đ゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA PHYSICS (GUJRATI ENGLISH)

ALTERNATING CURRENTS

Section A Try Yourself

1. What are A.C. signals ?
2. Write the reason why do we preferred an a.c. voltage instead of d.c. voltage.

- Watch Video Solution

3. Write the common meaning of voltage.

- Watch Video Solution

4. What are ac voltage ?
5. Write the equation for ac voltage.

- Watch Video Solution

6. What is phase difference between V and I in
a circuit containing only a resistor ?

- Watch Video Solution

7. What is the sum of the instantaneous current values over one complete ac cycle?

D Watch Video Solution
8. What is rms? Write the formula of rms for current?

D Watch Video Solution
9. What is the maximum voltage of 220 V ?

D Watch Video Solution

10. What is phasors?

- Watch Video Solution

11. With whom the relation between the phase of current and voltage in AC cirucit will be represented?

- Watch Video Solution

12. What is capacitive reactance? Write its unit.

- Watch Video Solution

13. Write the SI unit of capacitive reactance.

- Watch Video Solution

14. Write the unit of ωC.
15. Write the phase difference V and I in $A C$ circuit containing only capacitor.

- Watch Video Solution

16. If i is the current in $L-C-R$ series $A C$ circuit then, formula of,
(i) Voltage across resistance.
(ii) Voltage across inductor.
(iii) Voltage across capacitor.
17. (i) What is an angle between phasor V_{R} and
$1 ?$
(ii) Voltage phasor V_{C} is $\frac{\pi}{2} \ldots \ldots \ldots \ldots \ldots$ of the current phasor I. (Fill up the blank)

- Watch Video Solution

18. What is the impedance of circuit of L-C-R series AC circuit ? Write its formula.
19. What is the inductive reactance of L-C-R series AC circuit? Write its formula and SI unit.

- Watch Video Solution

20. What is capacitive reactance for $L-C-R$ series AC circuit? Write its formula and SI unit.

- Watch Video Solution

21. If $X_{C}>X_{L}$ the current in the circuit is ahead or behind of the voltage?

- Watch Video Solution

22. If $X_{C}<X_{L}$ the current in the circuit is ahead or behind of the voltage?

- Watch Video Solution

23. Write the differential equation of charge for L-C-R series AC circuit.

D Watch Video Solution
24. What is resonance?

D Watch Video Solution

25. Write the formula of resonant frequency.
26. Give the value of impedance in resonance condition.

D Watch Video Solution
27. What is Q factor ?

- Watch Video Solution

28. On which, Q factor depends ?

- Watch Video Solution

29. On which the sharpness of resonance depends?

- Watch Video Solution

30. Define average power (true power).

- Watch Video Solution

31. On which the power consumed in L-C-R series AC circuit depends?

D Watch Video Solution
32. What is resistive circuit ? Write the formula of power consumed in it.

- Watch Video Solution

33. In which circuit average power consumed

maximum ?

D Watch Video Solution

34. What is power factor ?

D Watch Video Solution

35. What is wattless power ?

36. What is LC circuit?

D Watch Video Solution
37. What is LC oscillations ?

D Watch Video Solution

38. Write only differential equation of LC circuit.

- Watch Video Solution

39. Write the expression of frequency of oscillation for LC circuit.

- Watch Video Solution

40. Give the name of physical quantity in LCR circuit corresponds to displacement x in forced oxcillations.
41. Give the name of physical quantity in LCR circuit corresponds to mass m in forced oscillations.

- Watch Video Solution

42. Give the name of physical quantity in LCR circuit corresponds to spring contant k in forcd oscillations.
43. Give the name of physical quantity in LCR circuit corresponds to damping constant in forced oscillations.

D Watch Video Solution

44. Write the principle of transformer.
(D) Watch Video Solution
45. Why soft iron core is used in transformer?

- Watch Video Solution

46. Write two types of transformer.

- Watch Video Solution

47. What is transformation ratio?

- Watch Video Solution

48. "In a ideal transformer power may increase or decrease".Such statement is true or false?

D Watch Video Solution

49. "In step-down transformer output current decreases". This statement is true or false?

D Watch Video Solution

Section A Questions Answers

1. Write the reason why do we preferred an a.c.
voltage instead of d.c. voltage.
(Watch Video Solution
2. Explain AC voltage applied to a resistor and explain it with necessary graph.

D Watch Video Solution

3. Explain electrical energy when an ac current

 passes through a resistor.
D Watch Video Solution

4. Give definition and formula of root mean square plot graph of current versus ωt.

D Watch Video Solution

5. Explain $A C$ circuit for circuit with only resistor.

D Watch Video Solution

6. Obtain an equation of current for $A C$ voltage applied to an inductor and draw a graph of V and I .

D Watch Video Solution
7. Discuss the power in AC circuit with only an inductor.

D Watch Video Solution
8. Explain AC circuit with only capacitor.

D Watch Video Solution

9. Discuss power in AC circuit containing only
capacitor.

- Watch Video Solution

10. Obtain the relation of voltage applied to a series LCR circuit.

- Watch Video Solution

11. Obtain the relation of phase between
instantaneous current and voltage with the help of phase diagram for series LCR circuit.
12. Draw phasor diagram for $X_{C}>X_{L}$ and $X_{C}<X_{L}$ and give the disadvantages of this method.

- Watch Video Solution

13. Obtain an anaalytical solution for the relation of phase between instantaneous
current and voltage for an LCR series AC circuit.
14. What is resonance? Give its example.

- Watch Video Solution

15. Explain resonance for an L-C-R series circuit and write its uses. In what kind of circuit will it possible?

D Watch Video Solution
16. Obtain an equation for sharpness of resonance in an L-C-R series AC circuit and what is quality factor Q ? And explain bandwidth.

D Watch Video Solution

17. Obtain the equation of the bandwidth for
an L-C-R series AC circuit and deduce the equation of Q factor.
18. What is sharpness of resonance ? Derive equation of Q-factor

- Watch Video Solution

19. If $L=1.00 \mathrm{mH}, \mathrm{C}=1.00 \mathrm{nF}$, then find the
resonant frequency.

- Watch Video Solution

20. Define the power for AC circuit. Obtain an equation of average power for L-C-R series AC circuit.

D Watch Video Solution

21. Write an equation of average power for L-C-
R series $A C$ circuit and discuss its various cases.
22. What is meant by LC circuit? What are LC

oscillations?

- Watch Video Solution

23. Obtain the differential equation for a LC circuit.

- Watch Video Solution

24. Solve the differential equation of L-C circuit

 and obtain the expression of current.
- Watch Video Solution

25. Explain how LC oscillations takes place in the circuit.
26. Compare the oscillations in an LC circuit are analogous to the oscillation of a block at the end of a spring.

- Watch Video Solution

27. For which 2 reasons the discussion of LC oscillations is not realistic?

D Watch Video Solution

28. Compare LC oscillations and a force damped oscillations in mechanics.

D Watch Video Solution
29. What is transformer ? Write its principle and write its construction.

D Watch Video Solution
30. Write the working procedure of transformer.

- Watch Video Solution

31. Using the equation of power for an ideal
transformer, prove $\frac{I_{p}}{I_{s}}=\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}$

D Watch Video Solution

32. How a transformer affects the voltage and current?

D Watch Video Solution
33. Due to which reasons the energy losses do occurs in actual transformer?

D Watch Video Solution
34. Explain the use of transformer for distribution of power over long distances.

D Watch Video Solution
35. Write important uses of transformer.
(Watch Video Solution

Section B Numericals Textual Illustrations

1. A light bulb is rated at 100 W for a 220 V supply. Find the resistance of the bulb

D Watch Video Solution

2. A light bulb is rated at 100 W for a 220 V supply. Find the peak voltage of the source

D Watch Video Solution

3. A light bulb is rated at 100 W for a 220 V supply. Find the rms current through the bulb.

- Watch Video Solution

4. A pure inductor of 25.0 mH is connected to
a source of 220 V . Find the inductive reactance and rms current in the circuit if the frequency of the source is 50 Hz .
5. A lamp is connected in series with a capacitor. Predict your observations for dc and ac connections. What happens in each case if the capacitance of the capacitor is reduced ?

- Watch Video Solution

6. A $15.0 \mu F$ capacitor is connected to a 220 V ,

50 z source. Find the capacitive reactance and
the current (rms and peak) in the circuit. If the frequency is doubled, what happens to the capacitive reactance and the current ?

- Watch Video Solution

7. A light bulb and an open coil inductor are connected to an ac source through a key as
shown in figure. The switch is closed and after sometime, an iron rod is inserted into the interior of the inductor. The glow of the light bulb (a) increases, (b) decreases, (c) is unchanged, as the iron rod is inserted. Give your answer with reasons.
8. A resistor of 200Ω and a capacitor of $15.0 \mu F$ are connected in series to a 220 V , 50 Hz as source .
(a) Calculate the current in the circuit.
(b) Calculate the voltage (rms) across the resistor and the capacitor. Is the alebraic sum of these voltages more than the source voltage? If yes resolve the paradox.

D Watch Video Solution

9. For circuits used for transporting electric power, a low power factor implies large power loss in transmission. Explain.

D Watch Video Solution

10. Power factor can often be improved by the use of a capacitor of appropriate capacitance in the circuit. Explain.
11. A sinusoidal voltage of peak value of 283 V and frequency 50 Hz is applied to a series LCR circuit in which $R=3 \Omega, L=25.48 \mathrm{mH}$ and
$C=796 \mu F$. Find
the impedance of the circuit.

D Watch Video Solution

12. A sinusoidal voltage of peak value of 283 V and frequency 50 Hz is applied to a series LCR
circuit in which $R=3 \Omega, L=25.48 \mathrm{mH}$ and
$C=796 \mu F$. Find
the phase difference between the voltage across the source the current.

D Watch Video Solution

13. A sinusoidal voltage of peak value of 283 V and frequency 50 Hz is applied to a series LCR circuit in which $R=3 \Omega, L=25.48 \mathrm{mH}$ and
$C=796 \mu F$. Find
the power dissipated in the circuit, and

D Watch Video Solution

14. A sinusoidal voltage of peak value of 283 V and frequency 50 Hz is applied to a series LCR circuit in which $R=3 \Omega, L=25.48 \mathrm{mH}$ and
$C=796 \mu F$. Find
the power factor.

D Watch Video Solution

15. Suppose the frequency of the source in the previous example can be varied. (a) What is the frequency of the source at which
impedance, the current, and the power dissipated at the resonant condition.

D Watch Video Solution

16. Suppose the frequency of the source in the previous example can be varied. (a) What is the frequency of the source at which resonance occurs? (b) Calculate the impedance, the current, and the power dissipated at the resonant condition.
17. At an airport, a person is made to walk through the doorway of a metal detector, for security reasons. If she / he is carrying anything made of metal, the metal detector emits a sound. On what principal does this detector work?

- Watch Video Solution

18. Show that in the free oscillations of an LC
circuit, the sum of energies stored in the
capacitor and the inductor is constant in time.

D Watch Video Solution

19. A light bulb is rated at 200 W for a 230 V supply. Find the resistance of the bulb.

D Watch Video Solution

20. A light bulb is rated at 200 W for a 230 V supply. Find the peak voltage of the source
21. A light bulb is rated at 200 W for a 230 V supply. Find the rms current through the bulb.

D Watch Video Solution

22. A inductor of 5 mH is connected to a source of 220 V . Find the inductive reactance and rms current in the circuit if the frequency of the source is 60 Hz .
23. A lamp is connected in series with a capacitor. Predict your observations for dc and ac connections. What happens in each case if the capacitance of the capacitor is reduced ?

D Watch Video Solution

24. A $10 \mu F$ capacitor is connected to a 230 V ,

50 Hz source. Find the capacitive reactance and the current (rms and peak) in the circuit.

If the frequeny is doubled, what happens to the capacitive reactance and the current ?

D Watch Video Solution

25.

After closing the key in above circuit, after some time, a glass rod is inserted in the
inductor. Will the brightness of bulb . (a) Give answer with reason. Increase (b) decrease or (c) remain same?

D Watch Video Solution

26. A resistor of 100Ω and a capacitor of 250
μF are connected in series to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source.

Calculate the current in the circuit
27. A resistor of 100Ω and a capacitor of 250
μF are connected in series to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source.

Calculate the voltage (rms) across the resistor and the capacitor. Is the algebraic sum of these voltages more than the source voltage? If yes, resolve the paradox.

D Watch Video Solution

28. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR
circuit in which $\mathrm{R}=6 \Omega, \mathrm{~L}=50.96 \mathrm{mH}$ and $\mathrm{C}=398$ μF. Find the impedance of the circuit

D Watch Video Solution

29. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR circuit in which $\mathrm{R}=6 \Omega$, $\mathrm{L}=50.96 \mathrm{mH}$ and $\mathrm{C}=398$
μF. Find the phase difference between the voltage across the source and the current .

D Watch Video Solution

30. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR circuit in which $\mathrm{R}=6 \Omega$, $\mathrm{L}=50.96 \mathrm{mH}$ and $\mathrm{C}=398$ μF. Find the power dissipated in the circuit

D Watch Video Solution

31. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR circuit in which $\mathrm{R}=6 \Omega$, $\mathrm{L}=50.96 \mathrm{mH}$ and $\mathrm{C}=398$ μF. Find the power factor
32. For one series LCR ac circuit, $200 \mathrm{~V}, 50 \mathrm{~Hz}$ source is connected . Here $R=6 \Omega, L=50.96 \mathrm{mH}$,
$\mathrm{C}=398 \mu F$, then find Resonant angular frequency

D Watch Video Solution

33. For one series LCR ac circuit, $200 \mathrm{~V}, 50 \mathrm{~Hz}$ source is connected . Here $R=6 \Omega, L=50.96 \mathrm{mH}$,
$\mathrm{C}=398 \mu F$, then find Impedance at resonance ,
current and resonance and power dissipated at resonance .

D Watch Video Solution

Section B Numericals Textual Exercise

1. A 100Ω resistor is connected to a $200 \mathrm{~V}, 50$

Hz ac supply.
(a) What is the rms value of current in the circuit?
(b) What is the net power consumed over a fully cycle?

- Watch Video Solution

2. (a) The peak voltage of an ac supply is 300 V .

What is the rms voltage?
The rms value of current in an circuit is 10 V .

What is the peak current ?

- Watch Video Solution

3. A 44 mH inductor is connected to 220 V , 50 Hz ac supply. Determine the rms value of the current in the circuit.

- Watch Video Solution

4. A $60 \mu F$ capacitor is connected to a $110 \mathrm{~V}, 60$

Hz ac supply. Determine the rms value of the current in the circuit.
5. What is the net power absorbed by each circuit over a complete cycle. Explain your answer.

- Watch Video Solution

6. Obtain the resonant frequency ω_{r} of a series
jLCR circuit with $\mathrm{L}=2.0 \mathrm{H}, \mathrm{C}=32 \mu F$ and $\mathrm{R}=10 \Omega$
. What is the Q -value of this circuit?

D Watch Video Solution
7. A charged $30 \mu F$ capacitor is connected to a 27 mH inductor. What is the angular freuqency of free oscillations of the circuit?

D Watch Video Solution

8. Suppose the initial charge on the capacitor in Exercise 7.7 is 6 mC . What is the total energy stored in the circuit initially ? What is the total energy at later time?
9. A series LCR circuit with $\mathrm{R}=20 \Omega, L=1.5 \mathrm{H}$
and $\mathrm{C}=35 \mu F$ is connected to a variable-
frequency 200 V ac supply. When the frequency
of the supply equals the natural frequency of
the circuit,what is the average power transferred to the circuit in one complete cycle?

D View Text Solution

10. A radio can tune over the frequency range of a portion of MW broadcast band: (800 kHz
to 1200 kHz). If its LC circuit has an effective inductance of $200 \mu H$. What must be the range of its variable capacitor?

D View Text Solution

11. Figure shows a series LCR circuit connected to a variable frequency 230 V source. $\mathrm{L}=5.0 \mathrm{H}$,
$C=80 \mu F, R=40 \Omega$

Determine the source frequency which drives
the circuit in resonance.

D View Text Solution
12. Figure shows a series LCR circuit connected to a variable frequency 230 V source.

$$
L=5.0 H, C=80 \mu F, R=40 \Omega
$$

(a) Determine the source frequency which drives the circuit in resonance.
(b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
(c) Determine the rms potential drops across
the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.

- Watch Video Solution

13. Figure shows a series LCR circuit connected to a variable frequency 230 V source.
$L=5.0 H, C=80 \mu F, R=40 \Omega$.

L
(a) Determine the source frequency which drives the circuit in resonance.
(b) Obtain the impedance of the circuit and
the amplitude of current at the resonating frequency.
(c) Determine the rms potential drops across
the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.

D Watch Video Solution

Section B Numericals Additonal Exercise

1. An LC circuit contains a 20 mH inductor and
a $50 \mu F$ capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible.

Let the instant the circuit is closed be $t=0$.
(a) What is the total energy stored initially? Is
it conserved during LC oscillations?
(b) What is the natural frequency of the circuit?
(c) At what time is the energy stored
(i) completely electrical (i.e., stored in the
capacitor)? (ii) completely magnetic (i.e.,
stored in the inductor)?
(d) At what times is the total energy shared equally between the inductor and the capacitor?
(e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?

- Watch Video Solution

2. An LC circuit contains a 20 mH inductor and
a $50 \mu F$ capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible. Let the instant the circuit is closed be $\mathrm{t}=0$.
(a) What is the total energy stored initially? Is it conserved during LC oscillations?
(b) What is the natural frequency of the circuit?
(c) At what time is the energy stored
(i) completely electrical (i.e., stored in the capacitor)? (ii) completely magnetic (i.e., stored in the inductor)?
(d) At what times is the total energy shared equally between the inductor and the capacitor?
(e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?

- Watch Video Solution

3. An LC circuit contains a 20 mH inductor and
a $50 \mu F$ capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible.

Let the instant the circuit is closed be $\mathrm{t}=0$.
(a) What is the total energy stored initially? Is
it conserved during LC oscillations?
(b) What is the natural frequency of the circuit?
(c) At what time is the energy stored
(i) completely electrical (i.e., stored in the
capacitor)? (ii) completely magnetic (i.e., stored in the inductor)?
(d) At what times is the total energy shared equally between the inductor and the capacitor?
(e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?

- Watch Video Solution

4. An LC circuit contains a 20 mH inductor and
a $50 \mu F$ capacitor with an initial charge of 10
mC . The resistance of the circuit is negligible.

Let the instant the circuit is closed be $t=0$.
(a) What is the total energy stored initially? Is it conserved during LC oscillations?
(b) What is the natural frequency of the circuit?
(c) At what time is the energy stored
(i) completely electrical (i.e., stored in the capacitor)? (ii) completely magnetic (i.e., stored in the inductor)?
(d) At what times is the total energy shared equally between the inductor and the capacitor?
(e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?

- Watch Video Solution

5. An LC circuit contains a 20 mH inductor and
a $50 \mu F$ capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible.

Let the instant the circuit is closed be $\mathrm{t}=0$.
(a) What is the total energy stored initially? Is
it conserved during LC oscillations?
(b) What is the natural frequency of the
circuit?
(c) At what time is the energy stored
(i) completely electrical (i.e., stored in the capacitor)? (ii) completely magnetic (i.e., stored in the inductor)?
(d) At what times is the total energy shared equally between the inductor and the capacitor?
(e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?

- Watch Video Solution

6. A coil of inductance 0.50 H and resistance
100Ω is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.

What is the maximum current in the coil ?

D Watch Video Solution

7. A coil of inductance 0.50 H and resistance
100Ω is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.
What is the time lag between the voltage maximum and the current maximum ?
(Watch Video Solution
8. Obtain the answers (a) to (b) in Exercise if the circuit is connected to a high frequency supply ($240 \mathrm{~V}, 10 \mathrm{kHz}$) .Hence explain the statement that at very high frequency, an inductor in a circuit nearly amounts to an open circuit. How does an inductor behave in a dc circuit after the steady state?

D Watch Video Solution

9. A $100 \mu F$ capacitor in series with a 40Ω resistance is connected to a $110 \mathrm{~V}, 60 \mathrm{~Hz}$
supply.
(a) What is the maximum current in the circuit?
(b) What is the time lag between the current maximum and the voltage maximum?

D Watch Video Solution

10. A $100 \mu F$ capacitor in series with a 40Ω resistance is connected to a $110 \mathrm{~V}, 60 \mathrm{~Hz}$ supply.
(a) What is the maximum current in the

circuit?

(b) What is the time lag between the current maximum and the voltage maximum?

D Watch Video Solution

11. Obtain the answers (a) to (b) in Exercise if
the circuit is connected to a high frequency
supply ($240 \mathrm{~V}, 10 \mathrm{kHz}$) .Hence explain the statement that at very high frequency, an inductor in a circuit nearly amounts to an
open circuit. How does an inductor behave in a dc circuit after the steady state?

D Watch Video Solution

12. Keeping the source frequency equal to the resonating frequency of the series LCR circuit, if the three elements, L, C and R are arranged in parallel, show that the total current in the parallel LCR circuit is minimum at this frequency. Obtain the current rms value in each branch of the circuit for the elements
and source specified in Exercise for this frequency.

D Watch Video Solution

13. A circuit containing a 80 mH inductor and a
$60 \mu F$ capacitor in series is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The resistance of the circuit is negligible.
(a) Obtain the current amplitude and rms values.
(b) Obtain the rms values of potential drops
across each element.
(c) What is the average power transferred to the inductor?
(d) What is the average power transferred to the capacitor?
(e) What is the total average power absorbed by the circuit? ['Average' implies 'averaged over one cycle'.]

D Watch Video Solution

14. A circuit containing a 80 mH inductor and a $60 \mu F$ capacitor in series is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The resistance of the circuit is negligible.
(a) Obtain the current amplitude and rms values.
(b) Obtain the rms values of potential drops across each element.
(c) What is the average power transferred to
the inductor?
(d) What is the average power transferred to
the capacitor?
(e) What is the total average power absorbed by the circuit? ['Average' implies 'averaged over one cycle'.]

D Watch Video Solution

15. A circuit containing a 80 mH inductor and a
$60 \mu F$ capacitor in series is connected to a
$230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The resistance of the circuit is negligible.
(a) Obtain the current amplitude and rms
values.
(b) Obtain the rms values of potential drops across each element.
(c) What is the average power transferred to the inductor?
(d) What is the average power transferred to the capacitor?
(e) What is the total average power absorbed by the circuit? ['Average' implies 'averaged over one cycle'.]

- Watch Video Solution

16. A circuit containing a 80 mH inductor and a $60 \mu F$ capacitor in series is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The resistance of the circuit is negligible.
(a) Obtain the current amplitude and rms values.
(b) Obtain the rms values of potential drops across each element.
(c) What is the average power transferred to
the inductor?
(d) What is the average power transferred to
the capacitor?
(e) What is the total average power absorbed by the circuit? ['Average' implies 'averaged over one cycle'.]

D Watch Video Solution

17. A circuit containing a 80 mH inductor and a
$60 \mu F$ capacitor in series is connected to a
$230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The resistance of the circuit is negligible.
(a) Obtain the current amplitude and rms
values.
(b) Obtain the rms values of potential drops across each element.
(c) What is the average power transferred to the inductor?
(d) What is the average power transferred to the capacitor?
(e) What is the total average power absorbed by the circuit? ['Average' implies 'averaged over one cycle'.]

- Watch Video Solution

18. Suppose the circuit in has a resistance of 15
W. Obtain the average power transferred to each element of the circuit, and the total power absorbed.

- Watch Video Solution

19. A series LCR circuit with
$L=0.12 H, C=480 n F, R=23 \Omega$
connected to a 230 V variable frequency
supply.
(a) What is the source frequency for which current amplitude is maximum. Obtain this maximum value.
(b) What is the source frequency for which average power absorbed by the circuit is maximum. Obtain the value of this maximum power.
(c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?
(d) What is the Q-factor of the given circuit?
20. A series LCR circuit with
$L=0.12 H, C=480 n F, R=23 \Omega$
connected to a 230 V variable frequency
supply.
(a) What is the source frequency for which
current amplitude is maximum. Obtain this
maximum value.
(b) What is the source frequency for which average power absorbed by the circuit is maximum. Obtain the value of this maximum
(c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?
(d) What is the Q-factor of the given circuit?

D Watch Video Solution

21. A series LCR circuit with
$L=0.12 H, C=480 n F, R=23 \Omega$
connected to a 230 V variable frequency supply.
(a) What is the source frequency for which current amplitude is maximum. Obtain this maximum value.
(b) What is the source frequency for which average power absorbed by the circuit is maximum. Obtain the value of this maximum power.
(c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?
(d) What is the Q-factor of the given circuit?
22. A series LCR circuit with
$L=0.12 H, C=480 n F, R=23 \Omega$
connected to a 230 V variable frequency
supply.
(a) What is the source frequency for which
current amplitude is maximum. Obtain this
maximum value.
(b) What is the source frequency for which average power absorbed by the circuit is maximum. Obtain the value of this maximum
(c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?
(d) What is the Q-factor of the given circuit?

D Watch Video Solution

23. Obtain the resonant frequency and Q^{-}
factor of a series LCR circuit with
$L=3.0 H, C=27 \mu F$, and $R=7.4 \Omega$. It is desired to improve the sharpness of the
resonance of the circuit by reducing its 'full width at half maximum' by a factor of 2 . Suggest a suitable way.

D Watch Video Solution

24. In any ac circuit, is the applied instantaneous voltage equal to the algebraic sum of the instantaneous voltages across the series elements of the circuit? Is the same true for rms voltage?
25. A capacitor is used in the primary circuit of an induction coil.

- Watch Video Solution

26. An applied voltage signal consists of a superposition of a dc voltage and an ac voltage of high frequency. The circuit consists of an inductor and a capacitor in series. Show that the dc signal will appear across C and the ac signal across L .

- Watch Video Solution

27. A choke coil in series with a lamp is connected to a dc line. The lamp is seen to shine brightly. Insertion of an iron core in the choke causes no change in the lamp's brightness. Predict the corresponding observations if the connection is to an ac line.

- Watch Video Solution

28. Why is choke coil needed in the use of fluorescent tubes with ac mains? Why can we not use an ordinary resistor instead of the choke coil?

- Watch Video Solution

29. A power transmission line feeds input power at 2300 V to a stepdown transformer with its primary windings having 4000 turns.

What should be the number of turns in the
secondary in order to get output power at 230

V?

D Watch Video Solution

30. At a hydroelectric power plant, the water pressure head is at a height of 300 m and the water flow available is $100 \mathrm{~m}^{3} s^{-1}$. If the turbine generator efficiency is 60\%, estimate the electric power available from the plant $\left(g=9.8 m s^{-2}\right)$.
31. A small town with a demand of 800 kW of electric power at 220 V is situated 15 km away
from an electric plant generating power at 440 V . The resistance of the two wire line carrying power is 0.5Ω per km . The town gets power from the line through a 4000-220 V step-down transformer at a sub-station in the town.
(a) Estimate the line power loss in the form of
heat.
(b) How much power must the plant supply,
assuming there is negligible power loss due to leakage?
(c) Characterise the step up transformer at the plant.

- Watch Video Solution

32. Do the same exercise as above with the
replacement of the earlier transformer by a
40,000-220 V step-down transformer (Neglect,
as before, leakage losses though this may not
be a good assumption any longer because of
the very high voltage transmission involved).

Hence, explain why high voltage transmission is preferred?

D Watch Video Solution

Section B Numericals Numerical From Darpan Based On Textbook

1. The A.C. voltage and current in an L-C-R A.C.
series circuit are given by the following expression

$$
V=200 \sqrt{2} \cos \left(3000 t-55^{\circ} V\right.
$$

$I=10 \sqrt{2} \cos \left(3000 t-10^{\circ}\right) A$. Calculate the impedance and the resistance of the above circuit.

- Watch Video Solution

2. An electric current has both A.C. and D.C. components . The value of D.C. component is equal to 12 A while the A.C. component is given as $1=9 \sin \omega t$ A. Determine the formula for
the resultant current and also calculate the
value of $I_{r m s}$.

Watch Video Solution

3. Calculate the resultant inductance of two inductor L_{1} and L_{2} when they are connected in parallel in A.C. circuit.

- Watch Video Solution

4. Obtain the resonance angular frequency for the circuit shown in figure.
5. The series combination of $R(\Omega)$ and capacitor $C(F)$ is connected to an A.C. source of V volts and angular frequency ω. If the angular frequency is reduced to $\frac{\omega}{3}$, the current is found to be reduced to one-half without changing the value of the voltage. Determine the ratio of the capacitive reactance and the resistance.

D Watch Video Solution

6. In an L-C-R A.C. series circuit $L=5 H$,
$\omega=100 \mathrm{rads}^{-1}, \mathrm{R}=100 \Omega$ and power factor is
0.5 . Calculate the value of capacitance of the capacitor.

- Watch Video Solution

7. $\mathrm{L}=8.1 \mathrm{mH}, \mathrm{C}=12.5 \mu \mathrm{~F}$ and $\mathrm{R}=100 \Omega$ are
connected in series with A.C. source of 230 V
and frequency 500 Hz . Calculate voltage across
two ends of resistance.
8. In an A.C. circuit maximum voltage and maximum currents are 200 V and 2.2A respectively. Calculate power and power factor in the circuit. (Here $X_{C}=60 \Omega$ and $R=80 \Omega$)

D Watch Video Solution

Section C Ncert Exemplar Mcqs

1. If the rms current in a 50 Hz ac circuit is 5 A ,
the value of the current $\frac{1}{300} \mathrm{~s}$ after its value becomes zero is
A. $5 \sqrt{2} A$
B. $5 \sqrt{\frac{3}{2}} \mathrm{~A}$
C. $\frac{5}{6} A$
D. $\frac{5}{\sqrt{2}} A$

Answer: B

- Watch Video Solution

2. An alternating current generator has an internal resistance R_{g} and an internal reactance X_{g}. It is used to supply power to a passive load consisting of a resistance R_{g} and a reactance X_{L}. For maximum power to be delivered from the generator to the load, the value of X_{L} is equal to
A. 0
B. X_{g}
C. $-X_{g}$

D. R_{g}

Answer: C

D Watch Video Solution

3. When a voltage measuring device is connected to AC mains, the meter shows the steady input voltage of 220 V . This means
A. input voltage cannot be AC voltage, but a DC voltage.
B. maximum input voltage is 220 V .
C. the meter reads not v but $\left\langle v^{2}\right\rangle$ and is calibrated to read $\sqrt{<V^{2}>}$
D. the pointer of the meter is stuck by some mechanical defect.

Answer: C

D Watch Video Solution

4. To reduce the resonant frequency in an LCR series circuit with a generator
A. the generator frequency should be reduced.
B. another capacitor should be added in parallel to the first.
C. the iron core of the inductor should be removed.

D. dielectric in the capacitor should be

 removed.Answer: B

- Watch Video Solution

5. Which of the following combinations should be selected for better tuning of an LCR circuit used for communication?

$$
\text { A. } R=20 \Omega, L=1.5 H, C=35 \mu F
$$

$$
\text { B. } R=25 \Omega, L=2.5 H, C=45 \mu F
$$

C. $R=15 \Omega, L=3.5 H, C=30 \mu F$

$$
\text { D. } R=25 \Omega, L=1.5 H, C=45 \mu F
$$

Answer: C

D Watch Video Solution

6. An inductor of reactance 1Ω and a resistor of 2Ω are connected in series to the terminals of a 6 V (rms) a.c. source. The power dissipated in the circuit is
A. 8 W
B. 12 W
C. 14.4 W
D. 18 W

Answer: C

D Watch Video Solution
7. The output of a step-down transformer is measured to be 24 V when connected to a 12
watt light bulb. The value of the peak current
is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \mathrm{~A} \\
& \text { B. } \sqrt{2} \mathrm{~A} \\
& \text { C. } 2 A \\
& \text { D. } 2 \sqrt{2} A
\end{aligned}
$$

Answer: A
(Watch Video Solution

1. As the frequency of an ac circuit increases, the current first increases and then decreases.

What combination of circuit elements is most
likely to comprise the circuit ?
A. Inductor and capacitor.
B. Resistor and inductor
C. Resistor and capacitor.
D. Resistor, inductor and capacitor.

Answer: A::D

D Watch Video Solution

2. In an alternating current circuit consisting of elements in series, the current increases on increasing the frequency of supply. Which of the following elements are likely to constitute the circuit ?
A. Only resistor.
B. Resistor and an inductor.

C. Resistor and a capacitor.

D. Only a capacitor.

Answer: C::D

D Watch Video Solution

3. Electrical energy is transmitted over large
distances at high alternating voltages. Which
of the following statements is (are) correct ?
A. For a given power level, there is a lower current.
B. Lower current implies less power loss.
C. Transmission lines can be made thinner.
D. It is easy to reduce the voltage at the
receiving end using step-down
transformers.

Answer: A::B::D

D Watch Video Solution

4. For an LCR circuit, the power transferred
from the driving source to the driven oscillator is $P=I^{2} Z \cos \phi$ \qquad
A. Here, the power factor $\cos \phi>0, P>0$
B. The driving force can give no energy to
the oscillator $(P=0)$ in some cases.
C. The driving force cannot syphon out (P
$<0)$ the energy out of oscillator.
D. The driving force can take away energy
out of the oscillator.

Answer: A::B::C

D Watch Video Solution

5. When an AC voltage of 220 V is applied to the capacitor C
A. the maximum voltage between plates is

220 V.
B. the current is in phase with the applied voltage.

C. the charge on the plates is in phase with

 the applied voltage.D. power delivered to the capacitor is zero.

Answer: C::D

D Watch Video Solution

6. The line that draws power supply to your house from street has
A. zero average current.
B. 220 V average voltage.
C. voltage and current out of phase by 90°
D. voltage and current possibly differing in
phase ϕ such that $|\phi|<\frac{\pi}{2}$

Answer: A::D

D Watch Video Solution

Section C Ncert Exemplar Very Short Answer

1. If a LC circuit is considered analogous to a harmonically oscillating spring block system, which energy of the LC circuit would be analogous to potential energy and which one analogous to kinetic energy ?

D Watch Video Solution

2. Draw the effective equivalent circuit of the circuit shown in figure at very high frequencies
and find the effective impedance.

D Watch Video Solution

3. Study the circuits (a) and (b) shown in figure and answer the following questions.

(a) Under which conditions would the rms currents in the two circuits be the same?

Can the rms current in circuit (b) be larger than that in (a) ?

- Watch Video Solution

4. Can the instantaneous power output of an
ac source ever be negative ? Can the average power output be negative ?
5. In series LCR circuit, the plot of $I_{\max }$ vs ω as
shown in figure. Find the bandwidth and mark
in the figure.

- Watch Video Solution

6. The alternating current in a circuit is described by the graph shown in figure. Show rms current in this graph.

D Watch Video Solution

7. How does the sign of the phase angle ϕ, by which the supply voltage leads the current in
an LCR series circuit, change as the supply frequency is gradually increased from very low to very high values.

D Watch Video Solution

Section C Ncert Exemplar Short Answer

1. A device ' X ' is connected to an ac source. The variation of voltage, current and power in one complete cycle is shown in figure.
(a) Which curve shows power consumption over a full cycle?
(b) What is the average power consumption over a cycle?
(c) Identify the device ' X '.

D) View Text Solution

2. Both alternating current and direct current are measured in amperes. But how is the ampere defined for an alternating current ?

D Watch Video Solution

3. A coil of 0.01 henry inductance and 1Ω resistance is connected to $200 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. Find the impedance of the circuit and
time lag between max. alternating voltage and current.

D Watch Video Solution

4. A 60 W load is connected to the secondary of a transformer whose primary draws line voltage. If a current of 0.54 A flows in the load, what is the current in the primary coil ?

Comment on the type of transformer being used.
5. Explain why the reactance provided by a capacitor to an alternating current decreases with increasing frequency.

D Watch Video Solution

6. Explain why the reactance offered by an inductor increases with increasing frequency of an alternating voltage.
7. An electrical device draws 2 kW power from

AC mains (voltage 223 V (rms) $V_{r m s}=\sqrt{50000} \mathrm{~V}$
). The current differs (lags) in phase by
$\left(\tan \phi=-\frac{3}{4}\right)$
As compared to voltage. Find (i) R,
$X_{C}-X_{L}$, and (iii) I_{M}. Another device has
twice the values for R, X_{C} and X_{L}. How are the answers affected?
2. 1MW power is to be delivered from a power station to a town 10 km away. One uses a pair of Cu wires of radius 0.5 cm for this purpose.

Calculate the fraction of ohmic losses to power transmitted if
(a) power is transmitted at 220 V . Comment on
the feasibility of doing this.
(b) a step-up transformer is used to boost the
voltage to 11000 V , power transmitted, then a step-down transformer is used to bring voltage to 220 V .

$$
\left(\rho_{c u}=1.7 \times 10^{-8} \mathrm{SI} \text { unit }\right)
$$

3. Consider the LCR circuit shown in figure.

Find the net current i and the phase of i. Show that $i=\frac{V}{Z}$. Find the impedence Z for this circuit.

4. For an LCR circuit driven at frequency ω, the
di equation reads
$L \frac{d i}{d t}+R i+\frac{q}{C}=V_{i}=V_{m} \sin \omega t$
(a) Multiply the equation by i and simplify where possible.
(b) Interpret each term physically.
(c) Cast the equation in the form of a conservation of energy statement.
(d) Integrate the equation over one cycle to
find that the phase difference between v and i must be acute.

- Watch Video Solution

5. In the LCR circuit shown in figure, the ac driving voltage is $V=V_{m} \sin \omega t$
(a) Write down the equation of motion for $\mathrm{q}(\mathrm{t})$
(b) At $t=t_{0}$, the voltage source stops and R is
short circuited. Now write down how much
energy is stored in each of L and C.
(c) Describe subsequent motion of charges.

D View Text Solution

Section D Mcqs Darpan Based On Textbook

1. In an A.C. circuit the inductive reactance is defined as

> A. $Z_{L}=-j \omega L$
> B. $Z_{L}=-\frac{j}{\omega L}$
> C. $Z_{L}=-\frac{\omega L}{j}$
> D. $Z_{L}=\omega L$

Answer: C

- Watch Video Solution

2. In an A.C. circuit, the capacitive reactance is defined as

> A. $Z_{C}=j \omega C$
> B. $Z_{C}=-\frac{1}{j \omega C}$
> C. $Z_{C}=\frac{j}{\omega C}$
> D. $Z_{C}=\frac{1}{j \omega C}$

Answer: D

- Watch Video Solution

3. The value of capacitive reactance is given by

$$
\begin{aligned}
& \text { A. } X_{C}=-\frac{1}{\omega C} \\
& \text { B. } X_{C}=\frac{1}{\omega C} \\
& \text { C. } X_{C}=-\frac{j}{\omega C} \\
& \text { D. } X_{C}=\frac{1}{\sqrt{\omega C}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

4. Impedance in L-C-R series circuit is a number. Its value is given by
A. real number , $R+j\left(Z_{L}+Z_{C}\right)$
B. complex number, $R+j\left(X_{L}-X_{C}\right)$
C. complex number , $R+j\left(Z_{L}+Z_{C}\right)$
D. complex number , $\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$

Answer: B

D Watch Video Solution

5. In an A.C. circuit in 1 second current reduces

to zero value 120 times. Hence the frequency of A.C. current is Hz.
A. 50
B. 100
C. 60
D. 120

Answer: C

D Watch Video Solution
6. The displacement in Newton law corresponds to is electrical quantity.
A. electromagnetic force
B. current
C. electric charge
D. the rate of change of electric charge

Answer: C

- Watch Video Solution

7. Which of the following gives a correct correspondence between electrical and mechanical quantities?
A. current \rightarrow velocity
B. current \rightarrow acceleration
C. current \rightarrow displacement
D. none of these

Answer: A

8. Which of the following does give a correct correspondence between an electrical quantity and a mechanical quantity?
A. charge \rightarrow moment of inertia,
inductance \rightarrow coefficient of friction
B. charge \rightarrow displacement, inductance
\rightarrow force
C. charge \rightarrow velocity, inductance
torque

D. charge \rightarrow frictional force, inductance

\rightarrow velocity

Answer: B

D Watch Video Solution

9. On decreasing the angular frequency of A.C.
source used in L-C-R series circuit, the capacitive reactance and inductive resistance
A. increases, decreases
B. increases, increases
C. decreases, increases
D. decreases, decreases

Answer: A

D Watch Video Solution
10. When does the impedance of a series L-C-R
(AC) circuit become minimum ?
A. when the resistance is equal to zero
B. when the impedance is equal to zero
C. when the electric current is equal to
zero
D. When the imaginary part of the impedance is equal to zero.

Answer: D

D Watch Video Solution

11. Current of $\frac{50}{\pi} \mathrm{~Hz}$ frequency is passing through an A.C. circuit having series combination of resistance $R=100 \Omega$ and $L=1 H$, then phase difference between voltage and current is
A. 60°
B. 45°
C. 30°
D. 90°
12. An alternating voltage given as $V=200 \sqrt{2} \sin (100 t) V$ is applied to a capacitor of $1 \mu \mathrm{f}$. The current reading of the ammeter will be equal to mA.
A. 100
B. 20
C. 40
D. 80

Answer: B

D Watch Video Solution

13. A coil of inductance L and resistance R is
connected to an A.C. source of V volt. If the
angular frequency of the A.C. source is equal
to $\omega \mathrm{rads}^{-1}$, then the current in the circuit will
be
A. $\frac{V}{R}$
B. $\frac{V}{L}$
c. $\frac{V}{R+L}$

$$
\text { D. } \frac{V}{\sqrt{R^{2}+\omega^{2} L^{2}}}
$$

Answer: D

D Watch Video Solution

14. One inductor (of inductance L henry) is
connected to an A.C. source, then the current
flowing through the inductor $\mathrm{I}=.$. A.

$$
\text { A. } \frac{V_{0}}{\omega L} \sin \left(\omega L+\frac{\pi}{2}\right)
$$

B. $\frac{V_{0}}{\omega L} \sin \left(\omega t-\frac{\pi}{2}\right)$
C. $V_{0} \omega L \sin \left(\omega t-\frac{\pi}{2}\right)$
D. $\frac{\omega L}{V_{0}} \sin \left(\omega t+\frac{\pi}{2}\right)$

Answer: B

D Watch Video Solution

15. If angular frequency of an A.C. source used in L-C-R circuit is decreased, then inductive reactance and capacitive reactance......
A. Decrease, increase
B. Increase, increase
C. Increase, decrease
D. Decrease, decrease

Answer: A

D Watch Video Solution
16. If angular frequency of an A.C. source used in L-C-R circuit is increased, then inductive reactance and capacitive reactance.....
A. Decrease, increase
B. Increase, increase
C. Increase, decrease
D. Decrease, decrease

Answer: C

D Watch Video Solution

17. The force constant corresponds to electric quantity.
A. resistance
B. inductance
C. capacitance
D. inverse of capacitance

Answer: D

D Watch Video Solution

18. A coil having inductance of 1 mH is connected to an A.C. source, its inductive reactance wil obtained to 1Ω then what will be
the angulai frequency (in rad/s) of an A.C. source?

A. 10^{3}
B. 10
C. 10^{-3}
D. 1

Answer: A
(Watch Video Solution
19. The reactance of a capacitor of $\frac{1}{\pi}$ in are A.C. circuit having frequency of 50 Hz is
A. 100Ω
B. 10Ω
C. 50Ω
D. $10^{-2} \Omega$

Answer: D

D Watch Video Solution
20. An LCR series circuit with $L=0.5 \mathrm{H}$, $C=10 \times 10^{-6} F, R=100 \Omega$ is connected to an A.C. source of frequency of 50 Hz . The impedance of the circuit is
A. 1.8765Ω
B. 18.76Ω
C. 189.6Ω
D. 101.3Ω

Answer: C
21. In an L-C-R circuit , $R=\sqrt{7} \Omega, X_{L}=11 \Omega$ and $X_{C}=8 \Omega$, then the value of impedance $=$
A. 4Ω
B. 3Ω
C. 9Ω
D. $3 \sqrt{7} \Omega$

Answer: A
22. Capacitive reactance of a capacitor for a

D.C. circuit is.......

A. 0
B. ωC
C. $\frac{1}{\omega C}$
D. infinite

Answer: D

- Watch Video Solution

23. The expression for the A.C. supply voltage of 234 V and frequency of 50 Hz in our house is
A. $\mathrm{V}=165 \sin (100 \pi t)$
B. $\mathrm{V}=331 \sin (100 \pi t)$
C. $V=334 \sin (100 \pi t)$
D. $V=331 \cos (100 \pi t)$

Answer: B

D Watch Video Solution
24. The time taken by A.C. voltage of frequency

50 Hz to change from zero to maximum is ms.
A. 5
B. 10
C. 20
D. 50

Answer: A

- Watch Video Solution

25. When current passing through a series
connection of 100Ω resistance and $2 H$ inductance has frequency $\frac{25}{\pi} \mathrm{~Hz}$, the phase difference between voltage and current is
A. 90°
B. 60°
C. 45°
D. 30°

Answer: C
26. When 10 A current passes through 12Ω resistance, maximum voltage across it is
A. 20 V
B. 90 V
C. 169.68 V
D. 120 V

Answer: C
27. When $1 \mu \mathrm{~F}$ capacitor is connected across $V=100 \sqrt{2} \sin (100 t)$ Volt, current passing through milliammeter connected in the circuit is
A. 10
B. 20
C. 40
D. 80
28. Unit of ωC is
A. H
B. Ω
C. \circlearrowright
D. Faraday

Answer: C
29. 20Ω resistance is connected to $\mathrm{V}=220 \sin$
($100 \pi \mathrm{t}$) voltage source. Time taken by current to reduce from maximum value to its rms value is
A. 0.2 s
B. 0.25 s
C. $25 \times 10^{-3} \mathrm{~s}$
D. $2.5 \times 10^{-3} \mathrm{~s}$

Answer: D

30.
(1)

(2)

Above graphs are for reactance versu frequency of A.C. emf's frequency. Then
A. Figure (1) is for inductor and figure (2) is for capacitor.
B. Figure (1) is for capacitor and figure (2)
for inductor.

C. Figure (1) is for resistance and figure (2)

is for capacitor.
D. Figure (1) is for inductor and figure (2) is

for resistor.

Answer: B

D Watch Video Solution

31. The resistance of a coil for D.C. is in ohms.

In A.C. the resistance
A. will remain same
B. will increase
C. will decrease
D. will be zero.

Answer: B

D Watch Video Solution

32. A coil having inductance of 1 mH is connected to an A.C. source, its inductive reactance wil obtained to 1Ω then what will be
the angulai frequency (in rad/s) of an A.C. source ?

A. 10^{3}
B. 10
C. 10^{-3}
D. 1

Answer: A
(Watch Video Solution
33. In a series D.C. circuit has core of a reactance of 8Ω and a resistance of 6Ω. The effective resistance of the circuit will be
A. $\frac{24}{7} \Omega$
B. 6Ω
C. 8Ω
D. 14Ω

Answer: B

D Watch Video Solution
34. In an A.C. circuit of frequency $\frac{400}{\pi} \mathrm{~Hz}$ is of capacitance $C \mu F$ and reactance of capacitance is 25Ω then the value of $\mathrm{C}=. . .$.
A. $25 \mu F$
B. $50 \mu F$
C. $400 \mu F$
D. $100 \mu F$

Answer: B

D Watch Video Solution
35. In an L-C-R circuit , $R=\sqrt{7} \Omega, X_{L}=11 \Omega$ and $X_{C}=8 \Omega$, then the value of impedance

$$
=
$$

А. 4Ω
B. 3Ω
С. 9Ω
D. $3 \sqrt{7} \Omega$

Answer: A

- Watch Video Solution

36. A coil of self inductance of 1 H and resistance 200Ω is connected to an A.C. source of frequency $\frac{200}{\pi} \mathrm{~Hz}$. The phase difference between voltage and current will be ...
A. 30°
B. 63°
C. 45°
D. 75°

Answer: B
37. The maximum value of an A.C. voltage coming in our houses is \% more than that of its r.m.s. value.
A. 1.414
B. 4.14
C. 14.14
D. 41.4

Answer: D
38. The ratio of r.m.s. value of an A.C. voltage and its mean value over half cycle is
A. $\sqrt{2}: 1$
B. $\sqrt{2}: \pi$
C. $2: \pi$
D. $\pi: 2 \sqrt{2}$

Answer: D

39. An alternating voltage $\mathrm{V}=400 \sin (500 \omega t) \mathrm{V}$
is connected to a $0.2 k \Omega$ resistor, what will be
the rms value of current?
A. 14.14 A
B. 1.414 A
C. 0.1414 A
D. $2 A$

Answer: B
40. In an A.C. circuit, resistance $=12 \Omega$ and
capacitance reactance $=9 \Omega$ are connected in series, then the value of impedance of a circuit will be
A. 15Ω
B. 21Ω
C. 3Ω
D. $3 \sqrt{7} \Omega$

Answer: A

D Watch Video Solution

41. $I_{\mathrm{rms}}=\ldots \quad I_{m}$
A. 200%
B. 50%
C. 70.71%
D. 67.8%
42. Usually in A.C. circuit
A. average current is zero.
B. average square of current is zero.
C. dissipiation of average power is zero
D. phase difference between voltage and
current is zero.
43. The force constant of a spring corresponds to in electrical circuit.
A. C
B. $\frac{1}{C}$
C. $\frac{1}{\sqrt{C}}$
D. $\frac{L}{\sqrt{C}}$

Answer: B
44. A pure capacitor of capacitive reactance of
10Ω is connected to an A.C. source. If the
frequency of a source is doubled, the capacitive reactance will be Ω.
A. 0.5
B. 1.0
C. 5.0
D. 10
45. An L-C-R series circuit with inductor of reactance is 25Ω, reactance of capacitor is 50
Ω and resistance of 10Ω is connected to an
A.C. source. The impedance of the circuit will be
А. 725Ω
B. 26.9Ω
C. 72.5Ω

D. 269Ω

Answer: B

D Watch Video Solution

46. If 1.5 A constant current is passing through
a resistance, then the value of rms of current over half period will be
A. 1.5 A
B. 1.25 A
C. 3.0 A
D. none of these

Answer: A
(D) Watch Video Solution
47. An L-C-R series A.C. circuit is tuned to resonance. The impedance of the circuit is

$$
\begin{aligned}
& \text { A. }\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]^{\frac{1}{2}} \\
& \text { B. }\left[R^{2}+(\omega L)^{2}+\left(\frac{1}{\omega C}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

C. $\left[R^{2}+\left(\frac{1}{\omega C}-\omega L\right)^{2}\right]^{\frac{1}{2}}$
D. R

Answer: D

D Watch Video Solution

48. In an L-C-R circuit, $\mathrm{L}=8 \mathrm{H}, \mathrm{C}=0.5 \mu \mathrm{~F}, \mathrm{R}=100$
Ω connected in series. The resonance frequency of the circuit will be
A. 600 Hz
B. 60 Hz
C. $\frac{250}{\pi} \mathrm{~Hz}$
D. 5000 Hz

Answer: C

- Watch Video Solution

49. In a L-C oscillator circuit at any instant of
time current is I and charge on capacitor is Q
then the total energy of the system will be
A. $\frac{Q^{2}}{2 C}$
B. $\frac{Q}{2 C^{2}}$
C. $\frac{Q_{0}^{2}}{2 C}$
D. $\frac{Q_{0}^{2}}{2 C^{2}}$

Answer: C

- Watch Video Solution

50. does not change with time for D.C.
current and D.C. voltage.
A. only current
B. only voltage
C. only power
D. current, voltage and power

Answer: D

D Watch Video Solution
51. An instantaneous current at any instant in an A.C. series circuit is zero. At this instant, the
instantaneous voltage is maximum, then is not connected with the source.
A. capacitor
B. inductor
C. resistance
D. both the inductor and capacitor

Answer: C

D Watch Video Solution

52. An a.c. source is rated at $220 \mathrm{~V}-50 \mathrm{~Hz}$. The
time taken for voltage to change from its peak
value to zero is
A. 50 sec
B. 0.02 sec
C. 5 sec
D. $5 \times 10^{-3} \mathrm{sec}$

Answer: D

D Watch Video Solution
53. The instantaneous value of current in an
A.C. circuit is $I=2 \sin \left(100 \pi t+\frac{\pi}{3}\right) A$. The current will be maximum for the first time at

$$
\begin{aligned}
& \text { A. } t=\frac{1}{100} s \\
& \text { B. } t=\frac{1}{200} s \\
& \text { C. } t=\frac{1}{400} s \\
& \text { D. } t=\frac{1}{600} s
\end{aligned}
$$

Answer: D

54. L, C and R represent physical quantities
inductance, capacitance and resistance
respectively. What is the combination representing dimension of frequency?
A. LC
B. $(L C)^{\frac{-1}{2}}$
C. $\left(\frac{L}{C}\right)^{\frac{-1}{2}}$
D. $\frac{C}{L}$

Answer: B

D Watch Video Solution

55. An emf $E=4 \cos (1000 t)$ volt is applied to
an LR circuit of inductance 3 mH and
resistance 4Ω. What is the amplitude of
current in the circuit ?
A. $\frac{4}{\sqrt{7}} A$
B. 1.0 A
C. $\frac{4}{7} \mathrm{~A}$

D. 0.8 A

Answer: C

D Watch Video Solution

56. A coil of inductance L has an inductive reactance of X_{L} in an A.C. circuit in which the effective current is I . The coil is made from a super - conducting material then, what power is dissipated in the coil ?
B. $I X_{L}$
C. $I^{2} X_{L}$
D. $I X_{L}^{2}$

Answer: A

D Watch Video Solution

57. If 8Ω resistance and 6Ω reactance are present in an A.C. series circuit then what will be the impedence of the circuit ?
А. 20Ω
B. 5Ω
C. 10Ω
D. $14 \sqrt{2} \Omega$

Answer: C

D Watch Video Solution

58. Two identical incandescent light bulbs are connected as shown in figure. When the circuit
is connected with an A.C. voltage source of
frequency f, which of the following observation will be correct ?

A. Both bulbs will glow alternatively.
B. Both bulbs will glow with same
brightness provided $f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}$
C. Bulb b_{1} will light up initially and goes off,
bulb b_{2} will be on constantly

D. Bulb b_{1} will blink and bulb b_{2} will be on

constantly.

Answer: B

D Watch Video Solution

59. A $220 \mathrm{~V}, 50 \mathrm{~Hz}$ a.c. source is connected an inductance of 0.2 H and a resistance of 20Ω in series. What is the current in the circuit ?
B. $5 A$
C. $33.3 A$
D. $3.33 A$

Answer: A

- Watch Video Solution

60. The resistance of an R-L A.C. circuit is 10Ω.

An emf E_{0} applied across the circuit at $\omega=20$
$\mathrm{rad} / \mathrm{s}$. If the current in the circuit is $\frac{I_{0}}{\sqrt{2}}$ what
is the value of L ?
A. 0.55 H
B. 0.15 H
C. 0.5 H
D. 0.4 H

Answer: C

D Watch Video Solution

61. A resistor 30Ω, inductor of reactance 10Ω
in series to voltage source $E=300 \sqrt{2} \sin (\omega t)$
. Find the current in the circuit.
A. 14.14 A
B. 10 A
C. 30A
D. 20A

Answer: B
(Watch Video Solution
62. An inductance of 1 mH , a condenser of 10μ

F and a resistance of 50Ω are connected in
series. The reactances of inductors and condensers are same. What will be the reactance of either of them?
A. 5Ω
B. 3Ω
C. 7Ω
D. 10Ω
63. Phasor diagram for the following circuit

Answer: A

- Watch Video Solution

64. Phasor diagram for the following circuit is

Answer: C

D Watch Video Solution
65. Phasor diagram for the following circuit is

Answer: A

- Watch Video Solution

66. In an A.C. series circuit of L-R voltage applied is 220 V , if the potential difference across two ends on inductor is 176 V then the potential difference across two ends of the resistance will be
A. 44 V
B. 110 V
C. 132 V
D. 220 V

Answer: C

Watch Video Solution

67. In series L-C-R circuit, resistance, inductance and capacitance are connected in series. The value of potential difference across
three are $70 \mathrm{~V}, 90 \mathrm{~V}$ and 65 V respectively. The value of potential difference of A.C. source is
A. 225 V
B. 95 V
C. 85 V

D. 74.3 V

Answer: D

D Watch Video Solution

68. A coil of resistance R and inductance L is
joined with a battery of E volt. The current passing through it will be

> A. $\frac{E}{R}$
> B. $\frac{E}{L}$
C. $\sqrt{\frac{E^{2}}{R^{2}+L^{2}}}$
D. $\sqrt{\frac{E L}{R^{2}+L^{2}}}$

Answer: A

- Watch Video Solution

69. In a given circuit $\mathrm{V}=5 \mathrm{~V}, V_{L}=3 \mathrm{~V}$ then V_{R}
$=$

A. 0 V
B. 2 V
C. 3 V
D. 4 V

Answer: D

- Watch Video Solution

70. A pure resistance and a pure inductance are connected in series across a 100 volt A.C
line. A voltmeter gives same reading whether connected across resistance or inductance. It does read V.
A. 50 V
B. 70.7 V
C. 88.2 V
D. 100 V

Answer: B

D Watch Video Solution

71. If we consider the phasor if I in positive X-
direction for an A.C. circuit which has only inductor, then the phasor of V is in .direction .
A. positive X
B. positive Y
C. negative X
D. negative Y

Answer: B

- Watch Video Solution

72. A.C. source

When above circuit is in the condition of
resonance,
A. Readings obtained in V_{1} and V_{3} are
equal.
B. Readings obtained in V_{1} and V_{2} are
equal.
C. Readings obtained in V_{2} and V_{3} are
equal.
D. Readings obtained in V_{2} and V_{4} are
equal.

73.
 $220 \mathrm{~V}, 100 \mathrm{~Hz}$

Reading in voltmeter in above circuit is......
A. 300 V
B. 900 V
C. 200 V

D. 400 V

Answer: C

- Watch Video Solution

74.

Voltage V_{1} across the capacitor in above circuit is
A. in phase with source voltage V.
B. 90° ahead of source voltage V .
C. ahead of source voltage V by amount δ
where $0<\delta<90^{\circ}$
D. lags behind the source voltage V by amount δ where $0<\delta<90^{\circ}$

Answer: D

D Watch Video Solution

75. In Phasor's method, magnitude (or length)

 of vector (known as Phasor) givesA. phase of harmonic function
B. magnitude of harmonic function
C. amplitude of harmonic function
D. frequency of harmonic function

Answer: A
(Watch Video Solution

76. Phasor's method is used for

A. to obtain high A.C. voltage
B. to obtain high frequency of A.C.
C. to obtain addition of two harmonic
functions
D. to obtain multiplication of two harmonic
functions

Answer: C

77. If in an A.C. L-C series circuit $X_{L}>X_{C}$.

Hence current
A. lags behind the voltage by $\frac{\pi}{2}$ in phase
B. lags the voltage by $\frac{\pi}{2}$ in phase
C. lags the voltage by π in phase
D. lags behind the voltage by π in phase

Answer: A

- Watch Video Solution

78. An A.C. source is connected to a resistive circuit, current

A. lags behind voltage in phase
B. and voltage are in the same phase
C. leads ahead to voltage in phase
D. in first half cycle it leads ahead to
voltage and remain first half it lags
behind voltage in phase.

Answer: B

- Watch Video Solution

79. The relation between the phase of current
and voltage in a circuit containing only inductor is
A. voltage leads ahead by $\frac{\pi}{2}$
B. current leads ahead by $\frac{\pi}{2}$
C. both are in same phase
D. phase difference is π

D Watch Video Solution

80. In an A.C. circuit the value of inductive
reactance connected with it, then the phase
difference between current in coil and voltage
$=$...... rad.
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$

D. $\frac{\pi}{6}$

Answer: C

D Watch Video Solution

81. In an A.C. circuit, voltage applied is $V=220$
$\sin 100 \mathrm{t}$. If the impedance is 110Ω and phase
difference between current and voltage is 60°,
the power consumption is equal to
A. 50 W

B. 110 W

C. 220 W

D. 330 W

Answer: B

D Watch Video Solution

82. In an L-C-R series circuit, $R=500 \Omega \mathrm{~L}=10 \mathrm{ml}$
of an ideal inductor and $C=20 \mu F$, thes
components connected to A.C. source of 230 V

50 Hz . The power in the circuit will be

A. 98 W
B. 89 W
C. 980 W

D. 98 mW

Answer: A
83. As shown in figure instantaneous current passing through the circuit from R, L and C are
shown then the total current is

A. $i_{R}+i_{L}+i_{C}$
B. $i_{A}+\left(i_{L}-i_{C}\right)$
C. $\left[i_{A}^{2}+\left(i_{L}-i_{C}\right)^{2}\right]^{\frac{1}{2}}$
D. $\left[i_{A}^{2}+\left(i_{L}^{2}-i_{C}^{2}\right)\right]^{\frac{1}{2}}$

Answer: A

D Watch Video Solution

84. The potential difference between the two
ends of the three mponents of L-C-R series A.C.
circuit are V_{L}, V_{C} and V_{R} respectively. Then
voltage of A.C. source is
A. $V_{L}+V_{C}+V_{R}$
B. $V_{R}+V_{L}-V_{C}$
C. $\sqrt{V_{R}^{2}+\left(V_{L}+V_{C}\right)^{2}}$
D. $\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}$

Answer: A

D Watch Video Solution

85. In the given figure, total V_{rms} and I_{rms} passing from various components in circuit
are shown. Then total $I_{\mathrm{rms}}=$......

A. $I=I_{R}+I_{L}+I_{C}$
B. $I=I_{R}+I_{L}-I_{C}$
C. $I=\sqrt{I_{R}^{2}+\left(I_{L}-I_{C}\right)^{2}}$
D. $I=\sqrt{I_{R}^{2}+\left(I_{C}-I_{L}\right)^{2}}$

Answer: C
86. In the circuit given below the reading of voltmeter across L will be

A. 249.8 V
B. 20 V
C. 10 V
D. 200 V

Answer: A

D Watch Video Solution

87. Voltage and current in an a.c. circuit are given by $\mathrm{V}=5 \sin \left(100 \pi t-\frac{\pi}{6}\right)$ and $\mathrm{I}=4 \sin$ $\left(100 \pi t+\frac{\pi}{6}\right)$ then
A. voltage leads the current 30°
B. current leads the voltage by 30°
C. current leads the voltage by 60°
D. voltage leads the current by 60°

Answer: C

D Watch Video Solution

88. An alternating voltage is connected in series with a resistor R and an inductor L. If
the potential drop across the resistor is 200 V and across the inductor is 150 V , then what is the applied voltage ?
A. 350 V
B. 250 V

C. 500 V

D. 300 V

Answer: B

D Watch Video Solution

89. In an a.c. circuit containing an inductor of
zero resistance, the emf of the applied A.C.
voltage leads the current by
A. 90°
B. 45°
C. 30°
D. 0°

Answer: A

D Watch Video Solution

90. An alternating current source of frequency

100 Hz is joined to a series combination of a resistance, a capacitance and a coil in series.

The potential difference across the coil, the
resistance and the capacitor is 46,40 and 8 volt respectively. What is the electromotive force of alternating current source in volt ?
A. 94
B. 14
C. 10
D. 76

Answer: C

D Watch Video Solution
91. In an A.C. circuit, a resistance of $\mathrm{R} \Omega$ connected in series with an inductance if phase angle between voltage and current 45°.

Then what will be the value of inducti reactance?

> A. $\frac{R}{4}$
> B. $\frac{R}{2}$
C. R
D. cannot be found with the given data.
92. A 12Ω resistor and a 0.21 henry inductor are connected in series to an A.C. source operating at 20 volt, 50 cycle/second. What is the phase angle between the current and the source voltage ?
A. 30°
B. 40°
C. 80°
D. 90°

Answer: C

D Watch Video Solution

93. In a series L-C-R circuit, resistance $\mathrm{R}=10 \Omega$
and the impedance $Z=20 \Omega$. The phase $=$ difference between the current and the voltage is
A. 30°
B. 45°
C. 60°

D. 90°

Answer: C

D Watch Video Solution

94. An inductance of $\left(\frac{200}{\pi}\right) \mathrm{mH}$, a capacitance of $\left(\frac{10^{-3}}{\pi}\right) F$ and a resistance of 10Ω are connected in series with an a.c. source
$220 \mathrm{~V}, 50 \mathrm{~Hz}$. Then what is the phase angle of the circuit ?
A. $\frac{\pi}{4} \mathrm{rad}$
B. $\frac{\pi}{3} \mathrm{rad}$
C. $\frac{\pi}{2} \mathrm{rad}$
D. $\frac{\pi}{6} \mathrm{rad}$

Answer: A

D Watch Video Solution

95. At which angular frequency of source,
current in series LCR A.C. circuit would be maximum ?
A. $\sqrt{L C}$
B. $\frac{1}{\sqrt{L C}}$
C. $\sqrt{\frac{L}{C}}$
D. $\frac{1}{\sqrt{L C}}$

Answer: B

- Watch Video Solution

96. When resonance takes place in series LCR
A.C. circuit,
A. current is minimum.
B. phase difference between current and voltage is 90°
C. phase difference between current and
voltage is 0°
D. phase difference between current and
voltage is 0°

Answer: D

97. For one series LCR A.C. circuit, voltages
across L, C and R are each 10 V . Now, if only
resistance is made half, new voltages across L,
C and R will be and ... respectively.
A. $10 \vee, 10 \vee$ and 5 V
B. $10 \mathrm{~V}, 10 \mathrm{~V}$ and 10 V
C. $20 \mathrm{~V}, 20 \mathrm{~V}$ and 5 V

D. $20 \mathrm{~V}, 20 \mathrm{~V}$ and 10 V

Answer: D

For resonance in above circuit angular frequency and amplitude of current are respectively.....and
A. $2500 \mathrm{rad}^{-1}$ and $5 \sqrt{2} A$
B. $2500 \mathrm{rad}^{-1}$ and 5A
C. $2500 \mathrm{rad} \mathrm{s}^{-1}$ and $\frac{5}{\sqrt{2}} \mathrm{~A}$
D. $250 \mathrm{rad} s^{-1}$ and $5 \sqrt{2} \mathrm{~A}$

Answer: A

D Watch Video Solution

99. The value of the Q -factor in an L-C-R series
circuit is
A. dependent on the frequency of the A
source.
B. dependent on the values of all three
components L, R and C .
C. dependent only on the values of L
D. it may or may not depend on the power
factor .

Answer: B

D Watch Video Solution
100. What is the rms value of the current for A
current $\mathrm{I}=100 \cos \left(200 \mathrm{t}+45^{\circ}\right) \mathrm{A}$?
A. $50 \sqrt{2} A$
B. 100A
C. $100 \sqrt{2} A$
D. 0

Answer: A

D Watch Video Solution
101. Resonance frequency for $L-C-R, A C$ series
circuit is $f_{0}=$......

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \pi \sqrt{L C}} \\
& \text { B. } \frac{2 \pi}{\sqrt{L C}} \\
& \text { C. } \frac{\sqrt{L C}}{2 \pi} \\
& \text { D. } \frac{2 \pi}{L C}
\end{aligned}
$$

Answer: A

D Watch Video Solution
102. For L-C-R, A.C. circuit resonance frequency
is 600 Hz and frequencies at half power point
are 550 Hz and 650 Hz . What will be the Q-
factor?
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. 6
D. 3

Answer: C
103. For series $L-C-R$ circuit, $L=10 \mathrm{mH}$ and
$C=10^{-7} \mathrm{~F}$ If resonance frequency is made double without changing inductor, the capacitance must be $\mu \mathrm{F}$.
A. 0.25
B. 0.025
C. 2.5
D. 25

Answer: B

D Watch Video Solution

104. The current from an A.C. source is given
by $I=2 \cos (\omega t+\phi)$ then rms value of current is
A. zero
B. $\sqrt{2} A$
C. 2A
D. $2 \sqrt{2} A$

Answer: B

D Watch Video Solution

105. For an L-C-R series circuit, the Q-factor is ...

$$
\begin{aligned}
& \text { A. } Q=R \sqrt{\frac{L}{C}} \\
& \text { B. } Q=\frac{1}{R} \sqrt{\frac{L}{C}} \\
& \text { C. } Q=\frac{1}{R} \sqrt{\frac{C}{L}} \\
& \text { D. } Q=\frac{1}{C} \sqrt{\frac{R}{L}}
\end{aligned}
$$

106. 20Ω resistor is connected with the A.C.
source of $\mathrm{V}=282 \sin (120 \pi \mathrm{t}$), the current passing through the resistor will be
A. 14.1 A
B. 10 A
C. 7.05 A
D. 5 A
107. The sharpness of an L-C-R series resonance curve
A. is more if Q - factor is small
B. is more if Q - factor is 1
C. is more if Q - factor is large
D. is determined by resonant frequency

Answer: C
108. The value of half power bandwidth of resonance curve of L-C-R series circuit does not depend on
A. R
B. L
C. C
D. both L and R
109. Q - factor for resonance curve of L-C-R series circuit is defined as
A. $\omega_{0} \Delta \omega$
B. $\frac{\omega_{0}}{\Delta \omega}$
C. $\frac{\Delta \omega}{\omega_{0}}$
D. $\sqrt{\omega_{0} \Delta \omega}$

Answer: B
110. In a series $L-C-R$ circuit $R=100 \Omega, L=1 H$ and
$\mathrm{C}=1 \mu \mathrm{E}$ The half power bandwidth is
A. 100
B. 10
C. 0.1
D. 0.01

Answer: A
111. A 10Ω resistance, 5 mH inductor and $10 \mu F$
capacitor are joined in series. When a suitable
frequency of alternating current source is
joined to this combination, the circuit resonates. If the resistance is halved, the resonance frequency
A. is halved
B. is doubled
C. remains unchanged
D. in quadrupled

Answer: C

- Watch Video Solution

112. In a series L-C-R, A.C. circuit, V_{1}, V_{2} and V_{3} are the voltmeters connected to L, C and R respectively and ammeter A also connected as shown in figure. Reading of V_{3} and A will be

$220 \mathrm{~V}, 50 \mathrm{~Hz}$
A. $400 \mathrm{~V}, 4 \mathrm{~A}$
B. $220 \mathrm{~V}, 4 \mathrm{~A}$
C. $220 \mathrm{~V}, 2.2 \mathrm{~A}$
D. $400 \mathrm{~V}, 2.2 \mathrm{~A}$

Answer: C

D Watch Video Solution

113. Figure shows two resonance current with same voltage source for L-C-R series A.C. circuit If $\quad R_{1}, L_{1}, C_{1} \quad$ and $\quad R_{2}, L_{2}, C_{2} \quad$ are the

A. $R_{1}=R_{2}$
B. $R_{1}<R_{2}$
C. $L_{1} C_{1}<L_{2} C_{2}$
D. $L_{1} C_{1}=L_{2} C_{2}$

Answer: D
114. If instantaneous current is given by $\mathrm{i}=4$ cos
$(\omega t+\phi)$ ampere, than the rms value of current is ampere.
A. 4
B. $2 \sqrt{2}$
C. $4 \sqrt{2}$
D. 0
115. In an a.c. circuit, peak value of voltage is

423 volt. Its effective voltage is volt.
A. 400
B. 323
C. 300
D. 340

Answer: C
116. If E_{0} represents the peak value of the voltage in an a.c. circuit, the rms value of the voltage will be
A. $\frac{E_{0}}{\pi}$
B. $\frac{E_{0}}{2}$
C. $\frac{E_{0}}{\sqrt{\pi}}$
D. $\frac{E_{0}}{\sqrt{2}}$

Answer: D

117. The peak value of 220 volts of a.c. mains is volt.
A. 115.6
B. 22
C. 311.0
D. 440

Answer: C
118. In an A.C. circuit of inductance 50 mH with negligible resistance and a capacitor of capacitance 500 pF are connected in series.

The resonance frequency for the given circuit is

$$
\begin{aligned}
& \text { A. } \frac{10^{5}}{\pi} \mathrm{~Hz} \\
& \text { B. } \frac{1}{\pi} \mathrm{~Hz} \\
& \text { C. } \frac{100}{\pi} \mathrm{~Hz} \\
& \text { D. } \frac{1000}{\pi} \mathrm{~Hz}
\end{aligned}
$$

D Watch Video Solution

119. An alternating current is given by the equation $i=\left(i_{1} \cos \omega t+i_{2} \sin \omega t\right)$. The rms
current is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}}\left(i_{1}+i_{2}\right) \\
& \text { B. } \frac{1}{\sqrt{2}}\left(i_{1}+i_{2}\right)^{2} \\
& \text { C. } \frac{1}{\sqrt{2}}\left(i_{1}^{2}+i_{2}^{2}\right)^{\frac{1}{2}} \\
& \text { D. } \frac{1}{2}\left(i_{1}^{2}+i_{2}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

- Watch Video Solution

120. In a circuit, the value of the alternating
current is measured by hot wire ammeter as

10 ampere. What will be its peak value ?
A. $10 A$
B. 20 A
C. $14.14 A$
D. $7.07 A$

D Watch Video Solution

121. The frequency of an alternating voltage is

50 cycles/s and its amplitude is 120 V . Then
what is the rms value of voltage?
A. 101.3 V
B. 84.9 V
C. 70.7 V
D. 56.5 V

Answer: B

- Watch Video Solution

122. For a series L-C-R a.c.circuit at resonance,
the statement which is not true ?
A. Wattless current is zero
B. Power factor is zero
C. Peak energy stored by a capacitor = peak
energy stored by an inductor
D. Average power = apparent power

Answer: A::B

D Watch Video Solution

123. An A.C. circuit consists of an Indicator of
inductance 0.5 H and a capacitor of
capacitance $8 \mu \mathrm{~F}$ in series. When the current in
the circuit is maximum, what is the angular frequency of A.C. source ?
A. $500 \mathrm{rad} / \mathrm{s}$
B. $2 \times 10^{5} \mathrm{rad} / \mathrm{s}$
C. $4000 \mathrm{rad} / \mathrm{s}$
D. $5000 \mathrm{rad} / \mathrm{s}$

Answer: A

D Watch Video Solution

124. The phase difference between the current and voltage of L-C-R circuit in series combination at resonance is
A. 0
B. $\frac{\pi}{2}$
C. π
D. $-\pi$

Answer: A

- Watch Video Solution

125. The resonant frequency of a circuit is f. If
the capacitance is made 4 times the initial
values, then the resonant frequency will become
A. $\frac{f}{2}$
B. $2 f$
C. f
D. $\frac{4}{f}$

Answer: A
(Watch Video Solution
126. An L-C-R series circuit with $R=100 \Omega$ is
connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ A.C. source when
only the capacitance is removed, the current lags the voltage by 60°. When only the inductance is removed, the current leads the voltage by 60°. Find the current in the circuit.
A. $4 A$
B. $2 A$
C. $6 A$
D. $8 A$

Answer: B

- Watch Video Solution

127. As shown in figure series L-C-R circuit , when driven by an emf source of angular frequency 70 kilo-radians per second. Prove that the circuit effectively behaves like series R-C circuit .

A. 4.28Ω
B. 24.28Ω
C. 16.28Ω
D. 14.28Ω

Answer: D

D Watch Video Solution

128. A transistor oscillator using a resonant circuit with an inductor L (of negligible resistance and a capacitor C in series produce
oscillation of frequency f. If L is doubled and C
is changed to 4C, then what will be the resonance frequency?

$$
\begin{aligned}
& \text { A. } \frac{f}{2 \sqrt{2}} \\
& \text { B. } \frac{f}{3 \sqrt{2}} \\
& \text { C. } \frac{f}{4 \sqrt{2}} \\
& \text { D. } \frac{f}{1 \sqrt{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution
129. The A.C. voltage and the current in a circuit are given by the following expressions.
$V=110 \sqrt{2} \cos \left(2000 t+25^{\circ}\right) V \quad$ and
$I=10 \sqrt{2} \cos \left(2000 t-20^{\circ}\right)$ A. Calculate impedance and resistance of the circuit.
A. 7.679Ω
B. 7.579Ω
C. 7.779Ω
D. 7.879Ω
130. In the transmission of a.c. power through
transmission lines, when the voltage is
stepped up n times, the power loss in
transmission
A. increases n times
B. decreases n times
C. increases n^{2} times
D. decreases n^{2} times

Answer: D

D Watch Video Solution

131.

As shown in the figure, series combination of ideal capacitor, pure resistor and a practical inductor are connected in series with an ac
source 200 V, 60 Hz . Find power consumed in inductor.
A. 320 W
B. 176 W
C. 144 W
D. 0 W

Answer: C

- Watch Video Solution

132. Three series A.C. circuits (i) RC (ii) RL and
(iii) LC (where values of L and C are such that
$X_{L}=X_{C}$) are connected turn by turn with a given A.C. source with angular frequency ω. If power consumed in these circuits are respectively P_{1}, P_{2} and P_{3} then
A. $P_{1}>P_{2}>P_{3}$
B. $P_{1}=P_{2}<P_{3}$
C. $P_{1}=P_{2}>P_{3}$
D. $P_{1}=P_{2}=P_{3}$

Answer: C

D Watch Video Solution

133. For one series A.C. circuit, its reactance is equal to its resistance. Then its power factor is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. 0

Answer: C

D Watch Video Solution

134. Wattless current is possible in a circuit having
A. only R
B. R and C
C. R and L
D. L and C

Answer: D

D Watch Video Solution

135. In a series LCR A.C. circuit, by keeping
resistance constant, power factor can be increased by decreasing
A. inductance
B. capacitance
C. both (A) and (B)
D. $\left|X_{L}-X_{C}\right|$

Answer: B

D Watch Video Solution

136. Ratio of power factor in two A.C. circuits (i)
containing only resistance and (ii) containing
only inductor is
A. 1
B. 0
C. ∞
D. x (where $x \in N$)

Answer: C

- Watch Video Solution

137. Total energy of one LC circuit is $x J$. Then at
$\mathrm{t}=0$, energy of fully charged capacitor and inductor are respectivelyand
A. $x, 0$
B. $\frac{x}{2}, \frac{x}{2}$
C. $0, \mathrm{x}$
D. x, x

Answer: A

D Watch Video Solution

138. A circuit connected with a source of 230 V ,
draws a current of 2A and power consumed
from it is 100 W , then power factor of the circuit is
A. 0.02
B. 1.2
C. 0.22
D. 2.2

Answer: C

D Watch Video Solution

139. An alternating current of frequency f is
flowing in a circuit containing only a inductor
L. If V_{0} and I_{0} represent peak values of voltage and current respectively, the average power given by source to inductor is equal to A. 0
B. $0.5 V_{0} I_{0}$
C. $I_{0}^{2} 2 \pi f L$
D. $V_{0} I_{02} \pi f L$

Answer: A

- Watch Video Solution

140. At alternating voltage is applied across
the $R-L$ combination $V=220 \sin 120 t V$ and the
current $\mathrm{I}=4 \sin \left(120 \mathrm{t}-60^{\circ}\right) \mathrm{A}$ developes. The power consumption is
A. 0
B. 110 W
C. 220 W
D. 440 W

Answer: C

- Watch Video Solution

141. A chock coil has negligible resistance. The alternating p.d. across it, is 220 V and the current is 5 mA . The power consumed is
A. $220 \times \frac{5}{1000} \mathrm{~W}$
B. $\frac{220}{5} \mathrm{~W}$
C. 0

D. $220 \times 5 \mathrm{~W}$

Answer: C

D Watch Video Solution

142. Power factor in an L-C-R circuit is
A. 0
B. 0.5
C. 1
D. depends on the value of L, C, R

Answer: C

D Watch Video Solution

143. If 2.2 kW of power having 22000 V is transmitted on a transmission line with 10Ω resistance then power dissipated in the form of thermal energy will be
A. 0.1 W
B. 1 W
C. 10 W
D. 100 W

Answer: A

D Watch Video Solution

144. Oscillates in LC circuit.
A. Inductor

B. Capacitor

C. Waves
D. Charge

Answer: D

D Watch Video Solution

145. Charge in LC oscillations,
A. decreases continuously.
B. increases continuously.

C. changes periodically.

D. remains constant.

Answer: C

D Watch Video Solution

146. In order to continue emission of electromagnetic waves from LC oscillations, we should
A. increase the capacitance of a capacitor.
B. increase the inductance of an inductor.
C. continuously supply energy to LC circuit
which can compensate the energy lost in
emission.
D. use silver wire in LC circuit (which has
low resistance)

Answer: C

- Watch Video Solution

147. In LC oscillator circuit, at $t=0, \ldots . .$.
A. time rate of flow of electric charge is maximum.
B. time rate of flow of electric charge is
zero.
C. time rate of flow charge of electric
current is zero.
D. time rate of flow charge of electric current is minimum.

D Watch Video Solution

148. In L-C oscillator circuit
A. when $Q=0, I$ is maximum
B. when $\mathrm{Q}=0$, I is zero
C. when Q is maximum, I is maximum
D. none of these
149. In L-C oscillator circuit inductor
A. having high resistance
B. having zero inductance
C. having zero ohmic resistance (ideally)
D. none of these

Answer: C

150. At $t=0$, time in L-C oscillator circuit
A. change in Q is maximum
B. rate of change of Q is zero
C. change in I is zero.
D. change in I is maximum

Answer: B
151. In R-C circuit when charge on the plate of
the capacitor is increasing, the energy obtain
from the source is stored in
A. electric field
B. magnetic field
C. gravitational field
D. both magnetic and gravitational field

Answer: A

D Watch Video Solution
152. In an L-C oscillator circuit having a completely charged capacitor, with the passage of time
A. the electric current increases gradually
B. the energy of the circuit continuously
increases.
C. the energy of the circuit continuously
decreases.
D. there is a continuous absorption of the
electromagnetic wave.

Answer: C

- Watch Video Solution

153. Time taken from zero to maximum for an
A.C. voltage of frequency 50 Hz will be ms.
A. 5
B. 10
C. 20
D. 50

D Watch Video Solution

154. Initially conditions of L-C oscillator circuit
A. $Q=0, l=0$ and $t=0$
B. $Q=Q_{0}, I=I_{0}$ and $\mathrm{t}=0$
C. $\mathrm{Q}=\mathrm{O}, I=I_{0}$ and $\mathrm{t}=0$
D. $Q=Q_{0}, I=0$ and $\mathrm{t}=0$

Answer: D

D Watch Video Solution

155. In R-C circuit when charge on the plate of
the capacitor is increasing, the energy obtain
from the source is stored in
A. electric field
B. magnetic field
C. gravitational field
D. none of these

Answer: A

D Watch Video Solution

156. In oscillator circuit, presence ofare
necessary
A. R and C
B. R and L
C. C and R
D. both C and L

Answer: D

- Watch Video Solution

157. Generally, core of transformer is made up
of
A. steel
B. copper
C. soft iron
D. aluminium

Answer: C

D Watch Video Solution

158. Which of following quantities remains constant in transformer ?
A. Frequency
B. Voltage
C. Current
D. None of above

Answer: A

- Watch Video Solution

159. Working of a transformer is based upon
principle of
A. self induction
B. mutual induction
C. electrical inertia
D. magnetic effect of electric current

Answer: B

D Watch Video Solution

160. If N_{P} and N_{S} are respectively no. of turns
in primary and secondary coil then for step up
transformer,
A. $N_{S}>N_{P}$
B. $N_{S}<N_{P}$
C. $N_{S}=N_{P}$
D. $N_{P}=2 N_{S}$

Answer: A

D Watch Video Solution

161. Transformation ratio of one transformer is
$1: 2$. If Leclanche cell having emf 1.5 V is connected to primary coil of a transformer then voltage obtained across its secondary is
A. 3 V
B. 1.5 V
C. 0.75 V
D. 0

Answer: D

D Watch Video Solution

162. 240 A.C. mains supply is given to one transformer which draws 0.7 A from it. This transformer is used to operate a bulb having power rating " $24 \mathrm{~V}, 140 \mathrm{~W}$ ". Then efficiency of this transformer is
A. 63.8%
B. 74%
C. 83.3%
D. 48%

Answer: C

D Watch Video Solution
163. If the coils of a transformer are made up
of thick wire, then ...
A. eddy currents loss will be more
B. magnetic flux leakage is reduced
C. joule's heating loss is increased
D. joule's heating loss is reduced

Answer: D

D Watch Video Solution
164. Which device is used to increase or decrease A.C. voltage?
A. Oscillator
B. Voltmeter
C. Transformer
D. Rectifier

Answer: C

D Watch Video Solution

165. A step up transformer has transformation
ratio of 3: 2 . What is the voltage in secondary
if voltage in primary coil is 30 V ?
A. 45 V
B. 15 V
C. 90 V
D. 300 V

Answer: A

D Watch Video Solution
166. A step-up transformer operates on a 230 V
line and supplies 2A to a load. The ratio of
primary and secondary windings is $1: 25$, then
the current in primary is
A. 15 A
B. 25 A
C. 50 A
D. 12.5 A

Answer: C
(Watch Video Solution
167. 240 A.C. mains supply is given to one transformer which draws 0.7 A from it. This transformer is used to operate a bulb having power rating " $24 \mathrm{~V}, 140 \mathrm{~W}$ ". Then efficiency of this transformer is
A. 90%
B. 80%
C. 70%
D. 60%

Answer: B
168. The ratio of primary and secondary turns
in a transformer is $1: 200$. If $220 \mathrm{~V} \mathrm{A.C}$. . is fed to primary, voltage across secondary will be
A. 44 V
B. 220 V
C. $\frac{220}{200} \mathrm{~V}$
D. 44 kV
169. The ratio of primary and secondary turns
in a transformer is $3: 2$, if 30 V a.c. is fed to primary, voltage across secondary will be
A. 15 V
B. 45 V
C. 90 V
D. 300 V
170. If current is not obtained from secondary
coil of an ideal transformer, then the power
factor of primary coil of transformer is
A. 0
B. $\frac{1}{2}$
C. 1
D. infinite
171. If number of turns in primary and secondary coils is increased to two times each, the mutual inductane
A. becomes four times
B. becomes two times
C. becomes $\frac{1}{4}$ times
D. remains unchanged
172. If for an ideal step-up transformer current in primary is I_{P} and current in secondary is I_{S}, their respective voltage are V_{P} and V_{S}, then.
A. $I_{S} V_{S}=I_{P} V_{P}$
B. $I_{S} V_{S}>I_{P} V_{P}$
C. $I_{S} V_{P}<I_{P} V_{P}$
D. $I_{S} V_{P}<I_{P} V_{S}$
173. A transformer has an efficiency of 80%. It works at 100 V and 4 kW . If secondary voltage is 240 V , the current in primary coil is
A. 0.4 A
B. $4 A$
C. 10 A
D. 40 A
174. For step-down transformer value of transformation ratio is
A. $r>1$
B. $r<1$
C. $r=1$
D. $r=0$

Answer: B
175. In a step-up transformer, use of 120 V line provides a potential difference of 2400 V . If th primary coil has 75 turns, number of turns i secondary coil is
A. 150
B. 1500
C. 1200
D. 1575

Answer: B

D Watch Video Solution

176. In a noiseless transformer, an alternating
current of 2A is flowing in primary coil. The number of turns in primary and secondary coil are 100 and 20 respectively the secondary current is
A. 0.4 A
B. $5 A$
C. 0.08 A
D. 10 A

Answer: D

D Watch Video Solution

177. A low loss transformer has 250 V applied to primary and gives 4.6 V in secondary. The secondary is connected to a load which draws 5A current. The current flowing in primary is
A. 0.1 A
B. 1.0 A
C. 10 A
D. 250 A

Answer: A

D Watch Video Solution

178. In an ideal transformer, the voltage is stepped down from 11 kV to 220 V . If the
primary current be 100 A , the current in the secondary should be
A. 5 kA
B. 1 kA
C. 0.5 kA
D. 0.1 kA

Answer: A
(Watch Video Solution
179. The ratio of number of turns in primary and secondary coil of a transformer is 1:20 the ratio of current in primary and secondary coils will be
A. $1: 20$
B. 20:1
C. 1: 400
D. $400: 1$

Answer: B
180. The number of turns in primary and secondary of a transformer are 1000 and 3000
respectively. If $80 \vee$ A.C. applied to the primary,
the potential difference per turn across
secondary would be
A. 0.08 V
B. 24 V
C. 240 V
D. 2400 V

Answer: A

- Watch Video Solution

181. A transformer is having 2100 turns in
primary and 4200 turns in secondary. An A.C.
source of $120 \mathrm{~V}, 10 \mathrm{~A}$ is connected to its primary, the secondary voltage and current are
A. $240 \mathrm{~V}, 5 \mathrm{~A}$
B. $120 \mathrm{~V}, 10 \mathrm{~A}$
C. $240 \mathrm{~V}, 10 \mathrm{~A}$
D. $120 \mathrm{~V}, 20 \mathrm{~A}$

Answer: A

- Watch Video Solution

182. Transformer are used in
A. DC circuits only
B. AC circuits only
C. Integrated circuits

D. All above these

Answer: B

D Watch Video Solution

183. A step-up transformer is used on a 120 V
line to provide a potential difference of 240 V ,
if the primary coil has 75 turns the number of turns in the secondary coil is
A. 150
B. 1200
C. 1500
D. 1575

Answer: A

D Watch Video Solution

184. The power is transmitted from a power
house on high voltage a.c. because
A. electric current travels faster at higher volts.
B. it is more economical due to less power voltage.
C. it is difficult to generate power at low voltage.

D. chances of stealing transmission lines

are minimized.

Answer: B

D Watch Video Solution
185. Number of turns in the primary coil and
the secondary coil of an ideal transformer are 500 and 2500 respectively. If current in the secondary coil is 0.2 A , calculate current in the primary coil. Also calculate transformer ratio. If voltage in the secondary coil is 750 V , calculate voltage in the primary coil.
A. 150 V
B. 160 V
C. 170 V

D. 140 V

Answer: A

D Watch Video Solution

186. In one series A.C. circuit, maxima of current and voltage occur at the same moment. Then which of following component must have been connected to source ?
A. Only resistor
B. Only inductor
C. Only capacitor
D. Series connection of inductor and

capacitor

Answer: A

D Watch Video Solution

187. When A.C. current with frequency v is passed through series connection of inductor and capacitor, current obtained is maximum.

Now when they are connected in parallel, current would become minimum at
frequency.
A. v
B. $\frac{v}{2}$
C. 2 v
D. v^{2}

Answer: A

D Watch Video Solution
188. If the value of potential is an a.c, circuit is 10 V . Then what is the peak value of potential ?

$$
\begin{aligned}
& \text { A. } \frac{10}{\sqrt{2}} \\
& \text { B. } 10 \sqrt{2} \\
& \text { C. } 20 \sqrt{2} \\
& \text { D. } \frac{20}{\sqrt{2}}
\end{aligned}
$$

Answer: B

Section D Mcqs Competitive Exams

1. Power factor of $A C$ series circuit having resistance R and inductor L having angular frequency ω is
A. 0
B. $\frac{R}{\sqrt{R^{2}+\omega^{2} L^{2}}}$
C. $\frac{\omega L}{R}$
D. $\frac{R}{\omega L}$

- Watch Video Solution

2. A transformer has 140 turns in the primary
and 280 turns in the secondary. If current in
primary is 4 A , then the current in secondary
will be
A. 4 A
B. 2 A
C. 6A
D. 10A

Answer: B

- Watch Video Solution

3. In an oscillating L-C circuit the maximum charge on the capacitor is Q . What will be the charge on the plate of the capacitor, when energy stored in magnetic field and electric field are equal ?
A. $\frac{Q}{3}$
B. $\frac{Q}{\sqrt{2}}$
C. Q
D. $\frac{Q}{2}$

Answer: B

D Watch Video Solution

4. Alternating current can not be measured by
D.C. ammeter because
A. A.C. can not pass through D.C. ammeter.
B. A.C. changes direction
C. Average value of current for complete
cycle is zero.
D. D.C. ammeter will get damaged.

Answer: C

D Watch Video Solution

5. In a L-C-R circuit capacitance is changed from C to $2 C$. For the resonant frequency to remain unchanged, the inductance should be changed from L to
A. 4 L
B. 2 L
C. $\frac{L}{2}$
D. $\frac{L}{4}$

Answer: C

D Watch Video Solution

6. In a L-C-R series A.C. circuit, the voltage across each of the components, L, C and R is

50 V . The voltage across the L-C combination will be
A. 50 V
B. $50 \sqrt{2} \mathrm{~V}$
C. 100 V
D. 0

Answer: D

D Watch Video Solution

7. The power factor of A.C. circuit of resistance

12Ω and impedance 15Ω is

A. 1.25
B. 125
C. 0.8
D. 0.4

Answer: C

- Watch Video Solution

8. The phase difference between the alternating current and emf is $\frac{\pi}{2}$ rad. Which of the following cannot be the constituent of the circuit?
A. L,C
B. Only L
C. Only C
D. R

Answer: D
9. In L-C-R series circuit at resonance p.d. between two ends of resistor is 100 V .
$R=1 k \Omega$ and $\mathrm{C}=2 \mu \mathrm{~F}$, if resonant angular frequency is $\omega=200 \mathrm{rad} / \mathrm{s}^{-1}$, p.d. between two ends of inductor of resonance is
A. 250 V
B. $4 \times 10^{-3} \mathrm{~V}$
C. $2.5 \times 10^{-10} \mathrm{~V}$
D. 40 V

Answer: A

D Watch Video Solution

10. In an A.C. generator, a coil with N turns, all
the same area A and total resistance R, rotate with frequency ω in a magnetic field B. The maximum value of emf generated in the coil is
A. NABR

$$
\text { B. } \omega N A B
$$

C. $\omega N A B R$

D. NAB

Answer: B

D Watch Video Solution

11. In A.C. circuit, when $E=E_{0} \sin \omega t$ supply applied, current is obtained in circuit $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$, so power consumed is circuit will be
A. $P=\frac{E_{0} I_{0}}{\sqrt{2}}$
B. $P=z e r o$
C. $P=\frac{E_{0} I_{0}}{2}$
D. $P=\sqrt{2} E_{0} I_{0}$

Answer: B

D Watch Video Solution

12. An inductor $(L=0.03 H)$ and a resistor $(R=$
$0.15 k \Omega$) are connected in series to a battery of

15 V EMF in a circuit shown below The key K_{1}
has been kept closed for a long time. Then at t
$=0, K_{1}$ is opened and key K_{2} is closed simultaneously. At $\mathrm{t}=1 \mathrm{~ms}$, the current in the circuit will be : $\left(e^{5} \cong 150\right)$

A. 100 mA
B. 67 mA
C. 6.7 mA

D. 0.67 mA

Answer: D

D Watch Video Solution

13. An LCR circuit is equivalent to a damped pendulum. In an LCR circuit the capacitor is charged to Q_{0} and then connected to the L and R as shown below:

If a student plots graphs of the square of maximum charge $\left(Q_{\text {Max }}^{2}\right)$ on the capacitor with time (t) for two different values L_{1} and $L_{2}\left(L_{1}>L_{2}\right)$ of L then which of the following represents this graph correctly ? (plots are schematic and not drawn to scale)
A.

Answer: A

D Watch Video Solution

14. An arc lamp requires a direct current of 10

A at 80 V to function. If it is connected to a

220 V (rms), 50 Hz AC supply, the series inductor needed for it to work is closed to:
A. 80 H
B. 0.08 H
C. 0.044 H
D. 0.065 H

Answer: D

D Watch Video Solution

15. For an RLC circuit driven with voltage of amplitude v_{m} and frequency $\omega_{0}=\frac{1}{\sqrt{L C}}$ the current exibits resonance. The quality factor, Q is given by :

$$
\begin{aligned}
& \text { A. } \frac{\omega_{0} L}{R} \\
& \text { в. } \frac{\omega_{0} R}{L} \\
& \text { C. } \frac{R}{\left(\omega_{0} C\right)} \\
& \text { D. } \frac{C R}{\omega_{0}}
\end{aligned}
$$

Answer: A
16. An emf of 20 V is applied at time $\mathrm{t}=0$ to a circuit containing in series 10 mH inductor and
5Ω resistor. The ratio of the currents at time t $=\infty$ and $\mathrm{t}=40 \mathrm{~s}$ is close to (take $e^{2}=7.389$)
A. 1.06
B. 1.48
C. 1.15
D. 0.84

Answer: A

D Watch Video Solution

17. An inductor of inductance L and resistance
R is connected of A.C. circuit having angular frequency of ω. The value of quality factor Q is
A. $\left(\frac{\omega L^{2}}{R}\right)^{2}$
B. $\left(\frac{R}{\omega L^{2}}\right)^{2}$
C. $\frac{\omega L}{R}$
D. $\frac{R}{\omega L}$

Answer: C

D Watch Video Solution

18. In an A.C circuit the current...

A. is in the phase with voltage
B. leads the voltage
C. lags the voltage

D. any of the above depending on the

 circumstances
Answer: D

D Watch Video Solution

19. A primary of transformer has 100 turns an secondary has 500 turns. If input voltage 20
and frequency 50 Hz , so the output voltage an
frequency are... V and Hz
A. 200,500
B. 100,50
C. 20,50
D. 2,5

Answer: B

D Watch Video Solution

20. If in an A.C. circuit voltage V and current is
then the power dissipated in the circuit is
A. VIcosx
B. $\frac{1}{2} V I$
C. $\frac{1}{\sqrt{2}} V I$
D. depends on the phase difference between V and I.

Answer: D

D Watch Video Solution

21. In a step-down transformer increases.
A. current
B. voltage
C. power
D. frequency

Answer: A

D Watch Video Solution
22. The phase difference between current and
voltage for L-C-R A.C. series circuit is
A. between 0 to $\pm \frac{\pi}{2}$
B. $\frac{\pi}{2}$
C. π
D. between 0 and $\frac{\pi}{2}$

Answer: A

D Watch Video Solution

23. The value of capacitive reactance of capacitor X_{C}. If the values of capacitance and
frequency becomes double, the value of capacitive reactance becomes
A. $4 X_{C}$
B. $\frac{X_{C}}{2}$
C. $\frac{X_{C}}{4}$
D. $2 X_{C}$

Answer: C
(Watch Video Solution
24. When a wire loop is rotated in a magnetic
field the direction of induced emf changes
once in each
A. $\frac{1}{4}$ revolution
B. $\frac{1}{2}$ revolution
C. 1 revolution
D. 2 revolution

Answer: B

D Watch Video Solution

25. In L-C-R circuit, the energy dissipated in

A. L only
B. C only
C. R only
D. all of the above

Answer: C
26. The voltage of an A.C. source varies with
time according to the equation
$V=100 \sin 100 \pi t \cos 100 \pi t$, where t is in second and V is in volt, then
A. the peak voltage of the source is 100 V
B. the peak voltage of the source is 50 V
C. the peak voltage of the source is $\frac{100}{\sqrt{2}} \mathrm{~V}$
D. the frequency of the source is 50 Hz .

Answer: B
27. A L-C-R circuit connected to an A.C. source of frequency f. If current in phase leads by 45° then voltage, the capacitance of capacitor

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \pi f(2 \pi f L-R)} \\
& \text { B. } \frac{1}{2 \pi f(2 \pi f L+R)} \\
& \text { C. } \frac{1}{\pi f(2 \pi f L-R)} \\
& \text { D. } \frac{1}{\pi f(2 \pi f L+R)}
\end{aligned}
$$

Answer: A
28. A series $R-C$ circuit is connected to an alternating voltage source. Consider two situations:-
(a) When capacitor is air filled.
(b) When capacitor is mica filled.

Current through resistor is i and voltage across capacitor is V then :-
A. $V_{a}=V_{b}$
B. $V_{a}<V_{b}$
C. $V_{a}>V_{b}$

$$
\text { D. } i_{a}>i_{B}
$$

Answer: C

- Watch Video Solution

29. Which of the following combinations
should be selected for better tuning of an L-C-

R circuit used for communication ?
A. $\mathrm{R}=15 \Omega, \mathrm{~L}=3.5 \mathrm{H}, \mathrm{C}=30 \mu F$

$$
\text { B. } R=25 \Omega, L=1.5 H, C=45 \mu F
$$

C. $R=20 \Omega, L=1.5 H, C=35 \mu F$

$$
\text { D. } R=25 \Omega, L=2.4 H, C=45 \mu F
$$

Answer: A

D View Text Solution

30. The potential differences across the resistance, capacitance and inductance are 80
$\mathrm{V}, 40 \mathrm{~V}$ and 100 V respectively in an L-C-R circuit. The power factor of this circuit is
A. 0.8
B. 1.0
C. 0.4
D. 0.5

Answer: A

D View Text Solution

31. A small signal voltage $\mathrm{V}(\mathrm{t})=V_{0}$ sin $\omega \mathrm{t}$ is applied across an ideal capacitor C .
A. Over a full cycle the capacitor C does not consume any energy from the voltage source
B. Current $\mathrm{I}(\mathrm{t})$ is in phase with voltage $\mathrm{V}(\mathrm{t})$
C. Current $\mathrm{I}(\mathrm{t})$ leads voltage $\mathrm{V}(\mathrm{t})$ by 180°
D. Current $\mathrm{I}(\mathrm{t})$ leads voltage $\mathrm{V}(\mathrm{t})$ by 90°

Answer: A

D View Text Solution

32. An inductor 20 mH , a capacitor $50 \mu F$ and
a resistor 40Ω are connected in series across a
source of emf $V=10 \sin 340 t$. The power loss in
A.C. circuit is
A. 0.67 W
B. 0.76 W
C. 0.89 W
D. 0.51 W

Answer: D

33. An inductor 20 mH , a capacitor $100 \mu \mathrm{~F}$ and
a resistor 50Ω are connected in series across
a source of emf, $V=10 \sin 314 \mathrm{t}$. The power loss in the circuit is.
A. 1.13 W
B. 0.79 W
C. 2.74 W
D. 0.43 W

Answer: B

D View Text Solution

34. circuit-1

circuit-2

For the reading obtained in ideal voltmeters and ammeters in above circuits.
A. $V_{2}>V_{1}$ and $i_{1}>i_{2}$
B. $V_{2}<V_{1}$ and $i_{1}=i_{2}$
C. $V_{1}=V_{2}$ and $i_{1}>i_{2}$

$$
\text { D. } V_{1}=V_{2} \text { and } i_{1}=i_{2}
$$

Answer: D

D Watch Video Solution

35. An alternating voltage $V=V_{0} \sin \omega t$ is applied across a circuit. As a result the current $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$ flows in it. The power consumed in the circuit per cycle is
A. 0
B. $0.5 V_{0} I_{0}$
C. $0.707 V_{0} I_{0}$
D. $1.919 V_{0} I_{0}$

Answer: A

D View Text Solution

36. In an A.C. circuit the ratio of inductive reactance and capacitive reactance is
A. 1
B. 0
C. $\omega^{2} L$
D. $\omega^{2} L C$

Answer: D

D View Text Solution

37. A transformer has an efficiency of 80%. It works at 100 V and 4 kW . If secondary voltage is

240 V , the current in primary coil is
A. 10 A
B. $4 A$
C. $0.4 A$
D. 40 A

Answer: D

D View Text Solution

38. In an A.C. circuit, a resistor of $R \Omega$ is connected in series with an inductor of self inductance L. If phase angle between voltage
and current be 45°, the value of inductance
(X_{L}) will equal to
A. R
B. $\frac{R}{8}$
C. $\frac{R}{4}$
D. $\frac{R}{2}$

Answer: A

D View Text Solution
39. At time $t=0 \mathrm{~s}$, voltage of an A.C. generator starts from 0 V and becomes 2 V at time $\mathrm{t}=$ $\frac{1}{100 \pi} \mathrm{~s}$. The voltage keeps on increasing up to 100 V, after which it starts to decrease. Find the frequency of the generator.
A. 2 Hz
B. 5 Hz
C. 100 Hz
D. 1 Hz
40. In a series resonant circuit, the A.C. voltages across resistance R, inductor L and capacitor C are $5 \mathrm{~V}, 10 \mathrm{~V}$ and 10 V respectively. The A.C. voltage applied to the circuit will be
A. 25 V
B. 20 V
C. 10 V
D. 5 V

Answer: D

D View Text Solution

41. What is the average power dissipation in
an ideal capacitor in A.C. circuit ?
A. $\frac{1}{2} C V^{2}$
B. $C V^{2}$
C. $2 C V^{2}$

D. Zero

Answer: D

D View Text Solution

42. A coil has self inductance $L=0.04 \mathrm{H}$ and
resistance $\mathrm{R}=12 \Omega$. When it is connected to
$220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, what will be current flowing through the coil ?
A. 12.7 A
B. 14.7 A
C. 11.7 A
D. 10.7 A

Answer: A

D View Text Solution

43. Find the time required for a 50 Hz alternating current to become its value from zero to the rms value.
A. 2.5 ms
B. 5.0 ms
C. 10.0 ms
D. 15.0 ms

Answer: A

D View Text Solution

44. The quantity that remains unchanged in
the output with respect to the input in an ideal transformer is
A. frequency
B. current
C. voltage
D. none of these

Answer: A

D View Text Solution
45. A resistor of $R=6 \Omega$, an inductor of $L=1 H$
and $\mathrm{C}=17.36 \mu F$ are connected in series with
an A.C. source. Find the Q-factor.
A. 2.37
B. 80
C. 3.72
D. 40

Answer: D

D Watch Video Solution

46. What is the average value of the A.C. voltage over one complete cycle ?
A. $\frac{2 V_{\max }}{\pi}$
B. $\frac{V_{\max }}{2}$
C. zero
D. $V_{\max }$

Answer: C

D View Text Solution

47. A lamp consumes only 50% of maximum power applied in an A.C. circuit. What will be
the phase difference between applied voltage and circuit current ?
A. $\frac{\pi}{6} \mathrm{rad}$
B. $\frac{\pi}{3} \mathrm{rad}$
C. $\frac{\pi}{4} \mathrm{rad}$
D. $\frac{\pi}{2} \mathrm{rad}$

Answer: C

D View Text Solution
48. The output power in step-up transformer used in practice is
A. greater than the input power.
B. greater than the input power.
C. less than the input power.
D. none of these.

Answer: C

- Watch Video Solution

49. An electric current has both D.C. and A.C. components D.C. component of 8 A and A.C. component is given as $I=6 \sin \omega t A$. So $l_{r m s}$ value of resultant current is
A. 8.05 A
B. 9.05 A
C. 11.58 A
D. 13.58 A

Answer: B
50. A current of $\frac{25}{\pi} \mathrm{~Hz}$ frequency is passing through an A.C. circuit having series combination of $R=100 \Omega$ and $L=2 H$, the phase difference between voltage and current is ...
A. 90°
B. 60°
C. 30°
D. 45°

- Watch Video Solution

51. In A.C. circuit having only capacitor, the current
A. lags behind the voltage by $\frac{\pi}{2}$ in phase
B. leads the voltage by $\frac{\pi}{2}$ in phase
C. leads the voltage by π in phase
D. lags behind the voltage by π in phase

Answer: B
52. For a Step-Down Transformer which of the following is correct.
A. Output voltage $>$ Input voltage
B. Output power < Input power
C. No. of turns in primary coil = No. of turn
in the secondary coil
D. None of these
53. For L-C-R A.C. circuit resonance frequency is

5000 Hz and frequencies at half power points
are 4950 Hz and 5050 Hz . The Q -factor is
A. 100
B. 0.02
C. 50
D. 0.01

Answer: C

- Watch Video Solution

54. For an A.C. L-C-R series circuit at resonant frequency, which of the following is wrong ?
A. Value of resistance is zero
B. Magnitude of reactance due to L and C are equal
C. Phase change due to L is equal and opposite to phase change due to C
D. Impedance has only real component.

Answer: A

D Watch Video Solution

55. Current of $50 / \pi \mathrm{Hz}$ frequency is passing |
through an A.C. circuit having series
combination of resistance $R=100 \Omega$ and
inductor $L=\sqrt{3} H$. The phase difference
between the voltage and current is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

- Watch Video Solution

56. In an AC circuit current is 3 A and voltage

210 V and power is 63 W . The power factor is
A. 0.09
B. 0.10
C. 0.08
D. 0.11

Answer: B

D Watch Video Solution

57. For an AC given by $\mathrm{I}=50 \cos \left(100 \mathrm{t}+45^{\circ}\right) \mathrm{A}$.

The value of rms = A.
A. $50 \sqrt{2}$
B. $25 \sqrt{2}$
C. 25
D. 0

Answer: B

D Watch Video Solution

58. An AC voltage $\mathrm{V}=5 \cos (1000 \mathrm{t}) \mathrm{V}$ is applied
to a L-R series circuit of inductance 3 mH and
resistance 4Ω. The value of maximum current
in the circuit is A.
A. 1
B. $\frac{5}{\sqrt{7}}$
C. $\frac{5}{7}$
D. 0.8

Answer: A

- Watch Video Solution

59. A lamp consumes only 50% of maximum power applied in an A.C. circuit. What will be
the phase difference between applied voltage and circuit current ?
A. $\frac{\pi}{6} \mathrm{rad}$
B. $\frac{\pi}{3} \mathrm{rad}$
C. $\frac{\pi}{4} \mathrm{rad}$
D. $\frac{\pi}{2} \mathrm{rad}$

Answer: C
(Watch Video Solution
60. In L-C-R, A.C. series circuit, $L=9 H, R=10 \Omega$ and $C=100 \mu \mathrm{~F}$. Hence Q factor of the circuit is
A. 25
B. 45
C. 35
D. 30

Answer: D

- Watch Video Solution

61. A $15 \mu F$ capacitor is connected to a 220 V ,

50 Hz a.c. source. Value of capacitive reactance
is Ω.
A. 106
B. 424
C. 212
D. 21.2

Answer: C

- Watch Video Solution

62. Electric quantity is equivalent to

mechanical quantity, force constant (k)

A. charge (Q)
B. inductance (L)
C. reciprocal of inductance $\left(\frac{1}{L}\right)$
D. reciprocal of capacitance $\left(\frac{1}{C}\right)$

Answer: D

(D) View Text Solution
63. In L-C oscillator, at ... time, energy in capacitor and energy in inductor are equal.
A. $\frac{T}{8}$
B. $\frac{T}{4}$
C. $\frac{T}{2}$
D. T

Answer: A

D Watch Video Solution
64. A power transmission line feeds input power a 3300 V to a step down transformer with it primary windings having 2000 turns.

Wha should be the number of turns in th secondary in order to get output power a 330

V?
A. 400
B. 200
C. 33
D. 40

Answer: B
(D) Watch Video Solution

