = (\log_2 x)\hat{i} + 2\hat{j} + (2c\log_2 x)\hat{k}$$
 makes an obtuse angle

for any $(x \in 0, \infty)$.

54. If the angle between the unit vectors \vec{a} and \vec{b} is θ

then prove that
$$\sin\frac{\theta}{2} = \frac{1}{2}|\hat{a} - \hat{b}|.$$

Watch Video Solution

55.
$$\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$$
 and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$

then find the projection of $\vec{b} + \vec{c}$ on \vec{a} .

56. Find a vector perpendicular to both the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $\hat{i} + 2\hat{j} - \hat{k}$.

Watch Video Solution

57. Find the area of the triangle with vertices A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1).

Watch Video Solution

58. Find the area of the parallelogram whose diagonals are determined by the vectors $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$.

59. Find the area of the triangle with vertices A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1).

Watch Video Solution

60. The position vectors of the points A, B, C are \vec{a} , \vec{b} and \vec{c} respectively. If the points A, B, C are collinear then prove that

 $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}.$

61. For vectors \vec{a}, \vec{b} and $\vec{c}, \vec{a}, \vec{b} = \vec{a}, \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}, \vec{a} \neq \vec{0}$ then show that $\vec{b} = \vec{c}$.

62. Prove that for any vector
$$\vec{a}$$
,

$$\left|\vec{a}\times\hat{i}\right|^{2}+\left|\vec{a}\times\hat{j}\right|^{2}+\left|\vec{a}\times\hat{k}\right|^{2}=2\left|\vec{a}\right|^{2}.$$

Watch Video Solution

63. Find the area of the parallelogram whose diagonals are determined by the vectors $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$.

64. If
$$\left| \vec{a} \right| = 2 \left| \vec{b} \right| = 5$$
 and $\left| \vec{a} \times \vec{b} \right| = 8$ then find $\vec{a} \cdot \vec{b}$.

Watch Video Solution

65. If
$$\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b}$$
 then find the angle between \vec{a} and \vec{b} .

Watch Video Solution

66. If
$$|\vec{a}| = 10$$
, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 12$ then find $|\vec{a} \times \vec{b}|$.

67. Show that the points with position vectors $5\hat{i} + 6\hat{j} + 7\hat{k}, 7\hat{i} - 8\hat{j} + 9\hat{k}$ and $3\hat{i} + 20\hat{j} + 5\hat{k}$ are collinear.

68. Find the magnitude of the vector
$$\vec{a} = (3\hat{i} + 4\hat{j}) \times (\hat{i} + \hat{j} - \hat{k}).$$

Watch Video Solution

Watch Video Solution

69. Find the area of the parallelogy whose diagonals are determined the vectors $2\hat{i} + \hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$.

70. Prove that (1, 2, 3) (2, 3, 5) and (5, 8, 13) are coplanar.

ax + y + 1 = 0, x + by + 1 = 0 and x + y + c = 0 are

concurrent then prove that,

$$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$$

Watch Video Solution

74. Find the value of x if the vectors (x, x + 1, x + 2), (x + 3, x + 4, x + 5) and (x + 6, x + 7, x + 8) are coplanar.

75. Show that the angle between the diagonal of a

cube is
$$\cos^{-1}\left(\frac{1}{3}\right)$$
.

Watch Video Solution

76.
$$\vec{a} = 2\hat{i} - 10\hat{j} + 2\hat{k}, \vec{b} = 3\hat{i} + \hat{j} + 2\hat{k}$$
 and $\vec{c} = 2\hat{i} + \hat{j} + 3\hat{k}$
then find $\vec{a} \times (\vec{b} \times \vec{c})$.

Watch Video Solution

77. $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}, \ \vec{b} = 2\hat{i} + \hat{j} + \hat{k},$

 $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$ then find that

passes through the point P(1, -1, 2), Q(2, 0, -1) and R(0, 2, 1).

79. Find a vector of magnitude $\sqrt{51}$ and makes equal angle with the vectors

$$\vec{a} = \frac{1}{3}(\hat{i} - 2\hat{j} + 2\hat{k}), \vec{b} = \frac{1}{5}(-4\hat{i} - 3\hat{k}) \text{ and } \vec{c} = \hat{j}.$$

80. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a}, \vec{b} = \vec{a}, \vec{c} = 0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$. Prove that $\vec{a} = \pm 2(\vec{b} \times \vec{c})$.

Watch Video Solution

81. Let $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = 10\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{b}$ where O is origin. Let P denotes the area of the quadrilateral OABC and q denote the area of the parallelogram with OA and OC as adjacent side. Prove that P = 6q.

82. If A, B, C and D by any four points in space, prove

that

$$\begin{vmatrix} \overrightarrow{AB} & \overrightarrow{CD} + \overrightarrow{BC} & \overrightarrow{AD} + \overrightarrow{CA} & \overrightarrow{BD} \end{vmatrix} = 4 \text{ (Area of triangle ABC)}$$

Watch Video Solution

83. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{c} = \hat{j} - \hat{k}$ are given vectors, then find a vector \vec{b} satisfying the equations $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 3$.

86. The sum of two unit vectors is a unit vector then the magnitude of their difference is $\sqrt{3}$. Prove this.

87. For anyy two vectors \vec{a} and \vec{b} , show that

$$\left(1 + \left|\vec{a}\right|^2\right) \left(1 + \left|\vec{b}\right|^2\right) = \left|\left(1 - \vec{a} \cdot \vec{b}\right)\right|^2 + \left|\vec{a} + \vec{b} + \left(\vec{a} \times \vec{b}\right)\right|^2$$

88. P(2, -1, 4) and Q (4, 3, 2) are given points. Find the prove which divides the line joining P and Q in the ratio 2 : 3. (i) Internally (ii) Externally (Using vector method).

89. If \vec{a} and \vec{b} are the vectors determined by two adjacent sides of a regular hexagonn ABCDEF. What are the vectors determined by the other sides taken in order ?

Exercise 101

1. Represent graphically a displacement of 40 km , 30 $^\circ$

east of north.

2. Classify the following measures as scalars and

vectors .

(i) 10 kg

(ii) 2 meters north

(iii)40 °

(iv) 40 watt

(v) 10^{19} coulomb

(vi) $20m/s^2$

Watch Video Solution

3. Classify the following as scalar and vector quantities.

(i) time period

(ii) distance

(iii) force

(iv) velocity

(v) work done

|--|

4. In figure identify the following vectors :

(i) Coinitial

(ii) Equal

(iii) Collinear but not equal

5. Answer the followings true or false.

(i) \vec{a} and $-\vec{a}$ are collinear.

(ii) Two collinear vectors are always equal in magnitude.

(iii) Two vectors having same magnitude are collinear.

(iv) Two collinear vectors having the same magnitude are equal.

Watch Video Solution

Exercise 10 2

1. Compute the magnitude of the following vectors :

$$\vec{a} = \hat{i} + \hat{j} + k, \vec{b} = 2\hat{i} - 7\hat{j} - 3\hat{k}, \vec{c} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k}$$

2. Compute the magnitude of the following vectors :

$$\vec{a} = \hat{i} + \hat{j} + k, \, \vec{b} = 2\hat{i} - 7\hat{j} - 3\hat{k}, \, \vec{c} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k}$$

Watch Video Solution

3. Compute the magnitude of the following vectors :

$$\vec{a} = \hat{i} + \hat{j} + k, \ \vec{b} = 2\hat{i} - 7\hat{j} - 3\hat{k}, \ \vec{c} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k}$$

7. Find the scalar and vector components of the vector

with initial point (2,1) and terminal point (-5,7).

10. Find the unit vector in the direction of vector PQ, where P and Q are the points (1,2,3) and (4,5,6), respectively.

Watch Video Solution

11. For given vectors $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} - \hat{k}$,

find the unit vector in the direction of the vector $\vec{a} + \vec{b}$.

12. Find a vector in the direction of vector $5\hat{i} - \hat{j} + 2\hat{k}$

which has magnitude 8 units.

Ow	atch Video Solu	ition	

13. Show that the vectors
$$2\hat{i} - 3\hat{j} + 4\hat{k}$$
 and $-4\hat{i} + 6\hat{j} - 8\hat{k}$

are collinear.

Watch Video Solution

14. Find the direction cosines of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$.

15. Find the direction cosines of the vector joining the

points A(1,2,-3) and B(-1,-2,1), directed from A to B.

16. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to

the axes OX, OY and OZ.

17. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively, in the ratio 2 : 1.

(i) internally (ii) externally

20. If triangle ABC (Fig 10.18), which of the following is

not true :

 $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$ $\overrightarrow{B} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$ $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \overrightarrow{0}$

21. If \vec{a} and \vec{b} , are two collinear vectors, then which of the following are incorrect :

(A) $\vec{b} = \lambda \vec{a}$, for some scalar λ

(B) $\vec{a} = \pm \vec{b}$

(C) the respective components of \vec{a} and \vec{b} are not proportional

(D) both the vectors \vec{a} and \vec{b} have same direction, but

different magnitudes.

Exercise 103

1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively having $\vec{a} \cdot \vec{b} = \sqrt{6}$.

Watch Video Solution

4. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$.

5. Show that each of the given three vectors is a unit

vector.
$$\frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right), \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right), \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right)$$

Also , show that they are mutually perpendicular to each other.

• Watch Video Solution
6. Find
$$|\vec{a}|$$
 and $|\vec{b}|$, if $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8 |\vec{b}|$.
• Watch Video Solution

7. Evaluate the product
$$(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$$
.

9. Find
$$|\vec{x}|$$
, iif for a unit vector \vec{a} ,

$$(\vec{x} - \vec{a}).(\vec{x} + \vec{a}) = 12.$$

10. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ .

12. If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$ then what can be concluded

about the vector \vec{b} ?

14. If either vector $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \cdot \vec{b} = 0$. But

the converes need not be true . Justify your answer with an example.

15. If either vector A,B,C of a triangle ABC are (1,2,3), (-1,0,0),(0,1,2), respectively, then find $\angle ABC$. [$\angle ABC$ is \rightarrow \rightarrow the angle between the vectors BA and BC].

Watch Video Solution

16. Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10,

-1) are collinear.

Watch Video Solution

17. Show that the points $A(2\hat{i} - \hat{j} + \hat{k}), B(\hat{i} - 3\hat{j} - 5\hat{k}), C(3\hat{i} - 4j - 4\hat{k})$ are vertices

of a right angled triangle.

18. If \vec{a} is a nonzero vector of mangitude 'a' and λ a nonzero scalar , then $\lambda \vec{a}$ is unit vector if

A.
$$\lambda = 1$$

B. $\lambda = -1$
C. $a = |\lambda|$
D. $a = \frac{1}{|\lambda|}$

Answer: D

Exercise 10 4

1. Find
$$\left| \vec{a} \times \vec{b} \right|$$
, if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$.

Watch Video Solution

2. Find a unit perpendicular to each of the vector $\vec{a} + \vec{b}$

and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

3. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence , the components of \vec{a} .

Watch Video Solution

4. Show that,
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b}).$$

Watch Video Solution

5. Find λ and μ if

$$\left(2\hat{i}+6\hat{j}+27\hat{k}\right)\times\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}\right)=\vec{0}.$$

6. Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = 0$. What can you conclude about the vectors \vec{a} and \vec{b} ?

Watch Video Solution

7. Let the vectors $\vec{a}, \vec{b}\vec{c}$ be given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, b_1\hat{i} + b_2\hat{j} + b_3\hat{k}c_1\hat{i} + c_2\hat{j} + c_3\hat{k}.$ Then show that $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

8. If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{0}$. Is the converse true ? Justify your answer with an example. Watch Video Solution
9. Find the area of the triangle with vertices A(1, 1, 2),

B(2, 3, 5) and C(1, 5, 5).

10. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.

11. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is.....

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B

12. Area of a rectangle having vertices A, B, C and D

with position vectors

$$-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$$
 and $-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k},$

respectively is

- A. $\frac{1}{2}$
- B. 1
- C. 2
- D. 4

Answer: C

Exercise 10 5

1. Find $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$ if $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} - 2\hat{k}$.

Watch Video Solution

2. Show that the vectors, $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}$ and $\vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}$ are

coplanar.

3. Find λ if the vectors $\hat{i} - \hat{j} + \hat{k}$, $3\hat{i} - \hat{j} + 2\hat{k}$ and $\hat{i} + \lambda\hat{j} - 3\hat{k}$

are coplannar.

4. Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then

If $c_1 = 1$ and $c_2 = 2$ find c_3 which makes \vec{a}, \vec{b} and \vec{c} coplanar.

5. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then If $c_2 = -1$ and $c_3 = 1$. Show that no value of c_1 can

6. Show that the four points as position vectors, $4\hat{i} + 8\hat{j} + 12\hat{k}, 2\hat{i} + 4\hat{j} + 6\hat{k}, 3\hat{i} + 5\hat{j} + 4\hat{k}$ and $5\hat{i} + 8\hat{j} + 5\hat{k}$ are coplanar.

Watch Video Solution

7. Find x such that the four points A(3, 2, 1), B(4, x, 5),

C(4, 2, -2) and D(6, 5, -1) are coplanar.

8. Show that the vectors \vec{a}, \vec{b} and \vec{c} coplanar if $\vec{a} + \vec{b}, \vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar.

Miscellaneous Exercise 10

1. Write down a unit vector in XY-plane, making an angle of 30 $^{\circ}$ with the positive direction of x-axis.

2. Find the scalar components and magnitude of the

vector joining the points
$$P(x_1, y_1, z_1)$$
 and $Q(x_2, y_2, z_2)$.

Watch Video Solution

3. A girl walks 4 km towards west, then she walks 3 km in a direction 30 ° east of north and stops. Determine the girl's displacement from her initial point of departure.

4. If $\vec{a} = \vec{b} + \vec{c}$, then is it true that $|\vec{a}| = |\vec{b}| + |\vec{c}|$? Justify your answer.

5. Find the value of x for which $x(\hat{i} + \hat{j} + \hat{k})$ is a unit

vector.

Watch Video Solution

Watch Video Solution

6. Find a vector of magnitude 5 units and parallel to

the resultant of the vectors $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$.

7. If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{j} - \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a

unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.

8. Show that the points A(1,-2,-8),B(5,0,-2)andC(11,3,7)

are collinear, and find the ratio in which B divides AC.

9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2\vec{a} + \vec{b})$ and $(\vec{a} - 3\vec{b})$ externally in the ratio 1:2 Also , show that P is the mid point of the line segment RQ.

Watch Video Solution

10. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal. Also, find its area.

View Text Solution

11. Show that the direction cosines of a vector equally

inclined to the axes OX, OY and OZ are

$$\pm\left(\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}}\right).$$

Watch Video Solution

12. Let
$$\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and $\vec{c} \cdot \vec{d} = 15$.

View Text Solution

13. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

14. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

15. prove that $(\vec{a} + \vec{b})$. $(\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$, if and

only if \vec{a}, \vec{b} are perpendicular, given $\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}$.

O Watch Video Solution	

16. If θ is angle between two vectors \vec{a} and \vec{b} then \vec{a} . $\vec{b} \ge 0$ only when

A. $0 < \theta < \frac{\pi}{2}$ B. $0 \le \theta \le \frac{\pi}{2}$ C. $0 < \theta < \pi$

 $D.0 \le \theta \le \pi$

Answer: B

17. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if

A.
$$\theta = \frac{\pi}{4}$$

B. $\theta = \frac{\pi}{3}$
C. $\theta = \frac{\pi}{2}$
D. $\theta = \frac{2\pi}{3}$

Answer: D

18. The value of \hat{i} . $(\hat{j} \times \hat{k}) + \hat{j}$. $(\hat{i} \times \hat{k}) + \hat{k}$. $(\hat{i} \times \hat{j})$ is

A. 0

B. - 1

C. 1

D. 3

Answer: C

19. If θ is the angle between any two vectors \vec{a} and \vec{b} , then $\left| \vec{a} \cdot \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|$ when θ is equal to

A. 0

B.
$$\frac{\pi}{4}$$

C. $\frac{\pi}{2}$

D. *π*

Answer: B

Textbook Illustrations For Practive Work

1. Represent graphically a displacement of 40 km, 30 $^\circ$

west of south.

2. Classify the following measures as scalars and vectors.

(i) 5 seconds

(ii) 1000*cm*³

(iii) 10 Newton

(iv) 30km/hr

(v) $10g/cm^3$

(vi) 20m/s towards north

3. In Fig 10.5 ., which of the vectors are :

(i) Collinear

(ii) Equal

(iii) Coinitial

Watch Video Solution

4. Find the values of x,y and z so that the vectors

$$\vec{a} = x\hat{i} + 2\hat{j} + z\hat{k}$$
 and $\vec{b} = 2\hat{i} + y\hat{j} + \hat{k}$ are equal.

6. Find a vector in the direction of vector $\vec{a} = \hat{i} - 2\hat{j}$ that

has magnitude 7 units.

7. Find a vector in the direction of vector $\vec{a} = \hat{i} - 2\hat{j}$ that

has magnitude 7 units.

8. Find the unit vector in the direction of the sum of

vectors, $\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$.

Watch Video Solution

9. Write the direction ratio's of the vector $\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$

and hence calculate its direction cosines.

10. Find the vector joining the points P(2,3,0) and Q(-1,-2,-4) directed from P to Q.

11. Consider two points P and Q with position vectors $\vec{OP} = 3\hat{a} - 2\vec{b}$ and $\vec{OQ} = \vec{a} + \vec{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio 2 : 1, (i) internally, and (ii) externally.

of a right angled triangle.

13. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b} = 1$.

15. If $\vec{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} - 5\hat{k}$, then show that the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicualr.

16. Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2k$ on

the vector $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$.

Watch Video Solution

17. Find $|\vec{a} - \vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 4$.

18. If \vec{a} is a unit vector and $(\vec{x} - \vec{a})$. $(\vec{x} + \vec{a}) = 8$ then find $|\vec{x}|$.

19. For any two vectors \vec{a} and \vec{b} , we always have

 $\left| \vec{a} \cdot \vec{b} \right| \leq \left| \vec{a} \right| \left| \vec{b} \right|$ (Cauchy- Schwartz inequality).

Watch Video Solution

20. For any two vectors \vec{a} and \vec{b} , we always have $\left|\vec{a} + \vec{b}\right| \leq \left|\vec{a}\right| + \left|\vec{b}\right|$ (triangle inequality).

21. Show that the points
$$A\left(-2\hat{i}+3\hat{j}+5\hat{k}\right), B\left(\hat{i}+2\hat{j}+3\hat{k}\right) \text{ and } C\left(7\hat{i}-\hat{k}\right)$$
 are

collinear.

Watch Video Solution

22. Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$

23. Find a unit vector perpendicualr to each of the

vectors
$$\left(\vec{a}+\vec{b}\right)$$
 and $\left(\vec{a}-\vec{b}\right)$, where

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}.$$

$$\textcircled{Watch Video Solution}$$
24. Find the area of atriangle having the points A(1,1,1),
B (1,2,3) and C(2,3,1) as its vertices.
$$\textcircled{Watch Video Solution}$$
25. Find the area of a parallelogram whose adjacent
sides are given by the vectors
 $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$

26. If
$$\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$$
, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$
then find $\vec{a} \cdot (\vec{b} \times \vec{c})$.

Watch Video Solution

27. Show that the vectors
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}$$
 and $\vec{c} = \hat{i} - \hat{j} + 5\hat{k}$ are

coplannar.

Watch Video Solution

28. If the vectors $\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} - \hat{k}$ and $\vec{c} = \lambda\hat{i} + 7\hat{j} + 3\hat{k}$ are coplannar then find λ .

29. If
$$4\hat{i} + 5\hat{j} + \hat{k}$$
, $-(\hat{j} + \hat{k})$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and

 $4\left(-\hat{i}+\hat{j}+\hat{k}\right)$ are position vectors of the points A, B, C

and D then prove that A, B, C, D are coplannar.

Watch Video Solution

30. Prove that
$$\left[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}\right] = 2\left[\vec{a}, \vec{b}, \vec{c}\right]$$
.

Watch Video Solution

31. Prove that $\begin{bmatrix} \vec{a}, \vec{b}, \vec{c} + \vec{d} \end{bmatrix} = \begin{bmatrix} \vec{a}, \vec{b}, \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a}, \vec{b}, \vec{d} \end{bmatrix}$.

34. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and each one the them being perpendicular to the sum of the other two, find $|\vec{a} + \vec{b} + \vec{c}|$.

Watch Video Solution

35. Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Evaluate the quantity $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $|\vec{a}| = 1$, $|\vec{b}| = 4$ and $|\vec{c}| = 2$.

36. If with reference to the right handed system of mutually perpendicular unit vectors \hat{i}, \hat{j} and $\hat{k}, \vec{\alpha} = 3\hat{i} - \hat{j}, \vec{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.

Watch Video Solution

Solutions Of Ncert Exemplar Problems Short Answer Type Questions

1. Find the unit vector in the direction of sum of vectors $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ and $\bar{b} = 2\hat{j} + \hat{k}$.

2. If
$$\bar{a} = \hat{i} + \hat{j} + 2\hat{k}$$
 and $\bar{b} = 2\hat{i} + \hat{j} - 2\hat{k}$, find the unit

vector in the direction of

(i)
$$6\bar{b}$$
 (ii) $2\bar{a} - \bar{b}$

Watch Video Solution

3. Find a unit vector in the direction of *PQ*, where P and Q have coordinates (5, 0, 8) and (3, 3, 2), respectively.

4. If A and B are the positon vectors of \bar{a} and \bar{b} respectively, then find the positon vector of a point C in \overrightarrow{BA} produced such that $\overrightarrow{BC} = 1.5\overrightarrow{BA}$.

Watch Video Solution

5. Using vectors, find the value of k, such that the points (k, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.

Watch Video Solution

6. A vector \bar{r} is inclined at equal angles to the three axes. If the magnitude of \bar{r} is $2\sqrt{3}$ units, then find the

3, -6. Then find the direction cosines and components

of \vec{r} , given that \bar{r} makes an acute angle with X - axis.

8. Find a vector of magnitude 6, which is perpendicualr

to both the vectors $2\overline{i} - \overline{j} + 2\overline{k}$ and $4\overline{i} - \overline{j} + 3\overline{k}$.

9. Find the angle between the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} - \hat{k}$.

Watch Video Solution

10. If $\bar{a} + \bar{b} + \bar{c} = 0$, then show that $\bar{a} \times \bar{b} = \bar{b} \times \bar{c} = \bar{c} \times \bar{a}$.

Interpret the result geometrically.

Watch Video Solution

11. Find the sine of the angle between the vectors

$$\bar{a} = 3\hat{i} + \hat{j} + 2\hat{k}$$
 and $\bar{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}$.

12. If A, B, C and D are the points with position vectors $\hat{i} + \hat{j} - \hat{k}$, $2\hat{i} - \hat{j} + 3\hat{k}$, $2\hat{i} - 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ respectively, $\overrightarrow{i} + \hat{j} - \hat{k}$, $2\hat{i} - \hat{j} + 3\hat{k}$, $2\hat{i} - 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ respectively,

O Watch Video Solution

13. Using vectors, find the area of the $\triangle ABC$ with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1).

14. Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

16. Show that area of the parallelogram whose diagonals are given by \vec{a} and \vec{b} is $\frac{1}{2}$. $\left| \vec{a} \times \vec{b} \right|$. Also, find the area of the parallelogram, whose diagonals are $2\vec{i} - \vec{j} + \vec{k}$ and $\vec{i} + 3\vec{j} - \vec{k}$.

17. If $\bar{a} = \bar{i} + \bar{j} + \bar{k}$ and $\bar{b} = \bar{j} - \bar{k}$, then find a vector \vec{c} such

that $\bar{a} \times \bar{c} = \bar{b}$ and \bar{a} . $\bar{c} = 3$.

Watch Video Solution

Solutions Of Ncert Exemplar Problems Objective Type Questions

1. The vector in the direction of the vector $\vec{a} = \overline{i} - 2\overline{j} + 2\overline{k}$ that has magnitude 9 is

A.
$$\overline{i} - 2\overline{j} + 2\overline{k}$$

B. $\frac{\overline{i} - 2\overline{j} + 2\overline{k}}{3}$
C. $3(\overline{i} - 2\overline{j} + 2\overline{k})$
D. $9(\overline{i} - 2\overline{j} + 2\overline{k})$

Answer: C

2. The position vector of the point which divides the join of points $2\bar{a} - 3\bar{b}$ and $\bar{a} + \bar{b}$ in the ratio 3 : 1, is

A.
$$\frac{3\bar{a} - 2\bar{b}}{4}$$

B.
$$\frac{7\bar{a} - 8\bar{b}}{4}$$

C.
$$\frac{3\bar{a}}{4}$$

D.
$$\frac{5\bar{a}}{4}$$

.....

Answer: D

3. The vector having initial and terminal points as (2, 5,

0) and (-3, 7, 4) respectively is

A.
$$-\overline{i} + 12\overline{j} + 4\overline{k}$$

B. $5\overline{i} + 2\overline{j} - 4\overline{k}$
C. $-5\overline{i} + 2\overline{j} + 4\overline{k}$
D. $\overline{i} + \overline{i} + \overline{k}$

Answer: C

4. The angle between two vectors a and b with magnitudes $\sqrt{3}$ and 4, respectively and $\bar{a}. \bar{b} = 2\sqrt{3}$ is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{5\pi}{2}$

.....

Answer: B

5. Find the value of λ such that the vectors $\bar{a} = 2\bar{i} + \lambda\bar{j} + \bar{k}$ and $\bar{b} = \bar{i} + 2\bar{j} + 3\bar{k}$ are orthogonal

A. 0

B. 1 C. $\frac{3}{2}$

2 D. $-\frac{5}{2}$

Answer: D

6. The value of λ for which the vectors $3\overline{i} - 6\overline{j} + \overline{k}$ and $2\overline{i} - 4\overline{j} + \lambda \overline{k}$ are parallel is

A.
$$\frac{2}{3}$$

B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{2}{5}$

Answer: A

7. The vectors from origin to the points A and B are $\bar{a} = 2\bar{i} - 3\bar{j} + 2\bar{k}$ and $\bar{b} = 2\bar{i} + 3\bar{j} + \bar{k}$ respectively, then the area of $\triangle OAB$ is equal to

A. 340

B. $2\sqrt{5}$

C. $\sqrt{229}$

D.
$$\frac{1}{2}\left(\sqrt{229}\right)$$

Answer: D

8. $\bar{a} = 2\bar{i} - 3\bar{j} + 2\bar{k}$ and $\bar{b} = 2\bar{i} + 3\bar{j} + \bar{k}$ are the sides of

triangle OAB. Then its area is seq. unit.

A. 340 B. 2√5

D.
$$\frac{1}{2} \left(\sqrt{229} \right)$$

1000

9. For any vector
$$\bar{a}$$
, the value of
 $(\bar{a} \times i)^2 + (\bar{a} \times j)^2 + (\bar{a} \times \bar{k})^2$ is
A. $|\bar{a}|^2$
B. $3|\bar{a}|^2$
C. $4|\bar{a}|^2$
D. $2|\bar{a}|^2$

10. If $|\bar{a}| = 10$, $|\bar{b}| = 2$ and $\bar{a} \cdot \bar{b} = 12$ then the value of $|\bar{a} \times \bar{b}|$ is

A. 5

B. 10

C. 14

D. 16

11. The vectors $\lambda \overline{i} + \overline{j} + 2\overline{k}$, $\overline{i} + \lambda \overline{j} - \overline{k}$ and $2\overline{i} - \overline{j} + \lambda \overline{k}$ are coplanar, if

A. $\lambda = -2$ B. $\lambda = 0$ C. $\lambda = 1$ D. $\lambda = -1$

Answer: A

12. If \bar{a} , \bar{b} and \bar{c} are unit vectors such that $\bar{a} + \bar{b} + \bar{c} = \bar{0}$, then the value of \bar{a} . $\bar{b} + \bar{b}$. $\bar{c} + \bar{c}$. $\bar{a} = \dots$

A. 1

B. 3

D. None of these

Answer: C

13. The projection vector of \bar{a} on \bar{b} is

A.
$$\left(\frac{\bar{a}.\bar{b}}{|\bar{b}|^2}\right).\bar{b}$$

B. $\frac{\bar{a}.\bar{b}}{|\bar{b}|}$
C. $\frac{\bar{a}.\bar{b}}{|\bar{a}|}$
D. $\left(\frac{\bar{a}.\bar{b}}{|\bar{a}|^2}\right).\bar{b}$

Answer: A

Watch Video Solution

14. If \bar{a} , \bar{b} and \bar{c} are three vectors such that $\bar{a} + \bar{b} + \bar{c} = \bar{0}$ and $|\bar{a}| = 2$, $|\bar{b}| = 3$ and $|\bar{c}| = 5$, then the value of \bar{a} . $\bar{b} + \bar{b}$. $\bar{c} + \bar{c}$. \bar{a} is A. 0

B. 1

C. - 19

D. 38

Answer: C

Watch Video Solution

15. If $|\bar{a}| = 4$ and $-3 \le \lambda \le 2$, then the range of $|\lambda, \bar{a}|$ is

A. [0, 8]

..........

B. [-12, 8]

C. [0, 12]

D. [8, 12]

Answer: C

Watch Video Solution

16. The number of vectors of unit length perpendicular to the vectors $\bar{a} = 2\bar{i} + \bar{j} + 2\bar{k}$ and $\bar{b} = \bar{j} + \bar{k}$ is

A. Only one

B. Only two

C. Only three

D. infinite

18. If \bar{r} . $\bar{a} = 0$, \bar{r} . $\bar{b} = 0$ and \bar{r} . $\bar{c} = 0$ for some non-zero

vector \bar{r} , then the value of \bar{a} . $\left(\bar{b} \times \bar{c}\right)$ is

19. The vectors $\bar{a} = 3\bar{i} - 2\bar{j} + 2\bar{k}$ and $\bar{b} = -\bar{i} - 2\bar{k}$

are the adjacent sides of a parallelogram. The angle

between its diagonals is

Watch Video Solution

20. The values of k, for which $|k, \bar{a}| < |\bar{a}|$ and $k, \bar{a} + \frac{1}{2}\bar{a}$

is parallel to \bar{a} holds true are

where
$$k \in [-1, 1] - \left\{-\frac{1}{2}\right\}$$
 i.e. $k \in [-1, 1] k \neq -\frac{1}{2}$

22. If
$$|\bar{a} \times \bar{b}|^2 + |\bar{a}.\bar{b}|^2 = 144$$
 and $|\bar{a}| = 4$, then $|\bar{b}|$ is

equal to

Watch Video Solution

23. If \bar{a} is any non-zero vector, then

$$\left(\bar{a},\bar{i}\right),\bar{i}+\left(\bar{a},\bar{j}\right),\bar{j}+\left(\bar{a},\bar{k}\right),\bar{k}$$
 is equal to

Solutions Of Ncert Exemplar Problems True False

1. If
$$|\bar{a}| = |\bar{b}|$$
, then necessarily it implies $\bar{a} = \pm \bar{b}$.

2. Position vector of a point \vec{P} is a vector whose initial

point is origin.

3. If
$$\left| \bar{a} + \bar{b} \right| = \left| \bar{a} - \bar{b} \right|$$
, then the vectors \bar{a} and \bar{b} are orthogonal.

4. The formula
$$|\bar{a} + \bar{b}|^2 = |\bar{a}|^2 + |\bar{b}|^2 + 2\bar{a} \times \bar{b}$$
 is valid

for non-zero vectors \bar{a} and \bar{b} .

Watch Video Solution

5. If \bar{a} and \bar{b} are adjacent sides of a rhombus, then $\bar{a}, \bar{b} = 0$.

Solutions Of Ncert Exemplar Problems Multiple Choice Questions Mcqs

1. The unit vector in the direction of $\bar{x} = (-2, 1, -2)$ is

A.
$$\left(\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right)$$

B. $\left(-\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$
C. $\left(-\frac{2}{9}, \frac{1}{9}, -\frac{2}{9}\right)$
D. $\left(\frac{2}{9}, -\frac{1}{9}, \frac{2}{9}\right)$

Answer: B

.....

3. $\bar{x} = (2, 3)$ and $\bar{y} = (5, -2)$ are Vectors.

A. collinear

B. non collinear

C. co direction

D. opposite direction

Answer: B

4. The vectors (3, 6, -9) andhave same direction

ratio.

A. (1, 2, 3)

B. (*π*, 2*π*, 3*π*)

C. (-1, -2, 3)

D. (1, 2, 0)

Answer: C

Watch Video Solution

5. The number of unit vectors which are collinear with

non zero vector \bar{a} is

A. Exactly one

B. Exactly two

- C. Exactly three
- D. Any positive integer

Answer: B

6. The direction cosines of $\bar{r} = (6, -2, 3)$ are

B.
$$\frac{6}{\sqrt{7}}, \frac{-2}{\sqrt{7}}, \frac{3}{\sqrt{7}}$$

C. $\frac{-6}{7}, \frac{2}{7}, \frac{-3}{7}$
D. $\frac{6}{7}, \frac{-2}{7}, \frac{3}{7}$

Answer: D

A.
$$\frac{1}{3}$$
, $\frac{2}{3}$, $\frac{-2}{3}$
B. 2, 4, -4
C. $\frac{2}{\sqrt{6}}$, $\frac{4}{\sqrt{6}}$, $\frac{-4}{\sqrt{6}}$
D. $\frac{-1}{3}$, $\frac{-2}{3}$, $\frac{2}{3}$

Answer: A

8. If α , β and γ are direction cosines of the vector \vec{x} then $1 + \cos 2\alpha + \cos 2\beta + \cos 2\lambda = \dots$

A. 0

B. 1

C. - 1

D. 2

Answer: A

9. If the vector
$$\vec{b}$$
 is collinear to the vector \vec{a} and $|\vec{a} = (2\sqrt{2}, -1, 4)$ and $|\vec{b}| = 10$ then
A. $a \pm b = 0$
B. $a \pm 2b = 0$
C. $2a \pm b = 0$

D. None of these

10. ABCDEF is a regular hexagone. $AB + AC + AD + AE + AF = \lambda AD$ then λ = A. 0 B. 1 C. 2 D. 3

11. If the vectors $10\hat{i} + 3\hat{j}$, $12\hat{i} - 15\hat{j}$ and $a\hat{i} + 11\hat{j}$ are collinear a =

B. 4

C. 2

D. $-\frac{82}{9}$

12. The direction of vector \vec{b} is North-East and that \vec{c} is North-West $|\vec{b}| = |\vec{c}| = 4$. If $\vec{a} = \vec{c} - \vec{b}$ then the magnitude and direction of the vectors \vec{a} are

A. $4\sqrt{2}$ towards north

B. $4\sqrt{2}$ towards west

C. 4 towards west

D. 4 towards south

Answer: B

13. If $\bar{x} = (-1, 4, -2), \bar{y} = (-4, 16, -8)$ then $\left| \bar{x} + \bar{y} \right| \dots \left| \bar{x} \right| + \left| \bar{y} \right|$ A. = B. > **C.** ≥ **D.** ≤

Answer: A

14. The unit vector in the direction of the sum of the vectors (1, 1, 1), (2, -1, -1) and (0, 2, 6)

A.
$$-\frac{1}{7}(3, 2, 6)$$

B. $\frac{1}{49}(3, 2, 6)$
C. $\frac{1}{7}(3, -2, 6)$
D. $\frac{1}{7}(3, 2, 6)$

15. The vector $2\hat{i} + 2\hat{j} - \hat{k}$ makesmeasure of angles with the axes.

A.
$$\cos^{-1}\frac{2}{3}$$
, $\cos^{-1}\frac{2}{3}$, $\pi - \cos^{-1}\frac{1}{3}$
B. $\cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{1}{3}$
C. $\pi - \cos^{-1}\frac{2}{3}$, $\cos^{1}\frac{2}{3}$, $\pi - \cos^{-1}\frac{1}{3}$
D. $\cos^{-1}\frac{2}{3}$, $\pi - \cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{1}{3}$

Answer: A

Watch Video Solution

16. The unit vector in the direction $6\hat{i} - 2\hat{j} + 3\hat{k}$ is

A.
$$\frac{6}{7}\hat{i} + \frac{2}{7}\hat{j} + \frac{3}{7}\hat{k}$$

B. $\frac{6}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{3}{7}\hat{k}$
C. $\frac{-6}{7}\hat{i} + \frac{2}{7}\hat{j} + \frac{3}{7}\hat{k}$
D. $\frac{6}{7}\hat{i} + \frac{2}{7}\hat{j} - \frac{3}{7}\hat{k}$

Answer: B

17. The unit vector parallel to the vecotr \bar{a} - \bar{b} is

where $\bar{a} = (1, 2, -3)$ and $\bar{b} = (-2, -4, -9)$

A. ±(1, 2, 2)

 $B. \pm (3, 6, 6)$

C.
$$\pm \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$

D. $\pm \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$

Answer: C

Watch Video Solution

18. If $\bar{a} = (1, 1, 1)$, $\bar{b} = (4, -2, 3)$ and $\bar{c} = (1, -2, 1)$ then the vector of magnitude 6 in the direction of $2\bar{a} - \bar{b} + 3\bar{c}$ is

A. $\left(\frac{1}{3}, \frac{-2}{3}, \frac{2}{3}\right)$ B. (2, -4, 4)

C.
$$(-2, 4, -4)$$

D. $\left(\frac{-1}{3}, \frac{2}{3}, \frac{-2}{3}\right)$

Answer: B

19. The unit vector in the opposite direction of $\bar{x} + \bar{y} - 2\bar{z}$ is where $\bar{x} = (1, 1, 0), \bar{y} = (0, 1, 1)$ and $\bar{z} = (1, 0, 1).$

A.
$$\left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$

B. $\left(\frac{1}{6}, \frac{-2}{6}, \frac{1}{6}\right)$

C.
$$\left(\frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)$$

D. $\left(\frac{-1}{6}, \frac{2}{6}, \frac{-1}{6}\right)$

Answer: A

20. The vector with magnitude $17\sqrt{2}$ and in the opposite direction of (0, 1, -1) is

A.
$$17\sqrt{2}(0, 1, -1)$$

B. (0, 17, -17)

C. (17, 17, 0)

Answer: D

Watch Video Solution

21. Out of the following Is the unit vector in the

direction of
$$(3\hat{i} + 4\hat{j} - 5\hat{k}) + 2(2\hat{i} + \hat{j})$$
.

A.
$$\frac{7}{\sqrt{110}}\hat{i} + \frac{6}{\sqrt{110}}\hat{j} - \frac{5}{\sqrt{110}}\hat{k}$$

B. $-\frac{7}{\sqrt{110}}\hat{i} - \frac{6}{\sqrt{110}}\hat{j} - \frac{5}{\sqrt{110}}\hat{k}$
C. $\frac{7}{\sqrt{110}}\hat{i} - \frac{6}{\sqrt{110}}\hat{j} - \frac{5}{\sqrt{110}}\hat{k}$
D. $\frac{5}{\sqrt{110}}\hat{i} + \frac{6}{\sqrt{110}}\hat{j} - \frac{5}{\sqrt{110}}\hat{k}$

Answer: A

22. The position vector of the point P is (4, 5, -3). The distance of the point P from the plane XY, YZ and XZ is ${}^{3}P_{1}, P_{2} \text{ and } P_{3} \text{ respectively then } \sum_{i=1}^{3} i=1P_{i}=\dots\dots$

A. 6

B. 12

C. $2\sqrt{25}$

D. $5\sqrt{2}$

Answer: B

23. The position vector of a point A is (4, 2, -3). If the distance of the point A from XY- plane is p_1 and from Y - axis is p_2 then $p_1 + p_2 =$

A. 2

B. 3

C. 8

D. 7

24. $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$ then the value of $\begin{vmatrix} \vec{a} & \vec{b} & \vec{a} & \vec{b} & \vec{a} & \vec{c} \\ \vec{b} & \vec{a} & \vec{b} & \vec{a} & \vec{b} & \vec{c} \end{vmatrix}$ is $\vec{c} \cdot \vec{a} \quad \vec{c} \cdot \vec{b} \quad \vec{c} \cdot \vec{c}$

A. 2

B. 4

C. 16

D. 64

25. A(1, 1, 2), B(4, 3, 1) and C(2, 3, 5) are vertices of a triangle ABC. The vector along the bisector $\angle A$ is

- A. $\hat{i} + \hat{j} + \hat{k}$ B. $2\hat{i} - 2\hat{j} + \hat{k}$
- $\mathsf{C.}\ 2\hat{i}+2\hat{j}+\hat{k}$
- D. None of these

26. The position vectors of two points A and B are respectively $6\vec{a} + 2\vec{b}$ and $\vec{a} - 3\vec{b}$. If the point C divides AB internally in the ratio 3 : 2 then the position vector of C is

A. $3\vec{a} - \vec{b}$ B. $3\vec{a} + \vec{b}$ C. $\vec{a} + \vec{b}$ D. $\vec{a} - \vec{b}$

Answer: A

Watch Video Solution

27. The position vectors of the vertices of triangle are $3\hat{i} + 4\hat{j} + 5\hat{k}$, $\hat{i} + 7\hat{k}$ and $5\hat{i} + 5\hat{j}$. The distance between ortho centre and circum centre is

A. = 0 B. $\sqrt{306}$ C. $2\sqrt{306}$ D. $\frac{3}{2}\sqrt{306}$

Answer: B

28. The angle between the unit vectors \vec{a} and \vec{b} is 2 θ . Where $\theta \in [0, \pi]$. If $|\vec{a} - \vec{b}| < 1$ then $\theta \in \dots$ interval.

A.
$$\left[0, \frac{\pi}{6}\right]$$

B. $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
C. $\left[\frac{5\pi}{6}, \pi\right]$
D. $\left[\frac{\pi}{2}, \frac{5\pi}{6}\right]$

Answer: A

29. $\Box ABCD$ is a parallelogram. (A_1) and B_1 are midpoints of the sides BC and AD respectively. If $AA_1 + AB_1 = \lambda AC$ then λ = A. $\frac{1}{2}$ B.1 C. $\frac{3}{2}$ D. 2

30. In $\triangle ABC$, $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$. Length

of the median drawn from A is

A. $\sqrt{18}$ B. $\sqrt{72}$ C. $\sqrt{33}$

D. $\sqrt{45}$

31. If $\bar{x} = (a, 4, 2a)$ and $\bar{y} = (2a, -1, a)$ are perpendicual

to each other then a =

A. 2

B. 1

C. 4

D. Any real number

Answer: B

32. If $\bar{x} = (3, 1, 0), \bar{y} = (2, 2, 3), \bar{z} = (-1, 2, 1).$ If $\bar{x} \perp (\bar{y} + k\bar{z})$ then k =

A. 8

B. 4

C. $\frac{1}{8}$ D. $\frac{1}{4}$

Answer: A

33. If $\bar{x} = (1, 2, 4), \bar{y} = (-1, -2, k), k \neq -4$ then $|\bar{x}, \bar{y}| \dots |\bar{x}| |\bar{y}|$

A. <

B. >

C. =

D. \geq

Answer: A

34. If $\bar{a} = (-3, 1, 0)$ and $\bar{b} = (1, -1, -1)$ then $\text{Comp}_{\bar{a}}\bar{b}$

A.
$$\frac{4}{\sqrt{10}}$$

B.
$$\frac{\sqrt{3}}{4}$$

C.
$$\frac{-4}{\sqrt{10}}$$

D.
$$-\frac{\sqrt{3}}{4}$$

.

Answer: C

35. The projection of (1, 2, -1) on \hat{i} is

A.
$$\frac{1}{\sqrt{6}}$$

B.
$$-\frac{1}{\sqrt{6}}$$

C. 1

D. - 1

Answer: C

.....

36. A(3, -1), B(2, 3) and C(5, 1) are given then $m \angle A =$

A.
$$\cos^{-1} \frac{3}{\sqrt{34}}$$

B. $\pi - \cos^{-1} \frac{3}{\sqrt{34}}$

C.
$$\sin^{-1} \frac{5}{\sqrt{34}}$$

D. $\frac{\pi}{2}$

Answer: A

37. \bar{x} and \bar{y} are unit vectors and $(\bar{x}, \bar{y}) = \theta$. If $\theta = \dots$

then $\bar{x} + \bar{y}$ will becomes unit vector.

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{2\pi}{3}$

Answer: D

38. If
$$|\bar{x} + \bar{y}| = |\bar{x} - \bar{y}|$$
, then

A. \bar{x} is parallel to \bar{y}

- $\mathsf{B}.\,\bar{x}\perp\bar{y}$
- $\mathsf{C.} \left| \bar{x} \right| = \left| \bar{y} \right|$
- D. $\bar{x} = \bar{y}$

Answer: B

Watch Video Solution

39. $\bar{x}, \bar{y}, \bar{z}$ are zero vectors. If then $\bar{x}, \bar{y} = \bar{x}, \bar{z}, (\bar{x}, \bar{y} \neq 0).$

A. \bar{x} is perpendicular to \bar{y} .

B. \bar{x} is perpendicular to \bar{z} .

C. \bar{x} is perpendicular to $\bar{y} + \bar{z}$.

D. \bar{x} is perpendicular to $\bar{y} = \bar{z}$.

Answer: D

40. $\bar{x}, \bar{y}, \bar{z}$ are non zero vectors. If $(\bar{x}, \bar{y}) = \frac{\pi}{2}$ and $\bar{z} = \bar{x} + \bar{y}$, then

A.
$$|\bar{x}|^2 + |\bar{y}|^2 + |\bar{z}|^2 = 3$$

B. $|\bar{x}|^2 + |\bar{y}|^2 + |\bar{z}|^2 = 1$

C.
$$|\bar{x}|^2 - |\bar{y}|^2 = |\bar{z}|^2$$

D.
$$|\bar{x}|^2 + |\bar{y}|^2 = |\bar{z}|^2$$

Answer: D

41. If $\bar{x}, \bar{y} = \bar{x}, \bar{z} \neq 0$ and $\bar{x} \times \bar{y} = \bar{x} \times \bar{z} \neq \bar{0}$ and $\bar{x} \neq \bar{0}$ then

A. \bar{x} is parallel to \bar{y} and \bar{z}

B. \bar{x} is perpendicular to \bar{y} and \bar{z}

 $C. \bar{y} \neq \bar{z}$

.....

D. $\bar{y} \neq \bar{z}$

42. If
$$\bar{a} = (3, 1, -2)$$
 and $\bar{b} = (1, 3, -2)$ then $(\bar{a} \ \ \bar{b}) =$

A.
$$\cos^{-1} \frac{2\sqrt{6}}{7}$$

B. $\pi - \cos^{-1} \frac{5}{7}$
C. $\sin^{-1} \frac{2\sqrt{6}}{7}$
D. $\tan^{-1} \frac{5}{2\sqrt{6}}$

.....

43. If $\bar{x} = (1, 1, -1), \bar{y} = (-1, 2, 2)$ and $\bar{z} = (-1, 2, -1)$ then the unit victor perpendicular to both $\bar{x} + \bar{y}$ and $\bar{y} - \bar{z}$ is

A. $\pm(4, 0, 0)$

 $B. \pm (0, 0, 9)$

 $C. \pm (1, 0, 0)$

 $D. \pm (0, 0, 1)$

44. If
$$(3\hat{i} + 4\hat{j} + 9\hat{k})$$
 and $(a\hat{i} - 3\hat{j} + 1\hat{k})$ are

perpendicualr to each other then a =

A. 1

B. - 1

C. 7

D. - 7

Answer: A

45. If $|\bar{a}| = 2$, $|\bar{b}| = 4$, $|\bar{c}| = 1$ and $\bar{a} + \bar{b} = -\bar{c}$ then $\bar{a}.\bar{b} + \bar{b}.\bar{c} + \bar{c}.\bar{a} = \dots$

A. -9.5

B. - 10.5

C. 10.5

D. 7.5

Answer: B

46. If
$$|\bar{x}| = |\bar{y}| = 2$$
 and $(\bar{x} \quad \bar{y}) = \theta$ then $|\bar{x} - \bar{y}\cos\theta| =$

A.
$$2\sin\frac{\theta}{2}$$

B. $\sqrt{2}\sin\frac{\theta}{2}$
C. $\sqrt{2}\sin\theta$

.....

D. $2\sin\theta$

Answer: D

47. The projection of the vector (- 4, - 2, 4) on (2, 1, 1) is

A.(-2,1,1)

B.(-2, -1, -1)

C.(1, -1, -2)

D.(-1,1,2)

Answer: B

48. The magnitude of the projection of vector (4, 1, 3) and (1, -2, 3) is

A.
$$\frac{15}{\sqrt{14}}$$

B. $\frac{15}{14}$
C. $\frac{11}{14}$
D. $\frac{11}{\sqrt{14}}$

Answer: D

49. The unit vector perpendicular to (3, -4) in \mathbb{R}^2 is

A.
$$\left(\frac{3}{5}, -\frac{4}{5}\right)$$

B. $\left(-\frac{4}{5}, -\frac{3}{5}\right)$
C. $\left(\frac{4}{5}, -\frac{3}{5}\right)$
D. $\left(\frac{3}{5}, \frac{4}{5}\right)$

Answer: B

.

Watch Video Solution

50. The unit vector perpendicualr to (3, 4) is

A.
$$\left(\frac{4}{5}, \frac{3}{5}\right)$$

B. $\left(-\frac{4}{5}, \frac{3}{5}\right)$
C. $\left(-\frac{3}{5}, \frac{4}{5}\right)$
D. $\left(\frac{3}{5}, \frac{4}{5}\right)$

Answer: B

Watch Video Solution

51. If
$$|\bar{x}| = |\bar{y}| = 1$$
 and $\bar{x} \perp \bar{y}$, then $|\bar{x} - \bar{y}|$ =.....

A.
$$\sqrt{2}$$

B. $\sqrt{3}$

C. 1

D. 0

Answer: A

52.
$$\bar{a} = (-3, 1, 0), \bar{b} = (1, -1, -1)$$
 then $|\text{Comp}_{\bar{b}}\bar{a}| =$

A.
$$-\frac{4}{\sqrt{3}}$$

B. $\frac{4}{\sqrt{3}}$
C. $-\frac{4}{\sqrt{10}}$

.....

D.
$$\frac{4}{\sqrt{10}}$$

Answer: B

Watch Video Solution

53. If
$$\bar{a} + \bar{b} + \bar{c} = \bar{0}$$
 and $|\bar{a}| = 3$, $|\bar{b}| = 5$, $|\bar{c}| = 7$ and $(\bar{a}, \bar{b})\alpha$ then $\alpha = \dots$.
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{2\pi}{3}$
D. $\frac{5\pi}{6}$

Answer: A

vectors. Then the projection of AB on CD is

A. (1, -1, 1)
B.
$$\frac{3}{13}$$
(4, 1, 3)
C. $(2\sqrt{3}, -2\sqrt{3}, 2\sqrt{3})$

D. (2, -2, 2)

55. In a right angled triangle ABC, hypotenuse AB = P

then *AB*. *AC* + *BC*. *BA* + *CA*. *CB* =

A. $2P^2$ B. $\frac{P^2}{2}$

 $C. P^2$

D. None of these

56. \Box *ABCDEF* is a regular hexagone with each side a.

 $AB.AF + \frac{1}{2}BC^2 = \dots$

A. a

B. *a*²

C. 2*a*²

D. 0

Answer: D

57. For vectors $\bar{a}, \bar{b}, \bar{c}, |\bar{a} - \bar{c}| = |\bar{b} - \bar{c}|$ then the value

$$\left(\bar{b}-\bar{a}\right)$$
. $\left(\bar{c}-\frac{\bar{a}+\bar{b}}{2}\right) = \dots$

A. 0

B. - 1

C. 1

D. 2

Answer: A

58. A unit vector is coplanner with $\bar{i} + \bar{j} + 2\bar{k}$ and $\bar{i} + 2\bar{j} + \bar{k}$ and it is perpendicular to the vector $\bar{i} + \bar{j} + \bar{k}$. Then the vector

Answer: B

59. The angle between the unit vectors \bar{a} and \bar{b} is θ . If $\bar{a} - \sqrt{2}\bar{b}$ is a unit vector then θ =

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{2\pi}{3}$

Answer: B

60. For unit vectors \bar{a} and \bar{b} , if $\bar{a} + 2\bar{b}$ and $5\bar{a} - 4\bar{b}$ are perpendicular to each other then the angle between \bar{a}

and \bar{b} is

A. 45 °

B.60°

C.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

D. $\cos^{-1}\frac{2}{7}$

Answer: B

.....

Watch Video Solution 61. $\bar{a} = 2\bar{i} - 3\bar{j} + 6\bar{k}$ and $\bar{b} = -2\bar{i} + 2\bar{j} - \bar{k}$ then $\frac{\operatorname{Proj}_{\bar{b}}\bar{a}}{\operatorname{Proj}_{\bar{a}}\bar{b}} =$

A.
$$\frac{3}{7}$$

B. $\frac{7}{3}$
C. 3

D. 7

Answer: B

......

Watch Video Solution

62.
$$\bar{b} = 3\hat{j} + 4\hat{k}, \bar{a} = \hat{i} + \hat{j}$$
. If b_1 and b_2 are component of
 \bar{b} and $b_1 = \frac{3}{2}\hat{i} + \frac{3}{2}\hat{j}, b_2$ is perpendicualr to \bar{a} then $b_2 =$

A.
$$\frac{3}{2}\hat{i} + \frac{3}{2}\hat{j} + 4\hat{k}$$

B. $-\frac{3}{2}\hat{i} + \frac{3}{2}\hat{j} + 4\hat{k}$
C. $-\frac{3}{2}\hat{i} + \frac{3}{2}\hat{j}$

D. None of these

Answer: B

63. The unit vector \bar{a} and \bar{b} are perpendicualr to each other. The unit vector \bar{c} makes an angle θ with \bar{a} and \bar{b} . If $\bar{c} = \alpha \bar{a} + \beta \bar{b} + \gamma (\bar{a} \times \bar{b})$ then

A. $\alpha = 2\beta$

B.
$$\gamma^2 = 1 + 2\alpha^2$$

C. $\gamma^2 = \cos 2\theta$
D. $\beta^2 = \frac{1 + \cos 2\theta}{2}$

Answer: D

A. $3\bar{a}$ - $2\bar{b}$

B. 2ā - 3b̄

C. 3*b* - 2*ā*

D. None of these

Answer: B

Watch Video Solution

65. \bar{a}, \bar{b} and \bar{c} are unit vectors. The value of $\left|\bar{a} - \bar{b}\right|^2 + \left|\bar{b} - \bar{c}\right|^2 + \left|\bar{c} - \bar{a}\right|^2$ is not expected

A. 4

B. 9

C. 8

D. 6

Answer: B

66. If \bar{a}, \bar{b} and \bar{c} are perpendicual to $\bar{b} + \bar{c}, \bar{c} + \bar{a}$ and $\bar{a} + \bar{b}$ respectively and $|\bar{a} + \bar{b}| = 6$, $|\bar{b} + \bar{c}| = 8$ and $|\bar{c} + \bar{a}| = 10$ then $|\bar{a} + \bar{b} + \bar{c}| =$

A. $5\sqrt{2}$

B. 50

C. $10\sqrt{2}$

D. 10

67. \bar{a} and \bar{b} are unit vectors. $\left|\bar{a} + \bar{b}\right| = \sqrt{3}$ then the value of $\left(3\bar{a} - 4\bar{b}\right)$. $\left(2\bar{a} + 5\bar{b}\right) = \dots$

A. - 21

B. 21

C.
$$\frac{21}{2}$$

D. $-\frac{21}{2}$

68. $\triangle ABC$ is an equilateral triangle. Its side is I. Any point P lies on the circum centre of $\triangle ABC$. Then $\left| \overrightarrow{PA} \right|^{2} + \left| \overrightarrow{PB} \right|^{2} + \left| \overrightarrow{PC} \right|^{2} = \dots$ A. $2l^{2}$

- **B.** $2\sqrt{3}l^2$
- **C**. l^2
- D. 3*l*²

Answer: A

69. $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} - \hat{k}$ are the adjacent sides of a parallelogram. The angle between their diagonals is

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

B. $\cos^{-1}\left(\frac{1}{2}\right)$
C. $\cos^{-1}\left(\frac{4}{9}\right)$
D. $\cos^{-1}\left(\frac{5}{9}\right)$

Answer: A

70. The position vectors of four points A, B, C and D in

the plane are $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} . If $\left(\vec{a} - \vec{d}\right) \cdot \left(\vec{b} - \vec{c}\right) = \left(\vec{b} - \vec{d}\right) \cdot \left(\vec{c} - \vec{a}\right) = 0$ then D is ais ΔABC .

A. In centre

B. circum centre

C. ortho centre

D. centriod

Answer: C

Watch Video Solution

71. If
$$\vec{\alpha} = \frac{1}{a}\hat{i} + \frac{4}{b}\hat{j} + b\hat{k}$$
 and $\vec{\beta} = b\hat{i} + a\hat{j} + \frac{1}{b}\hat{k}$ then the maximum value $\frac{10}{5 + \vec{\alpha}.\vec{\beta}}$ is

A. 1

B. 5

C. 2

D. 3

Answer: A

72. The unit vectors \vec{a} , \vec{b} and \vec{c} are not coplanar. If $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{\sqrt{2}}(b+c)$ then the angle between \vec{a}

and \vec{b} is

A.
$$\frac{3\pi}{4}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$

D. *π*

Answer: A

Watch Video Solution

73. If $\vec{x} + \vec{y} + \vec{z} = 0$ and $|\vec{x}| = |\vec{y}| = |\vec{z}| = 2$ If the angle between \vec{y} and \vec{z} and θ . Then $\cos ec^2\theta + \cot^2\theta = \dots$

A.
$$\frac{4}{3}$$

B. $\frac{5}{3}$
C. $\frac{1}{3}$

D. 1

74. $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = \hat{i} + \hat{j} - 2\hat{k}$. The vector \vec{r} is coplanner with vector \vec{b} and \vec{c} . If the magnitude of the projection \vec{r} on \vec{a} is $\sqrt{\frac{2}{3}}$ then $\vec{r} = \dots$

A. $2\hat{i} + 3\hat{j} - 3\hat{k}$ B. $-2\hat{i} - \hat{j} + 5\hat{k}$ C. $2\hat{i} + 3\hat{j} + 3\hat{k}$ D. $2\hat{i} + \hat{j} + 5\hat{k}$

75.
$$\vec{a} = \hat{i} + \hat{j} + \sqrt{2}\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + \sqrt{2}\hat{k}$$
 and
 $\vec{c} = 5\hat{i} + \hat{j} + \sqrt{2}k$ are three vectors. The projection of
the vector \vec{b} on \vec{a} is $|\vec{a}|$. If $\vec{a} + \vec{b}$ is perpendicular to \vec{c}

then $\left| \vec{b} \right| = \dots$

B. $\sqrt{22}$

C. 4

D. 6

76.
$$\vec{a} = 2\hat{i} + \lambda_1\hat{j} + 3\hat{k}, \vec{b} = 4\hat{i} + (3 - \lambda_2)\hat{j} + 6\hat{k}$$
 and
 $\vec{c} = 3\hat{i} + 6\hat{j} + (\lambda_3 - 1)\hat{k}$ are three vectors. Vector $\vec{b} = 2\vec{a}$
and \vec{a} is perpendicular to \vec{b} then the possible value of
 $(\lambda_1, \lambda_2, \lambda_3)$ is

A.
$$\left(\frac{1}{2}, 4, -2\right)$$

B. $\left(-\frac{1}{2}, 4, 0\right)$
C. $\left(1, 3, 1\right)$

D. (1, 5, 1)

77. $\Box ABCD$ is a parallelogram $AB = \bar{q}, AD = \bar{p}, \angle BAC$ is on acute angle. From the point B, the perpendicular \vec{P} is drawn on side AD. The vector along with it is \vec{r} . Then $\vec{r} =$

A.
$$\vec{r} = 3\bar{q} - \frac{3(\bar{p},\bar{q})}{(\bar{p},\bar{p})}\bar{p}$$

B. $\vec{r} = -\bar{q} + \frac{(\bar{p},\bar{q})}{(\bar{p},\bar{p})}\bar{p}$
C. $\vec{r} = \bar{q} - \frac{(\bar{p},\bar{q})}{(\bar{p},\bar{p})}\bar{p}$
D. $\vec{r} = -3\bar{q} + \frac{3(\bar{p},\bar{q})}{(\bar{p},\bar{p})}\bar{p}$

- **78.** The position vectors of A, B and C are $2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}$ and $x\hat{i} - 3\hat{j} + \hat{k}$ respectively in $\triangle ABC$. If $\angle C = \frac{\pi}{2}$ then the value of x is
 - A. -2 and -1
 - B. 2 and 1
 - **C. 2 and -**1
 - D. 2 and 1

79. A particle is acted upon constant forces $\vec{F}_1 = 4\hat{i} + \hat{j} - 3\hat{k}$ and $\vec{F}_2 = 3\hat{i} + \hat{j} - \hat{k}$ which displace it from a point $A = \hat{i} + 2\hat{j} + 3\hat{k}$ to the point $B = 5\hat{i} + 4\hat{j} + \hat{k}$. The work done in standard units by the forces is given by

A. 40

B. 30

C. 25

D. 15

Answer: A

80. Let \vec{u} , \vec{v} and \vec{w} be such that $|\vec{u}| = 1$, $|\vec{v}| = 2$, $|\vec{w}| = 3$. If the projection \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and \vec{v} , \vec{w} are perpendicular to each orher, then $|\vec{u} - \vec{v} + \vec{w}|$ equals

A. 2

B. $\sqrt{7}$

 $C.\sqrt{14}$

D. 14

Answer: C

Watch Video Solution

81. The centroid of $\triangle ABC$ is G. The angle between GB

and GC is obtuse angle then

A.
$$5a^2 > b^2 + c^2$$

B.
$$5c^2 > a^2 + b^2$$

C. $5b^2 > a^2 + c^2$

D. None of these

Answer: A

82. The area of the parallelogram whose diagonals are

$$\hat{j} + \hat{k}$$
 and $\hat{i} + \hat{k}$ is

Answer: A

83. The area of the parallelogram whose adjacent side

is $\hat{i} + \hat{k}$ and $\hat{i} + \hat{j}$ is

A. 3

B. $\sqrt{3}$

C.
$$\frac{3}{2}$$

D. $\frac{\sqrt{3}}{2}$

Answer: B

84. If \bar{x} and \bar{y} are non zero, non collinear vector then the number of unit vectors which are perpendicular to

both \bar{x} and \bar{y} is

A. 2

B. 4

C. Do not get

D. Infinite

Answer: A

85. If
$$|\bar{x}, \bar{y}| = \cos \alpha$$
, then $|\bar{x} \times \bar{y}| = \dots$

A. $\pm \sin \alpha$

B. $\sin \alpha$

C. - $\sin \alpha$

D. $\sin^2 \alpha$

86. If
$$\bar{a} = (2, 0, 1)$$
 and $\bar{b} = (1, 1, 1)$ then
 $\sin(\bar{a}, \bar{b}) = \dots$
A. $\sqrt{\frac{3}{5}}$
B. $\sqrt{\frac{5}{3}}$
C. $\sqrt{\frac{2}{5}}$
D. $\sqrt{\frac{5}{2}}$

Answer: C

87. The unit vector perpendicular to both the vectors

(3, -1, 0) and (-2, 1, 3) is

 $B. \pm (-3, 9, -1)$

C.
$$\pm \frac{1}{\sqrt{91}}(-3, -9, 1)$$

D. $\pm \frac{1}{\sqrt{91}}(-3, 9, -1)$

Answer: C

88. The area of the parallelogram with diagonals $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is

A.
$$\sqrt{3}$$

B. $\frac{3}{2}$
C. $\frac{\sqrt{3}}{2}$

D. 0

Answer: C

89. The angle between the vectors (2, -1, 1) and (1, -1, 2) is

A.
$$\cos^{-1}\left(\frac{1}{6}\right)$$

B. $\sin^{-1}\left(\frac{5}{6}\right)$
C. $\frac{\pi}{2}$
D. $\sin^{-1}\left(\frac{\sqrt{11}}{6}\right)$

90. If $|\bar{x}| = 7$. $|\bar{y}| = \sqrt{2}$, $\bar{x} \times \bar{y} = (6, 2, 3)$ then $|\bar{x}, \bar{y}|^2 =$

A. 98

• • • • • • • • •

B. 7

C. 147

D. 49

91. The unit vector perpendicual to both the vectors $\hat{i} + 2\hat{j} - 2\hat{k}$ and $-\hat{i} + 2\hat{j} + 2\hat{k}$ is

A.
$$\frac{1}{\sqrt{5}} \left(2\hat{i} - \hat{k} \right)$$

B.
$$\frac{1}{\sqrt{5}} \left(-2\hat{i} + \hat{k} \right)$$

C.
$$\frac{1}{\sqrt{5}} \left(2\hat{i} + \hat{j} + \hat{k} \right)$$

D.
$$\frac{1}{\sqrt{5}} \left(2\hat{i} + \hat{k} \right)$$

92. A(-1, 2, 3), B(1, 1, 1) and C(2, -1, 3) are three points in the plane. The unit vector perpendicular to the plane ABC is

$$A. \pm \left(\frac{2\hat{i} + 2\hat{j} + \hat{k}}{3}\right)$$
$$B. \pm \left(\frac{2\hat{i} - 2\hat{j} + \hat{k}}{3}\right)$$
$$C. \pm \left(\frac{2\hat{i} - 2\hat{j} - \hat{k}}{3}\right)$$
$$D. - \left(\frac{2\hat{i} + 2\hat{j} + \hat{k}}{3}\right)$$

Answer: A

93. If $|\bar{a}.\bar{b}| = 3$ and $|\bar{a} \times \bar{b}| = 4$ then the angle between \bar{a} and \bar{b} is

A.
$$\cos^{-1}\frac{3}{4}$$

B. $\cos^{-1}\frac{3}{5}$
C. $\cos^{-1}\frac{4}{5}$
D. $\frac{\pi}{4}$

94. $\bar{r} \times \bar{a} = \bar{b} \times \bar{a}, \bar{r} \times \bar{b} = \bar{a} \times \bar{b}, \bar{a} \neq \bar{0}, \bar{b} \neq \bar{0}\bar{a} \neq \lambda \bar{b}.$	If
$\bar{a}.\bar{b}=0$ then \bar{r} =	
A. \bar{a} - \bar{b}	
$B. \bar{a} + \bar{b}$	
$C, \bar{a} \times \bar{b} + \bar{a}$	
$c. a \wedge b + a$	
D. $\bar{a} imes \bar{b} + \bar{b}$	

95.
$$(\bar{a} \times \bar{b})^2$$
 =

A.

$$\bar{a}$$
. \bar{b}
 \bar{a} . \bar{a}
 \bar{b} . \bar{b}
 \bar{b} . \bar{a}

 B.
 \bar{a} . \bar{a}
 \bar{a} . \bar{b}
 \bar{b} . \bar{a}
 \bar{b} . \bar{b}

 C.
 \bar{a}
 \bar{b}
 \bar{b}
 \bar{a}

D. None of these

Watch Video Solution

Answer: B

96. $|\bar{a}| = 2$, $|\bar{b}| = 3$ and \bar{a} and \bar{b} are perpendicular to each other. The area of the triangle with vertices

 $ar{0}, ar{a} + ar{b}$ and $ar{a}$ - $ar{b}$ is

A. 5

B. 1

C. 6

D. 8

Answer: C

Watch Video Solution

97.
$$\bar{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\bar{b} = \hat{i} + 3\hat{j} + 5\hat{k}$ and $\bar{c} = 7\hat{i} + 9\hat{j} + 11\hat{k}$ are vectors. The area of the parallelogram whose diagonals are $\bar{a} + \bar{b}$ and $\bar{b} + \bar{c}$ is

A.
$$4\sqrt{6}$$

B.
$$\frac{1}{2}\sqrt{21}$$

C. $\frac{\sqrt{6}}{2}$
D. $\sqrt{6}$

Answer: A

Watch Video Solution

98. In $\triangle ABC$, the bisector of $\angle A$ is AD.

 $AD = \alpha AB + \beta AC$, where

D. None of these

99. The vector $\bar{a} = (x, y, z)$ makes an obtuse angle with y-axis. $\bar{b} = (y, -2z, 3x)$ and $\bar{c} = (2z, 3x, -y)$. The vector \bar{a} makes equal angle with \bar{b} and \bar{c} . \bar{a} is perpendicular to $\bar{d} = (1, -1, 2)$. If $|\bar{a}| = 2\sqrt{3}$ then $\bar{a} = \dots$

A. (1, 2, 3)

B. (2, -2, -2)

C. (-1, 2, 4)

D. None of these

Answer: B

Watch Video Solution

100. The vectors \bar{a} and \bar{b} are unit vectors perpendicular to each other. The unit vector \bar{c} makes an angle θ with \bar{a} and \bar{b} . If $\bar{c} = x\bar{a} + y\bar{b} + z(\bar{a} \times \bar{b})$ then

A. $x = \cos\theta$, $y = \sin\theta$, $z = \cos 2\theta$

B. $x = \sin\theta$, $y = \cos\theta$, $z = -\cos2\theta$

C. $x = y = \cos\theta$, $z^2 = \cos2\theta$

$$D. x = y = \cos\theta, z = -\cos2\theta$$

Answer: D

View Text Solution

101. \bar{a} , \bar{b} and \bar{c} are unit vectors. \bar{a} . $\bar{b} = 0 = \bar{a}$. \bar{c} and the angle between \bar{b} and \bar{c} is $\frac{\pi}{3}$. Then $\left|\bar{a} \times \bar{b} - \bar{a} \times \bar{c}\right| =$

B. 1

C. 2

D. 0

102. The modulus of the vectors \bar{a} and \bar{b} are 2 and 3 respectively. If $|2(\bar{a} \times \bar{b})| + |3(\bar{a}, \bar{b})| = k$ then the maximum value of k =

A. $\sqrt{13}$

- **B**. $2\sqrt{13}$
- C. $6\sqrt{13}$
- D. $10\sqrt{13}$

Answer: C

103. For a vector \bar{a} , $\bar{a} \times \vec{r} = \bar{j}$ then \bar{a} . \bar{r} =

A. - 1

B. 0

C. 1

D. None of these

Answer: D

104. If
$$\bar{\mu} = \bar{a} - \bar{b}, \bar{v} = \bar{a} + \bar{b}, |\bar{a}| = |\bar{b}| = 2$$
 then $|\bar{\mu} \times \bar{v}| = \dots$

A.
$$2\sqrt{16} - (\bar{a}.\bar{b})^2$$

B. $2\sqrt{4(\bar{a}.\bar{b})^2}$
C. $\sqrt{16} - (\bar{a}.\bar{b})^2$
D. $\sqrt{4} - (\bar{a}.\bar{b})^2$

Answer: A

105. In a parallelogram ABCD, $\overrightarrow{AB} = \hat{i} + \hat{j} + \hat{k}$ and diagonal $\overrightarrow{AC} = \hat{i} - \hat{j} + \hat{k}$ then $\angle BAC =$

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$

C.
$$\sin^{-1}\left(\frac{\sqrt{8}}{3}\right)$$

D. $\cos^{-1}\left(\frac{\sqrt{8}}{3}\right)$

Answer: C

106. The points $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ are collinear

then

A.
$$\vec{a} + \vec{b} + \vec{c} = \vec{0}$$

$$\mathbf{B}.\,\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}=0$$

C.
$$\vec{a}$$
. \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} = 0

D. None of these

Answer: B

Watch Video Solution

107. For any vectors \vec{a} , \vec{b} and \vec{c} . Out of the following, which statement is true ?

A.
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$

 $\mathbf{B}.\,\vec{a}\times\vec{b}=\vec{b}\times\vec{a}$

C.
$$\vec{a}$$
. $\left(\vec{b} \times \vec{c}\right) = \left(\vec{a}, \vec{b}\right) \times \left(\vec{a}, \vec{c}\right)$
D. \vec{a} . $\left(\vec{b} - \vec{c}\right) = \vec{a}$. $\vec{b} - \vec{b}$. \vec{c}

Answer: D

108. $\bar{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\bar{b} = \hat{i} + \hat{j}$. The vector \bar{c} is such that $\bar{a} \cdot \bar{c} = |\bar{c}|, |\bar{c} - \bar{a}| = 2\sqrt{2}$ and the angle between $\bar{a} \times \bar{b}$ and \bar{c} is 30 ° then $|(\bar{a} \times \bar{b}) \times \bar{c}| = \dots$

A. $\frac{2}{3}$ B. $\frac{3}{2}$

C. 2

D. 3

Answer: B

109. In a quadrilateral ABCD, $AB = \vec{b}, AD = \vec{d}$ and $\vec{AC} = m\vec{b} + p\vec{d}(m + p \ge 1)$. The area of the quadrilateral ABCD is

A.
$$\frac{1}{2}(p+m) \left| \vec{b} \times \vec{d} \right|$$

B. $\left| \vec{b} \times \vec{d} \right|$
C. $2 \left| \vec{b} \times \vec{d} \right|$

D. Nothing can be said

Answer: A

110. If $\vec{a} = 2\hat{i} + \hat{j} + x\hat{k}$ and $\vec{b} = \hat{i} + \hat{j} - \hat{k}$ then the minimum area of a parallelogram formed by the vectors \vec{a} and \vec{b} is

A.
$$\frac{\sqrt{6}}{2}$$

B.
$$\sqrt{\frac{3}{2}}$$

C.
$$\frac{\sqrt{3}}{2}$$

D.
$$\frac{2}{\sqrt{3}}$$

Answer: B

111. If $\vec{a} \cdot \hat{i} = 4$ then $(\vec{a} \times \hat{j}) \cdot (2\hat{j} - 3\hat{k}) = \dots$

A. - 12

B. 2

C. 0

D. 12

Answer: A

112. \vec{a} , \vec{b} and \vec{c} are unit vectors $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b}}{2}$. The vector \vec{a} makes the angle, with \vec{b} and \vec{c}

respectively.

- A. 40 $^{\circ}$, 80 $^{\circ}$
- B.45 $^{\circ}$,45 $^{\circ}$
- C. 30 $^\circ$, 60 $^\circ$
- D.90 $^{\circ}$,60 $^{\circ}$

Answer: D

Watch Video Solution

113. If
$$\vec{u} = \hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k})$$
 then \vec{u}

=

 $\mathsf{B}.\,\hat{i}+\hat{j}+\hat{k}$

C. 2*ā*

D. *ā*

Answer: C

114. For the vectors \vec{x} and \vec{y} , $\vec{x} + \vec{y} = \vec{a}$, $\vec{x} \times \vec{y} = \vec{b}$ and

 \vec{x} . $\vec{a} = 1$ then \vec{x} =, \vec{y} =

A. \vec{a} , \vec{a} - \vec{x} B. \vec{a} - \vec{b} , \vec{b} C. \vec{b} , \vec{a} - \vec{b}

D. None of these

Answer: D

Watch Video Solution

115. Vector $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = \hat{i} + \hat{j} + \hat{k}$. The vector \vec{c} is such

that $\vec{a} \times \vec{c} + \vec{b} = 0$ and $\vec{a} \cdot \vec{c} = 4$ then $|\vec{c}|^2$ =

A. 8

C. 9

D.
$$\frac{17}{2}$$

Answer: B

116. The vectors \vec{a} and \vec{b} are not perpendicular. The vectors \vec{c} and \vec{d} are such that $\vec{b} \times \vec{c} = \vec{b} \times \vec{d}$ and \vec{a} . $\vec{d} = 0$ then $\vec{d} = \dots$

A.
$$\vec{c} + \left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right)\vec{b}$$

B. $\vec{b} + \left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right)\vec{c}$
C. $c - \left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right)\vec{b}$

D.
$$\vec{b} - \left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c}$$

Answer: C

117. $\vec{a} = \hat{j} - \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$. The vector \vec{b} is such that $\vec{a} \times \vec{b} + \vec{c} = 0$ and $\vec{a} \cdot \vec{b} = 3$ then $\vec{b} = \dots$

A.
$$-\hat{i} + \hat{j} - 2\hat{k}$$

B. $2\hat{i} - \hat{j} + 2\hat{k}$
C. $\hat{i} - \hat{j} - 2\hat{k}$
D. $\hat{i} + \hat{i} - 2\hat{k}$

Answer: A

A. 4*a*²

B. 2*a*²

C. *a*²

D. 3*a*²

Answer: B

119. \vec{a}, \vec{b} and \vec{c} are three vector $\vec{a} \neq 0$ and $|\vec{a}| = |\vec{c}| = 1$, $|\vec{b}| = 4$, $|\vec{b} \times \vec{c}| = \sqrt{15}$. If $\vec{b} - 2\vec{c} = \lambda\vec{a}$ then the value of λ is

A. -4

B. - 2

C. 1

D. 3

Answer: A

120. For any vecotr
$$\vec{a}$$
, The value of
 $\hat{i} \times (\vec{a} \times \hat{i}) + j \times (\vec{a} \times \vec{j}) + \hat{k} \times (\vec{a} \times \hat{k})$ is
A. $2\vec{a}$
B. $-2\vec{a}$
C. \vec{a}
D. $-\vec{a}$

Answer: A

121. If
$$(a_1, 1, 1)$$
, $(1, a_2, 1)$ and $(1, 1, a_3)$ are coplaner
(where $a_i \ge 1$, $i = 1, 2, 3$) then $\sum_{i=1}^{3} i = 1 \frac{1}{1 - a_i} = \dots$

A. 0

B. - 1

C. 1

D. 3 -
$$\sum_{i=1a_i}^{3} i=1a_i$$

Answer: C

122. If $\bar{x} = (1, -1, 0), \bar{y} = (0, 1, 3)$ and $\bar{z} = (2, 1, 1)$ then $\bar{x} \times (\bar{y} \times \bar{z}) = \dots$

A. (2, 4, 2)

B. (2, 2, 4)

C. (4, 4, 2)

D. (-2, 2, 4)

Answer: B

124. The volume of a parallelepiped with edges $\overrightarrow{OA} = (3, 1.4), \overrightarrow{OB} = (1, 2, 3), \overrightarrow{OC} = (2, 1, 5)$ is

A. 10

- B. $\frac{5}{3}$
- **C.** 10
- D. 1

Answer: A

125. Let \vec{a} , \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\sqrt{3}}{2} (\vec{b} + \vec{c})$. If the vectors \vec{b} and \vec{c} are

not parallel then the angle between \vec{a} and \vec{b} is

A.
$$\frac{3\pi}{4}$$

B. $\frac{\pi}{2}$
C. $\frac{2\pi}{3}$
D. $\frac{5\pi}{6}$

Answer: D

> Watch Video Solution

126. If
$$|\bar{a}| = 1$$
 and $\bar{a} \times \bar{b} = (1, 2, 3)$ then
 $\bar{a} \times [\bar{a} \times (\bar{a} \times \bar{b})] = \dots$.
A. (1, 2, 3)
B. (-1, -2, -3)
C. (0, 0, 0)
D. (1, 0, 0)

Answer: B

127. If $\bar{x} \times (\bar{y} \times \bar{z}) = (\bar{x} \times \bar{y}) \times \bar{z}$ then $\bar{y} \times (\bar{z} \times \bar{x}) = \dots$.

A.
$$\bar{z} \times (\bar{x} \times \bar{y})$$

B. $\bar{x} \times (\bar{y} \times \bar{z})$
C. $\bar{0}$
D. $\bar{x} \times (\bar{z} \times \bar{y})$

Answer: C

View Text Solution

128. Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. Let the vector \vec{c} is such that $|\vec{c} - \vec{a}| = 3$, $|(\vec{a} \times \vec{b}) \times \vec{c}| = 3$. The angle between \vec{c} and $\vec{a} \times \vec{b}$ is 30°. Then $\vec{a} \cdot \vec{c} = \dots$

A.
$$\frac{1}{8}$$

 $\mathsf{B.}\,\frac{25}{8}$

C. 2

D. 5

Answer: C

129. If the unit \bar{a} , \bar{b} and \bar{c} are coplanar then

A.
$$\bar{a}$$
. $(\bar{b} \times \bar{c}) = 1$
B. \bar{a} . $(\bar{b} \times \bar{c}) = 3$
C. $(\bar{a} \times \bar{b})$. $\bar{c} = 0$

$$\mathsf{D}.\left(\bar{c}\times\bar{a}\right).\,\bar{b}=1$$

Answer: C

130. If
$$\bar{a}$$
, \bar{b} and \bar{c} are not coplanar then
 $\left(\bar{a} + \bar{b} + \bar{c}\right) \cdot \left[\left(\bar{a} + \bar{b}\right) \times \left(\bar{a} + \bar{c}\right)\right] = \dots$
A. $\left[\bar{a} \ \bar{b} \ \bar{c}\right]$
B. $2\left[\bar{a} \ \bar{b} \ \bar{c}\right]$
C. $-\left[\bar{a} \ \bar{b} \ \bar{c}\right]$
D. $-2\left[\bar{a} \ \bar{b} \ \bar{c}\right]$

Answer: B

131. If the vectors $3\hat{i} - 2\hat{j} - \hat{k}$, $2\hat{i} - 3\hat{j} - 4\hat{k}$, $-\hat{i} + \hat{j} + 2\hat{k}$ and $4\hat{i} + 5\hat{j} + \lambda\hat{k}$ are in the same plane then $\lambda = \dots$

A.
$$-\frac{146}{17}$$

B. $\frac{146}{17}$
C. $\frac{-17}{146}$
D. $\frac{17}{147}$

Answer: A

132. If the unit vectors \bar{a}, \bar{b} and \bar{c} are coplanar then $\left[2\bar{a}-\bar{b},2\bar{b}-\bar{c},2\bar{c}-\bar{a}\right] = \dots$

A. 0

B. 1

- C. $-\sqrt{3}$
- . D. √3

Answer: A

Watch Video Solution

133. $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = \hat{i} + \hat{j} - 2\hat{k}$. The vector \vec{r} is coplanner with vector \vec{b} and \vec{c} . If the magnitude of the projection \vec{r} on \vec{a} is $\sqrt{\frac{2}{3}}$ then $\vec{r} =$

A.
$$2\hat{i} + 3\hat{j} - 3\hat{k}$$

B. $-2\hat{i} - \hat{j} + 5\hat{k}$
C. $2\hat{i} + 3\hat{j} + 3\hat{k}$
D. $2\hat{i} + \hat{i} + 5\hat{k}$

Answer: B

............

134. \bar{a} , \bar{b} and \bar{c} are non zero vectors.

$$\left|\left(\bar{a}\times\bar{b}\right)\cdot\bar{c}\right|=\left|\bar{a}\right|\left|\bar{b}\right|\left|\bar{c}\right|$$
 then

$$\mathbf{A}.\,\bar{a}\cdot\bar{b}=0,\,\bar{b}\cdot\bar{c}=0$$

$$\mathsf{B}.\,b\cdot\bar{c}=0,\,\bar{c}\cdot\bar{a}=0$$

$$\mathsf{C}.\,\bar{c}\cdot\bar{a}=0,\,\bar{a}\cdot b=0$$

$$\mathsf{D}.\,\bar{a}\cdot\bar{b}=\bar{b}\cdot\bar{c}=\bar{c}\cdot\bar{a}=0$$

Answer: D

135.
$$\bar{d} = \lambda \left(\bar{a} \times \bar{b} \right) + \mu \left(\bar{b} \times \bar{c} \right) + v \left(\bar{c} \times \bar{a} \right)$$
 and $\left[\bar{a} \bar{b} \bar{c} \right] = \frac{1}{8}$

then $\lambda + \mu + \nu =$

A.
$$\overline{d} \cdot \left(\overline{a} + \overline{b} + \overline{c}\right)$$

B. $2\overline{d}$. $\left(\overline{a} + \overline{b} + \overline{c}\right)$
C. $4\overline{d}$. $\left(\overline{a} + \overline{b} + \overline{c}\right)$
D. $8\overline{d} \cdot \left(\overline{a} + \overline{b} + \overline{c}\right)$

Answer: D

136. The volume of the tetrahedron whose vertices $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 7\hat{k}$, $5\hat{i} - \hat{j} + \lambda\hat{k}$ and $7\hat{i} - 4\hat{j} + 7\hat{k}$ is 11 (unit)³ then λ =

A. - 3

B. 3

C. 7

D. - 1

Answer: C

137. \bar{a} , \bar{b} and \bar{c} are three non zero, non planar vectors. $\bar{p} = \bar{a} + \bar{b} - 2\bar{c}$, $\bar{q} = 3\bar{a} - 2\bar{b} + \bar{c}$ and $\bar{r} = \bar{a} - 4\bar{b} + 2\bar{c}$. The volume of the parallelepiped formed by the vectors \bar{a} , \bar{b} and \bar{c} is V_1 and the volume of the parallelepiped formed by the vectors \bar{p} , \bar{q} and \bar{r} is V_2 then $V_2: V_1 =$

A. 3:1

B.7:1

C. 11:1

D. 15:1

Answer: D

138. $\bar{a} = (1, 2, -3), \bar{b} = (2, 1, -1)$. The vector $\bar{\mu}$ is such that $\bar{a} \times \bar{\mu} = \bar{a} \times \bar{b}$ and $\bar{a} \cdot \bar{\mu} = 0$ then $|\bar{\mu}| = \dots$

A.
$$\frac{3}{2}$$

B. 10
C. $\sqrt{10}$
D. $\frac{\sqrt{5}}{2}$

Answer: D

> Watch Video Solution

139.

$$\bar{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \bar{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}, \bar{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$$

are three non zero vectors. The unit vector \bar{c} is
perpendicular to \bar{a} and \bar{b} . The angle between \bar{a} and \bar{b} is

$$\frac{\pi}{6} \text{ then,} \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \dots$$

A. 0

B. 1

C.
$$\frac{1}{4} |\bar{a}|^2 |\bar{b}|^2$$

D. $\frac{3}{4} |\bar{a}|^2 |\bar{b}|^2$

Answer: C

140. The adjacent sides of the parallelogram are $\bar{a} = 3\bar{\alpha} - \bar{\beta}, \ \bar{b} = \bar{\alpha} + 3\bar{\beta}, \ \left|\bar{\alpha}\right| = \left|\bar{\beta}\right| = 2$. The angle $\bar{\alpha}$ and $\bar{\beta}$ is $\frac{\pi}{3}$. The length of any one of the diagonal of a parallelogram is

A.
$$4\sqrt{7}$$

B. $4\sqrt{5}$
C. $3\sqrt{7}$

D. $3\sqrt{5}$

Answer: A

141.
$$\bar{\alpha} = 2\hat{i} + 3\hat{j} - \hat{k}, \bar{\beta} = -\hat{i} + 2\hat{j} - 4\hat{k}$$
 and $\bar{\gamma} = \hat{i} + \hat{j} + \hat{k}$
then $(\bar{\alpha} \times \bar{\beta}) \cdot (\bar{\alpha} \times \bar{\gamma}) = \dots$

A. 60

B. 64

C. 74

D. - 74

142. If
$$\bar{\mu} = \hat{i} \times (\bar{a} \times \hat{i}) + \hat{j} \times (\bar{a} \times \hat{j}) + \hat{k} \times (\bar{a} \times \hat{k})$$
 then $\bar{\mu} = \dots$

A. 0

 $\mathsf{B}.\,\hat{i}+\hat{j}+\hat{k}$

C. 2ā

D. ā

Answer: C

143. \bar{a}, \bar{b} and \bar{c} are three unit vectors. $\bar{a} \perp \bar{b}$ and $\bar{a} \mid |\bar{c}$ then $\bar{a} \times (\bar{b} \times \bar{c}) = \dots$

A. ā

 $\mathbf{B}.\,\bar{b}$

C. *c*

D. 0

Answer: B

144. $\bar{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\bar{b} = \hat{i} + \hat{j}$. The vector \bar{c} is such that $\bar{a} \cdot \bar{c} = |\bar{c}|, |\bar{c} - \bar{a}| = 2\sqrt{2}$ and the angle between $\bar{a} \times \bar{b}$ and \bar{c} is 30 ° then $|(\bar{a} \times \bar{b}) \times \bar{c}| = \dots$

C. 2

Answer: B

145. The vectors \bar{a} and \bar{b} are perpendicular then $\bar{a} \times \{\bar{a} \times \{\bar{a} \times (\bar{a} \times \bar{b})\}\} = \dots$

- A. $|\bar{a}|^2 \bar{b}$
- B. $|\bar{a}|^3\bar{b}$
- C. $|\bar{a}|^4 \bar{b}$
- D. None of these

Answer: C

146. If
$$\bar{a}, \bar{b}, \bar{c}$$
 and \bar{d} are coplanar vectors then
 $(\bar{a} \times \bar{b}) \times (\bar{c} \times \bar{d}) = \dots$
A. $|\bar{a} \times \bar{c}|^2$
B. $(\bar{a} \times \bar{a})^2$
C. $|\bar{b} \times \bar{c}|^2$
D. 0

147.
$$\bar{a} \times \left[\bar{a} \times \left(\bar{a} \times \bar{b}\right)\right]$$
 =

A.
$$(\bar{a} \times \bar{a}) \cdot (\bar{b} \times \bar{a})$$

B. $\bar{a} \cdot (\bar{b} \times \bar{a}) - \bar{b} \cdot (\bar{a} \times \bar{b})$
C. $[\bar{a} \cdot (\bar{a} \times \bar{b})]\bar{a}$
D. $(\bar{a} \cdot \bar{a})(\bar{b} \times \bar{a})$

Answer: D

O Watch Video Solution

148. For three vectors
$$\bar{a}, \bar{b}$$
 and
 $\bar{c}, \bar{a} \times (\bar{b} \times \bar{c}) = (\bar{a} \times \bar{b}) \times \bar{c}$ then
A. $\bar{b} \times (\bar{a} \times \bar{c}) = 0$
B. $\bar{a}(\bar{b} \times \bar{c}) = 0$

 $\mathbf{C}.\,\bar{c}\times\bar{a}=\bar{a}\times\bar{b}$

 $\mathsf{D}.\,\bar{c}\times\bar{b}=\bar{b}\times\bar{a}$

Answer: A

Watch Video Solution

149. If
$$\bar{a} = \hat{i} + \hat{j} + \hat{k}, \bar{b} = \hat{i} + \hat{j}, \bar{c} = \hat{i}$$
 and
 $(\bar{a} \times \bar{b}) \times \bar{c} = \lambda \bar{a} + \mu \bar{b}$ then $\lambda + \mu = \dots$
A. 0
B. 1

C. 2

D. 3

Answer: A

150.
$$\begin{bmatrix} \bar{a} \times \bar{b} & \bar{a} \times \bar{c} & \bar{d} \end{bmatrix} = \dots$$

A. $(\bar{a} \cdot \bar{d}) \begin{bmatrix} \bar{a}\bar{b}\bar{c} \end{bmatrix}$
B. $(\bar{a} \cdot \bar{c}) \begin{bmatrix} \bar{a}\bar{b}\bar{c} \end{bmatrix}$
C. $(\bar{a} \cdot \bar{b}) \begin{bmatrix} \bar{a}\bar{b}\bar{c} \end{bmatrix}$

D. None of these

Answer: A

Watch Video Solution

151. If
$$(\bar{a} \times \bar{b}) \times (\bar{b} \times \bar{c}) = \bar{b}$$
, where $\bar{a}, \bar{b}, \bar{c}$ are non zero

vectors, then

A. \bar{a} , \bar{b} , \bar{c} are coplanar vectors.

B. \bar{a} , \bar{b} , \bar{c} may be coplanar vectors.

C. \bar{a} , \bar{b} , \bar{c} are not coplanar vectors.

D. can not say anything.

Answer: C

152. If \bar{a}, \bar{c} and \bar{d} are not coplanar vectors and $\bar{d}. \left(\bar{a} \times \left(\bar{b} \times \left(\bar{c} \times \bar{d}\right)\right)\right) = K\left[\bar{a}, \bar{c}, \bar{d}\right]$ then K = A. $\bar{b} \cdot \bar{d}$ B. $\bar{a} \cdot \bar{d}$ C. $\bar{b} \cdot \bar{a}$ D. $\bar{a} \cdot \bar{c}$

Answer: A

153. If $4\bar{a} + 5\bar{b} + 9\bar{c} = 0$ then $(\bar{a} \times \bar{b}) \times [(\bar{b} \times \bar{c}) \times (\bar{c} \times \bar{a})] = \dots$

A. Perpendicular vector to the plane \bar{a}, \bar{b} and \bar{c}

B. Scalar quantity

C. 0

D. None of these

Answer: C

154. \vec{a}, \vec{b} and \vec{c} are non zero vectors. $\left(\vec{a} \times \vec{b}\right) \times \vec{c} = \frac{1}{3} \left|\vec{b}\right| \left|\vec{c}\right| \vec{a}$. If the acute angle between the vectors \vec{b} and \vec{c} is θ then $\sin\theta = \dots$

A.
$$\frac{1}{3}$$

B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{2\sqrt{2}}{3}$

Answer: D

Watch Video Solution

155. If \vec{a} is a unit vector and $\vec{b} = (2, 1, -1)$ and $\vec{c} = (1, 0, 3)$. Then the maximum value of $\left[\vec{a}\vec{b}\vec{c}\right]$ is.....

A. - 1

B. $\sqrt{59}$

$$C.\sqrt{6} + \sqrt{10} + 1$$

D.
$$\sqrt{60}$$

Answer: B

156. The volume of the parallelepiped with edges $-12\hat{i} + \alpha \hat{k}, 3\hat{j} - \hat{k}$ and $2\hat{i} + \hat{j} - 15\hat{k}$ is 546 then $\alpha = \dots$

A. 3

B. 2

C. - 3

D. - 2

Answer: C

157.
$$\bar{a} \times \left[\bar{a} \times \left(\bar{a} \times \bar{b} \right) \right]$$
 =

A.
$$(\vec{a} \times \vec{a}) \cdot (\vec{b} \times \vec{a})$$

B. $\vec{a} \cdot (\vec{b} \times \vec{a}) - \vec{b} \cdot (\vec{a} \times \vec{b})$
C. $[\vec{a} \cdot (\vec{a} \times \vec{b})]\vec{a}$
D. $(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})$

Answer: D

Watch Video Solution

158.
$$\vec{a} \perp \vec{b}$$
 and \vec{c} , $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 4$. The angle between \vec{b} and \vec{c} is $\frac{2\pi}{3}$ then $\left| \left[\vec{a} \vec{b} \vec{c} \right] \right|$ =

B. $6\sqrt{3}$

C. $12\sqrt{3}$

D. $18\sqrt{3}$

Answer: C

Watch Video Solution

159.
$$\left(\vec{a} \times \vec{b}\right) \times \vec{c} = \vec{a} \times \left(\vec{b} \times \vec{c}\right)$$
. If $\vec{a} \cdot \vec{c}$

A. has angle $\frac{\pi}{6}$

B. are perpendicular vectors

C. are parallel vectors

D. has angle
$$\frac{\pi}{3}$$

Answer: C

.....

 $[3\vec{u}, p\vec{v}, p\vec{w}] - [p\vec{v}, \vec{w}, q\vec{u}] - [2\vec{w}, q\vec{v}, q\vec{u}] = 0 \quad \text{then}$

A. (p, q) has only two values.

- B. (p, q) has more than two values. But not all the values.
- C. (p.q) has all the values.

D. (p. q) has only one value.

Answer: B

161. Let \vec{X}, \vec{Y} and \vec{Z} be three vectors such that $\left|\vec{X}\right| = \left|\vec{Y}\right| = \left|\vec{Z}\right| = \sqrt{2}$. The angle between \vec{X}, \vec{Y} and \vec{Z} with each other 60°. $\vec{X} \times \left(\vec{Y} \times \vec{Z}\right) = \vec{a}, \vec{Y} \times \left(\vec{Z} \times \vec{X}\right) = \vec{b}$ and $\vec{X} \times \vec{Y} = \vec{C}$

Vector \vec{X} =

A.
$$\left(\vec{a} + \vec{b}\right) \times \vec{c} - \left(\vec{a} + \vec{b}\right)$$

B. $\left(\vec{a} + \vec{b}\right) - \left(\vec{a} + \vec{b}\right) \times \vec{c}$

$$\mathsf{C}.\,\frac{1}{2}\left\{\left(\vec{a}+\vec{b}\right)\times\vec{c}-\left(\vec{a}+\vec{b}\right)\right\}$$

D. None of these

Answer:

Watch Video Solution

162. Let \vec{X}, \vec{Y} and \vec{Z} be three vectors such that $\left|\vec{X}\right| = \left|\vec{Y}\right| = \left|\vec{Z}\right| = \sqrt{2}$. The angle between \vec{X}, \vec{Y} and \vec{Z} with each other 60°. $\vec{X} \times (\vec{Y} \times \vec{Z}) = \vec{a}, \vec{Y} \times (\vec{Z} \times \vec{X}) = \vec{b}$ and $\vec{X} \times \vec{Y} = \vec{C}$

Vector \vec{Y} =

A.
$$\frac{1}{2}\left\{\left(\vec{a}+\vec{b}\right)+\left(\vec{a}+\vec{b}\right)\times\vec{c}\right)\right\}$$

B. 2 {
$$\left(\vec{a} + \vec{b} \right) + \left(\vec{a} + \vec{b} \right) \times \vec{c}$$
 }
C. 4 { $\left(\left(\vec{a} + \vec{b} \right) + \left(\vec{a} + \vec{b} \right) \times \vec{c}$ }

D. None of these

Answer:

163. Let \vec{X}, \vec{Y} and \vec{Z} be three vectors such that $\left|\vec{X}\right| = \left|\vec{Y}\right| = \left|\vec{Z}\right| = \sqrt{2}$. The angle between \vec{X}, \vec{Y} and \vec{Z} with each other 60°. $\vec{X} \times (\vec{Y} \times \vec{Z}) = \vec{a}, \vec{Y} \times (\vec{Z} \times \vec{X}) = \vec{b}$ and $\vec{X} \times \vec{Y} = \vec{C}$

Vector \vec{Z} =

A.
$$\frac{1}{2} \left\{ \left(\vec{b} - \vec{c} \right) \times \vec{c} + \left(\vec{a} + \vec{b} \right) \right\}$$

B. $\frac{1}{2} \left\{ \left(\vec{b} - \vec{a} \right) + \left(\vec{a} + \vec{b} \right) \times \vec{c} \right\}$
C. $\left\{ \left(\vec{b} - \vec{a} \right) \times \vec{c} + \left(\vec{a} + \vec{b} \right) \right\}$

D. None of these

Answer:

Watch Video Solution

164. Measure of the angle between the vector $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ is

A.
$$\sin^{-1}\frac{2\sqrt{2}}{3}$$

B.
$$\pi - \cos^{-1}\frac{1}{3}$$

C. $\cos^{-1}\frac{1}{\sqrt{3}}$
D. $\sin^{-1}\frac{1}{3}$

Answer: A

B. - 8

C. 8

D. 2

Answer: B

166. Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + 5\hat{j} - 2\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$.

A.
$$\frac{1}{2}\sqrt{507}$$

 $\mathsf{B}.\sqrt{387}$

 $C.\sqrt{507}$

D. 25

Answer: C

View Text Solution

167. Let
$$|\vec{x}| = |\vec{y}| = |\vec{x} + \vec{y}| = 1$$
 and if measure of the

angle between \vec{x} and \vec{y} is α , then $\cos \alpha$ =

A.
$$-\frac{1}{2}$$

B. $\frac{\sqrt{3}}{2}$
C. $-\frac{\sqrt{3}}{2}$

D. 1

Answer: A

168.

=

$$\hat{i} \cdot \left(\hat{k} \times \hat{j}\right) + \hat{j} \cdot \left(\hat{i} \times \hat{k}\right) + \hat{k} \cdot \left(\hat{j} \times \hat{i}\right) + \hat{i} \cdot \left(\hat{i} \times \hat{j}\right) + \hat{j} \cdot \left(\hat{j} \times \hat{k}\right)$$

A. - 1

B. 1

C. 3

D. - 3

169. For three vectors
$$\vec{a}, \vec{b}$$
 and
 $\vec{c}, \vec{a} + \vec{b} + \vec{c} = \vec{0} |\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$, then evaluate
 $2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}).$

A. 100

B. 50

C. - 25

D. - 50

170. A vector $\vec{a} = \alpha \hat{i} + 2\hat{j} + \beta \hat{k}(\alpha, \beta \in R)$ lies in the plane of the vectors, $\vec{b} = \hat{i} + \hat{j}$ and $\vec{c} = \hat{i} - \hat{j} + 4\hat{k}$. If \vec{a} bisects the angle between \vec{b} and \vec{c} , then

$$\mathbf{A}.\,\,\vec{a}\,\cdot\,\hat{i}+2=0$$

$$\mathsf{B}.\,\vec{a}\,\cdot\,\hat{k}+2\,=\,0$$

$$\mathsf{C}.\,\vec{a}\cdot\hat{i}+1=0$$

D. None of these

171. Let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $\vec{a}, + \vec{b} + \vec{c} = \vec{0}$. If $\lambda = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ and $\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ then the ordered pair (λ, \vec{d}) is equal to :

A.
$$\left(\frac{3}{2}, 3\vec{a} \times \vec{c}\right)$$

B. $\left(-\frac{3}{2}, 3\vec{c} \times \vec{b}\right)$
C. $\left(-\frac{3}{2}, 3\vec{a} \times \vec{b}\right)$
D. $\left(\frac{3}{2}, 3\vec{b} \times \vec{c}\right)$

Answer: C

Practice Paper 10 Section A

1.
$$\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) = \dots$$

A. 0

B. 1

C. 2

D. 3

Answer:

Watch Video Solution

2. Let A(1, 2, -3) and B(-1, -2, 1) are two vectors. Direction cosines of the vector joining the vector in the direction A to is

A.
$$\left(-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$$

B. $\left(\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3}\right)$
C. $\left(-\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3}\right)$
D. $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$

Answer: A

Watch Video Solution

3. \bar{x} and \bar{y} are unit vectors and the angle between them

is θ . If θ = Then $\bar{x} + \bar{y}$ is a unit vector.

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{2\pi}{3}$

Answer:

4. If $|\bar{a}| = 2$, $|\bar{b}| = 4$, $|\bar{c}| = 1$ and $\bar{a} + \bar{b} = -\bar{c}$ then $\bar{a}.\bar{b} + \bar{b}.\bar{c} + \bar{c}.\bar{a} = \dots$

A. -9.5

B. - 10.5

C. 10.5

D. 7.5

Answer:

5. The magnitude of the projection of $\hat{i} + 3\hat{j} + 7\hat{k}$ on $7\hat{i} - \hat{j} + 8\hat{k}$ is

A.
$$\frac{60}{\sqrt{114}}$$

B.
$$\frac{60}{\sqrt{104}}$$

C.
$$\frac{60}{\sqrt{141}}$$

D.
$$\frac{60}{\sqrt{144}}$$

Answer: A

6. $\vec{a} \perp \vec{b}$ and \vec{c} , $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 4$. The angle between \vec{b} and \vec{c} is $\frac{2\pi}{3}$ then $|[\vec{a}\vec{b}\vec{c}]| = \dots$

A. 4√3

B. $6\sqrt{3}$

C. $12\sqrt{3}$

D. $18\sqrt{3}$

Answer:

Practice Paper 10 Section B

1. If a unit vector \vec{a} makes an angle $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ sith \hat{j} and an acute angle θ with \hat{k} , then find the component of \vec{a} .

2.
$$\left|\vec{a}\right| = 3$$
, $\left|\vec{b}\right| = \frac{\sqrt{2}}{3}$. If $\vec{a} \times \vec{b}$ is a unit vector then find

the angle between \vec{a} and \vec{b} .

3. If the vectors $\hat{i} - \hat{j} + \hat{k}$, $3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + \lambda\hat{j} - 3\hat{k}$ are

coplanar then find the value of λ .

4. A vector has magnitude 5 units. It is parallel to the resultant vectors of $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$.

Find this vector.

Watch Video Solution

Practice Paper 10 Section C

1. The adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal. Also find the area of the parallelogram. **2.** Consider two points P and Q with position vectors $2\vec{a} + \vec{b}$ and $\vec{a} - 3\vec{b}$ respectively. Find the position vector of a point R which divide the line segment joining P and Q in the ratio. 1 : 2 externally. Prove that P is a midpoint of line segment RQ.

3. For the vectors \vec{a} , \vec{b} and \vec{c} , $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$. Each vector is the perpendicular to the sum of remaining two vectors. Find $|\vec{a} + \vec{b} + \vec{c}|$.

4. Prove that
$$\left[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}\right] = 2\left[\vec{a}, \vec{b}, \vec{c}\right]$$
.

Watch Video Solution

Practice Paper 10 Section D

1. Express the vector $2\hat{i} + 3\hat{j} + \hat{k}$ as the sum of two vectors, one vector is perpendicual to $2\hat{i} - 4\hat{j} + \hat{k}$ and the other vector is parallel to $2\hat{i} - 4\hat{j} + \hat{k}$.

Watch Video Solution

2. If (a, 1, 1), (1, b, 1) and (1, 1, c) are coplanar then prove

that
$$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1.$$

Watch Video Solution