# © 'doubtnut <br> India's Number 1 Education App 

## MATHS

## BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI ENGLISH)

## VECTOR ALGEBRA

## Practice Work

1. Represent graphically :
(i) A displacement of $50 \mathrm{~km} ., 30^{\circ}$ West of Sout.
(ii) A displacement of $70 \mathrm{~km} ., 40^{\circ}$ West of North.
(iii) A displacement of $50 \mathrm{~km} ., 45^{\circ}$ North of East.

## - Watch Video Solution

2. Classify the follwing as scalar and vector quantities:
(i) 5 second (ii) $1000 \mathrm{~cm}(3)$
(iii) $50 \mathrm{~m} / \mathrm{sec}^{2}$ (iv) 10 Newton
(v) $20 \mathrm{~m} / \mathrm{sec}$ towards north (vi) 15 Kg .

## D Watch Video Solution

3. Classify the following gas scalar and vector quantities : (i) Distance (ii) Displacement (iii) Force (iv)

Velocity (v) Time (vi) Speed

# 4. If figure, identify the following vectors : 

(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal


- Watch Video Solution

5. Answer the folliwng as true of false.
(i) $\vec{a}$ and $\vec{a}$ and collinear.
(ii) Zero vector is unique.
(iii) Two collinear vectors with equal magnitude are not equal.

## D Watch Video Solution

6. Compute the magnitude of the following vectors :
(i) $\vec{a}=2 \hat{i}+3 \hat{j}+\sqrt{3} \hat{k}$
(ii) $\vec{b}=3 \hat{i}-4 \hat{k}$
(iii) $\vec{c}=\hat{i}+\hat{j}-4 \hat{k}$
7. Find the unit vector in the direction of the vector $2 \hat{i}-2 \hat{j}+\hat{k}$.

## D Watch Video Solution

8. Write the scalar and vector components of the vector with initial point ( $-2,1,0$ ) and terminal point (1, $-5,7)$.
9. Find a vector in the direction of the vector (3, -2, 2) which has magnitude $2 \sqrt{17}$ units.

## D Watch Video Solution

10. For given vectors $\vec{a}=3 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}$ find the unit vectors in the direction of the vector $\vec{a}+2 \vec{b}$.

## - Watch Video Solution

11. The position vector of a point $A$ is $(3,4,-5)$ Find,
(i) Distance of a point A from XY-plane.
(ii) Distance of a point A from X -axis.
(iii) Distance of a point A from origin.

## D Watch Video Solution

12. Find a unit vector in the direction of the vector ( 2,3,
6).

## D Watch Video Solution

13. $\ln R^{3}, \vec{x}=(2,3,6), \vec{y}=(6,-2,3)$ and $\vec{z}=(3,6,-2)$,
then find $2 \vec{x}+\vec{y}-\vec{z}$.
14. Find a vector in the opposite direction of a vector $-3 \hat{i}+2 \sqrt{3} \hat{j}-2 \hat{k}$ which has magnitude 20 units.

## D Watch Video Solution

15. For given vectors, $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=\hat{i}+2 \hat{k}$, find the unit vector in the direction of the vector $3 \vec{a}-2 \vec{b}$.

## (D) Watch Video Solution

16. The position vector of the points $A$ and $B$ are respectively $\vec{a}$ and $\vec{b}$. Find the position vectors of the points which divide $A B$ in trisection.

## (- Watch Video Solution

17. The position vectors of the points ( $1,-1$ ) and ( $-2, m$ ) are $\vec{a}$ and $\vec{b}$ respectively. If $\vec{a}$ and $\vec{b}$ are collinear then find the value of $m$.

## - Watch Video Solution

18. If a vector makes angles $\alpha, \beta$ and $\gamma$ with $\mathrm{OX}, \mathrm{OY}$ and OZ respectively, prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.
19. Show that the direction cosines of a vector equally
inclined to the axes $\mathrm{OX}, \mathrm{OY}$ and OZ are $\pm\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

## - Watch Video Solution

20. A vector $\vec{r}$ has length 21 and directi9on ratio

2 , -3 , 6 . Find the direction cosines and components of $\vec{r}$ given that $\vec{r}$ makes an acute angle with X - axis.
21. If $\vec{a}$ and $\vec{b}$ are non-collinear vectors find the value of
x for which vectors $\vec{\alpha}=(x-2) \vec{a}+\vec{b} \quad$ and
$\vec{\beta}=(3+2 x) \vec{a}-2 \vec{b}$ are collinear.

## - Watch Video Solution

22. Prove that the points $\hat{i}-\hat{j}, 4 \hat{i}+3 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+5 \hat{k}$ are vertices of a right angled triangle.

## - Watch Video Solution

23. If $P Q=3 \hat{i}+2 \hat{j}-\hat{k}$ and the co-ordinates of $P$ is $(1,-1$,
2) then find the co-ordinates of $Q$.

## D Watch Video Solution

24. If $A, B, C$ have position vectors $(2,0,0),(0,1,0)$ and $(0,0,2)$. Show that $\triangle A B C$ is isosceles.

## D Watch Video Solution

25. $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ are adjacent side of a parallelogram then find the unit vector in the direction of the diagonal of the parallelogram.
26. If $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}$ then find $\vec{a}+3 \vec{b} .(2 \vec{a}-\vec{b})$.

## - Watch Video Solution

27. Find the angle between the vector $2 \hat{i}-3 \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-2 \hat{k}$.

## D Watch Video Solution

28. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$ then show that
$(\vec{a}+\vec{b})$ is a perpendicular to the vector $\vec{a}-\vec{b}$.
29. If $\vec{a}=3 \hat{i}-\hat{j}+2 \hat{k}, \vec{b}=\hat{i}-3 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}$ then find
(i) $\vec{a} \cdot \vec{b}$ (ii) $(\vec{a}+\vec{b}) \cdot \vec{c}$
(iii) $(\vec{a}-\vec{b}) \cdot(\vec{b}-\vec{c})$
(iv) $(\vec{a}+2 \vec{b}) \cdot \vec{b}$
(v) $(\vec{a}-3 \vec{c}) \cdot(2 \vec{a}+\vec{b})$

## D Watch Video Solution

30. Find the projection of the vector $7 \hat{i}+\hat{j}-4 \hat{k}$ on the vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$.
31. For two vectors $\vec{a}$ and $\vec{b},|\vec{a}|=4,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=6$ find the angle between $\vec{a}$ and $\vec{b}$.

## D Watch Video Solution

32. $\vec{a}=\lambda \hat{i}+3 \hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+3 \hat{k}$. If $\vec{a}$ and $\vec{b}$ are perpendicular to each other then find the value of $\lambda$.

## - Watch Video Solution

33. $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+p \hat{j}+3 \hat{k}$. If the vector $\vec{a}$
and $\vec{b}$ are parallel then find the value of $P$.
34. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively, then find the angle between $A B$ and $C D$. Deduce that $\rightarrow \quad \rightarrow$
$A B$ and $C D$ are collinear.

## D Watch Video Solution

35. If $(\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b})=27$ and $|\vec{a}|=2|\vec{b}|$ the find $|\vec{a}|$ and $|\vec{b}|$.
36. If a unit vector $\vec{a}$ makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with $\hat{j}$ and an acute angle $\theta$ with $\hat{k}$ then find $\theta$ and hence, the components of $\vec{a}$.

## (D) Watch Video Solution

37. A unit vector $\vec{a}$ is perpendicualr to the vectors
$\hat{i}+2 \hat{j}-\hat{k}$ and $3 \hat{i}-\hat{j}+\hat{k}$ then find the components of $\vec{a}$.

## (D) Watch Video Solution

38. Find the values of 'a' for which the vector
$\vec{r}=\left(a^{2}-4\right) \hat{i}+2 \hat{j}-\left(a^{2}-9\right) \hat{k}$ makes acute angles with
the co-ordinate axes.

## - Watch Video Solution

39. Find the angles which the vector $\vec{a}=\hat{i}-\hat{j}+\sqrt{2} \hat{k}$ makes with the co-ordinate axes.

## D Watch Video Solution

40. Dot product of a vector $\vec{a}$ with $\hat{i}+\hat{j}-3 \hat{k}, \hat{i}+3 \hat{j}-2 \hat{k}$ and $2 \hat{i}+\hat{j}+4 \hat{k}$ are 0,5 and 8 respectively. Find the vector.
41. If $|\vec{a}|=2,|\vec{b}|=5$ and $\vec{a} . \vec{b}=10$ then find $|\vec{a}-\vec{b}|$.

## - Watch Video Solution

42. If $\vec{a}=5 \hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\lambda \hat{k}$. If $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicualr to each other then find the value of $\lambda$.

## - Watch Video Solution

43. Express the vector $2 \hat{i}+3 \hat{j}+\hat{k}$ as the sum of two vectors, one vector is perpendicualr to $2 \hat{i}-4 \hat{j}+\hat{k}$ and the other vector is parallel to $2 \hat{i}-4 \hat{j}+\hat{k}$.

## - Watch Video Solution

44. $A(0,-1,-2), B(3,1,4)$ and $C(5,7,1)$ are vertices of
$\triangle A B D$ then find the measure of $\angle A$.

## - Watch Video Solution

45. Prove that the angle in a semicircle is right angle.
(By vector method)

- Watch Video Solution

46. Using vector method prove that in a right angled triangle, the midpoint of the hypotenuse is equidistance from the vertices of the triangle.

## - Watch Video Solution

47. If $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=6,|\vec{b}|=5,|\vec{c}|=7$ then find the angle between the vectors $\vec{b}$ and $\vec{c}$.

## D Watch Video Solution

48. The vectors of two sides of the triangle are $\vec{a}=3 \hat{i}+6 \hat{j}-2 \hat{k}$ and $\vec{b}=4 \hat{i}-\hat{j}+3 \hat{k}$ then find all the
angles of the triangle.

## - Watch Video Solution

49. Show that the points $\mathrm{P}(-2,3,5), \mathrm{Q}(1,2,3)$ and $\mathrm{R}(7,0$,
-1) are collinear.

## (D) Watch Video Solution

50. $\vec{a}$ and $\vec{b}$ are any two vectors. Prove that $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
51. If $|\vec{a}+\vec{b}|=60,|\vec{a}-\vec{b}|=40$ and $|\vec{b}|=46$ find $|\vec{a}|$.

## - Watch Video Solution

52. Let $\vec{a}, \vec{b}$ and $\vec{c}$ be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=$ Sand each one of them being perpendicular to the sum of the other two , find $|\vec{a}+\vec{b}+\vec{c}|$.

## D Watch Video Solution

53. Find the value of $c$ for which the vectors
$\vec{a}=\left(\log _{2} x\right) \hat{i}-6 \hat{j}+3 \hat{k}$
$\vec{b}=\left(\log _{2} x\right) \hat{i}+2 \hat{j}+\left(2 c \log _{2} x\right) \hat{k}$ makes an obtuse angle for any $(x \in 0, \infty)$.

## D Watch Video Solution

54. If the angle between the unit vectors $\vec{a}$ and $\vec{b}$ is $\theta$
then prove that $\sin \frac{\theta}{2}=\frac{1}{2}|\hat{a}-\hat{b}|$.

## D Watch Video Solution

55. $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$
then find the projection of $\vec{b}+\vec{c}$ on $\vec{a}$.
56. Find a vector perpendicular to both the vectors
$\hat{i}-2 \hat{j}+3 \hat{k}$ and $\hat{i}+2 \hat{j}-\hat{k}$.

## D Watch Video Solution

57. Find the area of the triangle with vertices
$A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$.

## D Watch Video Solution

58. Find the area of the parallelogram whose diagonals are determined by the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$.
59. Find the area of the triangle with vertices
$A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$.

## - Watch Video Solution

60. The position vectors of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $\vec{a}, \vec{b}$
and $\vec{c}$ respectively. If the points $A, B, C$ are collinear
then prove that
$\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$.
61. For vectors $\vec{a}, \vec{b}$ and $\vec{c}, \vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c} \quad$ and $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq \overrightarrow{0}$ then show that $\vec{b}=\vec{c}$.

## - Watch Video Solution

62. Prove that for any vector $\vec{a}$,

$$
|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=2|\vec{a}|^{2} .
$$

## - Watch Video Solution

63. Find the area of the parallelogram whose diagonals are determined by the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$.
64. If $|\vec{a}|=2|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$ then find $\vec{a} \cdot \vec{b}$.

## (D) Watch Video Solution

65. If $|\vec{a} \times \vec{b}|=\vec{a} . \vec{b}$ then find the angle between $\vec{a}$ and $\vec{b}$.

## D Watch Video Solution

66. If $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$ then find $|\vec{a} \times \vec{b}|$.
67. Show that the points with position vectors
$5 \hat{i}+6 \hat{j}+7 \hat{k}, 7 \hat{i}-8 \hat{j}+9 \hat{k}$ and $3 \hat{i}+20 \hat{j}+5 \hat{k}$ are collinear.

## D Watch Video Solution

68. Find the magnitude of the vector
$\vec{a}=(3 \hat{i}+4 \hat{j}) \times(\hat{i}+\hat{j}-\hat{k})$.

## - Watch Video Solution

69. Find the area of the parallelogy whose diagonals are determined the vectors $2 \hat{i}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$.
70. Prove that $(1,2,3)(2,3,5)$ and $(5,8,13)$ are coplanar.

## - Watch Video Solution

71. If $\vec{x}, \vec{y}$ and $\vec{z}$ are non coplanar then prove that $\vec{x}+\vec{y}, \vec{y}+\vec{z}$ and $\vec{z}+\vec{x}$ are non coplanar.

## - Watch Video Solution

72. 

$a x+y+1=0, x+b y+1=0$ and $x+y+c=0$
are
concurrent then prove that,

$$
\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=
$$

## - Watch Video Solution

73. The volume of a parallelepiped with edges $\overrightarrow{O A}=(3,1.4), \overrightarrow{O B}=(1,2,3), \overrightarrow{O C}=(2,1,5)$ is

## - Watch Video Solution

74. Find the value of $x$ if the vectors
$(x, x+1, x+2),(x+3, x+4, x+5) \quad$ and
$(x+6, x+7, x+8)$ are coplanar.

D Watch Video Solution
75. Show that the angle between the diagonal of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$.

## - Watch Video Solution

76. $\vec{a}=2 \hat{i}-10 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{c}=2 \hat{i}+\hat{j}+3 \hat{k}$
then find $\vec{a} \times(\vec{b} \times \vec{c})$.

## D Watch Video Solution

77. $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}+\hat{k}$,
$\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$ then find that
$\vec{a} \times(\vec{b} \times \vec{c})$.

## - Watch Video Solution

78. Find a unit vector perpendicualr to the plane which passes through the point $P(1,-1,2), Q(2,0,-1)$ and $R(0,2,1)$.

## D Watch Video Solution

79. Find a vector of magnitude $\sqrt{51}$ and makes equal angle with the vectors
$\vec{a}=\frac{1}{3}(\hat{i}-2 \hat{j}+2 \hat{k}), \vec{b}=\frac{1}{5}(-4 \hat{i}-3 \hat{k})$ and $\vec{c}=\hat{j}$.
80. Let $\vec{a}, \vec{b}$ and $\vec{c}$ be unit vectors such that
$\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between $\vec{b}$ and $\vec{c}$ is $\frac{\pi}{6}$.
Prove that $\vec{a}= \pm 2(\vec{b} \times \vec{c})$.

## (D) Watch Video Solution

81. Let $O A=\vec{a}, O B=10 \vec{a}+2 \vec{b}$ and $O C=\vec{b}$ where $O$ is origin. Let $P$ denotes the area of the quadrilateral

OABC and $q$ denote the area of the parallelogram with
$O A$ and $O C$ as adjacent side. Prove that $P=6 q$.
82. If $A, B, C$ and $D$ by any four points in space, prove that
$|\overrightarrow{A B} \times \overrightarrow{C D}+\overrightarrow{B C} \times \overrightarrow{A D}+\overrightarrow{C A} \times \overrightarrow{B D}|=4$ (Area of triangle ABC)

## - Watch Video Solution

83. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{j}-\hat{k}$ are given vectors, then find
a vector $\vec{b}$ satisfying the equations $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=3$.
84. Using vector, Prove that for $\triangle A B C$,
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

## D Watch Video Solution

85. If $A(3,2,-4), B(4,3,-4), C(3,3,3)$ and $D(4,2,-3)$
are given then find the projection of $A D$ on $A B \times A C$.

## D Watch Video Solution

86. The sum of two unit vectors is a unit vector then
the magnitude of their difference is $\sqrt{3}$. Prove this.
87. For anyy two vectors $\vec{a}$ and $\vec{b}$, show that

$$
\begin{aligned}
& \left(1+|\vec{a}|^{2}\right)\left(1+|\vec{b}|^{2}\right)= \\
& |(1-\vec{a} \cdot \vec{b})|^{2}+|\vec{a}+\vec{b}+(\vec{a} \times \vec{b})|^{2}
\end{aligned}
$$

## D Watch Video Solution

88. $P(2,-1,4)$ and $Q(4,3,2)$ are given points. Find the prove which divides the line joining $P$ and $Q$ in the ratio 2 : 3. (i) Internally (ii) Externally (Using vector method).
89. If $\vec{a}$ and $\vec{b}$ are the vectors determined by two adjacent sides of a regular hexagonn ABCDEF. What are the vectors determined by the other sides taken in order?

## - Watch Video Solution

Exercise 101

1. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north.
2. Classify the following measures as scalars and vectors.
(i) 10 kg
(ii) 2 meters north
(iii) $40^{\circ}$
(iv) 40 watt
(v) $10^{19}$ coulomb
(vi) $20 \mathrm{~m} / \mathrm{s}^{2}$

## D Watch Video Solution

3. Classify the following as scalar and vector quantities.
(i) time period
(ii) distance
(iii) force
(iv) velocity
(v) work done

## - Watch Video Solution

4. In figure identify the following vectors:
(i) Coinitial
(ii) Equal
(iii) Collinear but not equal

- View Text Solution

5. Answer the followings true or false.
(i) $\vec{a}$ and $-\vec{a}$ are collinear.
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.

## - Watch Video Solution

Exercise 102

1. Compute the magnitude of the following vectors:
$\vec{a}=\hat{i}+\hat{j}+k, \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}, \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$

## D Watch Video Solution

2. Compute the magnitude of the following vectors :

$$
\vec{a}=\hat{i}+\hat{j}+k, \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}, \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}
$$

## D Watch Video Solution

3. Compute the magnitude of the following vectors:

$$
\vec{a}=\hat{i}+\hat{j}+k, \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}, \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}
$$

4. Write two different vectors having same magnitude.

## D Watch Video Solution

5. Write two different vectors having same direction.

## - Watch Video Solution

6. Find the values of $x$ and $y$ so that the vectors
$2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.
7. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point $(-5,7)$.

## - Watch Video Solution

> 8. Find the sum of the vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}--7 \hat{k}$.

## D Watch Video Solution

9. Find the unit vector in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$.
10. Find the unit vector in the direction of vector $P Q$, where $P$ and $Q$ are the points $(1,2,3)$ and $(4,5,6)$, respectively.

## - Watch Video Solution

11. For given vectors $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$.
12. Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

## D Watch Video Solution

13. Show that vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

## D Watch Video Solution

14. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.
15. Find the direction cosines of the vector joining the points $A(1,2,-3)$ and $B(-1,-2,1)$, directed from $A$ to $B$.

## - Watch Video Solution

16. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes $O X, O Y$ and $O Z$.

## - Watch Video Solution

17. Find the position vector of a point $R$ which divides
the line joining two points $P$ and $Q$ whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the
ratio 2 : 1.
(i) internally (ii) externally

## D Watch Video Solution

18. Find the position vector of the mid point of the vector joining the points $\mathrm{P}(2,3,4)$ and $\mathrm{Q}(4,1,-2)$.

## D Watch Video Solution

19. Show that the points $A, B$ and $C$ with position vectors, $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$, respectively form the vertices of a right angled triangle.
20. If triangle $A B C$ (Fig 10.18), which of the following is not true :
(A) $A B+B C+C A=\overrightarrow{0}$
(B) $A B+B C-A C=\overrightarrow{0}$
( C ) $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{C A}=\overrightarrow{0}$
(D) $A B-C B+C A=\overrightarrow{0}$


## (D) Watch Video Solution

21. If $\vec{a}$ and $\vec{b}$, are two collinear vectors, then which of the following are incorrect :
(A) $\vec{b}=\lambda \vec{a}$, for some scalar $\lambda$
(B) $\vec{a}= \pm \vec{b}$
(C ) the respective components of $\vec{a}$ and $\vec{b}$ are not proportional
(D) both the vectors $\vec{a}$ and $\vec{b}$ have same direction, but different magnitudes.

## D Watch Video Solution

## Exercise 103

1. Find the angle between two vectors $\vec{a}$ and $\vec{b}$ with magnitudes $\sqrt{3}$ and 2 , respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$.
2. Find the angle between the vectors
$\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$

## Watch Video Solution

3. Find the projection of vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$.

## D Watch Video Solution

4. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$.
5. Show that each of the given three vectors is a unit
vector. $\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$
Also, show that they are mutually perpendicular to each other.

## - Watch Video Solution

6. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$.

## D Watch Video Solution

7. Evaluate the product $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.

## - Watch Video Solution

8. Find the magnitude of two vectors $\vec{a}$ and $\vec{b}$, having the same magnitude and such that the angle between them is $60^{\circ}$ and their scalar product is $\frac{1}{2}$.

## D Watch Video Solution

9. Find $|\vec{x}|$, iif for a unit vector $\vec{a}$,
$(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$.

- Watch Video Solution

10. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to $\vec{c}$, then find the value of $\lambda$.

## - Watch Video Solution

11. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicualr to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any to nonzero vectors $\vec{a}$ and $\vec{b}$.

## - View Text Solution

12. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$ then what can be concluded about the vector $\vec{b}$ ?

## - Watch Video Solution

13. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b} \vec{c}=0$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

## - View Text Solution

14. If either vector $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, , then $\vec{a} \cdot \vec{b}=0$. But
the converes need not be true . Justify your answer with an example.
15. If either vector $A, B, C$ of a triangle $A B C$ are (1,2,3),
$(-1,0,0),(0,1,2)$, respectively , then find $\angle A B C$. [ $\angle A B C$ is
the angle between the vectors $B A$ and $B C]$.

## D Watch Video Solution

16. Show that the points $A(1,2,7), B(2,6,3)$ and $C(3,10$,
-1) are collinear.

## D Watch Video Solution

17. Show that the points
$A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k}), C(3 \hat{i}-4 j-4 \hat{k})$ are vertices
of a right angled triangle.

## - Watch Video Solution

18. If $\vec{a}$ is a nonzero vector of mangitude 'a' and $\lambda$ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if
A. $\lambda=1$
B. $\lambda=-1$
C. $a=|\lambda|$
D. $a=\frac{1}{|\lambda|}$

## Answer: D

Exercise 104

1. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$.

## D Watch Video Solution

2. Find a unit perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$.
3. If a unit vector $\vec{a}$ makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with $\hat{j}$ and an acute angle $\theta$ with $\hat{k}$ then find $\theta$ and hence, the components of $\vec{a}$.

## D Watch Video Solution

4. Show that, $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$.

## D Watch Video Solution

5. Find $\lambda$ and $\mu$ if
$(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.
6. Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=0$. What can you conclude about the vectors $\vec{a}$ and $\vec{b}$ ?

## - Watch Video Solution

7. Let the vectors $\vec{a}, \vec{b} \vec{c}$ be given as
$a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$.
Then
show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

## - Watch Video Solution

8. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}=\overrightarrow{0}$. Is the converse true ? Justify your answer with an example.

## - Watch Video Solution

9. Find the area of the triangle with vertices $A(1,1,2)$, $B(2,3,5)$ and $C(1,5,5)$.

## - Watch Video Solution

10. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.

## - Watch Video Solution

11. Let the vectors $\vec{a}$ and $\vec{b}$ be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between $\vec{a}$ and $\vec{b}$ is.......
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B
12. Area of a rectangle having vertices $A, B, C$ and $D$
with
position
vectors
$-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k} \quad$ and $\quad-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$,
respectively is $\qquad$
A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer: C

1. Find $[\vec{a} \vec{b} \vec{c}]$ if $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}-2 \hat{k}$.

## D Watch Video Solution

2. 

Show
that
the
vectors,
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}+5 \hat{k}$ are
coplanar.
3. Find $\lambda$ if the vectors $\hat{i}-\hat{j}+\hat{k}, 3 \hat{i}-\hat{j}+2 \hat{k}$ and $\hat{i}+\lambda \hat{j}-3 \hat{k}$ are coplannar.

## D Watch Video Solution

4. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then

If $c_{1}=1$ and $c_{2}=2$ find $c_{3}$ which makes $\vec{a}, \vec{b}$ and $\vec{c}$ coplanar.

## - Watch Video Solution

5. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then

If $c_{2}=-1$ and $c_{3}=1$. Show that no value of $c_{1}$ can
make $\vec{a}, \vec{b}$ and $\vec{c}$ coplanar.

## D Watch Video Solution

6. Show that the four points as position vectors,
$4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ are coplanar.

## (D) Watch Video Solution

7. Find $x$ such that the four points $A(3,2,1), B(4, x, 5)$,
$C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.
8. Show that the vectors $\vec{a}, \vec{b}$ and $\vec{c}$ coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are coplanar.

## - Watch Video Solution

## Miscellaneous Exercise 10

1. Write down a unit vector in XY-plane, making an angle of $30^{\circ}$ with the positive direction of $x$-axis.

## - Watch Video Solution

2. Find the scalar components and magnitude of the vector joining the points
$P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$.

## - Watch Video Solution

3. A girl walks 4 km towards west, then she walks 3 km
in a direction $30^{\circ}$ east of north and stops. Determine
the girl's displacement from her initial point of departure.

## D Watch Video Solution

4. If $\vec{a}=\vec{b}+\vec{c}$, then is it true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$ ? Justify your answer .

## - Watch Video Solution

5. Find the value of $x$ for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

## - Watch Video Solution

6. Find a vector of magnitude 5 units and parallel to
the resultant of the
vectors
$\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.

## (-) Watch Video Solution

7. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{j}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

## D Watch Video Solution

8. Show that the points $A(1,-2,-8), B(5,0,-2)$ andC $(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.
9. Find the position vector of a point R which divides
the line joining two points $P$ and $Q$ whose position vectors are $(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ externally in the ratio 1:2 Also, show that $P$ is the mid point of the line segment RQ.

## D Watch Video Solution

10. The two adjacent sides of a parallelogram are
$2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to its diagonal. Also, find its area.
11. Show that the direction cosines of a vector equally inclined to the axes $O X, O Y$ and $O Z$ are $\pm\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

## - Watch Video Solution

12. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ and
$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector $\vec{d}$ which is perpendicular to both $\vec{a}$ and $\vec{b}$, and $\vec{c} . \vec{d}=15$.

## D View Text Solution

13. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of $\lambda$.

## - Watch Video Solution

14. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to $\vec{a}, \vec{b}$ and $\vec{c}$.

## - Watch Video Solution

15. prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$, if and only if $\vec{a}, \vec{b}$ are perpendicular, given $\vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$.

## D Watch Video Solution

16. If $\theta$ is angle between two vectors $\vec{a}$ and $\vec{b}$ then
$\vec{a} . \vec{b} \geq 0$ only when
A. $0<\theta<\frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0 \leq \theta \leq \pi$

## - Watch Video Solution

17. Let $\vec{a}$ and $\vec{b}$ be two unit vectors and $\theta$ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if
A. $\theta=\frac{\pi}{4}$
B. $\theta=\frac{\pi}{3}$
C. $\theta=\frac{\pi}{2}$
D. $\theta=\frac{2 \pi}{3}$

## Answer: D

18. The value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j})$ is
A. 0
B. -1
C. 1
D. 3

Answer: C

- Watch Video Solution

19. If $\theta$ is the angle between any two vectors $\vec{a}$ and $\vec{b}$,
then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when $\theta$ is equal to
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\pi$

Answer: B

D Watch Video Solution

Textbook Illustrations For Practive Work

1. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ west of south.

## (D) Watch Video Solution

2. Classify the following measures as scalars and vectors.
(i) 5 seconds
(ii) $1000 \mathrm{~cm}^{3}$
(iii) 10 Newton
(iv) $30 \mathrm{~km} / \mathrm{hr}$
(v) $10 \mathrm{~g} / \mathrm{cm}^{3}$
(vi) $20 \mathrm{~m} / \mathrm{s}$ towards north
3. In Fig 10.5 ., which of the vectors are :
(i) Collinear
(ii) Equal
(iii) Coinitial

## - Watch Video Solution

4. Find the values of $x, y$ and $z$ so that the vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.

- Watch Video Solution

5. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. Is $|\vec{a}|=|\vec{b}|$ ? Are the vectors $\vec{a}$ and $\vec{b}$ equal?

## - Watch Video Solution

6. Find a vector in the direction of vector $\vec{a}=\hat{i}-2 \hat{j}$ that
has magnitude 7 units.

## - Watch Video Solution

7. Find a vector in the direction of vector $\vec{a}=\hat{i}-2 \hat{j}$ that has magnitude 7 units.
8. Find the unit vector in the direction of the sum of vectors, $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$.

## D Watch Video Solution

9. Write the direction ratio's of the vector $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

## D Watch Video Solution

10. Find the vector joining the points $P(2,3,0)$ and $Q(-1,-2,-4)$ directed from $P$ to $Q$.

## - Watch Video Solution

11. Consider two points $P$ and $Q$ with position vectors
$O P=3 \hat{a}-2 \vec{b}$ and $O Q=\vec{a}+\vec{b}$. Find the position vector of a point $R$ which divides the line joining $P$ and $Q$ in the ratio 2 : 1, (i) internally, and (ii) externally.

## D Watch Video Solution

$$
\begin{aligned}
& \text { 12. Show that the points } \\
& A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k}), C(3 \hat{i}-4 j-4 \hat{k}) \text { are vertices } \\
& \text { of a right angled triangle. }
\end{aligned}
$$

13. Find the angle between two vectors $\vec{a}$ and $\vec{b}$ with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b}=1$.

## - Watch Video Solution

14. Find angle $\theta$ between the vectors
$\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

## - Watch Video Solution

15. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, then show that
the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicualr.

## D Watch Video Solution

16. Find the projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 k$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

## - Watch Video Solution

17. Find $|\vec{a}-\vec{b}|$, if two vectors $\vec{a}$ and $\vec{b}$ are such that
$|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$.

D Watch Video Solution
18. If $\vec{a}$ is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$ then find $|\vec{x}|$.

## D Watch Video Solution

19. For any two vectors $\vec{a}$ and $\vec{b}$, we always have $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$ (Cauchy-Schwartz inequality).

## (D) Watch Video Solution

20. For any two vectors $\vec{a}$ and $\vec{b}$, we always have $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$ (triangle inequality).
21. Show that the points
$A(-2 \hat{i}+3 \hat{j}+5 \hat{k}), B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-\hat{k})$ are collinear.

## (D) Watch Video Solution

22. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$

## D Watch Video Solution

23. Find a unit vector perpendicualr to each of the vectors $\quad(\vec{a}+\vec{b}) \quad$ and $\quad(\vec{a}-\vec{b}), \quad$ where
$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

## D Watch Video Solution

24. Find the area of atriangle having the points $A(1,1,1)$,
$B(1,2,3)$ and $C(2,3,1)$ as its vertices.

## D Watch Video Solution

25. Find the area of a parallelogram whose adjacent

> sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$
26. If $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$
then find $\vec{a}$. $(\vec{b} \times \vec{c})$.

## - Watch Video Solution

27. Show
that
the
vectors
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{c}=\hat{i}-\hat{j}+5 \hat{k}$ are
coplannar.

## - Watch Video Solution

28. If the vectors $\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{i}+7 \hat{j}+3 \hat{k}$ are coplannar then find $\lambda$.

## D Watch Video Solution

29. If $4 \hat{i}+5 \hat{j}+\hat{k},-(\hat{j}+\hat{k}), 3 \hat{i}+9 \hat{j}+4 \hat{k} \quad$ and
$4(-\hat{i}+\hat{j}+\hat{k})$ are position vectors of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D then prove that $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplannar.

## - Watch Video Solution

30. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.

## D Watch Video Solution

31. Prove that $[\vec{a}, \vec{b}, \vec{c}+\vec{d}]=[\vec{a}, \vec{b}, \vec{c}]+[\vec{a}, \vec{b}, \vec{d}]$.

## - Watch Video Solution

32. Write all the unit vectors in XY-plane.

## - View Text Solution

33. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are the position vectors of points $A, B, C$ and $D$ respectively, then find the angle between $A B$ and $C D$. Deduce that
$\overrightarrow{A B}$ and $\overrightarrow{C D}$ are collinear.

## D Watch Video Solution

34. Let $\vec{a}, \vec{b}$ and $\vec{c}$ be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one the them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.

## - Watch Video Solution

35. Three vectors $\vec{a}, \vec{b}$ and $\vec{c}$ satisfy the condition
$\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} . \quad$ Evaluate the quantity
$\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, if $|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$.
36. If with reference to the right handed system of mutually perpendicular unit vectors $\hat{i}, \hat{j}$ and
$\hat{k}, \vec{\alpha}=3 \hat{i}-\hat{j}, \vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\vec{\beta}$ in the form
$\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.

## (D) Watch Video Solution

## Solutions Of Ncert Exemplar Problems Short Answer Type Questions

1. Find the unit vector in the direction of sum of vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\bar{b}=2 \hat{j}+\hat{k}$.
2. If $\bar{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\bar{b}=2 \hat{i}+\hat{j}-2 \hat{k}$, find the unit vector in the direction of
$\begin{array}{ll}\text { (i) } 6 \bar{b} & \text { (ii) } 2 \bar{a}-\bar{b}\end{array}$

## D Watch Video Solution

3. Find a unit vector in the direction of $P Q$, where $P$ and Q have coordinates $(5,0,8)$ and $(3,3,2)$, respectively.
4. If $A$ and $B$ are the positon vectors of $\bar{a}$ and $\bar{b}$ respectively, then find the positon vector of a point $C$ $\rightarrow \quad \rightarrow \quad \rightarrow$ in $B A$ produced such that $B C=1.5 B A$.

## - Watch Video Solution

5. Using vectors, find the value of $k$, such that the points $(k,-10,3),(1,-1,3)$ and $(3,5,3)$ are collinear.

## D Watch Video Solution

6. A vector $\bar{r}$ is inclined at equal angles to the three axes. If the magnitude of $\vec{r}$ is $2 \sqrt{3}$ units, then find the

## - Watch Video Solution

7. If a vector $\vec{r}$ has magnitude 14 and direction ratios 2 ,
$3,-6$. Then find the direction cosines and components of $\vec{r}$, given that $\bar{r}$ makes an acute angle with X - axis.

## D Watch Video Solution

8. Find a vector of magnitude 6 , which is perpendicualr to both the vectors $2 \bar{i}-\bar{j}+2 \bar{k}$ and $4 \bar{i}-\bar{j}+3 \bar{k}$.
9. Find the angle between the vectors $2 \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}+4 \hat{j}-\hat{k}$.

## D Watch Video Solution

10. If $\bar{a}+\bar{b}+\bar{c}=0$, then show that $\bar{a} \times \bar{b}=\bar{b} \times \bar{c}=\bar{c} \times \bar{a}$.

Interpret the result geometrically.

## D Watch Video Solution

11. Find the sine of the angle between the vectors
$\bar{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\bar{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}$.
12. If $A, B, C$ and $D$ are the points with position vectors $\hat{i}+\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}, 2 \hat{i}-3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$ respectively, then find the projection of $A B$ along $C D$.

## D Watch Video Solution

13. Using vectors, find the area of the $\triangle A B C$ with vertices $A(1,2,3), B(2,-1,4)$ and $C(4,5,-1)$.
14. Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

## D Watch Video Solution

15. Prove that in any $\triangle A B C, \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
where $a, b$ and $c$ are the magnitudes of the sides opposite to the vertices $\mathrm{A}, \mathrm{B}$ and C respectively.

- Watch Video Solution

16. Show that area of the parallelogram whose diagonals are given by $\vec{a}$ and $\vec{b}$ is $\frac{1}{2} \cdot|\bar{a} \times \bar{b}|$. Also, find the area of the parallelogram, whose diagonals are $2 \bar{i}-\bar{j}+\bar{k}$ and $\bar{i}+3 \bar{j}-\bar{k}$.

## - Watch Video Solution

17. If $\bar{a}=\bar{i}+\bar{j}+\bar{k}$ and $\bar{b}=\bar{j}-\bar{k}$, then find a vector $\vec{c}$ such
that $\bar{a} \times \bar{c}=\bar{b}$ and $\bar{a} . \bar{c}=3$.

## - Watch Video Solution

## Solutions Of Ncert Exemplar Problems Objective Type

1. The vector in the direction of the vector $\vec{a}=\bar{i}-2 \bar{j}+2 \bar{k}$ that has magnitude 9 is
A. $\bar{i}-2 \bar{j}+2 \bar{k}$
B. $\frac{\bar{i}-2 \bar{j}+2 \bar{k}}{3}$
C. $3(\bar{i}-2 \bar{j}+2 \bar{k})$
D. $9(\bar{i}-2 \bar{j}+2 \bar{k})$

Answer: C

D Watch Video Solution
2. The position vector of the point which divides the join of points $2 \bar{a}-3 \bar{b}$ and $\bar{a}+\bar{b}$ in the ratio $3: 1$, is
A. $\frac{3 \bar{a}-2 \bar{b}}{4}$
B. $\frac{7 \bar{a}-8 \bar{b}}{4}$
C. $\frac{3 \bar{a}}{4}$
D. $\frac{5 \bar{a}}{4}$

## Answer: D

3. The vector having initial and terminal points as (2,5,
$0)$ and ( $-3,7,4$ ) respectively is

$$
\begin{aligned}
& \text { A. }-\bar{i}+12 \bar{j}+4 \bar{k} \\
& \text { B. } 5 \bar{i}+2 \bar{j}-4 \bar{k} \\
& \text { C. }-5 \bar{i}+2 \bar{j}+4 \bar{k} \\
& \text { D. } \bar{i}+\bar{j}+\bar{k}
\end{aligned}
$$

## Answer: C

4. The angle between two vectors $a$ and $b$ with magnitudes $\sqrt{3}$ and 4 , respectively and $\bar{a} \cdot \bar{b}=2 \sqrt{3}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{5 \pi}{2}$

Answer: B
5. Find the value of $\lambda$ such that the vectors $\bar{a}=2 \bar{i}+\lambda \bar{j}+\bar{k}$ and $\bar{b}=\bar{i}+2 \bar{j}+3 \bar{k}$ are orthogonal
A. 0
B. 1
C. $\frac{3}{2}$
D. $-\frac{5}{2}$

Answer: D

- Watch Video Solution

6. The value of $\lambda$ for which the vectors $3 \bar{i}-6 \bar{j}+\bar{k}$ and
$2 \bar{i}-4 \bar{j}+\lambda \bar{k}$ are parallel is .....
A. $\frac{2}{3}$

3
B. $\frac{-}{2}$
C. $\frac{5}{2}$
D. $\frac{2}{5}$

Answer: A

- Watch Video Solution

7. The vectors from origin to the points $A$ and $B$ are $\bar{a}=2 \bar{i}-3 \bar{j}+2 \bar{k}$ and $\bar{b}=2 \bar{i}+3 \bar{j}+\bar{k}$ respectively, then the area of $\triangle O A B$ is equal to
A. 340
B. $2 \sqrt{5}$
C. $\sqrt{229}$
D. $\frac{1}{2}(\sqrt{229})$

Answer: D
(D) Watch Video Solution
8. $\bar{a}=2 \bar{i}-3 \bar{j}+2 \bar{k}$ and $\bar{b}=2 \bar{i}+3 \bar{j}+\bar{k}$ are the sides of triangle OAB. Then its area is ...... seq. unit.
A. 340
B. $2 \sqrt{5}$
C. $\sqrt{229}$
D. $\frac{1}{2}(\sqrt{229})$

## Answer: D

9. For any vector $\bar{a}$, the value of

$$
(\bar{a} \times i)^{2}+(\bar{a} \times j)^{2}+(\bar{a} \times \bar{k})^{2} \text { is } .
$$

A. $|\bar{a}|^{2}$
B. $3|\bar{a}|^{2}$
C. $4|\bar{a}|^{2}$
D. $2|\bar{a}|^{2}$

## Answer: D

10. If $|\bar{a}|=10,|\bar{b}|=2$ and $\bar{a} . \bar{b}=12$ then the value of $|\bar{a} \times \bar{b}|$ is
A. 5
B. 10
C. 14
D. 16

Answer: D
11. The vectors $\lambda \bar{i}+\bar{j}+2 \bar{k}, \bar{i}+\lambda \bar{j}-\bar{k}$ and $2 \bar{i}-\bar{j}+\lambda \bar{k}$ are coplanar, if
A. $\lambda=-2$
B. $\lambda=0$
C. $\lambda=1$
D. $\lambda=-1$

Answer: A
12. If $\bar{a}, \bar{b}$ and $\bar{c}$ are unit vectors such that $\bar{a}+\bar{b}+\bar{c}=\overline{0}$,
then the value of $\bar{a} . \bar{b}+\bar{b} \cdot \bar{c}+\bar{c} . \bar{a}=\ldots \ldots \ldots \ldots$.
A. 1
B. 3
C. $-\frac{3}{2}$
D. None of these

## Answer: C

## - Watch Video Solution

13. The projection vector of $\bar{a}$ on $\bar{b}$ is
A. $\left(\frac{\bar{a} \cdot \bar{b}}{|\bar{b}|^{2}}\right) \cdot \bar{b}$
$\bar{a} . \bar{b}$
B. -
$|\bar{b}|$
c. $\frac{\bar{a} \cdot \bar{b}}{|\bar{a}|}$
D. $\left(\frac{\bar{a} \cdot \bar{b}}{|\bar{a}|^{2}}\right) \cdot \bar{b}$

## Answer: A

## D Watch Video Solution

14. If $\bar{a}, \bar{b}$ and $\bar{c}$ are three vectors such that $\bar{a}+\bar{b}+\bar{c}=\overline{0}$ and $|\bar{a}|=2,|\bar{b}|=3$ and $|\bar{c}|=5$, then the value of $\bar{a} \cdot \bar{b}+\bar{b} \cdot \bar{c}+\bar{c} \cdot \bar{a}$ is
A. 0
B. 1
C. -19
D. 38

Answer: C

## D Watch Video Solution

15. If $|\bar{a}|=4$ and $-3 \leq \lambda \leq 2$, then the range of $|\lambda \cdot \bar{a}|$ is
A. $[0,8]$
B. $[-12,8]$
C. $[0,12]$
D. $[8,12]$

## Answer: C

## D Watch Video Solution

16. The number of vectors of unit length perpendicular to the vectors $\bar{a}=2 \bar{i}+\bar{j}+2 \bar{k}$ and $\bar{b}=\bar{j}+\bar{k}$ is
A. Only one
B. Only two
C. Only three
D. infinite

## Answer: B

## - Watch Video Solution

17. The vector $(\bar{a}+\bar{b})$ bisects the angle between the non-collinear vectors $\bar{a}$ and $\bar{b}$, if

## D Watch Video Solution

18. If $\bar{r} . \bar{a}=0, \bar{r} . \bar{b}=0$ and $\bar{r} . \bar{c}=0$ for some non-zero
vector $\bar{r}$, then the value of $\bar{a} .(\bar{b} \times \bar{c})$ is
19. The vectors $\bar{a}=3 \bar{i}-2 \bar{j}+2 \bar{k}$ and $\bar{b}=-\bar{i}-2 \bar{k}$ are the adjacent sides of a parallelogram. The angle between its diagonals is

## D Watch Video Solution

20. The values of k , for which $|k \cdot \bar{a}|<|\bar{a}|$ and $k \cdot \bar{a}+\frac{1}{2} \bar{a}$ is parallel to $\bar{a}$ holds true are
where $k \in[-1,1]-\left\{-\frac{1}{2}\right\}$ i.e. $k \in[-1,1] k \neq-\frac{1}{2}$

## D Watch Video Solution

21. The value of the expression $|\bar{a} \times \bar{b}|^{2}+(\bar{a} \cdot \bar{b})^{2}$ is

## D Watch Video Solution

22. If $|\bar{a} \times \bar{b}|^{2}+|\bar{a} . \bar{b}|^{2}=144$ and $|\bar{a}|=4$, then $|\bar{b}|$ is equal to

## D Watch Video Solution

23. If $\bar{a}$ is any non-zero vector, then
$(\bar{a} \cdot \bar{i}) \cdot \bar{i}+(\bar{a} \cdot \bar{j}) \cdot \bar{j}+(\bar{a} \cdot \bar{k}) \cdot \bar{k}$ is equal to

## Solutions Of Ncert Exemplar Problems True False

1. If $|\bar{a}|=|\bar{b}|$, then necessarily it implies $\bar{a}= \pm \bar{b}$.

## D Watch Video Solution

2. Position vector of a point $\vec{P}$ is a vector whose initial point is origin.
3. If $|\bar{a}+\bar{b}|=|\bar{a}-\bar{b}|$, then the vectors $\bar{a}$ and $\bar{b}$ are orthogonal.

## - Watch Video Solution

4. The formula $|\bar{a}+\bar{b}|^{2}=|\bar{a}|^{2}+|\bar{b}|^{2}+2 \bar{a} \times \bar{b}$ is valid for non-zero vectors $\bar{a}$ and $\bar{b}$.

## - Watch Video Solution

5. If $\bar{a}$ and $\bar{b}$ are adjacent sides of a rhombus, then
$\bar{a} \cdot \bar{b}=0$.

## Solutions Of Ncert Exemplar Problems Multiple Choice Questions Mcqs

1. The unit vector in the direction of $\bar{x}=(-2,1,-2)$ is
A. $\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
B. $\left(-\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right)$
C. $\left(-\frac{2}{9}, \frac{1}{9},-\frac{2}{9}\right)$
D. $\left(\frac{2}{9},-\frac{1}{9}, \frac{2}{9}\right)$

Answer: B
2. Out of the following,........is not a unit vector.
A. $(\cos \alpha, \sin \alpha)$
B. $(-\cos \alpha,-\sin \alpha)$
C. $(-\cos 2 \alpha, \sin 2 \alpha)$
D. $(\cos 2 \alpha, \sin \alpha)$

Answer: D
3. $\bar{x}=(2,3)$ and $\bar{y}=(5,-2)$ are ............. Vectors.
A. collinear
B. non collinear
C. co direction
D. opposite direction

Answer: B

## - Watch Video Solution

4. The vectors $(3,6,-9)$ and .............have same direction ratio.
A. $(1,2,3)$
B. $(\pi, 2 \pi, 3 \pi)$
C. (-1, - 2,3 )
D. $(1,2,0)$

## Answer: C

## - Watch Video Solution

5. The number of unit vectors which are collinear with non zero vector $\bar{a}$ is
A. Exactly one
B. Exactly two

## C. Exactly three

D. Any positive integer

Answer: B

- Watch Video Solution

6. The direction cosines of $\bar{r}=(6,-2,3)$ are
A. $6,-2,3$
B. $\frac{6}{\sqrt{7}}, \frac{-2}{\sqrt{7}}, \frac{3}{\sqrt{7}}$
C. $\frac{-6}{7}, \frac{2}{7}, \frac{-3}{7}$
D. $\frac{6}{7}, \frac{-2}{7}, \frac{3}{7}$

## Answer: D

## - Watch Video Solution

7. For the vectors $A(-1,-2,3)$ and $B(1,2,-1)$ the
direction cosines of $A B$ are
A. $\frac{1}{3}, \frac{2}{3}, \frac{-2}{3}$
B. 2, 4, -4
C. $\frac{2}{\sqrt{6}}, \frac{4}{\sqrt{6}}, \frac{-4}{\sqrt{6}}$
D. $\frac{-1}{3}, \frac{-2}{3}, \frac{2}{3}$

Answer: A
8. If $\alpha, \beta$ and $\gamma$ are direction cosines of the vector $\vec{x}$
then $1+\cos 2 \alpha+\cos 2 \beta+\cos 2 \lambda=. . . . . . . . . . .$.
A. 0
B. 1
C. -1
D. 2

Answer: A
9. If the vector $\vec{b}$ is collinear to the vector $\bar{a}$ and $\bar{a}=(2 \sqrt{2},-1,4)$ and $|\vec{b}|=10$ then
A. $a \pm b=0$
B. $a \pm 2 b=0$
C. $2 a \pm b=0$
D. None of these

Answer: C
(D) Watch Video Solution
10. $A B C D E F$ is a regular hexagone.
$A B+A C+A D+A E+A F=\lambda A D$ then $\lambda=\ldots . . . . . . . .$.
A. 0
B. 1
C. 2
D. 3

## Answer: D

11. If the vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-15 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear $a=. . . . . . . . . . . . . . ~$
A. -8
B. 4
C. 2
D. $-\frac{82}{9}$

Answer: D

- Watch Video Solution

12. The direction of vector $\vec{b}$ is North-East and that $\vec{c}$ is

North-West $|\vec{b}|=|\vec{c}|=4$. If $\vec{a}=\vec{c}-\vec{b}$ then the magnitude and direction of the vectors $\vec{a}$ are
A. $4 \sqrt{2}$ towards north
B. $4 \sqrt{2}$ towards west
C. 4 towards west
D. 4 towards south

Answer: B
13. If $\bar{x}=(-1,4,-2), \bar{y}=(-4,16,-8)$ then
$|\bar{x}+\bar{y}| \ldots \ldots \ldots \ldots|\bar{x}|+|\bar{y}|$
A. $=$
B. $>$
C. $\geq$
D. $\leq$

Answer: A
14. The unit vector in the direction of the sum of the vectors $(1,1,1),(2,-1,-1)$ and $(0,2,6)$

$$
\begin{aligned}
& \text { A. }-\frac{1}{7}(3,2,6) \\
& \text { B. } \frac{1}{49}(3,2,6) \\
& \text { C. } \frac{1}{7}(3,-2,6) \\
& \text { D. } \frac{1}{7}(3,2,6)
\end{aligned}
$$

## Answer: D

15. The vector $2 \hat{i}+2 \hat{j}-\hat{k}$ makes measure of angles with the axes.
A. $\cos ^{-1} \frac{2}{3}, \cos ^{-1} \frac{2}{3}, \pi-\cos ^{-1} \frac{1}{3}$
B. $\cos ^{-1} \frac{2}{3}, \cos ^{-1} \frac{2}{3}, \cos ^{-1} \frac{1}{3}$
C. $\pi-\cos ^{-1} \frac{2}{3}, \cos ^{1} \frac{2}{3}, \pi-\cos ^{-1} \frac{1}{3}$
D. $\cos ^{-1} \frac{2}{3}, \pi-\cos ^{-1} \frac{2}{3}, \cos ^{-1} \frac{1}{3}$

## Answer: A

## (D) Watch Video Solution

16. The unit vector in the direction $6 \hat{i}-2 \hat{j}+3 \hat{k}$ is
A. $\frac{6}{7} \hat{i}+\frac{2}{7} \hat{j}+\frac{3}{7} \hat{k}$
B. $\frac{6}{7} \hat{i}-\frac{2}{7} \hat{j}+\frac{3}{7} \hat{k}$
C. $\frac{-6}{7} \hat{i}+\frac{2}{7} \hat{j}+\frac{3}{7} \hat{k}$
D. $\frac{6}{7} \hat{i}+\frac{2}{7} \hat{j}-\frac{3}{7} \hat{k}$

## Answer: B

## (D) Watch Video Solution

17. The unit vector parallel to the vecotr $\bar{a}-\bar{b}$ is
where $\bar{a}=(1,2,-3)$ and $\bar{b}=(-2,-4,-9)$
A. $\pm(1,2,2)$
B. $\pm(3,6,6)$
C. $\pm\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$
D. $\pm\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$

Answer: C

## - Watch Video Solution

18. If $\bar{a}=(1,1,1), \bar{b}=(4,-2,3)$ and $\bar{c}=(1,-2,1)$ then the vector of magnitude 6 in the direction of $2 \bar{a}-\bar{b}+3 \bar{c}$ is
A. $\left(\frac{1}{3}, \frac{-2}{3}, \frac{2}{3}\right)$
B. $(2,-4,4)$
C. $(-2,4,-4)$
D. $\left(\frac{-1}{3}, \frac{2}{3}, \frac{-2}{3}\right)$

Answer: B

## - Watch Video Solution

19. The unit vector in the opposite direction of

$$
\begin{aligned}
& \bar{x}+\bar{y}-2 \bar{z} \text { is } \ldots . . . . . . . . . \text { where } \bar{x}=(1,1,0), \bar{y}=(0,1,1) \text { and } \\
& \bar{z}=(1,0,1) .
\end{aligned}
$$

A. $\left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
B. $\left(\frac{1}{6}, \frac{-2}{6}, \frac{1}{6}\right)$
C. $\left(\frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)$
D. $\left(\frac{-1}{6}, \frac{2}{6}, \frac{-1}{6}\right)$

## Answer: A

## - Watch Video Solution

20. The vector with magnitude $17 \sqrt{2}$ and in the opposite direction of $(0,1,-1)$ is
A. $17 \sqrt{2}(0,1,-1)$
B. $(0,17,-17)$
C. $(17,17,0)$
D. $(0,-17,17)$

Answer: D

## - Watch Video Solution

21. Out of the following ............ Is the unit vector in the direction of $(3 \hat{i}+4 \hat{j}-5 \hat{k})+2(2 \hat{i}+\hat{j})$.
A. $\frac{7}{\sqrt{110}} \hat{i}+\frac{6}{\sqrt{110}} \hat{j}-\frac{5}{\sqrt{110}} \hat{k}$
B. $-\frac{7}{\sqrt{110}} \hat{i}-\frac{6}{\sqrt{110}} \hat{j}-\frac{5}{\sqrt{110}} \hat{k}$
C. $\frac{7}{\sqrt{110}} \hat{i}-\frac{6}{\sqrt{110}} \hat{j}-\frac{5}{\sqrt{110}} \hat{k}$
D. $\frac{5}{\sqrt{110}} \hat{i}+\frac{6}{\sqrt{110}} \hat{j}-\frac{5}{\sqrt{110}} \hat{k}$

## - Watch Video Solution

22. The position vector of the point $P$ is $(4,5,-3)$. The distance of the point $P$ from the plane $X Y, Y Z$ and $X Z$ is
$P_{1}, P_{2}$ and $P_{3}$ respectively then $\sum_{i=1 P_{i}}=\ldots \ldots \ldots$.
A. 6
B. 12
C. $2 \sqrt{25}$
D. $5 \sqrt{2}$

## D Watch Video Solution

23. The position vector of a point $A$ is (4, 2, -3 ). If the distance of the point A from XY - plane is $p_{1}$ and from Y

- axis is $p_{2}$ then $p_{1}+p_{2}=$
A. 2
B. 3
C. 8
D. 7

Answer: C
24. $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$
and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$ then the value of
$\left|\begin{array}{lll}\vec{a} . \vec{b} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$ is
A. 2
B. 4
C. 16
D. 64

Answer: C
25. $A(1,1,2), B(4,3,1)$ and $C(2,3,5)$ are vertices of a triangle $A B C$. The vector along the bisector $\angle A$ is
A. $\hat{i}+\hat{j}+\hat{k}$
B. $2 \hat{i}-2 \hat{j}+\hat{k}$
C. $2 \hat{i}+2 \hat{j}+\hat{k}$
D. None of these

Answer: C
26. The position vectors of two points $A$ and $B$ are respectively $6 \vec{a}+2 \vec{b}$ and $\vec{a}-3 \bar{b}$. If the point $C$ divides
$A B$ internally in the ratio $3: 2$ then the position vector of $C$ is
A. $3 \vec{a}-\vec{b}$
B. $3 \vec{a}+\vec{b}$
C. $\vec{a}+\vec{b}$
D. $\vec{a}-\vec{b}$

Answer: A
27. The position vectors of the vertices of triangle are
$3 \hat{i}+4 \hat{j}+5 \hat{k}, \hat{i}+7 \hat{k}$ and $5 \hat{i}+5 \hat{j}$. The distance between ortho centre and circum centre is $\qquad$
A. $=0$
B. $\sqrt{306}$
C. $2 \sqrt{306}$
D. $\frac{3}{2} \sqrt{306}$

Answer: B
(D) Watch Video Solution
28. The angle between the unit vectors $\vec{a}$ and $\vec{b}$ is $2 \theta$.

Where $\theta \in[0, \pi]$. If $|\vec{a}-\vec{b}|<1$ then $\theta \in$ interval.
A. $\left[0, \frac{\pi}{6}\right]$
B. $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
C. $\left[\frac{5 \pi}{6}, \pi\right]$
D. $\left[\frac{\pi}{2}, \frac{5 \pi}{6}\right]$

Answer: A
29. $\square A B C D$ is a parallelogram. $\left(A_{1}\right)$ and $B_{1}$ are
midpoints of the sides $B C$ and $A D$ respectively. If
$\rightarrow \quad \rightarrow$
$\mathrm{AA}_{1}+A B_{1}=\lambda A C$ then $\lambda=$
A. $\frac{1}{2}$
B. 1
C. $\frac{3}{2}$
D. 2

Answer: C
30. In $\triangle A B C, A B=3 \hat{i}+4 \hat{k}$ and $A C=5 \hat{i}-2 \hat{j}+4 \hat{k}$. Length of the median drawn from $A$ is $\qquad$
A. $\sqrt{18}$
B. $\sqrt{72}$
C. $\sqrt{33}$
D. $\sqrt{45}$

Answer: C

- Watch Video Solution

31. If $\bar{x}=(a, 4,2 a)$ and $\bar{y}=(2 a,-1, a)$ are perpendicualr to each other then $\mathrm{a}=$
A. 2
B. 1
C. 4
D. Any real number

Answer: B
32. If $\bar{x}=(3,1,0), \bar{y}=(2,2,3), \bar{z}=(-1,2,1)$.

If $\bar{x} \perp(\bar{y}+k \bar{z})$ then $k=$
A. 8
B. 4
C. $\frac{1}{8}$
D. $\frac{1}{4}$

Answer: A
33. If $\bar{x}=(1,2,4), \bar{y}=(-1,-2, k), k \neq-4$ then
$|\bar{x} . \bar{y}| \ldots \ldots \ldots|\bar{x}||\bar{y}|$
A. $<$
B. $>$
C. =
D. $\geq$

Answer: A

$$
\text { 34. If } \bar{a}=(-3,1,0) \text { and } \bar{b}=(1,-1,-1) \text { then } \operatorname{Comp}_{\bar{a}} \bar{b}
$$

> A. $\frac{4}{\sqrt{10}}$ B. $\frac{\sqrt{3}}{4}$ C. $\frac{-4}{\sqrt{10}}$ D. $-\frac{\sqrt{3}}{4}$

## Answer: C

## - Watch Video Solution

35. The projection of $(1,2,-1)$ on $\hat{i}$ is
A. $\frac{1}{\sqrt{6}}$
B. $-\frac{1}{\sqrt{6}}$
C. 1
D. -1

## Answer: C

## - Watch Video Solution

36. $A(3,-1), B(2,3)$ and $C(5,1)$ are given then $m \angle A=$

> A. $\cos ^{-1} \frac{3}{\sqrt{34}}$
> В. $\pi-\cos ^{-1} \frac{3}{\sqrt{34}}$
C. $\sin ^{-1} \frac{5}{\sqrt{34}}$
D. $\frac{\pi}{2}$

Answer: A

## D Watch Video Solution

37. $\bar{x}$ and $\bar{y}$ are unit vectors and $\left(\bar{x}^{\wedge}, \bar{y}\right)=\theta$. If $\theta=$
then $\bar{x}+\bar{y}$ will becomes unit vector.
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{2 \pi}{3}$

Answer: D

## - Watch Video Solution

38. If $|\bar{x}+\bar{y}|=|\bar{x}-\bar{y}|$, then
A. $\bar{x}$ is parallel to $\bar{y}$
B. $\bar{x} \perp \bar{y}$
C. $|\bar{x}|=|\bar{y}|$
D. $\bar{x}=\bar{y}$

Answer: B
39. $\bar{x}, \bar{y}, \bar{z}$ are zero vectors. If .............. then
$\bar{x} . \bar{y}=\bar{x} . \bar{z} .(\bar{x}, \bar{y} \neq 0)$.
A. $\bar{x}$ is perpendicular to $\bar{y}$.
B. $\bar{x}$ is perpendicular to $\bar{z}$.
C. $\bar{x}$ is perpendicular to $\bar{y}+\bar{z}$.
D. $\bar{x}$ is perpendicular to $\bar{y}=\bar{z}$.

Answer: D
40. $\bar{x}, \bar{y}, \bar{z}$ are non zero vectors. If $(\bar{x}, \bar{y})=\frac{\pi}{2}$ and $\bar{z}=\bar{x}+\bar{y}$, then ........
A. $|\bar{x}|^{2}+|\bar{y}|^{2}+|\bar{z}|^{2}=3$
B. $|\bar{x}|^{2}+|\bar{y}|^{2}+|\bar{z}|^{2}=1$
C. $|\bar{x}|^{2}-|\bar{y}|^{2}=|\bar{z}|^{2}$
D. $|\bar{x}|^{2}+|\bar{y}|^{2}=|\bar{z}|^{2}$

## Answer: D

41. If $\bar{x} . \bar{y}=\bar{x} . \bar{z} \neq 0$ and $\bar{x} \times \bar{y}=\bar{x} \times \bar{z} \neq \overline{0}$ and $\bar{x} \neq \overline{0}$ then
A. $\bar{x}$ is parallel to $\bar{y}$ and $\bar{z}$
B. $\bar{x}$ is perpendicular to $\bar{y}$ and $\bar{z}$
C. $\bar{y} \neq \bar{z}$
D. $\bar{y} \neq \bar{z}$

Answer: C
42. If $\bar{a}=(3,1,-2)$ and $\bar{b}=(1,3,-2)$ then $\left(\begin{array}{ll}\bar{a} & \wedge \\ )\end{array}\right)=$
$2 \sqrt{6}$
A. $\cos ^{-1} \frac{}{7}$
В. $\pi-\cos ^{-1} \frac{5}{7}$
$2 \sqrt{6}$
C. $\sin ^{-1} \frac{}{7}$
D. $\tan ^{-1} \frac{5}{2 \sqrt{6}}$

Answer: C

- Watch Video Solution

43. If $\bar{x}=(1,1,-1), \bar{y}=(-1,2,2)$ and $\bar{z}=(-1,2,-1)$
then the unit victor perpendicular to both $\bar{x}+\bar{y}$ and $\bar{y}-\bar{z}$ is
A. $\pm(4,0,0)$
B. $\pm(0,0,9)$
C. $\pm(1,0,0)$
D. $\pm(0,0,1)$

Answer: C
44. If $(3 \hat{i}+4 \hat{j}+9 \hat{k})$ and $(a \hat{i}-3 \hat{j}+1 \hat{k})$ are perpendicualr to each other then $a=\ldots . . . . . . . . . . . . .$.
A. 1
B. -1
C. 7
D. -7

Answer: A

- Watch Video Solution

45. If $|\bar{a}|=2,|\bar{b}|=4,|\bar{c}|=1$ and $\bar{a}+\bar{b}=-\bar{c}$ then $\bar{a} \cdot \bar{b}+\bar{b} \cdot \bar{c}+\bar{c} \cdot \bar{a}=\ldots . . . . . . . . .$.
A. -9.5
B. -10.5
C. 10.5
D. 7.5

Answer: B

- Watch Video Solution

46. If $|\bar{x}|=|\bar{y}|=2$ and $\left(\begin{array}{ll}\bar{x} & \wedge \\ \hline\end{array}\right)=\theta$ then $|\bar{x}-\bar{y} \cos \theta|=$
A. $2 \sin \frac{\theta}{2}$
B. $\sqrt{2} \sin \frac{\theta}{2}$
C. $\sqrt{2} \sin \theta$
D. $2 \sin \theta$

Answer: D

- Watch Video Solution

47. The projection of the vector $(-4,-2,4)$ on $(2,1,1)$
is
A. $(-2,1,1)$
B. $(-2,-1,-1)$
C. (1, - $1,-2$ )
D. ( $-1,1,2$ )

Answer: B
48. The magnitude of the projection of vector $(4,1,3)$ and $(1,-2,3)$ is

$$
\begin{aligned}
& \text { A. } \frac{15}{\sqrt{14}} \\
& \text { B. } \frac{15}{14} \\
& \text { C. } \frac{11}{14} \\
& \text { D. } \frac{11}{\sqrt{14}}
\end{aligned}
$$

## Answer: D

49. The unit vector perpendicular to $(3,-4)$ in $R^{2}$ is
A. $\left(\frac{3}{5},-\frac{4}{5}\right)$
B. $\left(-\frac{4}{5},-\frac{3}{5}\right)$
C. $\left(\frac{4}{5},-\frac{3}{5}\right)$
D. $\left(\frac{3}{5}, \frac{4}{5}\right)$

Answer: B

## - Watch Video Solution

50. The unit vector perpendicualr to $(3,4)$ is
A. $\left(\frac{4}{5}, \frac{3}{5}\right)$
B. $\left(-\frac{4}{5}, \frac{3}{5}\right)$
C. $\left(-\frac{3}{5}, \frac{4}{5}\right)$
D. $\left(\frac{3}{5}, \frac{4}{5}\right)$

Answer: B

## - Watch Video Solution

51. If $|\bar{x}|=|\bar{y}|=1$ and $\bar{x} \perp \bar{y}$, then $|\bar{x}-\bar{y}|=\ldots . . . . . . . . . .$.
A. $\sqrt{2}$
B. $\sqrt{3}$
C. 1
D. 0

Answer: A

## D Watch Video Solution

52. $\bar{a}=(-3,1,0), \bar{b}=(1,-1,-1)$ then $\left|\operatorname{Comp}_{\bar{b}} \bar{a}\right|=$
A. $-\frac{4}{\sqrt{3}}$
B. $\frac{4}{\sqrt{3}}$
C. $-\frac{4}{\sqrt{10}}$
D. $\frac{4}{\sqrt{10}}$

Answer: B

## - Watch Video Solution

53. If $\bar{a}+\bar{b}+\bar{c}=\overline{0}$ and $|\bar{a}|=3,|\bar{b}|=5,|\bar{c}|=7$ and

A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{6}$

## - Watch Video Solution

54. $A(1,-2,4), B(5,-1,7), C(3,6,-2)$ and $D(4,5,-1)$ are given vectors. Then the projection of $A B$ on $C D$ is
A. $(1,-1,1)$
B. $\frac{3}{13}(4,1,3)$
C. $(2 \sqrt{3},-2 \sqrt{3}, 2 \sqrt{3})$
D. $(2,-2,2)$

Answer: C
55. In a right angled triangle $A B C$, hypotenuse $A B=P$
then $A B \cdot A C+B C \cdot B A+C A \cdot C B=$
A. $2 P^{2}$
B. $\frac{P^{2}}{2}$
C. $P^{2}$
D. None of these

## Answer: C

56. $\square A B C D E F$ is a regular hexagone with each side a.

AB. $A F+\frac{1}{2} B C^{2}=\ldots . . . . . . .$.
A. a
B. $a^{2}$
C. $2 a^{2}$
D. 0

## Answer: D

57. For vectors $\bar{a}, \bar{b}, \bar{c},|\bar{a}-\bar{c}|=|\bar{b}-\bar{c}|$ then the value
$(\bar{b}-\bar{a}) \cdot\left(\bar{c}-\frac{\bar{a}+\bar{b}}{2}\right)=\ldots \ldots \ldots .$.
A. 0
B. -1
C. 1
D. 2

Answer: A
58. A unit vector is coplanner with $\bar{i}+\bar{j}+2 \bar{k}$ and
$\bar{i}+2 \bar{j}+\bar{k}$ and it is perpendicular to the vector $\bar{i}+\bar{j}+\bar{k}$.
Then the vector
A. $\frac{\bar{i}-\bar{j}}{\sqrt{2}}$
B. $\pm\left(\frac{\bar{j}-\bar{k}}{\sqrt{2}}\right)$
C. $\frac{\bar{k}-\bar{i}}{\sqrt{2}}$
D. $\frac{\bar{i}+\bar{j}+\bar{k}}{\sqrt{3}}$

Answer: B
59. The angle between the unit vectors $\bar{a}$ and $\bar{b}$ is $\theta$. If
$\bar{a}-\sqrt{2} \bar{b}$ is a unit vector then $\theta=$

> A. $\frac{\pi}{6}$
> B. $\frac{\pi}{4}$
> C. $\frac{\pi}{3}$
> D. $\frac{2 \pi}{3}$

## Answer: B

## - Watch Video Solution

60. For unit vectors $\bar{a}$ and $\bar{b}$, if $\bar{a}+2 \bar{b}$ and $5 \bar{a}-4 \bar{b}$ are perpendicular to each other then the angle between $\bar{a}$
and $\bar{b}$ is
A. $45^{\circ}$
B. $60^{\circ}$
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1} \frac{2}{7}$

Answer: B

## - Watch Video Solution

$$
\text { 61. } \bar{a}=2 \bar{i}-3 \bar{j}+6 \bar{k} \text { and } \bar{b}=-2 \bar{i}+2 \bar{j}-\bar{k} \text { then } \frac{\operatorname{Proj}_{\bar{b}} \bar{a}}{\operatorname{Proj}_{\bar{a}} \bar{b}}=
$$

3
A. $\frac{7}{7}$
B. $\frac{7}{3}$
C. 3
D. 7

## Answer: B

## (D) Watch Video Solution

62. $\bar{b}=3 \hat{j}+4 \hat{k}, \bar{a}=\hat{i}+\hat{j}$. If $b_{1}$ and $b_{2}$ are component of
$\bar{b}$ and $b_{1}=\frac{3}{2} \hat{i}+\frac{3}{2} \hat{j}, b_{2}$ is perpendicualr to $\bar{a}$ then $b_{2}=$

> A. $\frac{3}{2} \hat{i}+\frac{3}{2} \hat{j}+4 \hat{k}$
> B. $-\frac{3}{2} \hat{i}+\frac{3}{2} \hat{j}+4 \hat{k}$
> C. $-\frac{3}{2} \hat{i}+\frac{3}{2} \hat{j}$
D. None of these

## Answer: B

## - Watch Video Solution

63. The unit vector $\bar{a}$ and $\bar{b}$ are perpendicualr to each other. The unit vector $\bar{c}$ makes an angle $\theta$ with $\bar{a}$ and $\bar{b}$.

$$
\text { If } \bar{c}=\alpha \bar{a}+\beta \bar{b}+\gamma(\bar{a} \times \bar{b}) \text { then }
$$

A. $\alpha=2 \beta$

$$
\begin{aligned}
& \text { B. } \gamma^{2}=1+2 \alpha^{2} \\
& \text { C. } \gamma^{2}=\cos 2 \theta \\
& \text { D. } \beta^{2}=\frac{1+\cos 2 \theta}{2}
\end{aligned}
$$

Answer: D

## D Watch Video Solution

64. Vector $\bar{a}=6 \hat{i}-3 \hat{j}, \bar{b}=2 \hat{i}-6 \hat{j}$ and $\bar{c}=-2 \hat{i}+21 \hat{j}$ are such that $\bar{\alpha}=\bar{a}+\bar{b}+\bar{c}$. The vector $\bar{\alpha}$ is represented as A component of $\bar{a}$ and $\bar{b}$.
A. $3 \bar{a}-2 \bar{b}$
B. $2 \bar{a}-3 \bar{b}$
C. $3 \bar{b}-2 \bar{a}$
D. None of these

Answer: B

## D Watch Video Solution

65. $\bar{a}, \bar{b}$ and $\bar{c}$ are unit vectors. The value of $|\bar{a}-\bar{b}|^{2}+|\bar{b}-\bar{c}|^{2}+|\bar{c}-\bar{a}|^{2}$ is not expected
A. 4
B. 9
C. 8
D. 6

## - Watch Video Solution

66. If $\bar{a}, \bar{b}$ and $\bar{c}$ are perpendicualr to $\bar{b}+\bar{c}, \bar{c}+\bar{a}$ and $\bar{a}+\bar{b}$ respectively and $|\bar{a}+\bar{b}|=6,|\bar{b}+\bar{c}|=8$ and $|\bar{c}+\bar{a}|=10$ then $|\bar{a}+\bar{b}+\bar{c}|=$.
A. $5 \sqrt{2}$
B. 50
C. $10 \sqrt{2}$
D. 10

## - Watch Video Solution

67. $\bar{a}$ and $\bar{b}$ are unit vectors. $|\bar{a}+\bar{b}|=\sqrt{3}$ then the value of $(3 \bar{a}-4 \bar{b}) \cdot(2 \bar{a}+5 \bar{b})=$
A. -21
B. 21
C. $\frac{21}{2}$
D. $-\frac{21}{2}$

Answer: D
68. $\triangle A B C$ is an equilateral triangle. Its side is I. Any point P lies on the circum centre of $\triangle A B C$. Then $|P A|^{2}+|P B|^{2}+|P C|^{-}=\ldots \ldots . . . . . . .$.
A. $2 l^{2}$
B. $2 \sqrt{3} I^{2}$
C. $l^{2}$
D. $31^{2}$

Answer: A

- View Text Solution

69. $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}-\hat{k}$ are the adjacent sides of a parallelogram. The angle between their diagonals is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{2}\right)$
C. $\cos ^{-1}\left(\frac{4}{9}\right)$
D. $\cos ^{-1}\left(\frac{5}{9}\right)$

## Answer: A

70. The position vectors of four points $A, B, C$ and $D$ in

$$
\begin{aligned}
& \text { the plane are } \vec{a}, \vec{b}, \vec{c} \text { and } \vec{d} \text {. If } \\
& (\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c})=(\vec{b}-\vec{d}) \cdot(\vec{c}-\vec{a})=0 \text { then } \mathrm{D} \text { is a }
\end{aligned}
$$ is $\triangle A B C$.

A. In centre
B. circum centre
C. ortho centre
D. centriod

## Answer: C

71. If $\vec{\alpha}=\frac{1}{a} \hat{i}+\frac{4}{b} \hat{j}+b \hat{k}$ and $\vec{\beta}=b \hat{i}+a \hat{j}+\frac{1}{b} \hat{k}$ then the 10
maximum value is

$$
5+\vec{\alpha} \cdot \vec{\beta}
$$

A. 1
B. 5
C. 2
D. 3

Answer: A
72. The unit vectors $\vec{a}, \vec{b}$ and $\vec{c}$ are not coplanar. If $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{\sqrt{2}}(b+c)$ then the angle between $\vec{a}$ and $\vec{b}$ is
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\pi$

Answer: A

D Watch Video Solution
73. If $\vec{x}+\vec{y}+\vec{z}=0$ and $|\vec{x}|=|\vec{y}|=|\vec{z}|=2$ If the angle between $\vec{y}$ and $\vec{z}$ and $\theta$. Then $\operatorname{cosec}^{2} \theta+\cot ^{2} \theta=$
A. $\frac{4}{3}$
B. $\frac{5}{3}$
C. $\frac{1}{3}$
D. 1

Answer: B
74. $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\hat{i}+\hat{j}-2 \hat{k}$. The vector
$\vec{r}$ is coplanner with vector $\vec{b}$ and $\vec{c}$. If the magnitude of
the projection $\vec{r}$ on $\vec{a}$ is $\sqrt{\frac{2}{3}}$ then $\vec{r}=$
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $-2 \hat{i}-\hat{j}+5 \hat{k}$
C. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: B
75. $\vec{a}=\hat{i}+\hat{j}+\sqrt{2} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+\sqrt{2} \hat{k} \quad$ and
$\vec{c}=5 \hat{i}+\hat{j}+\sqrt{2} k$ are three vectors. The projection of the vector $\vec{b}$ on $\vec{a}$ is $|\vec{a}|$. If $\vec{a}+\vec{b}$ is perpendicular to $\vec{c}$
then $|\vec{b}|=$
A. $\sqrt{32}$
B. $\sqrt{22}$
C. 4
D. 6

## Answer: D

76. $\vec{a}=2 \hat{i}+\lambda_{1} \hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}+\left(3-\lambda_{2}\right) \hat{j}+6 \hat{k} \quad$ and $\vec{c}=3 \hat{i}+6 \hat{j}+\left(\lambda_{3}-1\right) \hat{k}$ are three vectors. Vector $\vec{b}=2 \vec{a}$ and $\vec{a}$ is perpendicular to $\vec{b}$ then the possible value of $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is
A. $\left(\frac{1}{2}, 4,-2\right)$
B. $\left(-\frac{1}{2}, 4,0\right)$
C. $(1,3,1)$
D. $(1,5,1)$

Answer: B
77. $\square A B C D$ is a parallelogram $A B=\bar{q}, A D=\bar{p}, \angle B A C$
is on acute angle. From the point $B$, the perpendicular
$\longrightarrow$
is drawn on side $A D$. The vector along with it is $\vec{r}$. Then
$\vec{r}=$
A. $\vec{r}=3 \bar{q}-\frac{3(\bar{p} \cdot \bar{q})}{(\bar{p} \cdot \bar{p})} \bar{p}$
B. $\vec{r}=-\bar{q}+\frac{(\bar{p} \cdot \bar{q})}{(\bar{p} \cdot \bar{p})} \bar{p}$
C. $\vec{r}=\bar{q}-\frac{(\bar{p} \cdot \bar{q})}{(\bar{p} \cdot \bar{p})} \bar{p}$
D. $\vec{r}=-3 \bar{q}+\frac{3(\bar{p} \cdot \bar{q})}{(\bar{p} \cdot \bar{p})} \bar{p}$

Answer: B
78. The position vectors of $\mathrm{A}, \mathrm{B}$ and C are $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $x \hat{i}-3 \hat{j}+\hat{k}$ respectively in $\triangle A B C$.

If $\angle C=\frac{\pi}{2}$ then the value of x is
A. -2 and -1
B. -2 and 1
C. 2 and -1
D. 2 and 1

Answer: D

- Watch Video Solution

79. A particle is acted upon constant forces
$\vec{F}_{1}=4 \hat{i}+\hat{j}-3 \hat{k}$ and $\vec{F}_{2}=3 \hat{i}+\hat{j}-\hat{k}$ which displace it from a point $A=\hat{i}+2 \hat{j}+3 \hat{k}$ to the point $B=5 \hat{i}+4 \hat{j}+\hat{k}$
. The work done in standard units by the forces is given by
A. 40
B. 30
C. 25
D. 15

## Answer: A

80. Let $\vec{u}, \vec{v}$ and $\vec{w}$ be such that $|\vec{u}|=1,|\vec{v}|=2,|\vec{w}|=3$
. If the projection $\vec{v}$ along $\vec{u}$ is equal to that of $\vec{w}$ along
$\vec{u}$ and $\vec{v}, \vec{w}$ are perpendicular to each orher, then $|\vec{u}-\vec{v}+\vec{w}|$ equals
A. 2
B. $\sqrt{7}$
C. $\sqrt{14}$
D. 14

Answer: C

D Watch Video Solution
81. The centroid of $\triangle A B C$ is $G$. The angle between $G B$
$\rightarrow$
and $G C$ is obtuse angle then
A. $5 a^{2}>b^{2}+c^{2}$
B. $5 c^{2}>a^{2}+b^{2}$
C. $5 b^{2}>a^{2}+c^{2}$
D. None of these

Answer: A

## D Watch Video Solution

82. The area of the parallelogram whose diagonals are
$\hat{j}+\hat{k}$ and $\hat{i}+\hat{k}$ is
A. $\frac{\sqrt{3}}{2}$

3
B. $\frac{-}{2}$
C. 3
D. $\sqrt{3}$

## Answer: A

## - Watch Video Solution

83. The area of the parallelogram whose adjacent side is $\hat{i}+\hat{k}$ and $\hat{i}+\hat{j}$ is
A. 3
B. $\sqrt{3}$
C. $\frac{3}{2}$
D. $\frac{\sqrt{3}}{2}$

Answer: B

## - Watch Video Solution

84. If $\bar{x}$ and $\bar{y}$ are non zero, non collinear vector then the number of unit vectors which are perpendicular to both $\bar{x}$ and $\bar{y}$ is ..............
A. 2
B. 4
C. Do not get
D. Infinite

Answer: A

## D Watch Video Solution

85. If $|\bar{x} . \bar{y}|=\cos \alpha$, then $|\bar{x} \times \bar{y}|=\ldots . . . . . . . . . .$.
A. $\pm \sin \alpha$
B. $\sin \alpha$
C. $-\sin \alpha$
D. $\sin ^{2} \alpha$

Answer: B

## D Watch Video Solution

86. If $\bar{a}=(2,0,1)$ and $\bar{b}=(1,1,1)$ then
$\sin \left(\bar{a}^{\wedge}, \bar{b}\right)=\ldots \ldots \ldots \ldots$.
A. $\sqrt{\frac{3}{5}}$
B. $\sqrt{\frac{5}{3}}$
C. $\sqrt{\frac{2}{5}}$
D. $\sqrt{\frac{5}{2}}$

Answer: C
87. The unit vector perpendicular to both the vectors $(3,-1,0)$ and $(-2,1,3)$ is

$$
\begin{aligned}
& \text { A. } \pm(-3,-9,1) \\
& \text { B. } \pm(-3,9,-1) \\
& \text { C. } \pm \frac{1}{\sqrt{91}}(-3,-9,1) \\
& \text { D. } \pm \frac{1}{\sqrt{91}}(-3,9,-1)
\end{aligned}
$$

Answer: C
88. The area of the parallelogram with diagonals $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is
A. $\sqrt{3}$
B. $\frac{3}{2}$
C. $\frac{\sqrt{3}}{2}$
D. 0

Answer: C

D Watch Video Solution
89. The angle between the vectors $(2,-1,1)$ and
$(1,-1,2)$ is
A. $\cos ^{-1}\left(\frac{1}{6}\right)$
B. $\sin ^{-1}\left(\frac{5}{6}\right)$
C. $\frac{\pi}{2}$
D. $\sin ^{-1}\left(\frac{\sqrt{11}}{6}\right)$

Answer: D

## - Watch Video Solution

90. If $|\bar{x}|=7 .|\bar{y}|=\sqrt{2}, \bar{x} \times \bar{y}=(6,2,3)$ then $|\bar{x} \cdot \bar{y}|^{2}=$
A. 98
B. 7
C. 147
D. 49

Answer: D
91. The unit vector perpendicualr to both the vectors
$\hat{i}+2 \hat{j}-2 \hat{k}$ and $-\hat{i}+2 \hat{j}+2 \hat{k}$ is
A. $\frac{1}{\sqrt{5}}(2 \hat{i}-\hat{k})$
B. $\frac{1}{\sqrt{5}}(-2 \hat{i}+\hat{k})$
C. $\frac{1}{\sqrt{5}}(2 \hat{i}+\hat{j}+\hat{k})$
D. $\frac{1}{\sqrt{5}}(2 \hat{i}+\hat{k})$

Answer: D
92. $A(-1,2,3), B(1,1,1)$ and $C(2,-1,3)$ are three points in the plane. The unit vector perpendicular to the plane $A B C$ is

$$
\begin{aligned}
& \text { A. } \pm\left(\frac{2 \hat{i}+2 \hat{j}+\hat{k}}{3}\right) \\
& \text { B. } \pm\left(\frac{2 \hat{i}-2 \hat{j}+\hat{k}}{3}\right) \\
& \text { C. } \pm\left(\frac{2 \hat{i}-2 \hat{j}-\hat{k}}{3}\right) \\
& \text { D. }-\left(\frac{2 \hat{i}+2 \hat{j}+\hat{k}}{3}\right)
\end{aligned}
$$

Answer: A
93. If $|\bar{a} . \bar{b}|=3$ and $|\bar{a} \times \bar{b}|=4$ then the angle between
$\bar{a}$ and $\bar{b}$ is

> A. $\cos ^{-1} \frac{3}{4}$
> B. $\cos ^{-1} \frac{3}{5}$
> C. $\cos ^{-1} \frac{4}{5}$
> D. $\frac{\pi}{4}$

Answer: B
94. $\bar{r} \times \bar{a}=\bar{b} \times \bar{a}, \bar{r} \times \bar{b}=\bar{a} \times \bar{b}, \bar{a} \neq \overline{0}, \bar{b} \neq \overline{0} \bar{a} \neq \lambda \bar{b}$. If
$\bar{a} . \bar{b}=0$ then $\bar{r}=\ldots . . . . . . .$.
A. $\bar{a}-\bar{b}$
B. $\bar{a}+\bar{b}$
C. $\bar{a} \times \bar{b}+\bar{a}$
D. $\bar{a} \times \bar{b}+\bar{b}$

Answer: B

D Watch Video Solution
95. $(\bar{a} \times \bar{b})^{2}=$
A. $\left|\begin{array}{ll}\bar{a} . \bar{b} & \bar{a} \cdot \bar{a} \\ \bar{b} . \bar{b} & \bar{b} \cdot \bar{a}\end{array}\right|$
B. $\left|\begin{array}{ll}\bar{a} . \bar{a} & \bar{a} . \bar{b} \\ \bar{b} . \bar{a} & \bar{b} . \bar{b}\end{array}\right|$
C. $\left|\begin{array}{ll}\bar{a} & \bar{b} \\ \bar{b} & \bar{a}\end{array}\right|$
D. None of these

Answer: B

## (D) Watch Video Solution

96. $|\bar{a}|=2,|\bar{b}|=3$ and $\bar{a}$ and $\bar{b}$ are perpendicular to each other. The area of the triangle with vertices
$\overline{0}, \bar{a}+\bar{b}$ and $\bar{a}-\bar{b}$ is
A. 5
B. 1
C. 6
D. 8

## Answer: C

## (D) Watch Video Solution

97. $\bar{a}=\hat{i}+\hat{j}+\hat{k}, \bar{b}=\hat{i}+3 \hat{j}+5 \hat{k}$ and $\bar{c}=7 \hat{i}+9 \hat{j}+11 \hat{k}$ are
vectors. The area of the parallelogram whose diagonals
are $\bar{a}+\bar{b}$ and $\bar{b}+\bar{c}$ is
A. $4 \sqrt{6}$
B. $\frac{1}{2} \sqrt{21}$
C. $\frac{\sqrt{6}}{2}$
D. $\sqrt{6}$

Answer: A

## D Watch Video Solution

98. In $\triangle A B C$, the bisector of $\angle A$ is $A D$.
$A D=\alpha A B+\beta A C$, where

D. None of these

Answer: B
99. The vector $\bar{a}=(x, y, z)$ makes an obtuse angle with $y$-axis. $\bar{b}=(y,-2 z, 3 x)$ and $\bar{c}=(2 z, 3 x,-y)$. The vector $\bar{a}$ makes equal angle with $\bar{b}$ and $\bar{c} . \bar{a}$ is perpendicular to $\bar{d}=(1,-1,2)$. If $|\bar{a}|=2 \sqrt{3}$ then $\bar{a}=$
A. $(1,2,3)$
B. $(2,-2,-2)$
C. $(-1,2,4)$
D. None of these

Answer: B
100. The vectors $\bar{a}$ and $\bar{b}$ are unit vectors perpendicular to each other. The unit vector $\bar{c}$ makes an angle $\theta$ with $\bar{a}$ and $\bar{b}$. If $\bar{c}=x \bar{a}+y \bar{b}+z(\bar{a} \times \bar{b})$ then
A. $x=\cos \theta, y=\sin \theta, z=\cos 2 \theta$
B. $x=\sin \theta, y=\cos \theta, z=-\cos 2 \theta$
C. $x=y=\cos \theta, z^{2}=\cos 2 \theta$
D. $x=y=\cos \theta, z=-\cos 2 \theta$

Answer: D
101. $\bar{a}, \bar{b}$ and $\bar{c}$ are unit vectors. $\bar{a} . \bar{b}=0=\bar{a} . \bar{c}$ and the angle between $\bar{b}$ and $\bar{c}$ is $\frac{\pi}{3}$. Then $|\bar{a} \times \bar{b}-\bar{a} \times \bar{c}|=$
A. $\frac{1}{2}$
B. 1
C. 2
D. 0

Answer: B

- Watch Video Solution

102. The modulus of the vectors $\bar{a}$ and $\bar{b}$ are 2 and 3 respectively. If $|2(\bar{a} \times \bar{b})|+|3(\bar{a} \cdot \bar{b})|=k$ then the maximum value of $k=$ $\qquad$
A. $\sqrt{13}$
B. $2 \sqrt{13}$
C. $6 \sqrt{13}$
D. $10 \sqrt{13}$

Answer: C
103. For a vector $\bar{a}, \bar{a} \times \vec{r}=\bar{j}$ then $\bar{a} . \bar{r}=$
A. -1
B. 0
C. 1
D. None of these

Answer: D

## - Watch Video Solution

104. If $\bar{\mu}=\bar{a}-\bar{b}, \bar{v}=\bar{a}+\bar{b},|\bar{a}|=|\bar{b}|=2 \quad$ then
$|\bar{\mu} \times \bar{v}|=\ldots \ldots$.
A. $2 \sqrt{ } 16-(\bar{a} \cdot \bar{b})^{2}$
B. $2 \sqrt{4(\bar{a} . \bar{b})^{2}}$
C. $\sqrt{16-(\bar{a} . \bar{b})^{2}}$
D. $\sqrt{4-(\bar{a} \cdot \bar{b})^{2}}$

## Answer: A

## - Watch Video Solution

105. In a parallelogram $A B C D, A B=\hat{i}+\hat{j}+\hat{k}$ and diagonal $A C=\hat{i}-\hat{j}+\hat{k}$ then $\angle B A C=$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\sin ^{-1}\left(\frac{\sqrt{8}}{3}\right)$
D. $\cos ^{-1}\left(\frac{\sqrt{8}}{3}\right)$

## Answer: C

## - Watch Video Solution

106. The points $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ are collinear then
A. $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
B. $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$
C. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
D. None of these

Answer: B

## D Watch Video Solution

107. For any vectors $\vec{a}, \vec{b}$ and $\vec{c}$. Out of the following, which statement is true?
A. $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$
C. $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{b}) \times(\vec{a} \cdot \vec{c})$
D. $\vec{a} \cdot(\vec{b}-\vec{c})=\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{c}$

## Answer: D

## - Watch Video Solution

108. $\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}+\hat{j}$. The vector $\bar{c}$ is such that $\bar{a} \cdot \bar{c}=|\bar{c}|,|\bar{c}-\bar{a}|=2 \sqrt{2}$ and the angle between $\bar{a} \times \bar{b}$ and $\bar{c}$ is $30^{\circ}$ then $|(\bar{a} \times \bar{b}) \times \bar{c}|=$.
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. 2
D. 3

## D Watch Video Solution

109. In a quadrilateral $A B C D, A B=\vec{b}, A D=\vec{d}$ and
$\overrightarrow{A C}=m \vec{b}+p \vec{d}(m+p \geq 1)$. The area of the quadrilateral
$A B C D$ is
A. $\frac{1}{2}(p+m)|\vec{b} \times \vec{d}|$
B. $|\vec{b} \times \vec{d}|$
C. $2|\vec{b} \times \vec{d}|$
D. Nothing can be said
110. If $\vec{a}=2 \hat{i}+\hat{j}+x \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-\hat{k}$ then the minimum area of a parallelogram formed by the vectors $\vec{a}$ and $\vec{b}$ is
A. $\frac{\sqrt{6}}{2}$
B. $\sqrt{\frac{3}{2}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{2}{\sqrt{3}}$

Answer: B
111. If $\vec{a} \cdot \hat{i}=4$ then $(\vec{a} \times \hat{j}) \cdot(2 \hat{j}-3 \hat{k})=$
A. -12
B. 2
C. 0
D. 12

Answer: A

- Watch Video Solution

112. $\vec{a}, \vec{b}$ and $\vec{c}$ are unit vectors $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}}{2}$. The vector $\vec{a}$ makes the angle ................ with $\vec{b}$ and $\vec{c}$
respectively.
A. $40^{\circ}, 80^{\circ}$
B. $45^{\circ}, 45^{\circ}$
C. $30^{\circ}, 60^{\circ}$
D. $90^{\circ}, 60^{\circ}$

## Answer: D

## - Watch Video Solution

113. If $\vec{u}=\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})$ then $\vec{u}$ = ...........
A. 0
B. $\hat{i}+\hat{j}+\hat{k}$
C. $2 \vec{a}$
D. $\vec{a}$

Answer: C

## D Watch Video Solution

114. For the vectors $\vec{x}$ and $\vec{y}, \vec{x}+\vec{y}=\vec{a}, \vec{x} \times \vec{y}=\vec{b}$ and
$\vec{x} . \vec{a}=1$ then $\vec{x}=\ldots . . . . . . . . . . . ., \vec{y}=\ldots . . . . . .$.
A. $\vec{a}, \vec{a}-\vec{x}$
B. $\vec{a}-\vec{b}, \vec{b}$
C. $\vec{b}, \vec{a}-\vec{b}$

## D. None of these

Answer: D

## D Watch Video Solution

115. Vector $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{i}+\hat{j}+\hat{k}$. The vector $\vec{c}$ is such
that $\vec{a} \times \vec{c}+\vec{b}=0$ and $\vec{a} . \vec{c}=4$ then $|\vec{c}|^{2}=$
A. 8
B. $\frac{19}{2}$
C. 9
D. $\frac{17}{2}$

## - Watch Video Solution

116. The vectors $\vec{a}$ and $\vec{b}$ are not perpendicular. The vectors $\vec{c}$ and $\vec{d}$ are such that $\vec{b} \times \vec{c}=\vec{b} \times \vec{d}$ and a $\cdot \vec{d}=0$ then $\vec{d}=$
A. $\vec{c}+\left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$
B. $\vec{b}+\left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c}$
C. $c-\left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$
D. $\vec{b}-\binom{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{c}$

Answer: C

## D Watch Video Solution

117. $\vec{a}=\hat{j}-\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$. The vector $\vec{b}$ is such that $\vec{a} \times \vec{b}+\vec{c}=0$ and $\vec{a} \cdot \vec{b}=3$ then $\vec{b}=$
A. $-\hat{i}+\hat{j}-2 \hat{k}$
B. $2 \hat{i}-\hat{j}+2 \hat{k}$
C. $\hat{i}-\hat{j}-2 \hat{k}$
D. $\hat{i}+\hat{j}-2 \hat{k}$

## - Watch Video Solution

118. For any vector $\vec{a},(\vec{a} \times \vec{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \vec{k})^{2}=$
A. $4 a^{2}$
B. $2 a^{2}$
C. $a^{2}$
D. $3 a^{2}$

Answer: B
119. $\vec{a}, \vec{b}$ and $\vec{c}$ are three vector $\vec{a} \neq 0$ and $|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4,|\vec{b} \times \vec{c}|=\sqrt{15}$. If $\quad \vec{b}-2 \vec{c}=\lambda \vec{a}$ then the value of $\lambda$ is
A. -4
B. -2
C. 1
D. 3

Answer: A

- Watch Video Solution

120. For any vecotr $\vec{a}$, The value of $\hat{i} \times(\vec{a} \times \hat{i})+j \times(\vec{a} \times \vec{j})+\hat{k} \times(\vec{a} \times \hat{k})$ is
A. $2 \vec{a}$
B. $-2 \vec{a}$
C. $\vec{a}$
D. $-\vec{a}$

Answer: A
121. If $\left(a_{1}, 1,1\right),\left(1, a_{2}, 1\right)$ and $\left(1,1, a_{3}\right)$ are coplaner
(where $a_{i} \geq 1, i=1,2,3$ ) then $\sum_{i=1}^{3} \frac{1}{1-a_{i}}=$
A. 0
B. -1
C. 1

$$
\text { D. } 3-\sum_{i=1 a_{i}}^{3}
$$

Answer: C
122. If $\bar{x}=(1,-1,0), \bar{y}=(0,1,3)$ and $\bar{z}=(2,1,1)$ then
$\bar{x} \times(\bar{y} \times \bar{z})=$
A. $(2,4,2)$
B. $(2,2,4)$
C. $(4,4,2)$
D. ( $-2,2,4$ )

Answer: B
123. If $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=\lambda[\vec{a}, \vec{b}, \vec{c}]^{2}$ then $\lambda=$
A. 0
B. 1
C. 2
D. 3

Answer: B
(D) Watch Video Solution
124. The volume of a parallelepiped with edges
$O A=(3,1.4), O B=(1,2,3), O C=(2,1,5)$ is
A. 10
B. $\frac{5}{3}$
C. -10
D. 1

Answer: A
125. Let $\vec{a}, \vec{b}$ and $\vec{c}$ are three unit vectors such that
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If the vectors $\vec{b}$ and $\vec{c}$ are not parallel then the angle between $\vec{a}$ and $\vec{b}$ is
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{6}$

## Answer: D

126. If $|\bar{a}|=1$ and $\bar{a} \times \bar{b}=(1,2,3) \quad$ then
$\bar{a} \times[\bar{a} \times(\bar{a} \times \bar{b})]=\ldots . . .$.
A. $(1,2,3)$
B. $(-1,-2,-3)$
C. $(0,0,0)$
D. $(1,0,0)$

Answer: B

- View Text Solution

127. If $\bar{x} \times(\bar{y} \times \bar{z})=(\bar{x} \times \bar{y}) \times \bar{z}$ then $\bar{y} \times(\bar{z} \times \bar{x})=$
A. $\bar{z} \times(\bar{x} \times \bar{y})$
B. $\bar{x} \times(\bar{y} \times \bar{z})$
c. $\overline{0}$
D. $\bar{X} \times(\bar{z} \times \bar{y})$

## Answer: C

## - View Text Solution

128. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. Let the vector $\vec{c}$ is
such that $|\vec{c}-\vec{a}|=3,|(\vec{a} \times \vec{b}) \times \vec{c}|=3$. The angle between $\vec{c}$ and $\vec{a} \times \vec{b}$ is $30^{\circ}$. Then $\vec{a} . \vec{c}=\ldots \ldots \ldots . . . .$.
A. $\frac{1}{8}$
B. $\frac{25}{8}$
C. 2
D. 5

Answer: C

## - Watch Video Solution

129. If the unit $\bar{a}, \bar{b}$ and $\bar{c}$ are coplanar then
A. $\bar{a} .(\bar{b} \times \bar{c})=1$
B. $\bar{a}$. $(\bar{b} \times \bar{c})=3$
C. $(\bar{a} \times \bar{b}) \cdot \bar{c}=0$
D. $(\bar{c} \times \bar{a}) \cdot \bar{b}=1$

Answer: C

## D Watch Video Solution

130. If $\bar{a}, \bar{b}$ and $\bar{c}$ are not coplanar then
$(\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})]=\ldots \ldots \ldots \ldots \ldots$.
A. $\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
B. $2\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
C. $-\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
D. $-2\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$

## - Watch Video Solution

131. If the vectors $3 \hat{i}-2 \hat{j}-\hat{k}, 2 \hat{i}-3 \hat{j}-4 \hat{k},-\hat{i}+\hat{j}+2 \hat{k}$ and
$4 \hat{i}+5 \hat{j}+\lambda \hat{k}$ are in the same plane then $\lambda=\ldots \ldots \ldots \ldots$.

$$
\begin{aligned}
& \text { A. }-\frac{146}{17} \\
& \text { B. } \frac{146}{17} \\
& \text { C. } \frac{-17}{146} \\
& \text { D. } \frac{17}{147}
\end{aligned}
$$

## Answer: A

132. If the unit vectors $\bar{a}, \bar{b}$ and $\bar{c}$ are coplanar then $[2 \bar{a}-\bar{b}, 2 \bar{b}-\bar{c}, 2 \bar{c}-\bar{a}]=\ldots . .$.
A. 0
B. 1
C. $-\sqrt{3}$
D. $\sqrt{3}$

Answer: A
133. $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\hat{i}+\hat{j}-2 \hat{k}$. The vector $\vec{r}$ is coplanner with vector $\vec{b}$ and $\vec{c}$. If the magnitude of the projection $\vec{r}$ on $\vec{a}$ is $\sqrt{\frac{2}{3}}$ then $\vec{r}=$
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $-2 \hat{i}-\hat{j}+5 \hat{k}$
C. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: B
134. $\bar{a}, \bar{b}$ and $\bar{c}$ are non zero vectors.

$$
|(\bar{a} \times \bar{b}) \cdot \bar{c}|=|\bar{a}||\bar{b}||\bar{c}| \text { then . }
$$

A. $\bar{a} \cdot \bar{b}=0, \bar{b} \cdot \bar{c}=0$
B. $\bar{b} \cdot \bar{c}=0, \bar{c} \cdot \bar{a}=0$
C. $\bar{c} \cdot \bar{a}=0, \bar{a} \cdot \bar{b}=0$
D. $\bar{a} \cdot \bar{b}=\bar{b} \cdot \bar{c}=\bar{c} \cdot \bar{a}=0$

## Answer: D

135. $\bar{d}=\lambda(\bar{a} \times \bar{b})+\mu(\bar{b} \times \bar{c})+v(\bar{c} \times \bar{a})$ and $[\bar{a} \bar{b} \bar{c}]=\frac{1}{8}$ then $\lambda+\mu+v=$
A. $\bar{d} \cdot(\bar{a}+\bar{b}+\bar{c})$
B. $2 \bar{d} .(\bar{a}+\bar{b}+\bar{c})$
C. $4 \bar{d} .(\bar{a}+\bar{b}+\bar{c})$
D. $8 \bar{d} \cdot(\bar{a}+\bar{b}+\bar{c})$

Answer: D
136. The volume of the tetrahedron whose vertices $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11
$\left(\right.$ unit) ${ }^{3}$ then $\lambda=$
A. -3
B. 3
C. 7
D. -1

Answer: C
137. $\bar{a}, \bar{b}$ and $\bar{c}$ are three non zero, non planar vectors.
$\bar{p}=\bar{a}+\bar{b}-2 \bar{c}, \bar{q}=3 \bar{a}-2 \bar{b}+\bar{c}$ and $\bar{r}=\bar{a}-4 \bar{b}+2 \bar{c}$. The volume of the parallelepiped formed by the vectors $\bar{a}, \bar{b}$ and $\bar{c}$ is $V_{1}$ and the volume of the parallelepiped formed by the vectors $\bar{p}, \bar{q}$ and $\bar{r}$ is $V_{2}$ then $V_{2}: V_{1}=$
A. $3: 1$
B. 7:1
C. 11:1
D. $15: 1$

Answer: D
138. $\bar{a}=(1,2,-3), \bar{b}=(2,1,-1)$. The vector $\bar{\mu}$ is such
that $\bar{a} \times \bar{\mu}=\bar{a} \times \bar{b}$ and $\bar{a} \cdot \bar{\mu}=0$ then $|\bar{\mu}|=\ldots . . . . . .$.
A. $\frac{3}{2}$
B. 10
C. $\sqrt{10}$
D. $\frac{\sqrt{5}}{2}$

Answer: D

- Watch Video Solution

139. 

$\bar{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \bar{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, \bar{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$
are three non zero vectors. The unit vector $\bar{c}$ is perpendicular to $\bar{a}$ and $\bar{b}$. The angle between $\bar{a}$ and $\bar{b}$ is
$\frac{\pi}{6}$ then, $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=\ldots \ldots \ldots \ldots$.
A. 0
B. 1
C. $\frac{1}{4}|\bar{a}|^{2}|\bar{b}|^{2}$
D. $\frac{3}{4}|\bar{a}|^{2}|\bar{b}|^{2}$
140. The adjacent sides of the parallelogram are $\bar{a}=3 \bar{\alpha}-\bar{\beta}, \bar{b}=\bar{\alpha}+3 \bar{\beta},|\bar{\alpha}|=|\bar{\beta}|=2$. The angle $\bar{\alpha}$ and $\bar{\beta}$
is $\frac{\pi}{3}$. The length of any one of the diagonal of a parallelogram is $\qquad$
A. $4 \sqrt{7}$
B. $4 \sqrt{5}$
C. $3 \sqrt{7}$
D. $3 \sqrt{5}$

Answer: A
141. $\bar{\alpha}=2 \hat{i}+3 \hat{j}-\hat{k}, \bar{\beta}=-\hat{i}+2 \hat{j}-4 \hat{k}$ and $\bar{\gamma}=\hat{i}+\hat{j}+\hat{k}$ then $(\bar{\alpha} \times \bar{\beta}) \cdot(\bar{\alpha} \times \bar{\gamma})=$
A. 60
B. 64
C. 74
D. -74

## Answer: D

142. If $\bar{\mu}=\hat{i} \times(\bar{a} \times \hat{i})+\hat{j} \times(\bar{a} \times \hat{j}))+\hat{k} \times(\bar{a} \times \hat{k})$ then $\bar{\mu}=$ $\qquad$
A. 0
B. $\hat{i}+\hat{j}+\hat{k}$
C. $2 \bar{a}$
D. $\bar{a}$

Answer: C

View Text Solution
143. $\bar{a}, \bar{b}$ and $\bar{c}$ are three unit vectors. $\bar{a} \perp \bar{b}$ and $\bar{a}|\mid \bar{c}$ then $\bar{a} \times(\bar{b} \times \bar{c})=$
A. $\bar{a}$
B. $\bar{b}$
C. $\bar{c}$
D. 0

Answer: B
144. $\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}+\hat{j}$. The vector $\bar{c}$ is such that $\bar{a} \cdot \bar{c}=|\bar{c}|,|\bar{c}-\bar{a}|=2 \sqrt{2}$ and the angle between $\bar{a} \times \bar{b}$ and $\bar{c}$ is $30^{\circ}$ then $|(\bar{a} \times \bar{b}) \times \bar{c}|=$
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. 2
D. 3

Answer: B

- Watch Video Solution

145. The vectors $\bar{a}$ and $\bar{b}$ are perpendicular then $\bar{a} \times\{\bar{a} \times\{\bar{a} \times(\bar{a} \times \bar{b})\}\}=\ldots . . . . . . .$.
A. $|\bar{a}|^{2} \bar{b}$
B. $|\bar{a}|^{3} \bar{b}$
C. $|\bar{a}|^{4} \bar{b}$
D. None of these

Answer: C

D Watch Video Solution
146. If $\bar{a}, \bar{b}, \bar{c}$ and $\bar{d}$ are coplanar vectors then

$$
(\bar{a} \times \bar{b}) \times(\bar{c} \times \bar{d})=
$$

A. $|\bar{a} \times \bar{c}|^{2}$
B. $(\bar{a} \times \bar{a})^{2}$
C. $|\bar{b} \times \bar{c}|^{2}$
D. 0

## Answer: D

## D Watch Video Solution

147. $\bar{a} \times[\bar{a} \times(\bar{a} \times \bar{b})]=$
A. $(\bar{a} \times \bar{a}) \cdot(\bar{b} \times \bar{a})$
B. $\bar{a} \cdot(\bar{b} \times \bar{a})-\bar{b} \cdot(\bar{a} \times \bar{b})$
C. $[\bar{a} \cdot(\bar{a} \times \bar{b})] \bar{a}$
D. $(\bar{a} \cdot \bar{a})(\bar{b} \times \bar{a})$

## Answer: D

## D Watch Video Solution

148. For three rec
$\bar{c}, \bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \times \bar{b}) \times \bar{c}$ then

$$
\text { A. } \bar{b} \times(\bar{a} \times \bar{c})=0
$$

$$
\text { B. } \bar{a}(\bar{b} \times \bar{c})=0
$$

C. $\bar{c} \times \bar{a}=\bar{a} \times \bar{b}$
D. $\bar{c} \times \bar{b}=\bar{b} \times \bar{a}$

Answer: A

## - Watch Video Solution

149. 

$$
\bar{a}=\hat{i}+\hat{j}+\hat{k}, \bar{b}=\hat{i}+\hat{j}, \bar{c}=\hat{i} \quad \text { and }
$$

$(\bar{a} \times \bar{b}) \times \bar{c}=\lambda \bar{a}+\mu \bar{b}$ then $\lambda+\mu=\ldots . . . . . .$.
A. 0
B. 1
C. 2
D. 3

## - Watch Video Solution

150. $\left[\begin{array}{lll}\bar{a} \times \bar{b} & \bar{a} \times \bar{c} & \bar{d}\end{array}\right]=$
A. $(\bar{a} \cdot \bar{d})[\bar{a} \bar{b} \bar{c}]$
B. $(\bar{a} \cdot \bar{c})[\bar{a} \bar{b} \bar{c}]$
C. $(\bar{a} \cdot \bar{b})[\bar{a} \bar{b} \bar{c}]$
D. None of these

Answer: A
151. If $(\bar{a} \times \bar{b}) \times(\bar{b} \times \bar{c})=\bar{b}$, where $\bar{a}, \bar{b}, \bar{c}$ are non zero vectors, then ..............
A. $\bar{a}, \bar{b}, \bar{c}$ are coplanar vectors.
B. $\bar{a}, \bar{b}, \bar{c}$ may be coplanar vectors.
C. $\bar{a}, \bar{b}, \bar{c}$ are not coplanar vectors.
D. can not say anything.

## Answer: C

152. If $\bar{a}, \bar{c}$ and $\bar{d}$ are not coplanar vectors and $\bar{d} .(\bar{a} \times(\bar{b} \times(\bar{c} \times \bar{d})))=K[\bar{a}, \bar{c}, \bar{d}]$ then $K=\ldots$.
A. $\bar{b} \cdot \bar{d}$
B. $\bar{a} \cdot \bar{d}$
C. $\bar{b} \cdot \bar{a}$
D. $\bar{a} \cdot \bar{c}$

Answer: A

D Watch Video Solution
153.

$$
4 \bar{a}+5 \bar{b}+9 \bar{c}=0
$$


A. Perpendicular vector to the plane $\bar{a}, \bar{b}$ and $\bar{c}$
B. Scalar quantity
C. $\overline{0}$
D. None of these

Answer: C

D Watch Video Solution
154. $\vec{a}, \vec{b}$ and $\vec{c}$ are non zero vectors. $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. If the acute angle between the vectors $\vec{b}$ and $\vec{c}$ is $\theta$ then $\sin \theta=$ $\qquad$
A. $\frac{1}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
$2 \sqrt{2}$
D. $\frac{}{3}$

## Answer: D

155. If $\vec{a}$ is a unit vector and $\vec{b}=(2,1,-1)$ and $\vec{c}=(1,0,3)$. Then the maximum value of $[\vec{a} \vec{b} \vec{c}]$ is
A. -1
B. $\sqrt{59}$
C. $\sqrt{6}+\sqrt{10}+1$
D. $\sqrt{60}$

Answer: B

- Watch Video Solution

156. The volume of the parallelepiped with edges
$-12 \hat{i}+\alpha \hat{k}, 3 \hat{j}-\hat{k}$ and $2 \hat{i}+\hat{j}-15 \hat{k}$ is 546 then $\alpha=$
A. 3
B. 2
C. - 3
D. -2

## Answer: C

## - Watch Video Solution

157. $\bar{a} \times[\bar{a} \times(\bar{a} \times \bar{b})]=$
A. $(\vec{a} \times \vec{a}) \cdot(\vec{b} \times \vec{a})$
B. $\vec{a} \cdot(\vec{b} \times \vec{a})-\vec{b} \cdot(\vec{a} \times \vec{b})$
C. $[\vec{a} \cdot(\vec{a} \times \vec{b})] \vec{a}$
D. $(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})$

## Answer: D

## D Watch Video Solution

158. $\vec{a} \perp \vec{b}$ and $\vec{c},|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$. The angle between $\vec{b}$ and $\vec{c}$ is $\frac{2 \pi}{3}$ then $|[\vec{a} \vec{b} \vec{c}]|=$.
A. $4 \sqrt{3}$
B. $6 \sqrt{3}$
C. $12 \sqrt{3}$
D. $18 \sqrt{3}$

## Answer: C

## D Watch Video Solution

159. $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$. If $\vec{a} \cdot \vec{c}$
A. has angle $\frac{\pi}{6}$
B. are perpendicular vectors
C. are parallel vectors
D. has angle $\frac{\pi}{3}$

## - Watch Video Solution

160. $\vec{u}, \vec{v}$ and $\vec{w}$ are not co-planar vectors and p and q are real numbers.
$[3 \vec{u}, p \vec{v}, p \vec{w}]-[p \vec{v}, \vec{w}, q \vec{u}]-[2 \vec{w}, q \vec{v}, q \vec{u}]=0$
then
A. $(p, q)$ has only two values.
B. (p,q) has more than two values. But not all the values.
C. ( $p$. q) has all the values.
D. (p.q) has only one value.

Answer: B

## - Watch Video Solution

161. Let $\vec{X}, \vec{Y}$ and $\vec{Z}$ be three vectors such that $|\vec{X}|=|\vec{Y}|=|\vec{Z}|=\sqrt{2}$. The angle between $\vec{X}, \vec{Y}$ and $\vec{Z}$ with each other $60^{\circ} . \vec{X} \times(\vec{Y} \times \vec{Z})=\vec{a}, \vec{Y} \times(\vec{Z} \times \vec{X})=\vec{b}$ and $\vec{X} \times \vec{Y}=\vec{C}$

Vector $\vec{X}=$ $\qquad$
A. $(\vec{a}+\vec{b}) \times \vec{c}-(\vec{a}+\vec{b})$
B. $(\vec{a}+\vec{b})-(\vec{a}+\vec{b}) \times \vec{c}$
C. $\frac{1}{2}\{(\vec{a}+\vec{b}) \times \vec{c}-(\vec{a}+\vec{b})\}$
D. None of these

## Answer:

## D Watch Video Solution

162. Let $\vec{X}, \vec{Y}$ and $\vec{Z}$ be three vectors such that $|\vec{X}|=|\vec{Y}|=|\vec{Z}|=\sqrt{2}$. The angle between $\vec{X}, \vec{Y}$ and $\vec{Z}$ with each other $60^{\circ} . \vec{X} \times(\vec{Y} \times \vec{Z})=\vec{a}, \vec{Y} \times(\vec{Z} \times \vec{X})=\vec{b}$ and $\vec{X} \times \vec{Y}=\vec{C}$

Vector $\vec{Y}=$

$$
\text { A. } \left.\frac{1}{2}\{(\vec{a}+\vec{b})+(\vec{a}+\vec{b}) \times \vec{c})\right\}
$$

B. $2\{(\vec{a}+\vec{b})+(\vec{a}+\vec{b}) \times \vec{c})\}$
C. $4\{(\vec{a}+\vec{b})+(\vec{a}+\vec{b}) \times \vec{c})\}$
D. None of these

Answer:

## - Watch Video Solution

163. Let $\vec{X}, \vec{Y}$ and $\vec{Z}$ be three vectors such that $|\vec{X}|=|\vec{Y}|=|\vec{Z}|=\sqrt{2}$. The angle between $\vec{X}, \vec{Y}$ and $\vec{Z}$ with each other $60^{\circ} . \vec{X} \times(\vec{Y} \times \vec{Z})=\vec{a}, \vec{Y} \times(\vec{Z} \times \vec{X})=\vec{b}$ and $\vec{X} \times \vec{Y}=\vec{C}$

Vector $\vec{Z}=$
A. $\frac{1}{2}\{(\vec{b}-\vec{c}) \times \vec{c}+(\vec{a}+\vec{b})\}$
B. $\frac{1}{2}\{(\vec{b}-\vec{a})+(\vec{a}+\vec{b}) \times \vec{c}\}$
C. $\{(\vec{b}-\vec{a}) \times \vec{c}+(\vec{a}+\vec{b})\}$
D. None of these

## Answer:

## (D) Watch Video Solution

164. Measure of the angle between the vector $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$ is

$$
2 \sqrt{2}
$$

A. $\sin ^{-1} \frac{\sqrt{2}}{3}$
B. $\pi-\cos ^{-1} \frac{1}{3}$
C. $\cos ^{-1} \frac{1}{\sqrt{3}}$
D. $\sin ^{-1} \frac{1}{3}$

## Answer: A

## - Watch Video Solution

165. If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-3 \hat{k}$ then $(\vec{a}+\vec{b} \cdot(\vec{a}-\vec{b})=\ldots . . . . . .$.
A. -2
B. -8
C. 8
D. 2

Answer: B

## D View Text Solution

166. Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+5 \hat{j}-2 \hat{k}$ and
$\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$.
A. $\frac{1}{2} \sqrt{507}$
B. $\sqrt{387}$
C. $\sqrt{507}$
D. 25

## Answer: C

## - View Text Solution

167. Let $|\vec{x}|=|\vec{y}|=|\vec{x}+\vec{y}|=1$ and if measure of the angle between $\vec{x}$ and $\vec{y}$ is $\alpha$, then $\cos \alpha=$ $\qquad$
A. $-\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $-\frac{\sqrt{3}}{2}$
D. 1

## - Watch Video Solution

168. 

$\hat{i} \cdot(\hat{k} \times \hat{j})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{j} \times \hat{i})+\hat{i} \cdot(\hat{i} \times \hat{j})+\hat{j} \cdot(\hat{j} \times \hat{k})$
A. -1
B. 1
C. 3
D. -3

## - Watch Video Solution

169. 

For
three
vectors $\vec{a}, \vec{b} \quad$ and $\vec{c}, \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$, then evaluate
$2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$.
A. 100
B. 50
C. -25
D. -50

Answer: D
170. A vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}(\alpha, \beta \in R)$ lies in the plane of the vectors, $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+4 \hat{k}$. If $\vec{a}$ bisects the angle between $\vec{b}$ and $\vec{c}$, then
A. $\vec{a} \cdot \hat{i}+2=0$
B. $\vec{a} \cdot \hat{k}+2=0$
C. $\vec{a} \cdot \hat{i}+1=0$
D. None of these

Answer: D
171. Let $\vec{a}, \vec{b}$ and $\vec{c}$ be three unit vectors such that
$\vec{a},+\vec{b}+\vec{c}=\overrightarrow{0}$.
If

$$
\lambda=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}
$$

$\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ then the ordered pair $(\lambda, \vec{d})$
is equal to :

$$
\begin{aligned}
& \text { A. }\left(\frac{3}{2}, 3 \vec{a} \times \vec{c}\right) \\
& \text { B. }\left(-\frac{3}{2}, 3 \vec{c} \times \vec{b}\right) \\
& \text { C. }\left(-\frac{3}{2}, 3 \vec{a} \times \vec{b}\right) \\
& \text { D. }\left(\frac{3}{2}, 3 \vec{b} \times \vec{c}\right)
\end{aligned}
$$

Answer: C

Practice Paper 10 Section A

1. $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})=$
A. 0
B. 1
C. 2
D. 3

Answer:

Watch Video Solution
2. Let $A(1,2,-3)$ and $B(-1,-2,1)$ are two vectors. Direction cosines of the vector joining the vector in the direction A to is
A. $\left(-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right)$
B. $\left(\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right)$
C. $\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right)$
D. $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$

Answer: A
3. $\bar{x}$ and $\bar{y}$ are unit vectors and the angle between them is $\theta$. If $\theta=\ldots . . . . . . . . . . . . . . ~ T h e n ~ \bar{x}+\bar{y}$ is a unit vector.
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{2 \pi}{3}$

## Answer:

4. If $|\bar{a}|=2,|\bar{b}|=4,|\bar{c}|=1$ and $\bar{a}+\bar{b}=-\bar{c}$ then $\bar{a} \cdot \bar{b}+\bar{b} \cdot \bar{c}+\bar{c} \cdot \bar{a}=\ldots . \ldots . . . . . . .$.
A. -9.5
B. -10.5
C. 10.5
D. 7.5

## Answer:

5. The magnitude of the projection of $\hat{i}+3 \hat{j}+7 \hat{k}$ on
$7 \hat{i}-\hat{j}+8 \hat{k}$ is

60
A. $\frac{6}{\sqrt{114}}$

60
B. $\frac{}{\sqrt{104}}$

60
C. $\overline{\sqrt{141}}$
D. $\frac{60}{\sqrt{144}}$

Answer: A

D Watch Video Solution
6. $\vec{a} \perp \vec{b}$ and $\vec{c},|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$. The angle
between $\vec{b}$ and $\vec{c}$ is $\frac{2 \pi}{3}$ then $|[\vec{a} \vec{b} \vec{c}]|=$
A. $4 \sqrt{3}$
B. $6 \sqrt{3}$
C. $12 \sqrt{3}$
D. $18 \sqrt{3}$

## Answer:

## - Watch Video Solution

1. If a unit vector $\vec{a}$ makes an angle $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ sith $\hat{j}$ and an acute angle $\theta$ with $\hat{k}$, then find the component of $\vec{a}$.

## D Watch Video Solution

2. $|\vec{a}|=3, \quad \left\lvert\, \vec{b}=\frac{\sqrt{2}}{3}\right.$. If $\vec{a} \times \vec{b}$ is a unit vector then find the angle between $\vec{a}$ and $\vec{b}$.

## D Watch Video Solution

3. If the vectors $\hat{i}-\hat{j}+\hat{k}, 3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+\lambda \hat{j}-3 \hat{k}$ are coplanar then find the value of $\lambda$.

## (- Watch Video Solution

4. A vector has magnitude 5 units. It is parallel to the resultant vectors of $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$. Find this vector.

## - Watch Video Solution

## Practice Paper 10 Section C

1. The adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to its diagonal. Also find the area of the parallelogram.

## - Watch Video Solution

2. Consider two points $P$ and $Q$ with position vectors
$2 \vec{a}+\vec{b}$ and $\vec{a}-3 \vec{b}$ respectively. Find the position vector of a point $R$ which divide the line segment joining $P$ and $Q$ in the ratio. $1: 2$ externally. Prove that $P$ is a midpoint of line segment RQ.

## D Watch Video Solution

3. For the vectors $\vec{a}, \vec{b}$ and $\vec{c},|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$. Each vector is the perpendicular to the sum of remaining two vectors. Find $|\vec{a}+\vec{b}+\vec{c}|$.
4. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.

## - Watch Video Solution

## Practice Paper 10 Section D

1. Express the vector $2 \hat{i}+3 \hat{j}+\hat{k}$ as the sum of two vectors, one vector is perpendicualr to $2 \hat{i}-4 \hat{j}+\hat{k}$ and the other vector is parallel to $2 \hat{i}-4 \hat{j}+\hat{k}$.
2. If ( $\mathrm{a}, 1,1$ ), $(1, \mathrm{~b}, 1)$ and $(1,1, \mathrm{c})$ are coplanar then prove
that $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1$.

D Watch Video Solution

