đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA PHYSICS (GUJRATI ENGLISH)

ELECTROMAGNETIC INDUCTION

Section A Question Answer

1. Discuss contribution of different scientists
in electromagnetic. Define electromagnetic
induction.

D Watch Video Solution

2. Which discovery Faraday made public ? Discuss importance of electromagnetic induction.

- Watch Video Solution

3. Discuss Faraday's experiment of bar magnet
and coil for generation of electric current in

coil.

D Watch Video Solution

4. Discuss Faraday's experiment of two coils
for generation of electric current in coil.

D Watch Video Solution

5. Discuss Faraday's experiment which shows
that relative motion is not an absolute requirement for electromagnetic induction.
6. Write the results of Faraday's experiment performed with bar magnet and insulated conducting coil.

7. Explain the concept of magnetic flux.

D Watch Video Solution

8. State and explain Faraday's law of electromagnetic induction.

- Watch Video Solution

9. On passing current through a solenoid.

Which of its end behave as a north pole or south pole explain ?

D Watch Video Solution

10. Prove that the Lenz's law is a specific representation of the law of conservation of energy and state Lenz's law.
11. Derive the equation $E=-$ Blv of a motional $=$ emf with the help of a suitable example.

D Watch Video Solution

12. Derive equation of induced emf in the rod which is sliding on two sides of U shaped frame placed perpendicular to magnetic field.
13. Explain the motional emf by the Lorentz
force acting on the free charge carriers of conductor.

D Watch Video Solution

14. Which conclusion we can obtain by the fact
that emf is induced in stationary conductor placed in time varying magnetic field ? Discuss characteristic of induced electric field.
15. Prove that mechanical power which needed
to move the rod in uniform magnetic field is converted into electrical power.

D Watch Video Solution

16. Derive relation between induced charge
and change in magnetic flux.
17. Derive formula for induced charge and prove that it is independent of rate of change in flux.

D Watch Video Solution

18. Explain eddy current with suitable example,

What should be done to decrease the effects
of eddy currents?

D Watch Video Solution
19. Discuss practical applications of eddy currents.

D Watch Video Solution
20. Electromagnetic Damping

- Watch Video Solution

21. Define inductance, give its units and write
factors on which its value depends.

- Watch Video Solution

22. Explain mutual induction and derive equation of induced emf.

- Watch Video Solution

23. Give two definitions of mutual inductance, give its units and write factors on which its value depends.
24. Derive formula for mutual inductance for two very long coaxial solenoids. Also discuss reciprocity theorem.

- Watch Video Solution

25. Explain self induction and obtain equation of self induced emf in a coil.
26. With the help of $\mathrm{L}=\frac{N \phi}{I}$ and $\varepsilon=-L \frac{d I}{d t}$ give two definitions of self inductance.

- Watch Video Solution

27. Calculate the self-inductance for very long solenoid.

- Watch Video Solution

28. Define unit of self-inductance. On which
factors self-inductance depends.
29. Define an inductor. Derive equation of energy $U=\frac{1}{2} L I^{2}$ stored in inductor.

- Watch Video Solution

30. Write different method to produce induced emf.

- Watch Video Solution

31. Describle the construction and working of an AC generator (an alternator).

- Watch Video Solution

32. Write down formula of induced emf in AC generator and discuss how its vary with time.

- Watch Video Solution

33. Discuss characteristic of induced emf in AC generator.

D Watch Video Solution

34. Discuss the types of $A C$ generator. How much power they deliver ? What is the frequency of AC generator?

D Watch Video Solution

35. The migratory pattern of bird is one of the mysteries in the field of biology and indeed all of science. Explain this in the term of electromagnetic induction.

- Watch Video Solution

Section A Try Yourself

1. Which scientist established that electricity and magnetism are interrelated ?

Watch Video Solution

2. Moving charge can produce which field ?

- Watch Video Solution

3. What is electromagnetic induction?

- Watch Video Solution

4. Write down name of two devices which works on principle of electromagnetic induction.

D Watch Video Solution

5. Is relative motion is absolute condition for induce emf ?

D Watch Video Solution
6. What is the required condition for induce current?

- Watch Video Solution

7. If we move magnet towards coil with greater velocity then induce current will increase or decrease?

D Watch Video Solution
8. If iron rod is placed inside coil then what happened to induce current?

D Watch Video Solution
9. On what factor does induced current depend?

D Watch Video Solution
10. Write the SI unit of magnetic flux.

- Watch Video Solution

11. Write the dimensional formula for magnetic
flux.

- Watch Video Solution

12. When surface of sheet is parallel to magnetic field then what is the flux linked with it ?
13. When does the magnetic flux becomes zero
?
(Watch Video Solution
14. Negative sign in Faraday's law represent which fact?

- Watch Video Solution

15. VS is unit of which physical quantity?

D Watch Video Solution

16. If magnetic flux $\phi=\left(3 t^{2}-2 t+5\right) \mathrm{Wb}$, then what is induced emf at $\mathrm{t}=2 \mathrm{~s}$.

D Watch Video Solution

17. Lenz's law is represent which fundamental

- Watch Video Solution

18. If we move magnet towards coil, keeping N pole in front of coil, then that side of coil behave as which pole?

D Watch Video Solution
19. Write Lenz's law.

D Watch Video Solution
20. If we double the velocity of rod moving in
uniform magnetic field, then induces emf will increase by how much time?

- Watch Video Solution

21. What is motional emf?

D Watch Video Solution

22. Write equation of induced charge.
23. $W b / \Omega$ unit is representing which physical quantity?

D Watch Video Solution

24. On which factor induced charge depend ?

- Watch Video Solution

25. Write equation of mechanical power required to move rod in uniform magnetic field.

D Watch Video Solution

26. When conducting rod moved in magnetic
field it will experience a force opposite to its
velocity due to which phenomenon?

D Watch Video Solution

27. What is eddy current ?

D Watch Video Solution

28. Who invented eddy current ?

D Watch Video Solution
29. Electromagnetic Damping
30. When small magnet is allowed to fall from aluminium pipe, then it will fall with acceleration less then 'g'. Why?

- Watch Video Solution

31. Why self induced emf is known as back emf
?

- Watch Video Solution

32. Calculate the self-inductance for very long solenoid.

- Watch Video Solution

33. Derive formula for mutual inductance for two very long coaxial solenoids. Also discuss reciprocity theorem.

D Watch Video Solution

34. Write type of generator.

- Watch Video Solution

35. In India, AC voltage becomes zero how many time in 1 s ?

D Watch Video Solution

36. Write equation of maximum emf in $A C$ generator

- Watch Video Solution

Section A Hots

1. Give the explanation of reason behind the origin of motional induced emf.

- Watch Video Solution

2. What is Lenz force?

- Watch Video Solution

Section B Numerical Textual Illustrations

Consider Experiment:
(a) What would you do to obtain a large deflection of the galvanometer?
(b) How would you demonstrate the presence
of an induced current in the absence of a galvanometer?

D Watch Video Solution

2. A square loop of side 10 cm and resistance
0.5Ω is placed vertically in the east-west
plane. A uniform magnetic field of 0.10 T is set
up across the plane in the north-east direction. The magnetic field is decreased to
zero in 0.70 s at a steady rate. Determine the magnitudes of induced emf and current

during this time-interval.

- Watch Video Solution

3. A circular coil of radius $10 \mathrm{~cm}, 500$ turns and resistance 2Ω is placed with its plane perpendicular to the horizontal component of the earth's magnetic field. It is rotated about its vertical diameter through 180° in 0.25 s.

Estimate the magnitudes of the emf and current induced in the coil. Horizontal component of the earth's magnetic field at the place is $3.0 \times 10^{-5} \mathrm{~T}$.

D Watch Video Solution

4. Figure shows planar loops of different
shapes moving out of or into a region of a magnetic field which is directed normal to the plane of the loop away from the reader.

Determine the direction of induced current in

each loop using Lenz's law.

(Watch Video Solution
5. (a) A closed loop is held stationary in the magnetic field between the north and south poles of two permanent magnets held fixed.

Can we hope to generate current in the loop by using very strong magnets ?
(b) A closed loop moves normal to the constant electric field between the plates of a
large capacitor. Is a current induced in the
loop (i) when it is wholly inside the region
between the capacitor plates (ii) when it is partially outside the plates of the capacitor?

The electric field is normal to the plane of the
loop.
(c) A rectangular loop and a circular loop are moving out of a uniform magnetic field region
(Figure) to a field-free region with a constant velocity v . In which loop do you expect the induced emf to be constant during the passage out of the field region? The field is normal to the loops.

- Watch Video Solution

6. A metallic rod of 1 m length is rotated with a
frequency of $50 \mathrm{rev} / \mathrm{s}$, with one end hinged at the centre and the other end at the
circumference of a circular metallic ring of radius 1 m , about an axis passing through the centre and perpendicular to the plane of the ring as per figure. A constant and uniform magnetic field of $1 T$ parallel to the axis is present everywhere. What is the emf between
the centre and the metallic ring ?

- Watch Video Solution

7. A wheel with 10 metallic spokes each 0.5 m
long is rotated with a speed of $120 \mathrm{rev} / \mathrm{min}$ in
a plane normal to the horizontal component of earth's magnetic field H_{E} at a place. If $H_{E}=$
0.4 G at the place, what is the induced emf between the axle and the rim of the wheel ? Note that $1 \mathrm{G}=10^{-4} \mathrm{~T}$.

D Watch Video Solution

8. Refer to figure the arm $P Q$ of the rectangular conductor is moved from $x=0$, outwards. The uniform magnetic field is perpendicular to the plane and extends from x $=0$ to $\mathrm{x}=\mathrm{b}$ and is zero for $\mathrm{x}>\mathrm{b}$. Only the arm PQ possesses substantial resistance r .

Consider the situation when the arm PQ is
pulled outwards from $x=0$ to $x=2 b$ and is
then moved back to $x=0$ with constant speed
v. Obtain expressions for the flux, the induced emf, the force necessary to pull the arm and the power dissipated as Joule heat. Sketch the variation of these quantities with distance.

9. Two concentric circular coils, one of small radius r_{1} and the other of large radius r_{2},
such that $r_{1} \ll r_{2}$, are placed co-axially with centres coinciding. Obtain the mutual inductance of the arrangement.

D Watch Video Solution
10. (a)Obtain the expression for the magnetic energy stored in a solenoid in terms of magnetic field B, area A and length I of the solenoid.
(b) How does this magnetic energy compare with the electrostatic energy stored in a capacitor?

D Watch Video Solution

11. Kamla peddles a stationary bicycle. The pedals of the bicycle are attached to a 100
turn coil of area $0.10 \mathrm{~m}^{2}$. The coil rotates at half a revolution per second and it is placed in a uniform magnetic field of 0.01 T perpendicular to the axis of rotation of the coil. What is the maximum voltage generated in the coil?

- Watch Video Solution

12. A square loop of side 10 cm and resistance
0.5Ω is placed vertically in the east-west plane. A uniform magnetic field of 0.10 T is set
up across the plane in the north-east direction. The magnetic field is decreased to
zero in 0.70 s at a steady rate. Determine the magnitudes of induced emf and current during this time-interval.

- Watch Video Solution

13. A square loop of side 10 cm and resistance
0.5Ω is placed vertically in the east-west plane. A uniform magnetic field of 0.5 T is set up across the plane in the north-east direction. The magnetic field is decreased to
zero in 1.4 s at a steady rate. Determine the magnitudes of induced emf and current during this time interval.

D Watch Video Solution

14. A circular coil of radius 10 cm , 500 turns and resistance 2Ω is placed with its plane perpendicular to the horizontal component of the earth's magnetic field. It is rotated about its vertical diameter through 180° in 0.5 s .

Estimate the magnitudes of the emf and current induced in the coil. Horizontal component of the earth's magnetic field at the place is $3.0 \times 10^{-5} \mathrm{~T}$.
15. A circular coil of radius $20 \mathrm{~cm}, 500$ turns and resistance 4Ω is placed with its plane perpendicular to the horizontal component of the earth's magnetic field. It is rotated about its vertical diameter through 180° in 0.25 s .

Estimate the magnitudes of the emf and current induced in the coil. Horizontal component of the earth's magnetic field at the place is $3.0 \times 10^{-5} \mathrm{~T}$.

- Watch Video Solution

16. A wheel of radius r having conducting rim and n no. of conducting spokes, rotates in a plane perpendicular to uniform magnetic field B with constant angular speed ω. Prove that emf induced between centre and rim of a
wheel is $\frac{1}{2} B \omega R^{2}$

D Watch Video Solution

17. One metallic ring of radius 2 m has a conducting rod connected between centre
and rim of wheel. It rotates in a plane perpendicular to uniform magnetic field 1 T with frequency $25 \frac{\mathrm{rev}}{s}$. Find emf induced across the rod.

D Watch Video Solution

18. One metallic ring of radius 1 m has a conducting rod connected between centre and rim of wheel. It rotates in a plane perpendicular to uniform magnetic field 2 T with frequency $100 \frac{\mathrm{rev}}{s}$. Find emf induced across the rod.

19. A wheel with 100 metallic spokes each 1 m long is rotated with a speed of $120 \frac{\mathrm{rev}}{\mathrm{min}}$ in a plane normal to the horizontal component of earth's magnetic field H_{E} at a place. If $H_{E}=$
0.4 G at the place, what is the induced emf between the axle and the rim of the wheel ?

Note that $1 \mathrm{G}=10^{-4} \mathrm{~T}$

D Watch Video Solution

20. A wheel with 10 metallic spokes each 1 m long is rotated with a speed of $60 \frac{\mathrm{rev}}{\mathrm{min}}$ in a plane normal to the horizontal component of earth's magnetic field H_{E} at a place. If $H_{E}=$
0.4 G at the place, what is the induced emf between the axle and the rim of the wheel ?

Note that $1 \mathrm{G}=10^{-4} \mathrm{~T}$

D Watch Video Solution

21. One U shaped conducting frame is placed
in a plane perpendicular to uniform magnetic
field B. One conducting rod of mass m and length I is kept perpendicular to parallel sides of this frame. At time $t=0$, this rod is pushed perpendicular to its length with initial velocity v_{g}. Prove that its velocity at the end of time t is $v_{t}=v_{0} \exp \left(\frac{-B^{2} l^{2}}{m R} t\right)$ where $\mathrm{R}=$ resistance of external circuit and I=perpendicular distance between two parallel slides .
22. As shown in the figure, a conducting rod of
length I , mass m and resistance R falls through
a magnetic field \vec{B} in a plane perpendicular to
plane of figure. Find terminal velocity of rod.

- Watch Video Solution

23. One extremely small and another extremely
big square frames are coplanar and concentric with side length I and L respectively. (where L
\gg I . Find mutual inductance of this
system.

D Watch Video Solution

24. One toroid has 1.5×10^{4} turns and its axis
forms a circle of radius 10 cm . Its cross-section
has radius 2 cm . Find inductance of this toroidal ring.

D Watch Video Solution

25. Kamla peddles a stationary bicycle. The pedals of the bicycle are attached to a 100 turn coil of area $0.10 m^{2}$. The coil rotates at half a revolution per second and it is placed in a uniform magnetic field of 0.05 T perpendicular to the axis of rotation of the
coil. What is the maximum voltage generated in the coil ?

D Watch Video Solution

26. Kamla peddles a stationary bicycle. The pedals of the bicycle are attached to a 200 turn coil of area $0.10 \mathrm{~m}^{2}$. The coil rotates at half a revolution per second and it is placed in a uniform magnetic field of 0.005 T perpendicular to the axis of rotation of the
coil. What is the maximum voltage generated in the coil ?

- Watch Video Solution

Section B Numerical Numerical From Textual Exercise

1. Predict the direction of induced current in
the situations described by the following
figures (a) to (d).

(Tapping key just closed) Rheostat setting being changed
(d)

- Watch Video Solution

2. Use Lenz's law to determine the direction of induced current in the situations described by figure.
(a) A wire of irregular shape turning into a

circular shape,

(b) A circular loop being deformed into a narrow straight wire.
(a)

D Watch Video Solution

3. A long solenoid with 15 turns per cm has a small loop of area $2.0 \mathrm{~cm}^{2}$ placed inside the solenoid normal to its axis. If the current
carried by the solenoid changes steadily from
2.0 A to 4.0 A in 0.1 s , what is the induced emf
in the loop while the current is changing ?

- Watch Video Solution

4. A rectangular wire loop of sides 8 cm and 2 cm with a small cut is moving out of a region
of uniform magnetic field of magnitude 0.3 T
directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is $1 \mathrm{~cm} \mathrm{~s}^{-1}$ in a direction normal to the
(a) longer side, (b) shorter side of the loop ?

For how long does the induced voltage last in each case ?

- Watch Video Solution

5. A 1.0 m long metallic rod is rotated with an angular frequency of $400 \mathrm{rads}^{-1}$ about an
axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field of 0.5 T parallel to the axis exists everywhere. Calculate the emf developed between the centre and the ring.

D Watch Video Solution

6. A circular coil of radius 8.0 cm and 20 turns
is rotated about its vertical diameter with an
angular speed of $50 \mathrm{rad} s^{-1}$ in a uniform
horizontal magnetic field of magnitude
$3.0 \times 10^{-2} \quad$ T. Obtain the maximum and average emf induced in the coil. If the coil forms a closed loop of resistance 10Ω, calculate the maximum value of current in the coil. Calculate the average power loss due to Joule heating. Where does this power come from ?

D Watch Video Solution

7. A horizontal straight wire 10 m long extending from east to west is falling with a speed of $5.0 \mathrm{~m} \mathrm{~s}^{-1}$, at right angles to the horizontal component of the earth's magnetic field, $0.30 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$.
(a) What is the instantaneous value of the emf induced in the wire ?
(b) What is the direction of the emf ?
(c) Which end of the wire is at the higher
electrical potential ?

- Watch Video Solution

8. Current in a circuit falls from 5.0 A to 0.0 A
in 0.1 s . If an average emf of 200 V induced, give an estimate of the self-inductance of the circuit.
9. A pair of adjacent coils has a mutual inductance of 1.5 H . If the current in one coil changes from 0 to 20 A in 0.5 s , what is the change of flux linkage with the other coil?

- Watch Video Solution

10. A jet plane is travelling towards west at a speed of $1800 \mathrm{~km} / \mathrm{h}$. What is the voltage difference developed between the ends of the wing having a span of 25 m , if the Earth's
magnetic field at the location has a magnitude of $5 \times 10^{-4} \mathrm{~T}$ and the dip angle is 30°.

D Watch Video Solution

11. Suppose the loop is stationary but the current feeding the electromagnet that produces the magnetic field is gradually reduced so that the field decreases from its initial value of 0.3 T at the rate of $0.02 \mathrm{~T} s^{-1}$. If the cut is joined and the loop has a resistance of 1.6Ω, how much power is dissipated by the
loop as heat ? What is the source of this power?

D Watch Video Solution

12. A square loop of side 12 cm with its sides parallel to X and Y axes is moved with a velocity of $8 \mathrm{~cm} \mathrm{~s}^{-1}$ in the positive x -direction in an environment containing a magnetic field in the positive z-direction. The field is neither uniform in space nor constant in time. It has a gradient of $10^{-3} \mathrm{~T} \mathrm{~cm}^{-1}$ along the negative x^{-}
direction (that is it increases by $10^{-3} \mathrm{~T} \mathrm{~cm}^{-1}$
as one moves in the negative x-direction), and
it is decreasing in time at the rate of $10^{-3} \mathrm{Ts}^{-1}$. Determine the direction and magnitude of the induced current in the loop if its resistance is $4.50 \mathrm{~m} \Omega$.

- Watch Video Solution

13. It is desired to measure the magnitude of
field between the poles of a powerful loud speaker magnet. A small flat search coil of area
$2 \mathrm{~cm}^{2}$ with 25 closely wound turns, is positioned normal to the field direction, and then quickly snatched out of the field region.

Equivalently, one can give it a quick 90° turn
to bring its plane parallel to the field direction). The total charge flown in the coil (measured by a ballistic galvanometer connected to coil) is 7.5 mC . The combined resistance of the coil and the galvanometer is
0.50Ω. Estimate the field strength of magnet.

- Watch Video Solution

14. Figure shows a metal rod $P Q$ resting on the smooth rails $A B$ and positioned between the poles of a permanent magnet. The rails, the rod, and the magnetic field are in three mutual perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the $\operatorname{rod}=15 \mathrm{~cm}, \mathrm{~B}=0.50 \mathrm{~T}$, resistance of the closed loop containing the rod $9.0 \mathrm{~m} \Omega$.

Assume the field to be uniform.
(a) Suppose K is open and the rod is moved with a speed of $12 \mathrm{~cm} \mathrm{~s}^{-1}$ in the direction
shown. Give the polarity and magnitude of the induced emf.

(b) Is there an excess charge built up at the ends of the rods when K is open ? What if K is closed?
(c) With K open and the rod moving uniformly,
there is no net force on the electrons in the rod $P Q$ even though they do experience magnetic force due to the motion of the rod.

Explain.
(d) What is the retarding force on the rod
when K is closed ?

How much power is required (by an external agent) to keep the rod moving at the same speed ($=12 \mathrm{~cm} \mathrm{~s}{ }^{-1}$) when K is closed ? How much power is required when K is open?
(f)How much power is dissipated as heat in the closed circuit ? What is the source of this power?
(g) What is the induced emf in the moving rod
if the magnetic field is parallel to the rails instead of being perpendicular ?

Watch Video Solution

15. An air-cored solenoid with length 30 cm , area of cross-section $25 \mathrm{~cm}^{2}$ and number of turns 500, carries a current of 2.5 A . The current is suddenly switched off in a brief time of $10^{-3} \mathrm{~s}$. How much is the average back emf induced across the ends of the open switch in the circuit ? Ignore the variation in magnetic field near the ends of the solenoid.

D Watch Video Solution

16. (a) Obtain an expression for the mutual inductance between a long straight wire and a square loop of side a as shown in figure.
(b) Now assume that the straight wire carries
a current of 50 A and the loop is moved to the right with a constant velocity, v $=10 \mathrm{~m} / \mathrm{s}$.

Calculate the induced emf in the loop at the instant when $\mathrm{x}=0.2 \mathrm{~m}$. Take $\mathrm{a}=0.1 \mathrm{~m}$ and assume that the loop has a large resistance.
17. A line charge λ per unit length is lodged uniformly onto the rim of a wheel of mass M and radius R. The wheel has light nonconducting spokes and is free to rotate without friction about its axis as per figure. A uniform magnetic field extends over a circular region within the rim. It is given by,
$B=-B_{0} k(r \leq a, a<R)$
$=0$ (otherwise)

What is the angular velocity of the wheel after the field is suddenly switched off?

Section B Numerical Numerical From Darpan Based On Textbook

1. A conducting circular loop is placed in a uniform magnetic field of 0.04 T with its plane perpendicular to the field. Some how, the radius of the loop starts shrinking at a constant rate of $2 \mathrm{~mm} / \mathrm{s}$. Find the induced emf in the loop at an instant when the radius becomes 2 cm solution.
2. As shown in figure, a long wire kept vertically on the plane of paper carries electric current-I. A conducting ring moves towards the wire with velocity v with its plane conducting with the plane of paper. Find the induced emf produced in the ring when it is at
a perpendicular distance r from the wire.

Radius of the ring is a and $a \ll r$.

- Watch Video Solution

3. A conducting ring of radius r is placed perpendicular inside a time varying magnetic
field as shown in figure. The magnetic field
changes with time according to $B=B_{0}+\alpha t$
where B_{0} and α are positive constants. Find the electric field on the circumference of the
ring.

- Watch Video Solution

4. A wheel having n conducting concentric spokes is rotating about it geometrical axis with an angular velocity ω, in a uniform magnetic field B perpendicular to its plane prove that the induced emf generated between the rim of the wheel and the center is $\omega B R^{2}$ 2 , where R is the radius of the wheel. It is
given that the rim of the wheel is conducting.

- Watch Video Solution

5. A U-shaped conducting frame is placed in a magnetic field B in such a way that the plane of the frame is perpendicular to the field lines.

A conducting rod is supported on the parallel arms of the frame, perpendicular to them and
is given a velocity v_{0} at time $\mathrm{t}=0$. Prove that the velocity of the rod at time t will be given
by $v_{t}=v_{0} \exp \left(\frac{-B^{2} l^{2}}{m R} t\right)$.

D Watch Video Solution

6. A small square loop of wire of side I is
placed inside a large square loop of wire of
side $L(L \gg l)$. The loops are coplanar and
their centres coincide. Find the mutual
inductance of the system.

(Watch Video Solution
7. A conducting bar of 2 m length is allowed to
fall freely from a 50 m high tower, keeping it aligned along the east-west direction. Find the emf induced in the rod when it is 20 m below the top of the tower. $g=10 \mathrm{~ms}^{-2}$. Horizontal component of earth's magnetic field is $0.7 \times 10^{-4} \mathrm{~T}$ and angle of $\mathrm{dip}=60^{\circ}$.

- Watch Video Solution

8. As shown in the figure, a conducting rod of length I , mass m and resistance R falls through a magnetic field \vec{B} in a plane perpendicular to plane of figure. Find terminal velocity of rod.

9. Find the equivalent inductance of two inductors having inductances L_{1} and L_{2} connected in parallel with the help of appropriate DC circuit.

- Watch Video Solution

10. One toroid has 1.5×10^{4} turns and its axis
forms a circle of radius 10 cm . Its cross-section
has radius 2 cm . Find inductance of this toroidal ring.

Section C Ncert Exemplar Solution Mcqs

1. A square of side L meters lies in the $x y$-plane
in a region, where the magnetic field is given
by $\vec{B}=B_{0}(2 \hat{i}+3 \hat{j}+4 \hat{k}) T$ where B_{0} is constant. The magnitude of flux passing through the square is
A. $2 B_{0} L^{2} W b$
B. $3 B_{0} L^{2} W b$

C. $4 B_{0} L^{2} W b$

D. $\sqrt{29} B_{0} L^{2} \mathrm{~Wb}$

Answer: C

D Watch Video Solution

2. A loop, made of straight edges has six corners at $A(0,0,0), B(L, 0,0), C(L, L, 0), D(0, L, 0)$,
$E(0, L, L)$ and $F(0,0, L)$. A magnetic field $\vec{B}=B_{0}(\hat{i}+\hat{k}) T$ is present in the region.

The flux passing through the loop ABCDEFA (in that order) is

A. $B_{0} L^{2} W b$
B. $2 B_{0} L^{2} W b$
C. $\sqrt{2} B_{0} L^{2} W b$
D. $4 B_{0} L^{2} W b$

Answer: B

D Watch Video Solution
3. A cylindrical bar magnet is rotated about its
axis as in figure. A wire is connected from the axis and is made to touch the cylindrical surface through a contact. Then

A. a direct current flows in the ammeter A .
B. no current flows through the ammeter A.
C. an alternating sinusoidal current flows
through the ammeter A with a time
period $T=\frac{2 \pi}{\omega}$
D. a time varying non-sinusoidal current flows through the ammeter A.

Answer: B

D Watch Video Solution

4. There are two coils A and B as shown in figure. A current starts flowing in B as shown, when A is moved towards B and stops when A stops moving. The current in A is counter clockwise. B is kept stationary when A moves.

We can infer that

A. there is a constant current in the clockwise direction in A .
B. there is a varying current in A.
C. there is no current in A .
D. there is a constant current in
counterclockwise direction in A .

Answer: D

D Watch Video Solution

5. Same as problem 4 except the coil A is made to rotate about a vertical axis figure. No current flows in B if A is at rest. The current in
coil A, when the current in B (at $t=0$) is counter clockwise and the coil A is as shown at this instant, $t=0$, is

A. constant current clockwise
B. varying current clockwise.
C. varying current counter clockwise.
D. constant current counter clockwise.

Answer: A

D Watch Video Solution

6. The self inductance L of a solenoid of length

I and area of cross-section A, with a fixed number of turns N increases as
A. I and A increase.
B. I decreases and A increases
C. I increases and A decreases.
D. both I and A decrease.

Answer: B

- Watch Video Solution

7. A metal plate is getting heated. It can be because
A. a direct current is passing through the plate.
B. it is placed in a time varying magnetic
field
C. it is placed in a space varying magnetic field, but does not vary with time.

D. a current (either direct or alternating) is

passing through the plate.

Answer: A::B::D

D Watch Video Solution

8. An e.m.f is produced in a coil, which is not connected to an external voltage source. This can be due to
A. the coil being in a time varying magnetic field.
B. the coil moving in a time varying magnetic field.
C. the coil moving in a constant magnetic
field.
D. the coil is stationary in external spatially
varying magnetic field, which does not
change with time.
9. The mutual inductance M_{12} of coil 1 with respect to coil 2
A. increases when they are brought nearer.
B. depends on the current passing through
the coils.
C. increases when one of them is rotated
about an axis.

D. is the same as M_{21} of coil 2 with respect

 to coil 1.
Answer: A::D

- Watch Video Solution

10. A circular coil expands radially in a region of magnetic field and no electromotive force is produced in the coil. This can be because
A. the magnetic field is constant.
B. the magnetic field is in the same plane
as the circular coil and it may or may not
vary
C. the magnetic field has a perpendicular
(to the plane of the coil) component
whose magnitude is decreasing suitably.
D. there is a constant magnetic field in the
perpendicular (to the plane of the coil)
direction.

- Watch Video Solution

11. Consider a magnet surrounded by a wire
with an on/off switch S as shown in figure. If
the switch is thrown from the off position
(open circuit) to the on position (closed circuit), will a current flow in the circuit ?

Explain.
12. A wire in the form of a tightly wound solenoid is connected to a DC source, and carries a current. If the coil is stretched so that there are gaps between successive elements of the spiral coil, will the current increase or decrease? Explain.

D Watch Video Solution

13. A solenoid is connected to a battery so that
a steady current flows through it. If an iron
core is inserted into the solenoid, will the current increase or decrease? Explain.

D Watch Video Solution

14. Consider a metal ring kept on top of a fixed solenoid (say on a cardboard) as per figure.

The centre of the ring coincides with the axis of the solenoid. If the current is suddenly
switched on, the metal ring jumps up. Explain.

- Watch Video Solution

15. Consider a metal ring kept (supported by a cardboard) on top of a fixed solenoid carrying
a current I as per figure. The centre of the ring
coincides with the axis of the solenoid. If the
current in the solenoid is switched off, what
will happen to the ring ?

D Watch Video Solution
16. Consider a metallic pipe with an inner radius of 1 cm . If a cylindrical bar magnet of
radius 0.8 cm is dropped through the pipe, it takes more time to come down than it takes
for a similar unmagnetised cylindrical iron bar dropped through the metallic pipe. Explain.

D Watch Video Solution

Section C Ncert Exemplar Solution Short Answer

1. A magnetic field in a certain region is given
by $\vec{B}=B_{0} \cos (\omega t) \hat{k}$ and a coil of radius a
with resistance R is placed in the $x y$-plane with
its centre at the origin in the magnetic field
(see figure). Find the magnitude and the direction of the current at $(a, 0,0)$ at
$t=\frac{\pi}{2 \omega}, \frac{\pi}{\omega}$ and $t=\frac{3 \pi}{2 \omega}$.

- Watch Video Solution

2. Consider a closed loop C in a magnetic field as shown in figure. The flux passing through
the loop is defined by choosing a surface whose edge coincides with the loop and using the formula $\quad \phi=\vec{B}_{1} \cdot d \vec{A}_{1}+\vec{B}_{2} \cdot d \vec{A}_{2}+\ldots$.

Now if we choose two different surfaces S_{1} and S_{2} having C as their edge, would we get the same answer for flux. Justify your answer.

Watch Video Solution

3. Find the current in the wire for the configuration shown in figure. Wire PQ has negligible resistance. \vec{B}, the magnetic field is coming out of the paper. θ is a fixed angle made by PQ travelling smoothly over two conducting parallel wires separated by a distance d.

- Watch Video Solution

A (current vs time) graph of the current passing through a solenoid is shown in figure.

For which time is the back electromotive force
(ε) a maximum. If the back emf at $\mathrm{t}=3 \mathrm{~s}$ is e ,
find the back emf at $1=7 \mathrm{~s}, 15 \mathrm{~s}$ and 40 s . OA , $A B$ and $B C$ are straight line segments.

- Watch Video Solution

5. There are two coils A and B separated by some distance. If a current of 2 A flows through A , a magnetic flux of $10^{-2} \mathrm{~Wb}$ passes through B (no current through B). If no current passes through A and a current of 1 A passes through B, what is the flux through A ?

D Watch Video Solution

Section C Ncert Exemplar Solution Long Answer

1. A magnetic field $\vec{B}=B_{0} \sin (\omega t) \hat{k}$ covers a
large region where a wire $A B$ slides smoothly
over two parallel conductors separated by a distance d as in figure. The wires are in the $x y$ -
plane. The wire $A B$ (of length d) has resistance
R and the parallel wires have negligible resistance. If $A B$ is moving with velocity v, what
is the current in the circuit. What is the force needed to keep the wire moving at constant
velocity?

(Watch Video Solution

2. A conducting wire $X Y$ of mass m and neglibile resistance slides smoothly on two parallel conducting wires as shown in figure.

The closed circuit has a resistance R due to $A C$.
$A B$ and $C D$ are perfect conductors. There is a magnetic field $\vec{B}=B(t) \hat{k}$

(i) Write down equation for the acceleration of the wire XY.
(ii) If \vec{B} is independent of time, obtain $v(t)$, assuming $v(0)=u_{0}$.
(iii) For (ii), show that the decrease in kinetic energy of $X Y$ equals the heat lost in.
3. ODBAC is a fixed rectangular conductor of negligible resistance (CO is not connected) and $O P$ is a conductor which rotates clockwise with an angular velocity ω as figure. The entire system is in a uniform magnetic field B whose direction is along the normal to the surface of the rectangular conductor $A B D C$. The conductor OP is in electric contact with ABDC.

The rotating conductor has a resistance of λ per unit length. Find the current in the
rotating conductor, as it rotates by 180°.

D Watch Video Solution

4. Consider an infinitely long wire carrying a
current $\mathrm{I}(\mathrm{t})$, with $\frac{d I}{d t}=\lambda=$ constant. Find the dt current produced in the rectangular loop of
wire $A B C D$ if its resistance is R as in figure.

D Watch Video Solution

5. A rectangular loop of wire $A B C D$ is kept close to an infinitely long wire carrying a current $I(t)=I_{0}\left(1-\frac{t}{T}\right)$ for $0 \leq t \leq T$ and $\mathrm{I}(0)=0$ for $\mathrm{t}>\mathrm{T}$ as shown in figure. Find
the total charge passing through a given
point in the loop, in time T. The resistance of the loop is R .

- Watch Video Solution

6. A magnetic field B is confined to a region
$r \leq a$ and points out of the paper (the z-axis),
$r=0$ being the centre of the circular region. A charged ring (charge Q) of radius $\mathrm{b}, \mathrm{b}>\mathrm{a}$
and mass m lies in the xy-plane with its centre at the origin. The ring is free to rotate and is at rest. The magnetic field is brought to zero in time Δt. Find the angular velocity ω of the ring after the field vanishes.

D Watch Video Solution

7. A rod of mass m and resistance R slides smoothly over two parallel conducting wires kept sloping at an angle θ with respect to the horizontal as shown in figure. The circuit is
closed through a perfect conductor at the top. There is a constant magnetic field \vec{B} along the vertical direction. If the rod is initially at rest, find the velocity of the rod as a function of time.

(D) Watch Video Solution
8. Find the current in the sliding rod $A B$ (resistance = R) for the arrangement shown in figure. \vec{B} is constant and is out of the paper. Parallel wires have no resistance, v is constant. Switch S is closed at time $\mathrm{t}=0$.

D Watch Video Solution

9. Find the current in the sliding rod $A B$
(resistance $=R$) for the arrangement shown in
figure. \vec{B} is constant and is out of the paper.
Parallel wires have no resistance, v is constant.

Switch S is closed at time $\mathrm{t}=0$.

D Watch Video Solution
10. A metallic ring of mass m and radius I (ring
being horizontal) is falling under gravity in a
region having a magnetic field. If z is the
vertical direction, the z-component of magnetic field is $B_{Z}=B_{O}(I+\lambda z)$. If R is the resistance of the ring and if the ring falls with
a velocity v, find the energy lost in the resistance. If the ring has reached a constant velocity, use the conservation of energy to determine v in terms of m, B, λ and acceleration due to gravity g.
11. A long solenoid 'S' has ' n ' turns per meter, with diameter 'a'. At the centre of this coil we place a smaller coil of ' N ' turns and diameter ' b ' (where $\mathrm{b}<\mathrm{a}$). If the current in the solenoid increases linearly, with time, what is the induced emf appearing in the smaller coil. Plot graph showing nature of variation in emf, if current varies as a function of $m t^{2}+C$.

- Watch Video Solution

1. When a metallic rod falls freely, keeping its
length horizontal and parallel to north-south direction, emf induced across it is
A. increases with time
B. decreases with time
C. zero
D. remains constant
2. One magnet is moved towards a coil, first speedily and then slowly. Then amount of electric charge induced would be \qquad
A. equal in both the cases.
B. more in first case.
C. more in second case.
D. zero in both the case.

- Watch Video Solution

3. Length of one metal rod is 1 m . 2 T is the intensity of the magnetic field. When this rod is rotating with the frequency of 10 Hz perpendicular to the field line by keeping its one end fixed as centre, induced emf is
A. $10 \pi \mathrm{~V}$
B. $20 \pi V$
C. $30 \pi V$

D. $40 \pi V$

Answer: B

D Watch Video Solution

4. ____ rule is used to find the direction of
induced current in a conducting wire, moving in a magnetic field.
A. Fleming's left hand
B. Fleming's right hand

C. Ampere's

D. Expanded right hand

Answer: B

D Watch Video Solution

5. When a bar magnet is placed on the axis of
a coil with north pole facing the coil, face of coil towards the magnet behaves like
A. a north pole

B. a south pole

C. no pole (devoid of magnetism)
D. permanent magnet

Answer: C

D Watch Video Solution

6. When current passing through a coil increases, direction of induced emf is
A. in the direction of existing current.
B. in the opposite direction of existing
current
C. perpendicular to the flow of current.
D. indefinite

Answer: B

D Watch Video Solution
7. When a bar magnet is brought closer to a coil, emf generated in the coil does not depend on
A. no. of turns
B. velocity of magnet
C. strength of magnetic field of magnet
D. resistance of coil

Answer: D

D Watch Video Solution
8. Faraday's law on electromagnetic induction gives
A. direction of induced emf
B. value of induced emf
C. both, value and direction of induced emf
D. change of magnetic flux

Answer: B

D Watch Video Solution

9. The Lenz's force acting on a conducting rod is
A. proportional to its velocity
B. proportional to the square of its velocity
C. inversely proportional to its velocity
D. inversely proportional to the square of
its velocity

Answer: A

- Watch Video Solution

10. Lenz's law is statement of
A. law of conservation of charge
B. law of conservation of current
C. law of conservation of energy
D. law of conservation of momentum

Answer: C

D Watch Video Solution

11. According to the Faraday's law of electromagnetic induction
A. electric field is produced due to the change in magnetic flux with time.
B. magnetic flux is produced due to the change in electric field.
C. magnetic field associated with moving charge.
D. none of the above.

Answer: A

12. The direction of induced emf during electro

 magnetic induction is given byA. Faraday's law
B. Lenz's law
C. Ampere's law
D. Maxwell's law

Answer: B

D Watch Video Solution
13. In figure a rectangular loop is being pulled to the right, away from the long straight wire carrying current I in the upward direction. The induced current in the loop is
A. zero
B. in clockwise direction
C. in anticlockwise direction
D. None of the above

Answer: B
14. The earth's magnetic field at a place with
zero declination is $3 \times 10^{-4} \mathrm{~T}$. The angle of dip at that place is 30°. A conducting rod is kept is north south direction and is moved at a constant speed of $1 \mathrm{~m} / \mathrm{s}$ towards east. The emf induced in the rod is (The length of the rod is 10 cm .)
A. $15 \mu V$
B. $15 m V$
C. 0.15 V

D. 1.5 V

Answer: A

D Watch Video Solution

15. A helicopter is moving in upward direction
with speed of $10 \mathrm{~m} / \mathrm{s}$. If the length of the
helicopter is 10 m and the horizontal component of magnetic field of earth is $1.5 \times 10^{-3} \frac{\mathrm{~Wb}}{m^{2}}$ then the induced emf
produced across the foremost (nose) and end part (tail) of the helicopter will be
A. 0.15 V
B. 125 V
C. 130 V
D. 5 V

Answer: A
(Watch Video Solution
16. A conducting rod of length I and velocity v moves in a magnetic field B. If ρ is the resistivity of the material of rod, then the induced current produced in the rod is

$$
\begin{aligned}
& \text { A. } \frac{B v A \sin \theta}{\rho} \\
& \text { B. } \frac{B v A}{\rho} \\
& \text { C. } \frac{B v A \cos \theta}{\rho} \\
& \text { D. } 0
\end{aligned}
$$

Answer: B
17. The distance between two extreme points of two wings of an Aeroplane is 50 m . It is
flying at a speed of $360 \mathrm{~km} / \mathrm{hr}$ in horizontal direction. If the vertical component of earth's magnetic field at that place is
$2 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$, the induced emf between these two end points is \qquad
A. 0.1
B. 1
C. 0.2
D. 0.001

Answer: B

D Watch Video Solution

18. A D.C. motor working on 200 V have initial
current of 5 A but when it attained maximum
velocity, the current obtained is 3 A . What will be its Back emf?
A. OV
B. 80 V
C. 120 V
D. 200 V

Answer: B

D Watch Video Solution

19. A straight line conductor of length 0.4 m is moved with a speed of $7 \mathrm{~m} / \mathrm{s}$ perpendicular to
a magnetic field of intensity $0.9 \mathrm{~Wb} / \mathrm{m}^{2}$. The induced emf across the conductor is
A. 1.26 V
B. 2.52 V
C. 5.04 V
D. 25.2 V

Answer: B
(Watch Video Solution
20. A square (each side of length L) wire loop
is kept with a long straight wire carrying
current I. The emf induced in the square loop
is

A. zero
B. 2 Bvl
C. $\frac{\mu_{0} I}{2 \pi y}$
D. Bvl

Answer: A

D Watch Video Solution

21. A coil of surface area $100 \mathrm{~cm}^{2}$ having 50 turns is held perpendicular to the magnetic field of intensity $0.02 \mathrm{~Wb} \mathrm{~m}^{-2}$. The resistance
of the coil is 2Ω. If it is removed from the magnetic field in 1 s , the induced charge in the coil is
A. 5 C
B. 0.5 C
C. 0.05 C
D. 0.005 C

Answer: D

- Watch Video Solution

22. 5×10^{-4} field lines are passing through a coil 1000 turn in certain time interval, the electromotive force of 5 V is produced then the time interval will be \qquad
A. 1 s
B. 0.1 s
C. 0.01 s
D. 0.001 s

Answer: B

- Watch Video Solution

23. A coil of 50 turns is pulled in 0.02 s fron between the poles of a magnet, where its are: includes magnetic flux of $31 \times 10^{-6} \mathrm{~Wb}$ to the place, where its area includes $1 \times 10^{-6} \mathrm{~Wb}$. The average emf is

> A. $7.5 \times 10^{-2} \mathrm{~V}$
> B. $7.5 \times 10^{-3} \mathrm{~V}$
C. 0
D. $7.5 \times 10^{-4} \mathrm{~V}$

Answer: A

- Watch Video Solution

24. Two conducting coils are kept parallel to each other so that they have a common axis as
shown in the figure. Now a bar magnet moves
with velocity \vec{v} towards coil (2) as shown in
figure, then

A. the north pole is induced on the face of
coil (1) towards the magnet.
B. the south pole is induced on the face of
coil (1) towards the magnet.
C. the south pole is induced on the face of
coil (2) towards the magnet.
D. the north pole is induced on the face of
coil (2) towards the magnet.

Answer: B

25. A circular loop enters a uniform magnetic field as shown in the figure. The current induced in the coil
A. is zero
B. in clockwise direction
C. in anticlockwise direction

D. in the direction pointing out of the page

Answer: B

D Watch Video Solution

26. A coil of area A is placed in the $X-Y$ plane. A
uniform magnetic field $B_{0} \hat{i}$ established. The
A. clockwise
B. anticlockwise
C. zero
D. depends on the value of A

Answer: C

D Watch Video Solution

27. The current flows from A to B in a straight
wire as shown in figure and it is decreasing
with time. The induced current in loop placed near to it \qquad

A. In clockwise direction
B. In anticlockwise direction
C. Will not be produced
D. Nothing can be said

Answer: B

- Watch Video Solution

28. As shown in fig. a conducting ring R is placed on the axis of a bar magnet M. The plane of R is perpendicular to the axis M can
move along this axis

A. M will repel R when it is moving towards

R
B. M will attract R when it is moving
towards R
C. M will repel R when moving towards as
well as away from R
D. M will attract R when it is moving towards as well as away from R

Answer: A

D Watch Video Solution

29. A conducting circular loop is expanding in
a magnetic field of 2 T uniformly so that rate of
increase of its radius R is $1 \mathrm{~cm} / \mathrm{s}$. Find the induced emf in the loop when its radius is 20
cm . The field is perpendicular to the plane of the loop.

A. $0.2 \pi \times 10^{-2} \mathrm{~V}$
B. $0.8 \pi \times 10^{-2} \mathrm{~V}$
C. 2.0 V
D. $0.1 \pi \times 10^{-2} \mathrm{~V}$

Answer: B

D Watch Video Solution
30. A coil has an area of $0.05 m^{2}$ and has 800 turns. After placing the coil in a magnetic field of strength $4 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$ perpendicular to the field the coil is rotated through 90° in 0.1
s. The average emf induced is
A. zero
B. 0.016 V
C. 0.01 V
D. 0.032 V
31. A rod of 5 m length is moving perpendicular to uniform magnetic field of intensity $2 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$. If the acceleration of rod is $2 m s^{-2}$, th rate of increase of the induced emf is
A. $20 \times 10^{-4} \mathrm{~V} / \mathrm{sec}^{2}$
B. $20 \times 10^{-4} V$
C. 20×10^{-4} Vs

$$
\text { D. } 20 \times 10^{-4} \mathrm{~V} / \mathrm{s}
$$

Answer: D

D Watch Video Solution

32. A thin circular ring of area A is held perpendicular to a uniform field of induction B. A small cut is made in the ring and a galvanometer is connected across the ends such that the total resistance of the circuit is
R. When the ring is suddenly squeezed to zero
area, the charge flowing through the galvanometer is
A. $\frac{B R}{A}$
B. $\frac{A B}{R}$
C. ABR
D. $\frac{B^{2} A}{R}$

Answer: B
(Watch Video Solution
33. A magnet is moving towards a coil along
its axis and the emf induced in the coil is ε. If
the coil also starts moving towards the magnet with the same speed, the induced emf
will be
A. $\frac{\varepsilon}{2}$
B. ε
C. 2ε
D. 4ε
34. Magnitude of emf produced in a coil, when magnet is inserted in the coil does not depend upon __ no of turns in the coil
A. no of turns in the coil
B. magnetic moment of a magnet
C. speed of magnet
D. resistance of a coil

- Watch Video Solution

35. One cylindrical bar magnet, kept on the axis of one circular coil. Now if this magnet is rotated about this axis, then
A. current will flow in the coil.
B. current will not flow in the coil.
C. only emf will be induced.
D. emf and current both will be induced.
36. The flux linked per each turn of a coil of N turns changes from ϕ_{1} to ϕ_{2}. If the total resistance of the circuit including the coil is R.

The induced charge in the coil is

$$
\begin{aligned}
& \text { A. } \frac{N\left(\phi_{2}-\phi_{1}\right)}{t} \\
& \text { B. } \frac{N\left(\phi_{2}-\phi_{1}\right)}{R} \\
& \text { C. } \frac{N\left(\phi_{2}-\phi_{1}\right)}{R t} \\
& \text { D. } N\left(\phi_{2}-\phi_{1}\right)
\end{aligned}
$$

Answer: B

- Watch Video Solution

37. Radius of a conducing wire r and its plane
is perpendicular to magnetic field B. If the
conductors is stretched and made in shape of
square in its plane and in time t, then induced
a emf ε is

$$
\begin{aligned}
& \text { A. } \frac{\pi B r^{2}}{t}\left(1-\frac{\pi}{10}\right) \\
& \text { B. } \frac{\pi B r^{2}}{t}\left(1-\frac{\pi}{8}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{\pi B r^{2}}{t}\left(1-\frac{\pi}{6}\right) \\
& \text { D. } \frac{\pi B r^{2}}{t}\left(1-\frac{\pi}{4}\right)
\end{aligned}
$$

Answer: D

D Watch Video Solution

38. Area vector of a coil of $5 \times 10^{-3} \mathrm{~m}^{2}$ makes
an angle of 0° with a uniform magnetic field. If
from this position the coil is rotated in 0.5
sec., so that the angle made by area vector with the field becomes 90°. Find the average
emf induced in the coil. The magnetic field intensity is 0.3 T. Number of turns in the coil is 500.
A. 1.5 V
B. 2.5 V
C. 1.4 V
D. 1.3 V

Answer: A

D Watch Video Solution
39. A conducting bar of 3 m length is allowed to fall freely from 80m high tower, keeping it aligned along the East-West direction. Find the emf induced in the rod when it is 20 m below the top of tower.

$$
\begin{aligned}
& g=10 \mathrm{~ms}^{-2}, B_{h}=0.7 \times 10^{-4} \mathrm{~T} \text { and angle of } \\
& \text { deep }=60^{\circ} .
\end{aligned}
$$

A. 2.5 mV
B. 2.1 mV
C. 2.7 mV
D. 1.2 mV

Answer: B

- Watch Video Solution

40. The flux linked per each turn of coil of 5×10^{3} turns changes from $0.4 \times 10^{-3} \mathrm{~Wb}$ to
$0.6 \times 10^{-3} \mathrm{~Wb}$ in 0.2 sec . If the total resistance of circuit including the coil is 20Ω, find the change induced charge in coil.
A. 0.01 m c
B. 1.5 m c

C. 0.05 m c

D. 0.08 m c

Answer: C

D Watch Video Solution

41. As shown in the figure, P and Q are two
coaxial conducting loops separated by some distance. When the switch S is closed, a clockwise current I_{P} flows in loop P (As seen by E) and an induced current I_{Q} flows in loop
Q. In which direction this induced current I_{Q}
will flow as seen by E ?

A. clockwise
B. anticlockwise
C. towards P to E
D. towards Q to P

Answer: B
42. The north pole of horizontal bar magnet is being brought closer to vertical, conducting plane, along perpendicular direction the induced current in the conducting plane is
A. clockwise

B. anticlockwise

C. horizontal

D. vertical

Answer: B

D Watch Video Solution

43. The mutual inductance of the system of two coils is 5 mH . The current in the first coil varies according to the equation $I=I_{0} \sin \omega t$, where $I_{0}=10 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} \mathrm{s}^{-1}$. The value of maximum induced emf in the second coil is
A. $2 \pi V$
B. $5 \pi V$
C. πV
D. $4 \pi V$

Answer: B

D Watch Video Solution

44. A wheel with 10 metallic spokes each 0.5 m
long rotated with a speed of $120 \frac{\mathrm{rev}}{\mathrm{min}}$ in a plane normal to the horizontal component of
earth's magnetic field B_{h} at a place. If $B_{h}=$
0.4G at the place, what is the induced emf between the axle and the rim of the wheel ?

$$
\left.\mathrm{G}=10^{-4} \mathrm{~T}\right)
$$

A. OV
B. 0.628 mV
C. $0.628 \mu V$
D. $62.8 \mu V$

Answer: D

45. The network shown in figure is a part of the circuit. (The battery has negligible resistance)

At a certain instant the current $I=5 \mathrm{~A}$ and is decreasing at a rate of $10^{3} \mathrm{As}^{-1}$. What is the potential difference between point B and A ?
A. 5 V
B. 10 V
C. 15V

D. OV

Answer: C

D Watch Video Solution

46. A short circuited coil is placed in a time
varying magnetic field. Electrical power is dissipated in the form of Joule heat due to the current induced in the coil. If the number of turns were to be quadrupled and the wire
radius halved, the electrical power dissipated would be
A. halved
B. the same
C. doubled

D. quadrupled

Answer: B
(Watch Video Solution
47. A rod of 5 cm length is moving perpendicular to uniform magnetic field of intensity $2 \times 10^{-4} \mathrm{Wbm}^{-2}$. If the acceleration of rod is $2 m s^{-2}$, the rate of increasing of the induced emf is

$$
\begin{aligned}
& \text { A. } 20 \times 10^{-4} V s^{-2} \\
& \text { B. } 20 \times 10^{-4} V \\
& \text { C. } 20 \times 10^{-4} \mathrm{Vs} \\
& \text { D. } 2 \times 10^{-5} V s^{-1}
\end{aligned}
$$

48. Dimensional formula of magnetic flux is
A. $M^{1} L^{2} T^{-2} A^{-1}$
B. $M^{1} L^{0} T^{-2} A^{-2}$
C. $M^{0} L^{-2} T^{-2} A^{3}$
D. $M^{1} L^{2} T^{-2} A^{3}$

Answer: A
49. I amount of current is passed through a coil with N turns. Magnetic flux linked with the coil is
A. LI
B. NLI
C. $\frac{N I}{L}$
D. $N^{2} L I$

Answer: B

- Watch Video Solution

50. Magnetic flux linked with one closed conducting loop is $\phi=t^{2}+3 t-7$. Then graph of $\varepsilon \rightarrow t$ would be a (All the values are in SI units)
A. circle
B. parabola
C. ellipse
D. straight line

Above is the graph of current induced in a coil of resistance 10Ω, because of change of magnetic flux, versus time. Then change of magnetic flux is Wb.
A. 8
B. 2
C. 0
D. 6

Answer: B

D Watch Video Solution

52. Magnetic flux linked with one coil changes
with time t is $\phi=x t^{2}$. If emf induced at $\mathrm{t}=3 \mathrm{~s}$
is 9 V then value of $\mathrm{x}=\ldots . .$.
A. $0.66 \mathrm{~Wb} \mathrm{~s}^{-2}$
B. $1.5 \mathrm{~Wb} \mathrm{~s}^{-2}$
C. $-0.66 \mathrm{~Wb} \mathrm{~s}^{-2}$
D. $-1.5 \mathrm{~Wb} \mathrm{~s}^{-2}$

Answer: D

D Watch Video Solution

53. One coil with 40 turns and $4 \mathrm{~cm}^{2}$ area of cross-section is kept perpendicular to one uniform magnetic field of flux density B. When
this loop is pulled out of magnetic field suddenly, 2×10^{-4} C electric charge flows through it. If resistance of this coil is 80Ω then

$$
\mathrm{B}=\ldots \mathrm{Wb} / \mathrm{m}^{2} .
$$

A. 0.5
B. 1
C. 1.5
D. 2

Answer: B
54. 2 A current is passed through a solenoid which has 5 cm diameter, 10 turns and 10 cm
length. Now, near to one of its two ends, a circular loop of radius 2 cm is kept perpendicular to axis of solenoid. Then magnetic flux passing through this loop is

Wb. $\left(\mu_{0}=4 \pi \times 10^{-7} T m A^{-1}\right.$ and take π°
$=10$)

$$
\begin{aligned}
& \text { A. } 3.2 \times 10^{-8} \\
& \text { B. } 3.2 \times 10^{-7}
\end{aligned}
$$

C. 3.2×10^{-9}
D. 3.2×10^{-6}

Answer: B

D Watch Video Solution

55. A circular loop of radius R is placed in the uniform magnetic field. The value of magnetic
field changes is given by equation
$B=B_{0} e^{-\frac{t}{\tau}}$. Where B_{0} and τ are constants.
The emf induced in the coil is
A. $\pi^{2} B_{0} e^{-\frac{t}{\tau}} \times 10^{-2} \mathrm{~V}$
B. $\frac{\pi R^{2} B_{0}}{\tau} e^{-\frac{t}{\tau}}$
C. $\pi^{2} B_{0} \tau e^{-\frac{t}{\tau}}$
D. None of these

Answer: B

D Watch Video Solution

56. \vec{B} is the magnetic field perpendicular to
the plane of the coil, then flux linked with coil
is given by $\phi=\ldots$. [Area of coil =A]
A. $\phi=A B$
B. $\phi=0$
C. $\phi=\vec{A} \times \vec{B}$
D. $\phi=A B \sin 0^{\circ}$

Answer: A

D Watch Video Solution

57. When α is the angle between plane of the coil and magnetic field \vec{B}, flux linked with the coil is given by $\phi=$
A. $A B$
B. $|\vec{A} \times \vec{B}|$
C. $A B \cos \alpha$
D. $\vec{A} \times \vec{B}$

Answer: B

D Watch Video Solution

58. A magnetic field in a certain region is given by $\quad \vec{B}=(40 \hat{\hat{\imath}}-18 \hat{k}) G$. How much flux passes through a $5.0 \mathrm{~cm}^{2}$ area of the loop, if
the loop lies flat on the XY Plane ? 1G (gauss) = $10^{-4} \mathrm{~T}$.
A. -900 nWb
B. -9 Wb
C. zero
D. 90 Wb

Answer: A
(Watch Video Solution
59. A solenoid 600 mm long has 50 turns on it and its wound on an iron rod 7.5 mm radius.

Find the flux through the solenoid when the
current in it is 3 A . The relative permeability of iron is 600.
A. 1.66 Wb
B. 1.66 nWb
C. 1.66 mWb
D. $1.66 \mu \mathrm{~Wb}$

Answer: C
60. A square loop of size 2 cm is lying on a
horizontal surface. A uniform magnetic field of
0.4 T is directed downward at an angle of 30°
to the vertical as shown in the Fig. The flux
linked is \quad Wb.

A. 8×10^{-4}
B. 8
C. 8×10^{-5}
D. 16×10^{-5}

Answer: C

D Watch Video Solution

61. Unit of magnetic flux density is

> A. $\frac{V}{\mathrm{sec}}$
> B. $\frac{\mathrm{Wb}}{m^{2}}$
> C. $\frac{\mathrm{Wb}}{\mathrm{sec}}$
D. none of these
62. A magnetic field in a certain region is given by $\vec{B}=(40 \hat{\hat{1}}-18 \hat{k}) G$. How much flux passes through a $5.0 \mathrm{~cm}^{2}$ area of the loop, if the loop lies flat on the XY Plane ? 1 G (gauss) = $10^{-4} \mathrm{~T}$.
A. -900 nWb
B. -9 Wb
C. zero
D. 90 Wb

Answer: A

D Watch Video Solution

63. Eddy currents were invented by scientist.
A. Lenz
B. Faraday
C. Foucault

D. Maxwell

Answer: C

D Watch Video Solution

64. When eddy currents are produced in the conductor, electrons in that conductor
A. do not move
B. move on the paths of minimum
resistance (known as eddies)
C. move on the paths of maximum
resistance
D. move on random paths

Answer: B

D Watch Video Solution
65. Lenz force acting on a conducting rod moving in a magnetic field is
A. proportional to length.
B. proportional to square of length.
C. inversely proportional to length.
D. inversely proportional to square of length.

Answer: B

- Watch Video Solution

66. One metallic plate, oscillates perpendicular to magnetic field between two flat unlike magnetic poles,
A. there is no effect on oscillations of plate.
B. eddy currents are produced in the plate which makes oscillations faster.
C. eddy currents are produced in the plate which makes oscillations of plate slower.
D. plane of oscillations of plate changes.

Answer: C

- Watch Video Solution

67. Eddy currents are produced, when
A. by heating the metal
B. a metal is kept in varying magnetic field.
C. a metal kept in electric field.
D. a metal kept in steady magnetic field.

Answer: C

D Watch Video Solution

68. Eddy currents are produced
A. only within the body of the conductor
B. only on the surface of the conductor
C. both in the body and surface of the conductor.
D. only at the corners of the conductor

Answer: C

69. Eddy current do not cause........
A. damping
B. heating
C. sparking
D. loss of energy

Answer: C

- Watch Video Solution

70. Induction furnace is based on the heating

 effect ofA. eddy current
B. magnetic field
C. electric field
D. gravitational field

Answer: A
(D) Watch Video Solution
71. A square conducting coil of area $100 \mathrm{~cm}^{2}$ is placed normally inside a uniform magnetic field of $10^{3} \mathrm{Wbm}^{-2}$. The magnetic flux linked with the coil is __ Wb .
A. 10
B. 10^{-5}
C. 10^{5}
D. 0

Answer: A
72. Self inductance of a solenoid is directly proportional to
A. current passing through solenoid.
B. its length.
C. its area of cross-section.
D. reciprocal of its area of cross-section.

Answer: C

- Watch Video Solution

73. Dimensional formula of self inductance is

$$
\begin{aligned}
& \text { A. } M^{1} L^{1} T^{-2} A^{-2} \\
& \text { B. } M^{1} L^{2} T^{-1} A^{-2} \\
& \text { C. } M^{1} L^{2} T^{-2} A^{-2} \\
& \text { D. } M^{1} L^{2} T^{-2} A^{-1}
\end{aligned}
$$

Answer: C
(Watch Video Solution
74. When current passing through a coil is made doubled, its self inductance
A. becomes doubled
B. becomes half
C. becomes one fourth
D. remains constant

Answer: D

D Watch Video Solution
75. Two identical coils, each with self inductance L, are connected in series and kept very close. Turns wound in these coils have opposite sense of winding. Then resultant inductance of this connection is
A. L^{2}
B. $2 L$
C. $\frac{L}{2}$
D. zero

Answer: D
 arrangement is

A. 1.0 H

B. 1.75 H

C. 0.75 H

D. 0.25 H

Answer: A

D Watch Video Solution

77. Series combination of 10Ω resistance and 5
cm long solenoid having 5 mH self inductance
are connected to 10 V battery. Current passing
through solenoid in steady state is
A. 5 A
B. $1 A$
C. $2 A$
D. zero

Answer: B

D Watch Video Solution

78. Two coils have a mutual inductance of
0.005 H . The current changes in the first coil according to equation $I=I_{0} \sin \omega t$, where I_{0}
$=10 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} / \mathrm{sec}$. The maximum value of emf in the second coil is
A. 2π
B. 5π
C. π
D. 4π

Answer: B
(Watch Video Solution

For an inductor having self inductance 4.6 H , emf induced in it for time interval from 5 ms to 6 ms is
A. zero
B. $10^{3} \mathrm{~V}$
C. -23×10^{3} V
D. $23 \times 10^{3} \mathrm{~V}$

Answer: D

D Watch Video Solution

80. Find mutual inductance of two coaxial solenoids of equal length 30 cm with inner one surrounded by bigger one. Their area of cross section are $20 \mathrm{~cm}^{2}$ and $40 \mathrm{~cm}^{2}$. They have windings of 40 turn $/ \mathrm{cm}$ and 10 turn $/ \mathrm{cm}$.
A. 10 H
B. 8 H

C. 3 mH

D. 30 mH

Answer: C

D Watch Video Solution

81. A coil of resistance 20Ω and self-inductance

5 H connected with battery 100 V . What will be the value of energy stored?
A. 31.25 J
B. 62.5 J
C. 125 J
D. 250 J

Answer: B

D Watch Video Solution

82. The unit of inductance is equivalent to
A. $\frac{\text { Volt-Ampere }}{\text { second }}$
B. $\frac{\text { Volt }}{\text { Ampere-second }}$

c. $\frac{\text { Volt-second }}{\text { Ampere }}$
 D. $\frac{\text { Ampere }}{\text { Volt-second }}$

Answer: C

D Watch Video Solution

83. A solenoid has radius r and length I carries
a current I. If the number of its turns is 200 , the energy stored in the solenoid is

$$
\text { A. } \frac{N^{2} A^{2} I}{2 \pi r}
$$

B. $\frac{N^{2} A I^{2}}{\mu_{0} r}$
C. $\frac{\mu_{0} N^{2} A I^{2}}{2 l}$
D. 0

Answer: C

D Watch Video Solution

84. Current I is following through a toroidal solenoid of radius r, length I and area A. If the number of turns of toroidal solenoid is N , then energy stored in the toroidal solenoid is
A. $\frac{1}{2} \frac{\mu_{0} N^{2} A I^{2}}{\pi r}$
B. $\frac{1}{8} \frac{\mu_{0} N^{2} A I^{2}}{\pi r}$
C. $\frac{1}{6} \frac{\mu_{0} N^{2} A I^{2}}{\pi r}$
D. $\frac{1}{4} \frac{\mu_{0} N^{2} A I^{2}}{\pi r}$

Answer: D

D Watch Video Solution

85. If N is the number of turns in a coil, the
value of self inductance varies as \propto
A. N^{0}
B. N
C. $N^{\frac{1}{2}}$
D. N^{2}

Answer: D

D Watch Video Solution

86. If number of turns in a coil is increased from 10 to 100 , its inductance becomes
times the original value.
A. 10
B. 100
C. $\frac{1}{10}$
D. 25

Answer: B

- Watch Video Solution

87. Two inductors each of self-inductance L is
connected in parallel. If the value of
equivalence, inductance of the connection is 5
mH , then the value of L is
A. $\frac{L}{4}$
B. 10 mH
C. L
D. 4 mH

Answer: B

- Watch Video Solution

88. Mutual inductance of system of two coils is
0.3 H . If the current in the one coil is changed
from 10A to 40 A in 0.01 sec , the average induced emf in the other coil is volt.
A. 9
B. 900
C. 9000
D. 90000

Answer: B
89. The flux linked with each turn of coil is 0.1

Wb and total number of turns is 1000. If
current passing through coil is 10 amp , then
self inductance of coil is mH
A. 0.1
B. 10
C. 10^{4}
D. 10^{-4}

Answer: C

- Watch Video Solution

90. As shown in the figure, the planes of two concentric coils are mutually perpendicular.

The mutual inductance of this system is
A. $\mu_{0} N^{2} A$
B. $\frac{\mu_{0} N A}{L}$
C. zero
D. none of zero

Answer: C

D Watch Video Solution
91. Two circular coils can be arranged in any of
the three situations as shown in figure. Their
mutual inductance (M) will be ..

(1)

(2)

(3)
A. Maximum in situation (1)
B. Maximum in situation (2)
C. Maximum in situation (3)
D. The same in all situations.

Answer: A

92. X and Y coils are joined in a circuit in such
a way that when the change of current in X in
2 A , the change in the magnetic flux in Y is 0.4
Wb. The mutual induction of the system of two coils is H.
A. 0.8
B. 0.4
C. 0.2
D. 5

93. A circular coil of radius 5 cm has 500 turns

of a wire. The approximate value of the efficient of self-induction of the coil will be
A. 25 mH
B. $25 \times 10^{-3} \mathrm{mH}$
C. $50 \times 10^{-3} \mathrm{mH}$
D. $50 \times 10^{-3} \mathrm{H}$

Answer: A
94. Mutual inductance of two coils can be increased by
A. decreasing the number of turn in the coils.
B. increasing the number of turn in the coils.
C. winding the coils on wooden cores
D. none of the above.

Answer: B

D Watch Video Solution

95. Self inductance of straight conducting wire

is
A. zero
B. infinity
C. very large
D. very small

D Watch Video Solution

96. When current is increasing in the coil, the
direction of induced emf is the direction of
current.
A. same as
B. normal to
C. opposite to
D. none of above

Answer: C

D Watch Video Solution

97. The self-inductance of a coil increases when
the coil is wound on a soft iron core, because
A. soft iron has a very high permittivity.
B. soft iron has a very low permittivity.
C. soft iron has a very high permeability.
D. soft iron has a very low permeability.

Answer: C

D Watch Video Solution

98. The frequency of A.C. mains in India is

Hz.
A. 30
B. 50
C. 60
D. 70

Answer: C

- Watch Video Solution

99. Energy stored in the choke coil is in the
form of
A. heat
B. electric energy
C. magnetic energy
D. electromagnetic energy

Answer: C

D Watch Video Solution

100. The self-inductance of two solenoids A
and B having equal length are same. If the number of turns in two solenoids A and B are

100 and 200 respectively the ratio of the radii of their cross section will be
A. $2: 1$
B. $1: 2$
C. 1:4
D. $4: 1$

Answer: A

D Watch Video Solution

101. One electric generator produces power at 220 V potential difference. Its internal resistance is $r=10 \Omega$. Find power wasted in external resistance $\mathrm{R}=100 \Omega$
A. 484 W
B. 400 W
C. 441 W
D. 369 W

Answer: B

D Watch Video Solution

102. In one A.C. generator, brushes connected with slip rings become positive and negative alternatively at the regular interval of 10 ms .

Then angular frequency of this A.C. voltage would be
A. 50
B. 100
C. 50π
D. 100π

Answer: D
(Watch Video Solution
103. Working principle of electric motor is to convert
A. ac into dc.
B. ac into dc.
C. ac and dc mutually.
D. ac into mechanically.

Answer: D
(Watch Video Solution
104. Voltage obtained in one A.C. generator $V=V_{0} \cos \omega t$. If $V_{0}=10$ volt and frequency $\mathrm{v}=50 \mathrm{~Hz}$ then voltage at time $t=\frac{1}{600} s$ wiil be
A. 10 V
B. 5 V
C. $5 \sqrt{3} V$
D. 1V

Answer: C

105. A circular coil with radius 10 cm and 10 no.
of tightly wound identical turns is kept perpendicular to uniform magnetic field
$2 \times 10^{-4} \mathrm{G}$ intensity. Now, it is rotated with angular velocity $2 \pi \mathrm{rads}^{-1}$ about an axis passing through it but perpendicular to magnetic field. Then, ats, least time magnetic flux passing through it becomes half of maximum magnetic flux.

$$
\text { A. } \frac{1}{2}
$$

B. $\frac{1}{12}$
 C. $\frac{1}{6}$
 D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

106. A generator produces a voltage that is given by $V=240 \sin 120 t$, where t is in second
the frequency of voltage is Hz.
A. 20
B. 180
C. 40
D. 19

Answer: D

D Watch Video Solution

107. If an A.C. current of frequency 50 Hz is
flowing through a conducting wire, then how
many time does the current becomes zero in one second?
A. 25 times
B. 50 times
C. 75 times
D. 100 times

Answer: D
(Watch Video Solution
108. A coil having N turns and area A is rotating in uniform magnetic field then at time t , the magnetic flux associated with the coil is given by $\phi=N A B \cos \omega t$. In the first rotation at time $\mathrm{t}=. \mathrm{s}$, the induced emf is obtained maximum.
A. $\frac{T}{2}$
B. $\frac{T}{8}$
C. $\frac{T}{4}$ and $\frac{3 T}{4}$
D. $\frac{T}{16}$

Answer: C

D Watch Video Solution

109. In an AC generator, the brushes in contact
with the step rings alternatively become positive and negative in the time interval of 5 ms. What is the frequency of the voltage generated ?
A. 200 Hz
B. 100 Hz

C. 50 Hz

D. 10 Hz

Answer: B

D Watch Video Solution

110. The equation of A.C. voltage is given by $\mathrm{V}=$
$158 \sin 200 \pi t$. The value of voltage at time
$t=\frac{1}{400} \mathrm{sec}$ is V.
A. -79
B. 79
C. -158
D. 158

Answer: D

D Watch Video Solution

111. A coil with resistance 8Ω and having 8 turns is connected with a galvanometer having resistance 8 times the resistance of coil. In 4 ms , if magnetic flux linked with this
loop changes from $12 \times 10^{-5} \mathrm{~Wb}$ to
$18 \times 10^{-5} \mathrm{~Wb}$ then current induced in the loop will be
A. 1.6 A
B. $1.6 \times 10^{-6} \mathrm{~A}$
C. $1.6 \times 10^{-3} \mathrm{~A}$
D. $1.6 \times 10^{-4} \mathrm{~A}$

Answer: C

D Watch Video Solution
112.

For the situation shown in the figure, what should be the value of force required to move the rod with constant velocity $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$?
A. $3.75 \times 10^{-3} \mathrm{~N}$
B. $3.75 \times 10^{-2} \mathrm{~N}$
C. $3.75 \times 10^{2} \mathrm{~N}$

D. $3.75 \times 10^{4} \mathrm{~N}$

Answer: A

D Watch Video Solution

113. For one coil, kept in 1T external magnetic
field, current passing through it increases
from 1 A to 2 A in $2 \times 10^{-3} \mathrm{~s}$. Meanwhile time rate of change of its area is found to be $5 \frac{\mathrm{~m}^{2}}{\mathrm{~ms}}$
. Then the self inductance of the coil is
A. 2 H
B. 5 H
C. 10 H
D. 20 H

Answer: C

- Watch Video Solution

114. As shown in figure a bar magnet suspended by a conducting spring is made to
oscillate up and down. Then

A. deflection of galvanometer is zero.
B. the deflection of galvanometer is on one
side.
C. the deflection of galvanometer is on
both sides with increasing values with
time.
D. the deflection of galvanometer is on
both sides with decreasing values with
time.

Answer: D

D Watch Video Solution

115. Length of one metal rod is 1 m . 2 T is the intensity of the magnetic field. When this rod is rotating with the frequency of 10 Hz perpendicular to the field line by keeping its one end fixed as centre, induced emf is
A. $10 \pi \mathrm{~V}$
B. $20 \pi V$
C. $30 \pi V$
D. $40 \pi V$
116. The variation of induced emf E with time t in a coil when a short bar magnet is moved along its axis with constant velocity as shown in below fig. which fig. is best represented as ?

A.

Answer: A::C::D
(Watch Video Solution

117. Current of 2A passing through a coil of 100

 turns gives rise to a magnetic flux of 5×10^{-3}Wb per turn. The magnetic energy associated will coil is
A. 5×10^{-3} J
B. $0.5 \times 10^{-3} \mathrm{~J}$
C. 5 J
D. 0.5 J

Answer: D

118. A graph shown in the figure represents
the variation of uniform magnetic field with
time. If this field linked with a conducting loop completely and its perpendicular to the plane of the coil. In which time interval of induced emf in the coil is maximum ?

A. A
B. B
C. C
D. D

Answer: A

- Watch Video Solution

119. In AC generator, induced emf is zero at
time $\mathrm{t}=0$. The induced emf at time $\frac{\pi}{2 \omega}$ is
A. $+V_{m}$
B. $-V_{m}$
C. zero
D. $+2 V_{m}$

Answer: A

D Watch Video Solution

120. As shown in fig. a metal ring is held horizontally and a bar magnet is dropped through the ring with its length along the axis
of the ring. The acceleration of the falling magnet is

A. equal to g

B. less than g

C. more than g

D. depends on diameter of ring and length

of magnet

Answer: B

- Watch Video Solution

121. A conducting loop of resistance R is pulled in a uniform magnetic field \vec{B}, with uniform velocity \vec{v} (see fig.). During this process it is

A. the temperature of the loop remains
constant

B. the temperature of the loop decreases

C. the temperature of the loop increases
D. none of these above.

Answer: C

D Watch Video Solution

Section D Mcqs Mcqs Asked In Competitive Exams

1. Three pure inductance each of 3 H are
connected as shown in figure. The equivalent inductance of this connection between points
A and B is

A. 1 H
B. 2 H
C. 3 H
D. 9 H

Answer: A

- Watch Video Solution

2. Two coils are placed closed to each other.

The mutual inductance of the pair of coils depends upon
A. the rates at which currents are changing in two coils
B. relative position and orientation of the
two coils
C. the materials of the wires of the coils.
D. the currents in the two coils

Answer: B
3. When electric current in a coil steadily changes from +2 A to -2 A is 0.05 s , an induced emf of 0.8 V is generated in it. Then the self Inductance of the coil is H.
A. 0.2
B. 0.4
C. 0.8
D. 0.1

Answer: D

D Watch Video Solution

4. A coil having n turns and resistance $R \Omega$ is connected with a galvanometer of resistance 4
$R \Omega$. This combination is moved in time t seconds from a magnetic field W_{1} Weber to
W^{2} Weber. The induced current in the circuit is

$$
\text { A. } \frac{W_{2}-W_{1}}{5 R n t}
$$

$$
\begin{aligned}
& \text { B. }-\frac{n\left(W_{2}-W_{1}\right)}{5 R t} \\
& \text { C. }-\frac{W_{2}-W_{1}}{R n t} \\
& \text { D. }-\frac{n\left(W_{2}-W_{1}\right)}{R t}
\end{aligned}
$$

Answer: B

D Watch Video Solution

5. In a uniform magnetic field of induction B a wire in the form of a semicircle of radius r rotates about the diameter of the circle with angular frequency ω. The axis of rotation is
perpendicular to the field. If the total resistance of the circuit is R, the mean power generated per period of rotation is

$$
\begin{aligned}
& \text { A. } \frac{B \pi r^{2} \omega}{2 R} \\
& \text { B. } \frac{\left(B \pi r^{2} \omega\right)^{2}}{8 R} \\
& \text { C. } \frac{(B \pi r \omega)^{2}}{2 R} \\
& \text { D. } \frac{(B \pi r \omega)^{2}}{8 R}
\end{aligned}
$$

Answer: B

D Watch Video Solution

6. One conducing U tube can be slide inside another as shown in figure, maintaining electrical contacts between the tubes. The magnetic field B is perpendicular to the plane of the figure. If each tube moves towards the other at a constant speed v , then the emf induced in the circuit in terms of B, I and v where I is the width of each tube, will be

A. zero
B. 2Blv
C. Blv
D. $-B l v$

Answer: B

D Watch Video Solution
7. Which of the following units denotes the dimension $M^{1} L^{2} Q^{-2}$? (where Q denotes the electric charge)
A. $\frac{H}{m^{2}}$
B. Wb
C. $\frac{W b}{m^{2}}$
D. H(Henry)

Answer: D

D Watch Video Solution

8. The flux linked with a coil at any instant ' t ' is
given by $\phi=10 t^{2}-50 t+250$. The induced
emf at $\mathrm{t}=3 \mathrm{~s}$ is
A. 10 V
B. 190 V
C. -190 V
D. -10 V

Answer: D

D Watch Video Solution

9. Two coaxial solenoids are made by winding
thin insulated wire over a pipe of cross-section
area $A=10 \mathrm{~cm}^{2}$ and length $\mathrm{I}=20 \mathrm{~cm}$. If one
of the solenoids has 300 turns and the other

400 turns, their mutual inductance is

$$
\left[\mu_{0}=4 \pi \times 10^{-7} \mathrm{TmA}^{-1}\right]
$$

A. $2.4 \pi \times 10^{-4} \mathrm{H}$
B. $2.4 \pi \times 10^{-5} \mathrm{H}$
C. $4.8 \pi \times 10^{-4} \mathrm{H}$
D. $4.8 \pi \times 10^{-5} \mathrm{H}$

Answer: A

D Watch Video Solution
10. In a coil of resistance 100Ω, a current is induced by changing the magnetic flux through it as shown in the figure. The magnitude of change in flux through the coil is 10 (amp)
\rightarrow Time 0.5 s
A. 250 Wb
B. 275 Wb
C. 200 Wb
D. 225 Wb

Answer: A

D Watch Video Solution

11. A planar loop of wire rotates in a uniform magnetic field. Initially at $t=0$, the plane of the
loop is perpendicular to the magnetic field. If
it rotates with a period of 10 s about an axis in
its plane, then the magnitude of induced emf
will be maximum and minimum, respectively at
A. $2.5 \mathrm{~s}, 5 \mathrm{~s}$
B. $5 \mathrm{~s}, 7.5 \mathrm{~s}$
C. $2.5 \mathrm{~s}, 7.5 \mathrm{~s}$
D. $10 \mathrm{~s}, 5 \mathrm{~s}$

Answer: A

- Watch Video Solution

12. The given loop is kept in a uniform magnetic field perpendicular to the plane of the loop. The field changes from 1000 Gauss to 500 Gauss in 5 seconds. The average induced emf in the loop is
A. $28 \mu V$
B. $30 \mu V$
C. $48 \mu V$
D. $56 \mu \mathrm{~V}$

D Watch Video Solution

13. A conducting square frame of side 'a' and a long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity ' V '. The emf induced in the
frame will be proportional to :

A. $\frac{1}{x^{2}}$
B. 1
B. $\frac{1}{(2 x-a)^{2}}$
C. $\frac{1}{(2 \mathrm{x}+\mathrm{a})}$
D. $\left(\frac{1}{(2 x-a)}-\frac{1}{2 x+a}\right)$

Answer: D

D Watch Video Solution

14. An electron moves on a straight line path

XY as shown. The abcd is a coil adjacent to the path of electron. What will be the direction of current, if any, induced in the coil ?

A. No current induced
B. In abcd direction
C. In adcb direction
D. The current will reverse its direction as
the electron goes past the coil

Answer: D

D Watch Video Solution

15. A long solenoid has 1000 turns. When a current of 4 A flows through it, the magnetic flux linked with each turn of the solenoid is
$4 \times 10^{-3} \mathrm{~Wb}$. The self-inductance of the solenoid is
A. 3 H
B. 2 H
C. 1H
D. 4 H

Answer: C
(Watch Video Solution
16. A uniform magnetic field is restricted
within a region of radius r. The magnetic field
changes with time at a rate $\frac{d \vec{B}}{d t}$. Loop 1 of radius $R>r$ encloses the region r and loop 2 of radius R is outside the region of magnetic field as shown in the figure below. Then the emf generated is

A. In loop-1 $-\frac{d \vec{B}}{d t} \pi R^{2}$ and in loop-2 zero
B. In loop-1 $-\frac{d \vec{B}}{d t} \pi r^{2}$ and in loop- 2 zero
C. Zero in both loop
D. In loop-1 $-\frac{d \vec{B}}{d t} \pi r^{2}$ and in loop=2-
$\frac{d \vec{B}}{d t} \pi r^{2}$

Answer: B

- Watch Video Solution

17. A circular coil of radius 10 cm , 500 turns and resistance 2Ω is placed with its plane, perpendicular to the horizontal component of the earth's magnetic field. It is rotated about its vertical diameter through 180° in 0.25 s .

The induced e.m.f. in the coil is (Take $\left.H_{E}=3.0 \times 10^{-5} \mathrm{~T}\right)$
A. $6.6 \times 10^{-4} \mathrm{~V}$
B. $1.4 \times 10^{-2} \mathrm{~V}$
C. $2.6 \times 10^{-2} \mathrm{~V}$
D. $3.8 \times 10^{-3} \mathrm{~V}$

Answer: D

D Watch Video Solution

18. A bulb connected in series with an air-cored
solenoid is lit by an a.c. source. If a soft iron
core is introduced in the solenoid.

A. The bulb stops glowing
B. The bulb will glow brighter.
C. There is no change in glow of bulb.
D. The bulb will become dimmer.

- Watch Video Solution

19. Inside a parallel plate capacitor the electric
field E varies with time as t^{2}. The variation of induced magnetic field with time is given by
A. t^{2}
B. no variation
C. t^{3}
D. t

Answer: D

D Watch Video Solution

20. The magnetic potential energy stored in a
certain inductor is 25 mJ , when the current in
the inductor is 60 mA . This inductor is of inductance.
A. 13.89 H
B. 0.138 H
C. 1.389 H

D. 138.88 H

Answer: D

D Watch Video Solution

21. A 800 turn coil of effective area $0.05 m^{2}$ is
kept perpendicular to a magnetic field
$5 \times 10^{-5} \mathrm{~T}$. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s , the emf induced in the coil will be
A. 0.02 V
B. 2 V
C. 0.2 V
D. $2 \times 10^{-3} \mathrm{~V}$

Answer: A

D Watch Video Solution

22. In which of the following devices, the eddy
current effect is not used ?
A. electric heater
B. induction furnace
C. magnetic braking in train
D. electromagnet

Answer: A

D Watch Video Solution

23. A conducting ring of radius r is placed perpendicular inside a time varying magnetic field as shown in figure. The magnetic field changes with time according to $B=B_{0}+\alpha t$
where B_{0} and α are positive constants. Find the electric field on the circumference of the ring.

A. $-\pi \alpha r^{2}$
B. $-\pi \alpha r$
C. $-\pi \alpha^{2} r^{2}$
D. $-\pi \alpha^{2} r$

Answer: A

D Watch Video Solution

24. A conducting coil having 500 turns has
cross sectional area $0.15 m^{2}$. A magnetic field of strength 0.2 T linked perpendicular to this
area changes to 1.0 T in 0.4 sec . The induced emf produced in the coil will be volt.
A. 10.0
B. 15.0
C. 75.0
D. 150.0

Answer: D

D Watch Video Solution

25. The network shown in figure is a part of the circuit. (The battery has negligible resistance)

At a certain instant the current $\mathrm{I}=2 \mathrm{~A}$ and it is decreasing at the rate of $10^{2} \mathrm{As}^{-1}$. What is the potential difference between the points B and A?
A. 8.0 V
B. 8.5 V

C. 10 V

D. 15 V

Answer: B

D Watch Video Solution

26. A rod of 10 cm length is moving perpendicular to uniform magnetic field of intensity $5 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$. If the acceleration of the rod is $5 \mathrm{~m} / \mathrm{s}^{2}$, then the rate of increase of induced emf is
A. $2.5 \times 10^{-4} V s^{-1}$
B. 25×10^{-4} Vs
C. 20×10^{-4} Vs
D. $20 \times 10^{-4} \mathrm{Vs}^{-1}$

Answer: A

D Watch Video Solution
27. Select incorrect unit of self inductance
A. Mho-second
B. $\frac{\text { Weber }}{\text { Amp }}$
C. $\frac{\text { Volt-second }}{\text { Ampere }}$
D. Ohm-second

Answer: A

D Watch Video Solution

28. The number of turns in the coil of an A.C. generator are 100 and its cross-sectional area is $2.5 \mathrm{~m}^{2}$. The coil is revolving in a uniform magnetic field of strength 0.3 T with the
uniform angular velocity of 60 rad s^{-1}. The value of maximum value produced is kV.
A. 4.5
B. 2.25
C. 6.75
D. 1.25

Answer: A
(Watch Video Solution
29. If R and L denote resistance and inductance respectively which of the following has dimension of time?

> A. $\frac{L}{R}$
> B. $\frac{R}{L}$
> C. $\sqrt{\frac{R}{L}}$
> D. $\sqrt{\frac{L}{R}}$

Answer: A

D Watch Video Solution
30. Two inductors each of inductance L are connected in parallel. One more inductor of value 5 mH is connected in series of this configuration then the effective inductance is

15 mH . The value of L is mH .
A. 10
B. 5.0
C. 2.5
D. 20
31. A coil having 200 turns has a surface of 0.15 m^{2}. A magnetic field of strength 0.2 T applied perpendicular to this changes to 0.6 T in 0.4 s . then the induced emf in the coil is V.
A. 45
B. 30
C. 15
D. 60

Answer: B

D Watch Video Solution

32. A wheel of radius $2 m$ having 8 conducting concentric spokes is rotating about its geometrical axis with an angular velocity of 10 $\mathrm{rad} / \mathrm{s}$ in a uniform magnetic field of 0.2 T perpendicular to its plane. The value of induced emf between the rim of the wheel and centre is V
A. 2
B. 6
C. 4
D. 8

Answer: C

D Watch Video Solution

33. A coil of surface area $200 \mathrm{~cm}^{2}$ having 25
turns is held perpendicular to the magnetic field of intensity $0.02 \mathrm{~Wb} / \mathrm{m}^{2}$. The resistance
of the coil is 1Ω if it is removed from the magnetic field in 1 s , the induced charge in the coil is C.
A. 1
B. 0.01
C. 0.1
D. 0.001

Answer: B

D Watch Video Solution
34. A wheel of radius $2 m$ having 8 conducting concentric spokes is rotating about its geometrical axis with an angular velocity of 10 $\mathrm{rad} / \mathrm{s}$ in a uniform magnetic field of 0.2 T perpendicular to its plane. The value of induced emf between the rim of the wheel and centre is V
A. 2
B. 6
C. 4
D. 8

Answer: C

D Watch Video Solution

35. A coil of surface area $200 \mathrm{~cm}^{2}$ having 25
turns is held perpendicular to the magnetic field of intensity $0.02 \mathrm{~Wb} / \mathrm{m}^{2}$. The resistance of the coil is 1Ω if it is removed from the magnetic field in 1 s , the induced charge in the coil is C.
A. 1
B. 0.01
C. 0.1
D. 0.001

Answer: B

D Watch Video Solution
36. Dimensional formula of mutual inductance
is

$$
\text { A. } M^{1} L^{2} T^{-2} A^{-2}
$$

B. $M^{1} L^{2} T^{-2} A^{-1}$
C. $M^{1} L^{-2} T^{2} A^{2}$
D. $M^{-1} L^{-2} T^{2} A^{-1}$

Answer: A

D Watch Video Solution
37. The magnitude of the induced emf is equal to the time rate of change of
A. magnetic force

B. electric flux

C. magnetic flux
D. electric force

Answer: C

D Watch Video Solution
38. Which one of the following is an equation of magnetic energy density?

$$
\text { A. } \frac{1}{2} \mu_{0} B^{2}
$$

${ }_{\mathrm{D}} B^{2}$
B. $\frac{\mu_{0}}{2 \mu_{0}}$
$2 B^{2}$
C.
μ_{0}
D. $\frac{B^{2}}{\mu_{0}}$
μ_{0}

Answer: B

- Watch Video Solution

