©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA

PHYSICS (GUJRATI ENGLISH)

ELECTROSTATIC POTENTIAL AND

CAPACITANCE

Section A Questions Answers

1. Why gravitational forces or spring forces are conservative forces ?

D Watch Video Solution
2. Prove that electrostatic forces are conservative in nature and define electrostatic potential energy.

D Watch Video Solution

3. Write similarities and difference between gravitational force and electrostatic force.

- Watch Video Solution

4. Explain electrostatic potential energy in electric field due to an artangement of electric charge.

- Watch Video Solution

5. Explain electrostatic potential energy difference and give the noteworthy comments on it

- View Text Solution

6. Write SI unit of electrostatic potential and obtain its dimensional formula.

- Watch Video Solution

7. Define electric potential and explain it. Write
its SI unit and give its other units.

- Watch Video Solution

8. Derive an expression for the electric potential in a electric field of positive point charge at distance r.

- Watch Video Solution

9. Draw a graph for variation of potential V with distance r for a point charge Q.

D Watch Video Solution

10. Derive scalar relation between electric field and electrostatic field .

Electric field of a charge Q at a distance
$E=\frac{K Q}{r^{\circ}}$
and electrostatic potential,
$V=\frac{k Q}{r}$
\therefore Taking ratio, $\frac{E}{V}=\frac{1}{r}$
$\therefore V=E r$

- Watch Video Solution

11. Distinguish between electric potential and electric potential energy.

- Watch Video Solution

12. Derive the formula for the electric potential due to an electric dipole at a point from it.
13. Write an equation of potential due to an electric dipole and give its important features.

Discuss its special cases.

- Watch Video Solution

14. Derive an expression for electric potential at a point due to a system of N charges.
15. Write an expressions for electric potential due to a continuous distribution of charges.

D Watch Video Solution

16. Write an expression for potential at the point outside a uniformly charged spherical shell outside on the surface and inside the shell.
17. Draw a graph showing variation of potential with r distance for a uniformly charged spherical shell.

D Watch Video Solution

18. Write the characteristics of equipotential surface.

D Watch Video Solution
19. Show that the direction of electric field at a given is normal to the equipotential surface passing through that point.

- Watch Video Solution

20. Write the characteristics of equipotential surface.

- Watch Video Solution

21. Obtain the relation between electric field and electric potential .

- Watch Video Solution

22. Derive the formula for the electric potential energy of system of two charges.
23. Derive the formula for the electric potential energy of system of three charges.

D Watch Video Solution

24. Obtain equation of electric energy of a single charge .

D Watch Video Solution
25. Define electronVolt and convert it into Joule unit.

D Watch Video Solution
26. Obtain the equation of electric potential energy of a system of two electric charges in external electric field.

D Watch Video Solution
27. Derive equation of potential energy of an electric dipole in a uniform electric field.

D Watch Video Solution
28. Explain the position (orientations) of a dipole in stable equilibrium, unstable equilibrium.

D Watch Video Solution
29. Obtain the equation of electric potential energy of a dipole from equation of potential energy of a system of two electric charges.

D Watch Video Solution

30. Explain electrostatics of conductors.

Explain the effects produced inside a metallic conductor placed in an external electric field.
31. Write important results regarding electrostatic of conductors.

D Watch Video Solution

32. Inside a conductor electrostatic field is
zero'. Explain.

- Watch Video Solution

33. At the surface of a charged conductor electrostatic field must be normal to the surface at every point'. Explain.

D Watch Video Solution

34. The interior of a conductor can have no excess charge in the static situation'. Explain

D Watch Video Solution

35. Show that electrostatic potential is constant throughout the volume of the conductor and has the same value (as inside) on its surface.

D Watch Video Solution

36. Obtain an expression for electric field at the surface of a charged conductor.
37. Explain electrostatic shielding with necessary diagram.

OR

Electric field inside hollow region of conductor in uniform electric field is same Explain.

D Watch Video Solution

38. Explain the difference in the behaviour of a conductor and dielectric in the presence of external electric field.
39. Write the types of dielectric and explain them. Give some examples of dielectric substance.

D Watch Video Solution

40. Explain polarization of nonpolar molecule in uniform electric field and define the linear isotropic dielectrics.
41. Explain polarisation of polar molecule in uniform electric field.

- Watch Video Solution

42. How does the polarised cliclectric morufy
the original external field inside it ?

D Watch Video Solution
43. What is capacitor ? And explain capacitance. Give its SI unit.

D Watch Video Solution
44. What happens if the magnitude of capacitance of capacitor are large ?

D Watch Video Solution

45. Derive expression for the capacitance of the parallel plate capacitor,

D Watch Video Solution

46. Why is a F unit so big in practice ?

- Watch Video Solution

47. Calculate the capacitantce of two plates of equal area of $1 \mathrm{~m}^{2}$ separated by distance 1 mm

- Watch Video Solution

48. Explain the effect of dielectric capacitance of parallel plate capacitor and obtain the formula of dielectric constant.

- Watch Video Solution

49. Write the necessity of combination of capacitor and ways of its connections.
50. What is series connection of capacitors ?

- Watch Video Solution

51. Obtain the formula for the effective
capacitance of the series combination of different n capacitors.

- Watch Video Solution

52. What is a parallel connection of capacitors
? Obtain the formula for the effective capacitance in the parallel combination of two different capacitors.

- Watch Video Solution

53. Obtain the formula for the effective capacitance of the parallel combination of different n capacitors.
54. Write the difference between capacitors in series and parallel connections.

- Watch Video Solution

55. How does a capacitor store energy ? And obtain the formula for the energy stored in the capacitor?
56. Obtain the expression for the energy stored per unit volume in a charged capacitor.

D Watch Video Solution

57. Derive the equations of stored energy for series or parallel connection of many capacitors.
(D) Watch Video Solution

Section A Try Yourself

1. What are conservative force , non conservative force, conservative field and non

- conservative field ?

D Watch Video Solution

2. Give the definitions of conservative force.

D Watch Video Solution
3. Prove that electrostatic forces are conservative in nature and define electrostatic potential energy.

D Watch Video Solution

4. Prove that electrostatic forces are conservative in nature and define electrostatic potential energy.

5. Define electrostatic potential.

D Watch Video Solution

6. Is electrostatic potential vector or scalar?

D Watch Video Solution
7. Write SI unit of electrostatic unit. Give its other units.
8. Derive an expression for electric potential at a point due to a system of N charges.

- Watch Video Solution

9. Write the relation between the electric field of an electric charge and electrostatic potential at any point
10. Shows that how the electrostatic potential varies with r for a point charge.

D Watch Video Solution

11. Write an equation of potential due to an electric dipole and give its important features.

Discuss its special cases.
(D) Watch Video Solution
12. What is the electric potential at a point in the equatorial plane?

- Watch Video Solution

13. Obtain the equation of electric field by dipole at a point on axis of dipole.

- Watch Video Solution

14. Write an equation for potential due to a system of charges.

- Watch Video Solution

15. Write an equation for potential due to linear charge distribution.

- Watch Video Solution

16. Write an equation for potential due to volume charge distribution.

D Watch Video Solution

17. Write an equation for potential at a point in a uniformly charged spherical shell.

- Watch Video Solution

18. Draw a graph of $V \rightarrow r$ for spherical shell.

- Watch Video Solution

19. Define an equipotential surface.

D Watch Video Solution

20. Electric field is always ___ to the equipotential surface at every point. (Fill in the gap)

21. Draw an equipotential surface for dipole.

D Watch Video Solution

22. Draw an equipotential surface of two identical positive charges for small distance.

- Watch Video Solution

23. Draw an equipotential surface for an uniform electric field.
24. Draw an equipotential surface for a point charge.

D Watch Video Solution

25. Write the relation between electric field and electrostatic potential.
26. What is potential gradient?

D Watch Video Solution

27. Define an electron Volt and show it in Joule unit.

D Watch Video Solution
$28.1 \mathrm{eV}=\ldots \ldots$ J. (Fill in the gap)

- Watch Video Solution

29. Write an equation of torque on dipole placed in uniform electric field.

D Watch Video Solution
30. When the torque acting on electric dipole
ii uniform electric field becomes maximum ?

- Watch Video Solution

31. What is dielectric?

- Watch Video Solution

32. What is pollination? Describe its types

- Watch Video Solution

33. What are polar and non-polar molecules?

Give their examples.

- Watch Video Solution

34. What are polar and non-polar molecules ?

Give their examples.

D Watch Video Solution
35. What is linear isotropic dielectric?

D Watch Video Solution

36. On which the extent of polarization depend?

- Watch Video Solution

37. Write the relation between \vec{P} and \vec{E} for a linear isotropic dielectric.

- Watch Video Solution

38. Due to which the surface charge density arises on the surface of a dielectric slab, when it is placed in a uniform electric field ?
39. Write definition of capacitance.

(Watch Video Solution

40. Write definition of capacitance of capacitor.
41. Does capacitance of parallel plate capacitor depend on p.d. of its plate?

D Watch Video Solution
42. Write dimensional formula of capacitance.

- Watch Video Solution

43. Define dielectric constant.
44. Write the capacitance of parallel plate capacitor with medium of dielectric of dielectric constant K.

D Watch Video Solution

45. Write the formula of capacitance of capacitor having dielectric constant $\mathrm{K}=2$.
46. What is series connection of capacitors ?

- Watch Video Solution

47. What is parallel connection of capacitors ?

D Watch Video Solution

48. The magnitude of effective capacitance in series connection of capacitors increases. Is this statement true or false?
49. Which quantity is same in each capacitor of series connection?

D Watch Video Solution

50. Two capacitors each having capacitance of
$2 \mu F$ is connected in series what will the effective capacitance of these capacitors ?
51. Calculate the potential at a point P due to a charge of $4 \times 10^{-7} \mathrm{C}$ located 9 cm away.

- Watch Video Solution

2. Hence ohtaln the work done in bringing charge of $2 \times 10^{-9} \mathrm{C}$. From infinity to the point P. Does the answer depend on the path along which the charge is brought ?
3. Two charges $3 \times 10^{-8} \mathrm{C}$ and $-2 \times 10^{-8} \mathrm{C}$ are located 15 cm apart. At what point on the
line joining the two charges is the electric potential zero ? Take the potential at infinity to be zero.

- Watch Video Solution

4. Figures 2.8 (a) and (b) show the field lines of a positive and negative point charge
respectively.

(a)

(b)
(a) Give the signs of the potential difference
$V_{P}-V_{Q}: V_{B}-V_{A}$.
(b) Give the sign of the potential energy difference of a small negative charge between the points Q and P, A and B.
(c) Give the sign of the work done by the field in moving a small positive charge from Q to P.
(d) Give the sign of the work done by the
external agency in moving a small negative charge from B to A.
(e) Does the kinetic energy of a small negative charge increase or decrease in going from B to

A?

D Watch Video Solution

5. Four charges are arranged at the corners of a square $A B C D$ of side d as show in figure.
(a) Find the work required to put together this arrangement.
(b) A charge q_{0} is brought to the centre E of the square the four charges being held fixed at its corners. How much extra work is needed to do this?

- Watch Video Solution

6. Determine the electrostatic potential energy
of a system consisting of two charges $7 \mu \mathrm{C}$ and $-2 \mu C$ (and with no external field) placed at $(-9 \mathrm{~cm}, 0,0)$ and $(9 \mathrm{~cm}, 0,0)$ respectively.

Watch Video Solution

7. How much work is required separate the two
charges infinitely away from each other ?

D Watch Video Solution

8. Suppose that the same system of charge is now placed in an external electric field $\mathrm{E}=\mathrm{A}(\mathrm{I} /$
$\left.r^{2}\right), A=9 \times 10^{5} \mathrm{~cm}^{-2}$. What would the electrostatic energy of the configuration be?
9. A molecule of a substance has a permanent electric dipole moment of magnitude $10^{-29} \mathrm{C}$ m. A mole of this substance is polarised (at low temperature) by applying a strong electrostatic field of magnitude $10^{6} \mathrm{Vm}^{-1}$.

The direction of the field is suddenly changed by an angle of 60°. Estimate the heat released by the substance in aligning its dipoles along the new direction of the field.

For simplicity, assume 100\% polarisation of the sample.

- Watch Video Solution

10. (a) A comb run through one's dry hair attracts small bits of paper. Why? What happens if the hair is wet or if it is a rainy day?
(Remember, a paper does not conduct electricity.)
(b) Ordinary rubber is an insulator. But special rubber tyres of aircraft are made slightly conducting. Why is this necessary?
(c) Vehicles carrying inflammable materials usually have metallic ropes touching the
ground during motion. Why?
(d) A bird perches on a bare high power line,
and nothing happens to the bird. A man standing on the ground touches the same line and gets a fatal shock. Why?

D Watch Video Solution

11. (a) A comb run through one's dry hair attracts small bits of paper. Why? What happens if the hair is wet or if it is a rainy day?
(Remember, a paper does not conduct
electricity.)
(b) Ordinary rubber is an insulator. But special rubber tyres of aircraft are made slightly conducting. Why is this necessary?
(c) Vehicles carrying inflammable materials usually have metallic ropes touching the ground during motion. Why?
(d) A bird perches on a bare high power line,
and nothing happens to the bird. A man standing on the ground touches the same line and gets a fatal shock. Why?
12. (a) A comb run through one's dry hair attracts small bits of paper. Why? What
happens if the hair is wet or if it is a rainy day?
(Remember, a paper does not conduct electricity.)
(b) Ordinary rubber is an insulator. But special rubber tyres of aircraft are made slightly conducting. Why is this necessary?
(c) Vehicles carrying inflammable materials usually have metallic ropes touching the ground during motion. Why?
(d) A bird perches on a bare high power line,
and nothing happens to the bird. A man standing on the ground touches the same line and gets a fatal shock. Why?

D Watch Video Solution

13. (a) A comb run through one's dry hair attracts small bits of paper. Why? What happens if the hair is wet or if it is a rainy day?
(Remember, a paper does not conduct electricity.)
(b) Ordinary rubber is an insulator. But special
rubber tyres of aircraft are made slightly conducting. Why is this necessary?
(c) Vehicles carrying inflammable materials usually have metallic ropes touching the ground during motion. Why?
(d) A bird perches on a bare high power line, and nothing happens to the bird. A man standing on the ground touches the same line and gets a fatal shock. Why?
14. A slab of material of dielectric constant K
has the same area as the plates of a parallelplate capacitor but has a thickness $\left(\frac{3}{4}\right) \mathrm{d}$ where d is the separation of the plates. How Is
the capacitance changed when the slab is inserted between the plates?

D Watch Video Solution

15. A network of four $10 \mu \mathrm{~F}$ capacitors is connected to a 500 V supply, as shown in Fig.
2.29. Determine (a) the equivalent capacitance of the network and (b) the charge on each capacitor. (Note, the charge on a capacitor is the charge on the plate with higher potential, equal and opposite to the charge on the plate with lower potential.)

- Watch Video Solution

16. (a) A 900 pF capacitor is charged by 100 V battery [Fig. 2.31(a)]. How much electrostatic energy is stored by the capacitor?
(b) The capacitor is disconnected from the battery and connected to another 900 pF capacitor [Fig. 2.31(b)]. What is the electrostatic energy stored by the system?

Watch Video Solution

Section B Numerical From Textual Exercise

1. Two charge $5 \times 10^{-8} \mathrm{C}$ and $-3 \times 10^{-8} \mathrm{C}$ are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero ? Take the potential at infinity to be zero.
2. A regular hexagon of side 10 cm has a charge $5 \mu C$ at each of its vertices. Calculate the potential at the centre of the hexagon.

D Watch Video Solution

3. Two charges $2 \mu \mathrm{C}$ and $-2 \mu \mathrm{C}$ are placed at points A and $B 6 \mathrm{~cm}$ apart.
(a) Identify an equipotential surface of the system.
(b) What is the direction of the electric field at every point on this surface?

Watch Video Solution

4. A spherical conductor of radius 12 cm has a charge of $1.6 \times 10^{-7} \mathrm{C}$ distributed uniformly on its surface. What is the electric field
(a) inside the sphere
(b) just outside the sphere.
(c) at a point 18 cm from the centre of the sphere?

- Watch Video Solution

5. A parallel plate capacitor with air between
the plates has a capacitance of 8 pF (1pF $=$ $10^{-12} \mathrm{~F}$). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6?

- Watch Video Solution

6. Three capacitors each of capacitance 9 pF are connected in series.
(a) What is the total capacitance of the combination?
(b) What is the potential difference across each capacitor if the combination is connected to a 120 V supply?

D Watch Video Solution

7. Three capacitors of capacitances $2 \mathrm{pF}, 3 \mathrm{pF}$ and 4 pF are connected in parallel
(a) What is the total capacitance of the combination?
(b) Determine the charge on each capacitor if the combination is connected to a 100 V supply

D Watch Video Solution

8. In a parallel plate capacitor with air between
the plates, each plate has an area of
$6 \times 10^{-3} m^{2}$ and the distance between the
plates is 3 mm .

Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply,
what is the charge on each plate of the capacitor?

D Watch Video Solution

9. Explain what would happen if in the capacitor given in Exercise, a 3 mm thick mica
sheet (of dielectric constant $=6$) were inserted between the plates,
(a) while the voltage supply remained connected.
(b) after the supply was disconnected.

Watch Video Solution

10. A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?

D Watch Video Solution

11. A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another unchanged

600pF capacitor. How much electrostatic energy is lost in the process.

D Watch Video Solution

12. A charge of 8 mC is located at the origin.

Calculate the work done in taking a small charge of $-2 \times 10^{-9} \mathrm{C}$ from a point $\mathrm{P}(0,0,3$ $\mathrm{cm})$ to a point $\mathrm{Q}(0,4 \mathrm{~cm}, 0)$, via a point $R(0,6$ cm, 9 cm)

D Watch Video Solution

13. A cube of side b has a charge q at each of its vertices. Determine the potential and electric field due to this charge array at the centre of the cube.

- Watch Video Solution

14. Two tiny spheres carrying charges $1.5 \mu \mathrm{C}$ and $2.5 \mu \mathrm{C}$ are located 30 cm apart. Find the potential and electric field:
(a) at the mid-point of the line joining the two
charges, and
(b) at a point 10 cm from this midpoint in a plane normal to the line and passing through the mid-point.

- Watch Video Solution

15. A spherical conducting shell of inner radius
r_{1} and outer radius r_{2} has a charge Q .
Is the electric field inside a cavity (with no
charge) zero, even if the shell is not spherical, but has any irregular shape ? Explain.
16. (a) Show that the normal component of electrostatic field has a discontinuity from one side of a charged surface to another given by
$\left(E_{2}-E_{1}\right) \cdot n=\frac{\sigma}{\varepsilon_{0}}$
where \widehat{n} is a unit vector normal to the surface
at a point and σ is the surface charge density
at that point. (The direction of \widehat{n} is from side 1
to side 2.) Hence, show that just outside a conductor, the electric field is $\sigma \widehat{n} / \varepsilon_{0}$.
(b) Show that the tangential component of electrostatic field is continuous from one side
of a charged surface to another. [Hint: For (a),
use Gauss's law. For, (b) use the fact that work done by electrostatic field on a closed loop is zero.]

D Watch Video Solution

17. (a) Show that the normal component of electrostatic field has a discontinuity from one side of a charged surface to another given by
$\left(E_{2}-E_{1}\right) \cdot n=\frac{\sigma}{\varepsilon_{0}}$
where \widehat{n} is a unit vector normal to the surface
at a point and σ is the surface charge density
at that point. (The direction of \widehat{n} is from side 1
to side 2.) Hence, show that just outside a conductor, the electric field is $\sigma \widehat{n} / \varepsilon_{0}$.
(b) Show that the tangential component of electrostatic field is continuous from one side of a charged surface to another. [Hint: For (a), use Gauss's law. For, (b) use the fact that work done by electrostatic field on a closed loop is zero.]

- Watch Video Solution

18. A long charged cylinder of linear charged density λ is surrounded by a hollow co-axial conducting cylinder. What is the electric field in the space between the two cylinders?

D Watch Video Solution

19. In a hydrogen atom, the electron and proton are bound at a distance of about 0.53

Å
(a) Estimate the potential energy of the
system in eV, taking the zero of the potential
energy at infinite separation of the electron
from proton.
(b) What is the minimum work required to free
the electron, given that its kinetic energy in
the orbit is half the magnitude of potential energy obtained in (a)?
(c) What are the answers to (a) and (b) above
if the zero of potential energy is taken at 1.06
Å separation?

D Watch Video Solution

20. If one of the two electrons of a H_{2} molecule is removed, we get a hydrogen molecular ion H_{2}^{+}. In the ground state of an
H_{2}^{+}, the two protons are separated by roughly $1.5 \AA$, and the electron is roughly $1 \AA$
from each proton. Determine the potential energy of the system. Specify your choice of the zero of potential energy

Watch Video Solution

21. Two charged conducting spheres of radii a and b are connected to each other by a wire.

What is the ratio of electric fields at the surfaces of the two spheres? Use the result obtained to explain why charge density on the sharp and pointed ends of a conductor is higher than on its flatter portions.

D Watch Video Solution

22. Two charges $-q$ and $+q$ are located at points ($0,0,-a$) and ($0,0, a$), respectively.
(a) What is the electrostatic potential at the points $(0,0, z)$ and $(x, y, 0)$?
(b) Obtain the dependence of potential on the distance r of a point from the origin when $r / a \gg 1$.
(c) How much work is done in moving a small test charge from the point $(5,0,0)$ to $(-7,0,0)$ along the x-axis? Does the answer change if the path of the test charge between the same points is not along the x-axis?

- Watch Video Solution

23. Figure 2.32 shows a charge array known as an electric quadrupole. For a point on the axis of the quadrupole, obtain the dependence of potential on r for $r / a \gg 1$, and contrast your results with that due to an electric dipole, and an electric monopole (i.e., a single charge).

24. An electrical technician requires a capacitance,of $2 \mu F$ in a circuit across a potential difference of 1 kV . A large number of
$1 \mu F$ capacitors are available to him each of which can withstand a potential difference of more than 400 V. Suggest a possible arrangement that requires the minimum number of capacitors .

D Watch Video Solution

25. What is the area of the plates of a 2 F parallel plate capacitor given that the separation between the plates is 0.5 cm ?

- Watch Video Solution

26. Obtain the equivalent capacitance of the network in Fig. 2.33. For a 300 V supply, determine the charge and voltage across each
capacitor.

D Watch Video Solution

27. The plates or a parallel plate capacitor have an area of $90 \mathrm{~cm}^{2}$ each and are separated by
2.5 mm . The capacitor is charged by
connecting It to a 400 V supply.
(a) How much electrostatic energy is stored by the capacitor?
(b) View this energy as stored in the electrostatic field between the plates, und obtain the energy per unit volume ". Hence arrive at a relation between u and the magnitude of electric field E between the plates.
28. A $4 \mu \mathrm{~F}$ capacitor is charged by a 200 V supply. It is then disconnected from the supply, and is connecled to another uncharged $2 \mu \mathrm{f}$ capacitor. How much electrostatic energy of the first capacilor is lost in the form of heat and electromagnetic radiation ?

D Watch Video Solution

29. Show that the force on each plate of a parallel plate capacitor has a magnitude equal
to $(1 / 2) Q E$, where Q is the charge on the capacitor, and E is the magnitude of electric Held between the plates. Explain the origin of the factor $1 / 2$

- Watch Video Solution

30. A spherical capacitor consists of two concentric spherical conductors, held in position by suitable insulating supports (Fig.
2.34). Show that the capacitance of a spherical
capacitor is given by
$C=\frac{4 \pi \varepsilon_{0} r_{1} r_{0}}{r_{1}-r_{2}}$

where r_{1} and r_{2} are the radii of outer and inner spheres, respectively.

D Watch Video Solution

31. A spherical capacitor has an inner sphere of
radius 12 cm and an outer sphere of radius 13
cm . The outer sphere is earthed and the inner
sphere is given a charge of $2.5 \mu \mathrm{C}$. The space
between the concentric spheres is filled with a liquid of dielectric constant 32.
(a) Determine the capacitance of the capacitor.
(b) What is the potential of the inner sphere?
(c) Compare the capacitance of this capacitor with that of an isolated sphere of radius 12 cm .

Explain why the latter is much smaller.

D Watch Video Solution

32. Answer carefully:
(a) Two large conducting spheres carrying
charges Q_{1} and Q_{2} are brought close to each other. Is the magnitude of electrostatic force between them exactly given by
$Q_{1}, Q_{2} / 4 \pi \varepsilon_{0} r^{2}$, where r is the distance between their centres?
(b) If Coulomb's law involved $1 / r^{3}$ dependence
(instead of would Gauss's law be still true?
(c) A small test charge is released at rest at a point in an electrostatic field configuration.

Will it travel along the field line passing
through that point?
(d) What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?
(e) We know that electric field is discontinuous
across the surface of a charged conductor. Is
electric potential also discontinuous there?
(f) What meaning would you give to the capacitance of a single conductor?
(g) Guess a possible reason why water has a much greater dielectric constant $(=80)$ than
say, mica (= 6).
33. Answer carefully:
(a) Two large conducting spheres carrying charges Q_{1} and Q_{2} are brought close to each other. Is the magnitude of electrostatic force between them exactly given by
$Q_{1}, Q_{2} / 4 \pi \varepsilon_{0} r^{2}$, where r is the distance between their centres?
(b) If Coulomb's law involved $1 / r^{3}$ dependence
(instead of would Gauss's law be still true?
(c) A small test charge is released at rest at a point in an electrostatic field configuration.

Will it travel along the field line passing through that point?
(d) What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?
(e) We know that electric field is discontinuous across the surface of a charged conductor. Is electric potential also discontinuous there?
(f) What meaning would you give to the capacitance of a single conductor?
(g) Guess a possible reason why water has a much greater dielectric constant $(=80)$ than say, mica (= 6).

- Watch Video Solution

34. Answer carefully:
(a) Two large conducting spheres carrying charges Q_{1} and Q_{2} are brought close to each other. Is the magnitude of electrostatic force between them exactly given by
$Q_{1}, Q_{2} / 4 \pi \varepsilon_{0} r^{2}$, where r is the distance between their centres?
(b) If Coulomb's law involved $1 / r^{3}$ dependence
(instead of would Gauss's law be still true?
(c) A small test charge is released at rest at a
point in an electrostatic field configuration.

Will it travel along the field line passing through that point?
(d) What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?
(e) We know that electric field is discontinuous across the surface of a charged conductor. Is electric potential also discontinuous there?
(f) What meaning would you give to the capacitance of a single conductor?
(g) Guess a possible reason why water has a
much greater dielectric constant $(=80)$ than say, mica (= 6).

D Watch Video Solution

35. Answer carefully:
(a) Two large conducting spheres carrying charges Q_{1} and Q_{2} are brought close to each other. Is the magnitude of electrostatic force between them exactly given by
$Q_{1}, Q_{2} / 4 \pi \varepsilon_{0} r^{2}$, where r is the distance between their centres?
(b) If Coulomb's law involved $1 / r^{3}$ dependence
(instead of would Gauss's law be still true?
(c) A small test charge is released at rest at a point in an electrostatic field configuration.

Will it travel along the field line passing
through that point?
(d) What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?
(e) We know that electric field is discontinuous across the surface of a charged conductor. Is electric potential also discontinuous there?
(f) What meaning would you give to the
capacitance of a single conductor?
(g) Guess a possible reason why water has a much greater dielectric constant (=80) than say, mica (= 6).

D Watch Video Solution

36. Answer carefully:
(a) Two large conducting spheres carrying charges Q_{1} and Q_{2} are brought close to each other. Is the magnitude of electrostatic force between them exactly given by
$Q_{1}, Q_{2} / 4 \pi \varepsilon_{0} r^{2}$, where r is the distance between their centres?
(b) If Coulomb's law involved $1 / r^{3}$ dependence
(instead of would Gauss's law be still true?
(c) A small test charge is released at rest at a point in an electrostatic field configuration.

Will it travel along the field line passing through that point?
(d) What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?
(e) We know that electric field is discontinuous
across the surface of a charged conductor. Is
electric potential also discontinuous there?
(f) What meaning would you give to the capacitance of a single conductor?
(g) Guess a possible reason why water has a much greater dielectric constant (=80) than say, mica (= 6).

D Watch Video Solution

37. Answer carefully:
(a) Two large conducting spheres carrying charges Q_{1} and Q_{2} are brought close to each
other. Is the magnitude of electrostatic force between them exactly given by
$Q_{1}, Q_{2} / 4 \pi \varepsilon_{0} r^{2}$, where r is the distance between their centres?
(b) If Coulomb's law involved $1 / r^{3}$ dependence
(instead of would Gauss's law be still true?
(c) A small test charge is released at rest at a point in an electrostatic field configuration.

Will it travel along the field line passing through that point?
(d) What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?
(e) We know that electric field is discontinuous across the surface of a charged conductor. Is electric potential also discontinuous there?
(f) What meaning would you give to the capacitance of a single conductor?
(g) Guess a possible reason why water has a much greater dielectric constant (=80) than say, mica (= 6).

- Watch Video Solution

38. Answer carefully:
(a) Two large conducting spheres carrying
charges Q_{1} and Q_{2} are brought close to each other. Is the magnitude of electrostatic force between them exactly given by
$Q_{1}, Q_{2} / 4 \pi \varepsilon_{0} r^{2}$, where r is the distance between their centres?
(b) If Coulomb's law involved $1 / r^{3}$ dependence
(instead of would Gauss's law be still true?
(c) A small test charge is released at rest at a point in an electrostatic field configuration.

Will it travel along the field line passing
through that point?
(d) What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?
(e) We know that electric field is discontinuous
across the surface of a charged conductor. Is
electric potential also discontinuous there?
(f) What meaning would you give to the capacitance of a single conductor?
(g) Guess a possible reason why water has a much greater dielectric constant $(=80)$ than
say, mica (= 6).
39. A cylindrical capacitor has two co-axial cylinders of length 15 cm , and radii 1.5 cm and
1.4 cm . The outer cylinder is earthed and the inner cylinder is given a charge of $3.5 \mu \mathrm{C}$. Determine the capacitance of the system and the potential of the inner cylinder. Neglect end effects (i.e., bending of field lines at the ends).
40. A parallel plate capacitor is to be designed
with a voltage rating 1 kV , using a material of dielectric constant 3 and dielectric strength about $10^{7} \mathrm{Vm}^{-1}$. (Dielectric strength is the maximum electric field a material can tolerate without breakdown, i.e., without starting to conduct electricity through partial ionisation.)

For safety, we should like the field never to exceed, say 10% of the dielectric strength.

What minimum area of the plates is required to have a capacitance of 50 pF ?
41. Describe schematically the equipotential surfaces corresponding to
(a) a constant electric field in the z-direction,
(b) a field that uniformly increases in magnitude but remains in a constant (say, z) direction,
(c) a single positive charge at the origin, and
(d) a uniform grid consisting of long equally spaced parallel charged wires in a plane.
42. A small sphere of radius r_{1} and charge q_{1} is enclosed by a spherical shell of radius r and charge q_{2} Show that if q_{1} is positive, charge will necessarily flow from the sphere to the shell (when the two are connected by a wire) no matter what the charge q_{2} on the shell is.

D Watch Video Solution

43. The top of the atmosphere is at about 400
kV , with respect to the surface or the earth,
corresponding to an electric field that decreases with altitude. Near the surracc of the earth, chc field is about $100 \mathrm{Vm}^{-1}$. Why then do we not get an electric shock as we step out of our house into the open ? (Assume Ihe house to be a steel cage so there is no field inside).

- Watch Video Solution

44. A man fixes outside his house one evening
a two metre high insulating slab carrying on
its top a large aluminium sheet of area $1 \mathrm{~m}^{2}$.
Will he get an electric shock if he touches the metal sheet next morning ?

- Watch Video Solution

45. The discharging current in the atmosphere
due to the small conductivity of air is known
to be 1800 A on an average over the globe.
Why then does the atmosphere not discharge
itself completely in due course and become
electrically neutral ? In other words, what keeps the atmosphere charged?

D Watch Video Solution

46. What are the forms, of energy into which
the electrical energy of the atmosphere is
dissipated during a lightning ?
(Hint : The earth has an electric field of about
$100 \mathrm{Vm}^{-1}$ at its surface In the downward direction, corresponding to a surface charge density $=-10^{-9} \mathrm{~cm}^{-2}$. Due to the slight
conductivity of the atmosphere up to about

50 km (beyond which it is good conductor),
about +1800 C is pumped every second into
the earth as a whole. The earth, however, does
not get discharged since thunderstorms and
lightning occurring continually all over the
globe pump an equal amount of negative charge on the earth).

(D) Watch Video Solution

Section B Numerical From Darpan Based On Textbook

1. An electric field is represented by $\vec{E}=\mathrm{Ax} \hat{i}$ where $\mathrm{A}=10 \frac{\mathrm{~V}}{\mathrm{~m}^{2}}$. Find the potential of the origin with respect to the point $(10,20) \mathrm{m}$.

- Watch Video Solution

2. Charge Q is distributed uniformly over a non conducting sphere of radius R. Find the electric p-Otential at distance r from the centre of the sphere $\mathrm{r}(r<R)$. The electric
field at a distance r from the centre of the
sphere is given as $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q}{R^{3}} \hat{r}$. Also find the potential at the centre of the sphere.

- Watch Video Solution

3. Prove that the force acting on one plate due to the other in a parallel plate capacitor is
$F=\frac{1}{2} \frac{C V^{2}}{d}$.

- Watch Video Solution

4. Find the capacitance of the capacitor shown
in the figure. Area of AB is $\mathrm{A} . K_{1}, K_{2}, K_{3}$ are dielectric constants of respective materials

D View Text Solution
5. A substance has a dielectric constant 2.0 and its dielectric strength is $20 \times 10^{6} \mathrm{~V} / \mathrm{m}$. It is taken as a dielectric material in a parallel plate capacitor. The minimum area of its each plate such that its capacitance becomes $8.85 \times 10^{-2} \mu F$ and it can withstand a potential difference of 2000 V is

- Watch Video Solution

6. In a certain region, the electric potential is given by the formula $V(x, y, z)=$ $2 x^{2} y+3 y^{3} z-4 z^{4} x$. Find the components of electric field and the vector electric field at point $(1,1,1)$ in this field.

D Watch Video Solution

7. A spherical drop of water bas $3 \times 10^{10} \mathrm{C}$ amount of charge residing on it. 500 V electric potential exists on its surface. Calculate the
radius of this drop. If eight such drops (having identical charge and radii) combine to form a single drop, calculate the electric potential on the surface of the new drop. $\left(k=9 \times 10^{9} \mathrm{SI}\right)$

D Watch Video Solution

8. Consider A, D and C to be the co-centric shells of metal . Their radii are a, b and c respectively ($\mathrm{a}<\mathrm{b}<\mathrm{c}$). Their surface charge densities are $\sigma,-\sigma$ and σ respectively.

Calculate the electric potential on the surface

D Watch Video Solution
9. The area of each plate shown In the figure is

A and the distance between consecutive plates
is d. What is the equivalent capacitance between points A and B ?

D View Text Solution

10. A point P , is 40 m away from charge $2 \mu \mathrm{C}$ and 20 m away from charge $4 \mu \mathrm{C}$. Find the
electric potential at point P. How much work to
be done for a charge ot - 0.4 C brought from infinity to point P ?

D Watch Video Solution

11. Two charges 2 C and 3 C are located 100 m apart. At what point on the line joining the two charges is the electric potential zero ? Take the potential at infinity to be zero. .

D Watch Video Solution

12. Three point charges $1 \mathrm{C}, 2 \mathrm{C}$ and 3 C are placed at the corners of a equilateral triangle.

The length of triangle is 1 m . What would be the work required to put these charge on the corner of an equilateral triangle of length 0.5 m ?

- Watch Video Solution

13. Determine the electrostatic potential energy of a system consisting of two charges 6
$\mu \mathrm{C}$ and $-3 \mu \mathrm{C}$ (and with no external field)
placed at ($-9 \mathrm{~cm}, 0,0$) and ($9 \mathrm{~cm}, 0,0$)
respectively.

D Watch Video Solution

14. How much work is required separate the two charges infinitely away from each other?
15. Suppose that the same system of charge is now placed in an external electric field $\mathrm{E}=\mathrm{A}(\mathrm{I} /$ $\left.r^{2}\right), A=9 \times 10^{5} \mathrm{~cm}^{-2}$. What would the electrostatic energy of the configuration be?

D Watch Video Solution

16. A molecule of a substance has a permanent electric dipole moment of magnitude 10^{-30}
Cm. A mole of this substance is polarised (at
low temperature) by applying a strong
electrostatic field of magnitude $10^{7} \mathrm{vm}^{-1}$. The
direction of the field is suddenly changed by an angle of 60°. Estimate the heat released by the substance in aligning its dipole along the new direction of the field. For simplicity assume 100% polarisation of the sample. 1 mole $=6 \times 10^{23}$ molecule.

D Watch Video Solution

17. Determine the equivalent capacitance of
the network and the charge on each capacitor.

Each capacitor having capacitance of $12 \mu F$.

D Watch Video Solution

18. Determine the equivalent capacitance of the network and the charge on each capacitor.

Each capacitor having capacitance of $6 \mu F$.

D Watch Video Solution

19. A 900 pF capacitor is charged by 50 V battery. Find the electrostatic potential energy of this capacitor. (2) Now this capacitor is disconnected from the battery and connect to
another equivalent capacitor, then what is the total electrostatic energy stored by the system respectively?

D Watch Video Solution

Section B Questions

1. A slab of material of dielectric constant K
has the same area as the plates of a parallel
plate capacitor but has a thickless $\left(\frac{1}{2}\right) d$.
Where d is the separation of the plates. How
is the capacitance changed when the slab is inserted between the plates

- Watch Video Solution

2. Figures 2.8 (a) and (b) show the field lines of a positive and negative point charge respectively.

(a)

(b)
(a) Give the signs of the potential difference
$V_{P}-V_{Q}: V_{B}-V_{A}$.
(b) Give the sign of the potential energy difference of a small negative charge between the points Q and P, A and B .
(c) Give the sign of the work done by the field in moving a small positive charge from Q to P.
(d) Give the sign of the work done by the external agency in moving a small negative charge from B to A.
(e) Does the kinetic energy of a small negative
charge increase or decrease in going from B to

Section C Ncert Exemplar Solution Multiple Choice Questions Mcqs

1. A capacitor of $4 \mu \mathrm{~F}$ is connected as shown in
the circuit as per figure. The internal resistance of the batlery is 0.5Ω. The amount of charge on the capacitor plates will be:

(a) $0 \mu C$
(b) $4 \mu C$
(c) $16 \mu C$
(d) $8 \mu C$
A. $0 \mu C$
B. $4 \mu C$
C. $16 \mu C$
D. $8 \mu C$

Answer: C
2. A positively charged particle is released from rest in an unform electric field. The electric potential energy of the charge
A. remains a constant because the electric
field is uniform.
B.increases because the charge moves
along the electric field.

C. decreasases because the charge moves

along the electric field
D. decreases because the charge moves
opposite to the electric field.

Answer: A::B::C::D

D Watch Video Solution

3. Figure shows some equipotential line distributed in space. A charged object is move
from point A point B.

A. The work done in figure (I) is the greatest
B. The work done in figure (ii) is least.
C. The work done is the same in figures (i),
(ii), (iii).
D. The work done in figure (iii) is greater
than figure (ii) but equal to that in figure
(i).

Answer: A::D

D Watch Video Solution

4. The electrostatic potential on the surface of
a charged conducting sphere is 100 V . Two statements arc made in this regard :
S_{1} : At any point inside the sphere, electric
intensity is zero.
S_{2} : At any point inside the sphere, the ' electrostatic potential is 100 V .

Which of the following is a correct statement ?
A. S_{1} is true but s_{2} is false
B. Both S_{1} and S_{2} are false.
C. S_{1} is true S_{2} is also true and S_{1} is the
cause of S_{2}
D. S_{1} is true S_{2} is also true but the statements are independent.

Answer: A::B::C::D

D Watch Video Solution

5. Equipotential at a great distance from a
collection of charges whose total sum is not
zero are approximately
A. spheres
B. planes
C. paraboloids
D. ellipsoids

Answer:

D Watch Video Solution

6. A parallel plate capacitor is made of two
dielectric blocks in series. One of the blocks
has thickness d_{1} and dielectric constant k_{1} and the other has thickness d_{2} and dielectric constant k_{2} as shown in figure. This arrangement can be thought as a dielectric slab of thickness $\mathrm{d}=\left(d_{1}+d_{2}\right)$ and effective dielectric constant k. The k is

$$
\begin{aligned}
& \text { (a) } \frac{K_{1} d_{1}+K_{2} d_{2}}{d_{1}+d_{2}} \\
& \text { (b) } \frac{K_{1} d_{1}+K_{2} d_{2}}{K_{1}+K_{2}} \\
& \text { (c) } \frac{K_{1} K_{2}\left(d_{1}+d_{2}\right)}{\left(K_{1} d_{2}+K_{2} d_{1}\right)} \\
& \text { (d) } \frac{2 K_{1} K_{2}}{K_{1}+K_{2}}
\end{aligned}
$$

$$
\text { A. } \frac{K_{1} d_{1}+K_{2} d_{2}}{d_{1}+d_{2}}
$$

$$
\text { B. } \frac{K_{1} d_{1}+K_{2} d_{2}}{K_{1}+K_{2}}
$$

$$
\text { c. } \frac{K_{1} K_{2}\left(d_{1}+d_{2}\right)}{\left(K_{1} d_{2}+K_{2} d_{1}\right)}
$$

$$
\text { D. } \frac{2 K_{1} K_{2}}{K_{1}+K_{2}}
$$

Answer: C

- Watch Video Solution

7. Consider a uniform electric field in the \hat{z}
direction. The potential is a constant
A. in all space
B. for any x for a given z .
C. for any y for a given z .
D. on the $x-y$ plane for a given z.

Answer: B::C::D

D Watch Video Solution

8. Equipotential surfaces,
A. Are closer in regions of large elelctric
fields compared to regions of lower
electric fields
B. will be more crowded near sharp edges
of a conductor.
C. will be more crowded near regions of large charge densities.

D. will always be equally spaced.

Answer: A::B::C

D Watch Video Solution

9. The work done to move a charge along equipotential from A to B
A. cannot be defined as $-\int_{A}^{B} E d l$
B. must be defined as $-\int_{A}^{B} \mathrm{Edl}$
C. is zero
D. can have a non zero value

Answer: C

D Watch Video Solution
10. In a region of constant potential
A. the electric field is uniform
B. the electric field is zero
C. there can be no charge inside the region.
D. the electric field shall necessarily change if a charge is placed outside the region.

Answer: B::C

- Watch Video Solution

11. In the circuit shown in figure initially key K_{1} is closed and key K_{2} is open. Then K_{1} is opened and K_{2} is closed (order is important).

Take Q_{1} and Q_{2} as charges on C_{1} and C_{2} and V_{1} and V_{2} as voltage respectively. Then,
(a) Charge on C_{1} gets redistributed such that
$V_{1}-V_{2}$
(b) Charge on C_{1} gets redistributed such that
$Q_{1}=Q_{2}$
(c) Charge on C_{1} gets redistributed such that
$C_{1} V_{1}+C_{2} V_{2}=C_{1} E$
(d) Charge on C_{1} gets redistributed such that
$Q_{1}+Q_{2}=Q$
A. Charge on C_{1} gets redistributed such that $V_{1}-V_{2}$
B. Charge on C_{1} gets redistributed such
that $Q_{1}=Q_{2}$
C. Charge on C_{1} gets redistributed such
that $C_{1} V_{1}+C_{2} V_{2}=C_{1} E$
D. Charge on C_{1} gets redistributed such
that $Q_{1}+Q_{2}=Q$

Answer: A::D

12. If a conductor has a potential $V \neq 0$ and there are no charges anywhere else outside, then
A. there must be charges on the surface of inside itself
B. there cannot be any charge in the body of the conductor.
C.there must be charges only on the surface.
D. there must be charges inside the surface.

Answer: B::C

D Watch Video Solution

13. A parallel plate capacitor is connected to a battery as shown in figure .Consider two situations,
(A) Key K is kept closed and plates of capacitors are moved apart using insulating
handle.
(B) Key K is opened and plates of capacitors arc moved apart using insulating handle.

Choose the correct optlons.

,
A. In A : Q remains same but C changes.
B. In B:E remains same but C changes.
C. In A : E remains same and hence Q
changes.
D. In B : Q remains same and hence E
changes.

Answer: C::D

D Watch Video Solution

Section C Ncert Exemplar Solution Very Short Aswer Type Questions

1. Consider two conducting spheres of radii R_{1}
and R_{2} with $R_{1}>R_{2}$. If the two are at the
same potential, the larger sphere bas more charge than the smaller sphere. State whether the charge density of the smaller sphere is more or less than that of the larger one.

- Watch Video Solution

2. Do free electrons travel to region of higher potential or lower potential ?
3. Can there be a potential difference between two adjacent conductors carrying the same charge?

- Watch Video Solution

4. Can the potential function have an maximum or minimum in free space ?

- Watch Video Solution

5. A test charge q is made to move in the electr field of a point charge Q along two different closed paths as per figure. First path has sections along and perpedicular to lines electric field. Second path is a rectangular loo of the same area as the first loop. How do(the

work done compare in the two cases ?

- View Text Solution

Section C Ncert Exemplar Solution Short Aswer Type Questions

1. Prove that a closed equipotential surface with no charge within ilself must enclose an equipotential volume.

- Watch Video Solution

2. A capacitor has some dielectric between its
plates and the capacitor is connected to a DC source. The battery is now disconnected and
then the dielectric is removed. State whether
the capacitance, the energy stored in it,
electric field, charge stored and the voltage will increase, decrease or remain constant.

D Watch Video Solution

3. Prove that, if an insulated, uncharged conductor is placed near a charged conductor and no other conductors are present, the uncharged body must be intermediate in potential between that of the charged body and that of infinity.
4. Calculate potential energy of a point charge

- q placed along the axis due to a charge +Q uniformly distributed along a ring of radius-, R.

Sketch P.F. as a function or axial distance z
from the centre of the ring. Looking at graph,
can you see what would happen if - q is
displaced slightly from the centre of the ring (along the axis) ?

- Watch Video Solution

5. Calculate potential on the axis of a ring due to charge Q uniformly distributed along the ring of radius R .

D Watch Video Solution

Section C Ncert Exemplar Solution Long Answer

 Type Questions1. Find the equation of the equipotential for an infinite cylinder of radius r_{0} carrying charge of linear density λ.
2. Two point charges of magnitude +q and -q are placed at $\left(-\frac{d}{2}, 0,0\right)$ and $\left(\frac{d}{2}, 0,0\right)$. respectively. Find the equation of the equipotential surface where the potential is zero.

D Watch Video Solution

3. A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (U) as $\varepsilon=\alpha \mathrm{U}$ where $\alpha=2 V^{-1}$. A similar capacitor with no dielectric is charged to $U_{0}=78 \mathrm{~V}$. It is then connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.

D Watch Video Solution

4. A capacitor is made of two circular plates of radius R each, separated by a dJstance d
\ll R. The capacitor is connected to a constant voltage. A th.in conducting disc of radius $\mathrm{r} \ll \mathrm{R}$ and thickness $\mathrm{t} \ll \mathrm{R}$ is placed at a centre of the bottom plate. Find the minimum voltage required to lift the disc if the mass of the disc is m.

D Watch Video Solution

5. In a quark model of elementary particles a neutron is made of one up quarks is made of one up quarks
[charge $\frac{2}{3}$ e] and two down quarks [charges $\left.-\frac{1}{3} e\right]$. Assume that they have a triangle configuration with slde length of the order of $10^{-15} \mathrm{~m}$. Calculate electrosatic potential energy of neutron and compare it with it, mass 939 MeV .

D Watch Video Solution

6. Repeal above exercise for a proton which is made of two up and one down quark.

- Watch Video Solution

7. Two metal spheres, one of radius R and the other of radius 2 R , both have same surfac charge density σ. They are brought in contac and separated. What will be new surface charge densites on them?

- Watch Video Solution

8. In the circuit shown in figure, initially K_{1} is
closed and K_{2} is open. What are the charges
on each capacitors ? Then K_{1} was opened and
K_{2} was closed (order is in important), what will be the charge on each capacitor now? ($C=$ $1 \mu \mathrm{~F}]$

D Watch Video Solution

9. Calculate potential on the axis of a disc of
radius R due to a charge Q uniformly distributed on its surface.

- Watch Video Solution

10. Two charges q_{1} and q_{2} are placed at ($0,0, \mathrm{~d}$)
and $(0,0,-d)$ respectively. Find locus or points
where the potential is zero.

- Watch Video Solution

11. Two charges - q each are separated by distanc $\cdot 2 \mathrm{~d}$. A third charge +q is kept at mid point C Find potential energy of $+q$ as a function small distance x from O due to -q charges Sketch P.E. v/s x and convince yourself that the, charge at O is in an unstable equilibrium.

- Watch Video Solution

12. In a Van-De Graaff type generator a spherical metal shell is to be a $15 \times 10^{6} \mathrm{~V}$
electrode. The dielectric strength of the gas surrounding the electrode is $5 \times 10^{7} \mathrm{Vm}^{-1}$.

What is the minimum radius of the spherical shell required?

D Watch Video Solution

Section D Multiple Choice Questions Mcqs

1. When a unit positive charge moves from one
point to another point in an electric field, work done on it
A. is zero.
B. depends on positions of those two points.
C. depends on the path, joining those two
points.
D. does not depend on the positions of
those two points.

Answer: D

2. Electric force on an electron, in an electric field is
A. in the direction of electric field
B. zero
C. in the direction, opposite to electric field
D. perpendicular to electric field

Answer: C::D

D Watch Video Solution
3. When a proton moves opposite to electric field, work done on it by electric field is and electrostatic potential energy of proton,
A. negative, increases
B. negative, decreases
C. positive, increases
D. positive, decreases

Answer: A::C

4. When a negative charge is moved from
surface of Earth to a certain height, its gravitational potential energy
A. remains constant
B. increases
C. decreases
D. would become infinite

Answer: A::C
5. A moving electron approaches another electron. What would be the change in the potential energy of this system ?
A. Remains constant
B. Increases
C. Decreases
D. May increase or decrease

Answer: A::C
6. When a charged conductor is placed In an
external electric field, inside the conductor we
have
A. $E \neq 0, V \neq 0$
B. $E=0, V \neq 0$
C. $E \neq 0, V=0$
D. $E=0, V=0$

Answer:

D Watch Video Solution

7. Electrostatic potential can be defined at any

- point in the electric field because electric field is
A. conseivative
B. non-conservative
C. scalar
D. always uniform

Answer: A::C

D Watch Video Solution
8. Electrostatic potential at some point in the
clecLric field means of unit charge at
that point.
A. negative, electrostatic potential energy
B. positive, electrostatic potential energy
C. negative, total energy
D. positive, total energy

Answer: A: C

D Watch Video Solution
9. At points P and Q , two identical charges
each q are placed. When we move from P to Q
(oa - the line joining them), electrostatic potential
A. goes on decreasing
B. goes on increasing.
C. first goes on decreasing, then after
becoming 1ninimum, it goes on
increasing.

D. first increases, becomes maximum and

 then decreases.
Answer: A::B::C::D

D Watch Video Solution

10. Inside a uniformly charged spherical shell, electric field is and electrostatic potential is
A. equal, zero
B. equal, equal
C. zero, equal
D. zero, zero

Answer: A

D Watch Video Solution
11. Electrostatic potential at one point is V .

Then electric field along X -axis can be written
as $\vec{E}_{x}=\ldots \ldots . . .$.
A. $\int_{0}^{\infty} V d x \hat{i}$
B. $\frac{d V}{d x} \hat{i}$
C. $-\frac{d V}{d x} \hat{i}$
D. $-\int_{0}^{\infty} V d x \hat{i}$

Answer: A::D

D Watch Video Solution

12. Surface of Earth is considered at gravitational potential (in practice).
A. infinite
B. negative
C. positive
D. zero

Answer:

- Watch Video Solution

13. Electric field is directed along the direction in which rate of electric potential is
A. decrease fastest
B. decrease slowest
C. increase fastest
D. increase, slowest

Answer: A::C::D

D Watch Video Solution
14. A proton is moving away from an electron,
then find the change in potential energy of
the system.
A. decreases
B. increases
C. remains constant
D. may decrease or increase

Answer: A::C

D Watch Video Solution
15. Unit of line integration of electric field is
A. $V m^{-1}$
B. $J C^{-1}$
C. $N C^{-1}$
D. Vm

Answer: A::C

- Watch Video Solution

16. The line integral or an electric field along
the circumference of a circle of radius r, drawn
with a point charge Q at the centre will be.
A. $\frac{1}{4 \pi \varepsilon_{0} r} \frac{Q}{r}$
B. $\frac{Q}{2 \varepsilon_{0} r}$
C. Zero
D. $2 \pi Q r$

Answer:

D Watch Video Solution

17. 2 C electric charge Is displaced from a point of electric potential -20 V to some other point.

The work done is 200 J, then electric potential of second point $V_{2}=$........ volt.
A. 60
B. 80
C. 180
D. 220

Answer:
(Watch Video Solution
18. The work done by carrying, unit positive
charge in an electric field under repulsive force
from infinity to a given point, its
A. kinetic energy increases
B. kinetic energy decreases
C. potential energy decreases
D. mechanical energy increases

Answer: A::C::D

D Watch Video Solution
19. Which one of the following is not a unit of electric potential ?
A. $J C^{-1}$
B. V
C. W
D. $N m C^{-1}$

Answer:

D Watch Video Solution
20. Give dimensional formula of electric potential.
A. $M^{1} L^{-2} T^{-3} A^{-1}$
B. $M^{1} L^{2} T^{3} A^{-1}$
C. $M^{1} L^{2} T^{-3} A^{1}$
D. $M^{1} L^{2} T^{-3} A^{-1}$

Answer: A::B::C

D Watch Video Solution
21. A particle having mass m and charge q is, rest. On applying a uniform electric field E it, it
starts moving. What is its kinetic energ when it travels a distance y in the direction force?
A. $q E^{2} y$
B. $q E y^{2}$
C. qEy
D. $q^{2} E y$

Answer:

22. For a uniform electric field $\vec{E}=E_{0}(\hat{i})$, if the electric potential at $\mathrm{x}=0$ is zero, then the vajut of electric potential at $x=+x$ will be
A. $x E_{0}$
B. $-x E_{0}$
C. $x^{2} E_{0}$
D. $-x^{2} E_{0}$

Answer:
23. The work done by the charge Q through displacement $\Delta \vec{r}=a \hat{i}+b \hat{j}$ in electric field $\vec{E}=E_{1} \hat{i}+E_{2} \hat{j}$ is
A. $Q\left[E_{1} a+E_{2} b\right]$
B. $Q\left[\sqrt{\left(E_{1} a\right)^{2}+\left(E_{2} b\right)^{2}}\right]$
C. $\frac{Q\left(E_{1}+E_{2}\right)}{\sqrt{a^{2}+b^{2}}}$
D. $Q\left(\sqrt{E_{1}^{2}+E_{2}^{2}}\right) \sqrt{a^{2}+b^{2}}$

- Watch Video Solution

24. What is the diameter of sphere of 4 V potential kept near the points situated at same distance from an electron ?
A. $14.4 A^{\circ}$
B. $7.2 A^{\circ}$
C. $1.4 A^{\circ}$
D. $0.7 A^{\circ}$

- Watch Video Solution

25. Two spheres or different radii are given equal amount of charge. The electric potential will be
A. Equal on surface of both spheres
B. More on the surface of larger sphere
C. More on the surface of smaller sphere
D. Dependent on the mass of spheres
26. Charges on two spherical shells of radius
r_{1} and r_{2} are same, then ratio of their electric potential , will be
A. $\begin{array}{r}\frac{r_{1}^{2}}{r_{2}^{2}} \\ \text { B. } \frac{r_{1}^{2}}{r_{1}^{2}}\end{array}$
C. $\frac{r_{1}}{r_{2}}$
D. $\frac{r_{2}}{r_{1}}$

- Watch Video Solution

27. Two metallic sphenrs of radil R_{1} and R_{2} are charged. Now they are brought into contact with each other with conducting wire and then separated. If the electric fields on their surfaces are E_{1} and E_{2} respectively $\frac{E_{1}}{E_{2}}=$
A. $\frac{R_{2}}{R_{1}}$
B. $\frac{R_{1}}{R_{2}}$
C. $\frac{R_{2}^{2}}{R_{1}^{2}}$
D. $\frac{R_{1}^{2}}{R_{2}^{2}}$

Answer: A::B

D Watch Video Solution

28. Electric field on surfaces of two spheres of
radius r_{1} and r_{2} are same, then ratio of their electric potential will be

$$
\begin{aligned}
& \text { A. } \frac{r_{1}^{2}}{r_{2}} \\
& \text { B. } \frac{r_{2}^{2}}{r_{1}^{2}}
\end{aligned}
$$

C. $\frac{r_{1}}{r_{2}}$
 D. $\frac{r_{2}}{r_{1}}$
 r_{1}

Answer: A::B

D Watch Video Solution

29. Surface churgc densities on the spheres of
radius r_{1} and r_{2} are same, then ratio of their electric potential will be
A. $\frac{r_{1}^{2}}{r_{2}^{2}}$
B. $\frac{r_{2}^{2}}{r_{1}^{2}}$
C. $\frac{r_{1}}{r_{2}}$
D. $\frac{r_{2}}{r_{1}}$

Answer: A::B

D Watch Video Solution
30. Potenlials of points P and Q are 10 V and -4

V respectively. Work done in taking 100 electrons from P to Q
A. $22.4 \times 10^{-16} J$
B. $2.24 \times 10^{-16} J$
C. $-9.6 \times 10^{-17} J$
D. $9.6 \times 10^{-17} \mathrm{~J}$

Answer: A::B::D

D Watch Video Solution
31. A point P al a certain distance from charge
Q has electric potential 600 V and elecuic field
intensity 150 N/C, Ihen distance of point from charge Q is M.
A. 4
B. 2
C. 3.2
D. 6.5

Answer: D
(Watch Video Solution
32. The spheres of radius r and R having charge q and Q respectively on them. When they are joined with conducting ,wire, the energy of this system does not dissipated then
A. $q r=Q R$
B. $\mathrm{qR}=\mathrm{Qr}$
C. $q r^{2}=Q R^{2}$
D. $q R^{2}=Q r^{2}$

Answer:
33. The spherical shell has radius r. The potential difference V is between centre to distnnce $3 r$. The electric field at a distance $3 r$ will be
A. $\frac{V}{6 r}$
B. $\frac{V}{4 r}$
C. $\frac{V}{3 r}$
D. $\frac{V}{2 r}$

Answer:

- Watch Video Solution

34. The radius of a charged hollow sphere is 10
cm . If V is the potential of a point away from 5
cm from the centre of sphere, then what will be potential of a point away from 15 cm from the centre of sphere?

$$
\begin{aligned}
& \text { A. } \frac{V}{3} \\
& \text { B. } \frac{2 V}{3}
\end{aligned}
$$

c. $\frac{3 V}{2}$
D. 3 V

Answer: B::C

- Watch Video Solution

35. Electrostatic potential is physical quantity.
A. scalar and dimensionless
B. vector and dimensionless
C. scalar with dimensions
D. vector with dimensions

Answer: A::C::D

D Watch Video Solution

36. Kinetic energy of a charged particle decreases by 100 J when it is brought from a point of 100 V potential to a point of 200 V potential, then charge of particle is C.
A. 0.1
B. 1.0
C. 10
D. 100

Answer: A

- Watch Video Solution

37. Electric potential at 5 can distance from centre of shell of 14 cm radius is 10 V , then
A. zero
B. 5 V
C. 10 V
D. 20 V

Answer: A

D Watch Video Solution
38. A particle having mass 1 g and electric charge $10^{-8} C$ travels from a point A having electric potential 600 V to the point B having zero potential. What would be the change in its kinetic energy ?

$$
\begin{aligned}
& \text { A. }-6 \times 10^{-6} \mathrm{erg} \\
& \text { B. }-6 \times 10^{-6} \mathrm{~J} \\
& \text { C. } 6 \times 10^{-6} \mathrm{~J} \\
& \text { D. } 6 \times 10^{-6} \mathrm{erg}
\end{aligned}
$$

39. The electric potential due to any point electric dipole varies as

> A. $\frac{1}{r}$
> B. $\frac{1}{r^{2}}$
> C. $\frac{1}{r^{3}}$
> D. r^{2}

Answer: A::B
40. Two charges - q and $+q$ are located at points $A(0,0,-a)$ and $B(0,0,+a)$ respectively, work done in moving small test charge from point $P(7,0,0)$ to $Q(-3,0,0)$ is
A. zero
B. -3 J
C. 4J
D. 10J

Answer:

D Watch Video Solution

41. The dipole moment of a dipole is 4×10^{-9}
Cm. The polential of a point away from 0.2 rn , the direction maJting an angle 60° with axis of dipole is
A. 4.5 V
B. 45 V
C. 450 V

D. 4500 V

Answer: D

D Watch Video Solution

42. $10 \mu \mathrm{C}$ charge Is placed on each vertex of equilateral triangle of 10 cm side. Electric potential energy of system is
A. 100 J
B. 27 J

C. zero

D. infinte

Answer: B

D Watch Video Solution

43. For a point on the axis of the electric dipole $\theta=0$ and $\theta=\pi=$..
A. $-\frac{k P}{r^{2}},+\frac{k P}{r^{2}}$
B. $+\frac{k P}{r^{2}},-\frac{k P}{r^{2}}$
C. 0,0

$$
\text { D. }+\frac{k P}{r},-\frac{k P}{r}
$$

Answer: B

D Watch Video Solution

44. Potential energy of an electric dipole is
minimum (Negatively maximum) when
A. The dipole is perpendicular to the field
B. The dipole is parallel to the field

C. The dipole is antiparallel to the field.

D. The dipole moment makes 60° with the

 field.
Answer: A::B::C::D

D Watch Video Solution

45. When a n electric dipole is in st able equilibrium, in uniform electric field, its electrostatic potential energy is
A. $-p E$
B. pE
C. 0
D. \propto

Answer:

D Watch Video Solution

46. A surface, value of electric potential on whichis same at all the points, is called surface.
A. Gaussian
B. Amperian
C. Equipotential
D. Equifield

Answer: A::B::D

D Watch Video Solution
47. Angle between equipotential surface and electric field is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. 0

Answer: B

D Watch Video Solution

48. $A \vee-X$ graph for an electric field in X direction is shown in the figure. In which region is the magnitude of electric field
maximum?

(a) A
(b) B
(c) C
(d) D
A. A
B. B
C. C
D. D

Answer: C

- Watch Video Solution

49. Uniformly polarised dielectric has of induced charge.
A. linear charge density
B. surface charge density
C. volume charge density
D. none of above

Answer: A::C::D

D Watch Video Solution

50. $C^{2} m N^{-1}$ is unit of
A. electric susceptibility

B. Polarizability

C. dipole moment

D. permittivity of medium

Answer: A::B

D Watch Video Solution

51. Value of dielectric constant of metal is
A. zero
B. 1
C. any value greater than 1
D. infinite

Answer:

D Watch Video Solution

52. Which of the following atoms has permanent electric dipole moment zero ?
A. HCl
B. $\mathrm{H}_{2} \mathrm{O}$
C. NO_{2}
D. H_{2}

Answer: B

D Watch Video Solution

53. Which of the following atoms behave as polar dielectric?
A. H_{2} and $\mathrm{H}_{2} \mathrm{O}$
B. O_{2} and $\mathrm{H}_{2} \mathrm{O}$
C. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
D. HCl and $\mathrm{H}_{2} \mathrm{O}$

Answer: A::B::C::D

- Watch Video Solution

54. The charge $3.0 \times 10^{-5} \mathrm{C}$ are placed on a metal sphere of radius 3.0 m , then the energy
stored in it will be
A. $\frac{3}{8 \pi} \in_{0} \times 10^{10} J$
B. $\frac{3}{8 \pi \epsilon_{0}} \times 10^{-10} \mathrm{~J}$
C. $\frac{3}{8 \epsilon_{0}} \times 10^{-5} J$
D. $\frac{8 \epsilon_{0}}{3} \times 10^{5} \mathrm{~J}$

Answer: A::C

D Watch Video Solution

55. A parallel plate capacitor is charged and
then isolated. Now a dielectric slab is

Introduced in it. Which of the following quantities will remain constant ?
A. Electric charge Q
B. Potential difference V
C. Capacitance C

D. Energy U

Answer: A::C

- Watch Video Solution

56. A parallel plate capacitor is charged with a battery and then separated from it. Now if the distance between its two plates is increased, what will be the changes in electric charge, potential difference and capacitance respectively?
A. remains constant, decreases, decreases
B. increases, decreases, decreases
C. remains constant, decreases, increases
D. remains constant, increases, decreases

Answer: A::C::D

D Watch Video Solution

57. Which of the following one, the capacitance of parallel plate capacitor does not depend?
A. On the area of the plate
B. On the distance between two plates
C. On the charge of the plate
D. On the shape of the plate

Answer: A::C

D Watch Video Solution
58. Which of the following equation doesn't represent energy of charged capacitor ?
A. $\frac{Q^{2}}{2 C}$
B. $\frac{1}{2} \mathrm{QV}$
C. $\frac{1}{2} Q V^{2}$
D. $\frac{1}{2} C V^{2}$

Answer: A::B

D Watch Video Solution

59. Energy stored in capacitor is in the form of
A. electrical potential energy
B. magnetic energy
C. mechanical energy
D. heat energy

Answer: A::C

D Watch Video Solution
60. Two plates of parallel plate capacitor are joined inside with metal rod. The capacitance of a capacitor is
A. zero
B. $\frac{\varepsilon_{0} A}{d}$
C. $\frac{2 \varepsilon_{0} A}{d}$
D. infinite

Answer:

D Watch Video Solution

61. There are 10 capacitors. each of capacitance
$10 \mu \mathrm{~F}$. The ratio of maximum to minimum
capacitance obtained by their combination is
A. $5: 1$
B. 10: 1
C. $50: 1$
D. 100: 1

Answer: A

D Watch Video Solution
62. The capacitance of a parallel capacitor is 5
$\mu \mathrm{F}$. When glass slab inserting between two plates, its potential difference becomes $\frac{1}{8}$ the times hence the dielectric constant of a slab
A. 1.6
B. 5
C. 8
D. 40

If equivalent capacitance of given circuit is
$15 \mu F$ then $\mathrm{C}=$
(a) $5 \mu F$
(b) $35 \mu F$
(c) $50 \mu F$
(d) $60 \mu F$
A. $5 \mu F$

B. $35 \mu F$

C. $50 \mu F$
D. $60 \mu F$

Answer:

- Watch Video Solution

64. Capacitance of spherical capacitor is $1 \mu F$,
so its diameter $=\ldots \mathrm{m} .\left[\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} S I\right]$
A. 1.8
B. 18
C. 1.8×10^{3}
D. 1.8×10^{4}

Answer: A::D
(Watch Video Solution
65. By increasing the charge on the plate of capacitor
A. its capacitance increases
B. p.d. between two plates increases
C. p.d. between two plates decreases
D. both option (A) and (B) increases

Answer: A::B::C::D

D Watch Video Solution

66. In the figure below the capacitance of ever capacitor is $3 \mu \mathrm{~F}$. Find the equivalent
capacitance between A and 8.

A. $1 \mu F$
B. $9 \mu F$
C. $\frac{1}{3} \mathrm{~F}$
D. $12 \mu F$

Answer: A

D View Text Solution
67. 27 small drops of water having same chargt
and same radius are combined to form one big drop. The ratio of capacitance of one big drop to small drop is
A. $2: 1$
B. $3: 1$
C. $1: 3$
D. 1:2

Answer: A::C
68. If the charge on capacitor is increased by

5C, the energy stored in the capacitor is
increased by 21%, what will be initial charge on
the capacitor?
A. 10 C
B. 20 C
C. 50 C
D. 40 C

Answer: C

D Watch Video Solution

69. The capacitance of a variable capacitor
joined with a battery of 100 V is changed from
$2 \mu \mathrm{~F}$ to $10 \mu F$. What is the change in the energy stored in it ?
A. $2 \times 10^{2} J$
B. $2.5 \times 10^{2} \mathrm{~J}$
C. $6.5 \times 10^{-2} J$ J

D. $4 \times 10^{-2} \mathrm{~J}$

Answer: A::B::D

D Watch Video Solution

70. $4 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ capacitors are joined in series and 500 V are applied between the outer plates of the system. What is the charge on each plate '?
A. $1.2 \times 10^{-3} C$
B. $6.0 \times 10^{-3} \mathrm{C}$
C. 5.0×10^{-3}
D. $1.0 \times 10^{-3} \mathrm{C}$

Answer: A::B::C

D Watch Video Solution

71. Two spherical shells of radius 20 cm and 10 cm , having same charge of $150 \mu \mathrm{C}$ each are connected by means of a conducting wire.

What will be their common potential ?
A. 9×10^{6}
B. 4.5×10^{6}
C. 1.8×10^{6}
D. 13.5×10^{6}

Answer: A

D Watch Video Solution
72. The area of every plate shown in the figure is A and the separation between the successive plates is d. What is the capacitance
between points a and b ?

(a) $\frac{\varepsilon_{0} A}{d}$
(b) $\frac{2 \varepsilon_{0} A}{d}$
(c) $\frac{3 \varepsilon_{0} A}{d}$
(d) $\frac{4 \varepsilon_{0} A}{d}$

> A. $\frac{\varepsilon_{0} A}{d}$
> B. $\frac{2 \varepsilon_{0} A}{d}$
> C. $\frac{3 \varepsilon_{0} A}{d}$

D. $\frac{4 \varepsilon_{0} A}{d}$

Answer: A::B::D

D Watch Video Solution

73. The capacitance of a parallel plate capacitor formed by the circular plates of diameter 4.0 cm is equal to the capacitance or a sphere of diameter 200 cm . Find the distance between two plates.

$$
\text { A. } 2 \times 10^{-4} \mathrm{~m}
$$

B. $1 \times 10^{-4} \mathrm{~m}$
C. $3 \times 10^{-4} \mathrm{~m}$
D. $4 \times 10^{-4} \mathrm{~m}$

Answer: A::D

D Watch Video Solution

74. If a capacitor having capacitance of $600 \mu \mathrm{~F}$ is charged at a uniform rate of $50 \frac{\mu C}{s}$. What is the time required to increase its potential by 10 volt?
A. 500 s
B. 6000 s
C. 12 s
D. 120 s

Answer: A::B

D Watch Video Solution

75. The capacitance of a capildtor is $10 \mu F$. The potential difference on it is 50 V . If the
distance between its platsis halved, what will he the potential difference now ?
A. 100 V
B. 50 V
C. 25 V
D. 75 V

Answer: B

D Watch Video Solution

76. 3 identical capacitors are joined in parallel and are charged with a battery of 10 V . Now the battery is removed and they are joined in series with each other in this condition what would be the potential difference between the freed plates in the combination?
A. 30 V
B. 10 V
C. 60 V
D. $\frac{10}{3} V$

Answer: C

D Watch Video Solution

77. To get $2 F$ capacitance, the area of each plate kept at separation of 2 mm is ' (

$$
\left.\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{MKS}\right)
$$

A. $4 \times 10^{5} m^{2}$
B. $4.51 \times 10^{5} m^{2}$
C. $4.51 \times 10^{8} \mathrm{~cm}^{2}$
D. $4.51 \times 10^{8} \mathrm{~m}^{2}$

Answer: A::B::D

D Watch Video Solution

78. Considering the earth as a metallic sphere its capacitance would be nearly μF.

$$
\left(\mathrm{R}=6400 \mathrm{k} . \mathrm{m} \varepsilon_{0}=8.85 \times 10^{-12} \text { SI unit }\right)
$$

A. $70 \mu F$
B. $7.0 \times 10^{4} \mu F$
C. $7.0 \times 10^{3} \mu F$
D. $700 \mu F$

Answer:

D Watch Video Solution

79. If volume of Earth is V and area of Earth is

A, then its capacitance will be
A. $4 \pi \varepsilon \frac{A}{V}$
B. $4 \pi \varepsilon_{0} \frac{V}{A}$
C. $12 \pi \varepsilon_{0} \frac{A}{V}$
D. $12 \pi \epsilon_{0} \frac{V}{A}$

Answer: A::B

D Watch Video Solution

80. The distance between two plates of capacitor is d and area of each plate is A of a parallel plate capacitor. Its one plate is connected to positive terminal of battery and negative of battery is connecting to earthing.

If second plate is connecting to earthing, then
charge on plates will be

A. $\frac{\in_{0} A V}{a}$
B. $\frac{3}{2} \frac{\in_{0} A V}{a}$
C. $\frac{2 \in_{0} A V}{a}$
D. $\frac{\in_{0} A V}{2 a}$
81. Find the effective capacitance between A and B or a given circuit.

A. $\frac{C}{2}$
B. C
C. 2C
D. $\frac{2 C}{3}$

Answer: B::C

D View Text Solution

82.

For a given circuit, the effective capacitance between P and U is , capacitance of each capacitor is C .
A. 6 C
B. 4 C
C. $\frac{3}{2} C$
D. $\frac{6}{11} C$

Answer: A::C

D View Text Solution

83. A network of capacitors are prepared as
shown in figure. Find the equivalent capacitance hetwcen A and B.
A. $\frac{3}{4} C$
B. $\frac{4}{3} C$
C. $\frac{C}{4}$
D. 3C

Answer: C::D

D View Text Solution

84. The potential at point D is = as shown

In below figure.

(a) $\frac{1}{2}\left(V_{1}+V_{2}\right)$
(b) $\frac{C_{1} V_{2}+C_{2} V_{1}}{C_{1}+C_{2}}$
(c) $\frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}}$
(d) $\frac{C_{2} V_{1}-C_{1} V_{2}}{C_{1}+C_{2}}$
A. $\frac{1}{2}\left(V_{1}+V_{2}\right)$
B. $\frac{C_{1} V_{2}+C_{2} V_{1}}{C_{1}+C_{2}}$
c. $\frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}}$
D. $\frac{C_{2} V_{1}-C_{1} V_{2}}{C_{1}+C_{2}}$

Answer: A::B::C

D Watch Video Solution

85. Energy of a charged capacitor is U. Now it
is removed from a battery and then is
connectec to another identical uncharged
capacitor it parallel. What will be the energy of
eacl capacitor now?
A. $\frac{U}{4}$
B. U
C. $\frac{3 U}{2}$
D. $\frac{U}{2}$

Answer: D

D Watch Video Solution

86. For a capacitor the distane between two
plates is $4 x$ and the electric field between
them is E_{0}. Now a dielectric slab having dielectric constant 3 and thickkness x is placed between them in contact with one plate. In
this condition what is the p.d. between its two
plates ?

> A. $\frac{10 E_{0} x}{3}$
> B. $\frac{11 E_{0} x}{3}$
> C. $\frac{13 E_{0} x}{3}$
> D. $\frac{9 E_{0} x}{3}$

Answer: A::C

- Watch Video Solution

87. In the beginning the space between the plates of a parallel plate capacitor contains air and thereafter it is filled up with a medium of dielectric constant K. Then
A. The electric field and the capacitance become K times.
B. The electric field becomes $\frac{1}{K}$ times and
the capacitance becomes K times.
C. The electric field becomes K times and
the capacitance becomes $\frac{1}{K}$ times.
D. The electric field and the capacitance
become $\frac{1}{K}$ times

Answer: A::B::C::D

- Watch Video Solution

88. In the figure below, what is the equivalent capacitance between points A and B ?

A. 3 C
B. 2 C
C. $\frac{2}{3} \mathrm{C}$
D. $\frac{3}{2} \mathrm{C}$

Answer: B::C

D View Text Solution
89. By which type of supply capacitor works ?
A. A .C. supply
B. D.C supply
C. Both

D. A.C. or D.C.

Answer: B
90. Whichof the following represents unit Faraday?
A. $V C^{-1}$
B. $C V^{-1}$
C. $J C^{-1}$
D. $C J^{-1}$

Answer: A::C

D Watch Video Solution

91. The the following table, the area of plates

and separation benvcen the places are given.
In the nearby figure, $\mathrm{q} \rightarrow \mathrm{V}$ graph for the, n
are shown. Determine which graph is for which
capacitor.

$$
\begin{array}{lll}
\text { A. } 1 \rightarrow C_{2} & 2 \rightarrow C_{3} & 3 \rightarrow C_{1} \\
& & \\
\text { B. } 1 \rightarrow C_{1} & 2 \rightarrow C_{2} & 3 \rightarrow C_{3} \\
\text { C. } 1 \rightarrow C_{2} & 2 \rightarrow C_{1} & 3 \rightarrow C_{3}
\end{array}
$$

D. $1 \rightarrow C_{3}$
$2 \rightarrow C_{1}$
$3 \rightarrow C_{2}$

Answer: A::B::C

D View Text Solution

92. A : When an electric charge is distributed between two bodies, no charge is destroyed but the electrostatic energy decreases.

R : Certain energy is dissipated in the form of heat.
A. a Assertation is correct and Reason is
correct and Reason explain Assertation
B. b Assertation is correct and Reason is
correct and Reason is not explain

Assertation
C. C Assertation is correct, Reason is
incorrect
D. d Assertation and Reason are incorrect

Answer: A

D Watch Video Solution
93. A : Three capacitors having $C_{1}<C_{2}<C_{3}$ are connected in parallel its effective capacitance will be $C_{p}>C_{3}$.
$R: \frac{1}{C_{P}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
A. If both assertion and reason are true
and reson is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If the assertion is true but the reason
are false.
D. If both the assertion and reason are false.

Answer: C

D Watch Video Solution

Section D Mcqs Asked In Cometitive Exams

1. Capacitance of a capacitor $100 \mu \mathrm{~F}$. The work is done for depositing chargc $8 \times 10^{-18} \mathrm{C}$ on it will be
A. $16.10^{23} \mathrm{~J}$
B. $3.1 \times 10^{-26} \mathrm{~J}$
C. 4×10^{-10} J
D. $32 \times 10^{-32} \mathrm{~J}$

Answer: A::B::C
2. A fully charged capacitor has a capacitance-
C. It is discharged through a small, coil of resistance wire embedded in a thermally insulated block of specific heat capacity s and mass. If the temperature of the block is raised by $\Delta \mathrm{T}$, the potential difference V across the capacitance is

$$
\begin{aligned}
& \text { A. } \frac{m s \Delta T}{C} \\
& \text { B. } \sqrt{\frac{2 m s \Delta T}{C}} \\
& \text { C. } \sqrt{\frac{2 m C \Delta T}{s}} \\
& \text { D. } \frac{m C \Delta T}{s}
\end{aligned}
$$

Answer: A::B::C::D

- Watch Video Solution

3. Two insulating plates arc both uniformly
charged in such a way that the potential difference between them is $V_{2}-V_{1}=20 \mathrm{~V}$ (i.e. plate 2 is at a higher potential). The plate are separated by $d=0.1 m$ and can be treated as infinitely large. An electron is released from rest on the inner surface of plate 1 . What is its
speed when it hits plate $2 ?$

$$
\left(e=1.6 \times 10^{-19} C m_{e}=9.11 \times 10^{-31} \mathrm{~kg}\right)
$$

A. $1.87 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B. $3.2 \times 10^{-18} \mathrm{~m} / \mathrm{s}$
C. $2.65 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. $7.02 \times 10^{12} \mathrm{~m} / \mathrm{s}$

Answer: A::B
(Watch Video Solution
4. An electric charge $10^{-3} \mu C$ is placed at the origin (0,0) of $X-Y$ co-ordinate system. Two points is A and B are situated at $(\sqrt{2}, \sqrt{2})$ and $(2,0)$ respectively. The potential difference between the points A and B , will be
A. 9 V
B. 0 V
C. 2 V
D. 4.5 V

- Watch Video Solution

5. A battery is used to charge a parallel plate
capacitor till the potential difference between
the plates become equal to the electromotive force of the battery. The ratio of the energy stored in the capacitor and the work clone by the battery will be
A. 1
B. 2
C. $\frac{1}{4}$

D. $\frac{1}{2}$

Answer: A::B

- Watch Video Solution

6. Potentials of points P and Q are 10 V and -4

V respectively. Work done in taking 100 electrons from P to Q

$$
\text { A. } 22.4 \times 10^{-16} J
$$

$$
\text { B. } 2.24 \times 10^{-16} J
$$

$$
\text { C. }-9.6 \times 10^{-17} J
$$

D. $9.6 \times 10^{-17} J$

Answer: A::B::D

D Watch Video Solution

7. Two capacitors C_{1} and C_{2} are charged to

120 V and 200 V respectively. It is found that by connecting them together the potential on each one can be made zero. Then
A. $5 C_{1}=3 C_{2}$
B. $3 C_{1}=5 C_{2}$
C. $3 C_{1}+5 C_{2}=0$
D. $9 C_{1}=4 C_{2}$

Answer: A::B::C

D Watch Video Solution

8. A parallel plate capacitor is made of two circular plates separated by a distanc of 5 mm and with a dielectric of dielectric constant 2.2
between them. When the electric field in the
dielectric is $3 \times 10^{4} \mathrm{~V} / \mathrm{m}$ the charge density of the positive plate will be close to :

> A. $3 \times 10^{4} C / m^{2}$
> B. $6 \times 10^{4} C / m^{2}$
> C. $6 \times 10^{-7} C / m^{2}$
> D. $3 \times 10^{-7} C / m^{2}$

Answer: A::B::C

D Watch Video Solution
9. Assum that an electric field $\vec{E}=30 x^{2} \hat{i}$ exists in space. Then the potential difference
$V_{A}-V_{0}$, where V_{0} the potential at the origin
and V_{A} the potential at $\mathrm{x}=2 \mathrm{~m}$ is :
A. -80 J
B. 80 J
C. 120 J
D. -120 J

Answer:

D Watch Video Solution
10. A combination of capacitors is set up as shown in the figure. The magnitude of the electric field, due of a point charge Q (having a charge equal to the sum of the charges on the
$4 \mu \mathrm{~F}$ and $9 \mu \mathrm{~F}$ capacitors), at a point distant 30 m from it, would equal :

A. $240 \frac{N}{C}$
B. $360 \frac{\mathrm{~N}}{\mathrm{C}}$
C. $420 \frac{\mathrm{~N}}{\mathrm{C}}$
D. $480 \frac{\mathrm{~N}}{\mathrm{C}}$

Answer: B::C::D

D Watch Video Solution

11. An electrical technician requires a capacitance,of $2 \mu F$ in a circuit across a potential difference of 1 kV . A large number of
$1 \mu F$ capacitors are available to him each of which can withstand a potential difference of more than 400 V. Suggest a possible arrangement that requires the minimum number of capacitors .
A. 24
B. 32
C. 2
D. 16

Answer: B::C
12. Consider A, D and C to be the co-centric shells of metal . Their radii are a, b and c respectively ($\mathrm{a}<\mathrm{b}<\mathrm{c}$). Their surface charge densities are $\sigma,-\sigma$ and σ respectively.

Calculate the electric potential on the surface
of shell A.

A. $\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}-b^{2}}{a}+c\right]$
B. $\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}-b^{2}}{b}+c\right]$
C. $\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}-b^{2}}{b}+a\right]$
D. $\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}-b^{2}}{c}+a\right]$

Answer: A::B::C

D Watch Video Solution

13. A parallel plate capacitor of capacitance 90
pF is connected to a battery of emf 20 V . If a
dielectric material of dielectric constant $K=\frac{5}{3}$ is inserted between the plates the magnitude of the charge will be :
A. 1.2 nC
B. 0.3 nC
C. 2.4 nC
D. 0.9 nC

Answer: A::B::C

D Watch Video Solution

14. A 60 pF capacitor is fully charged by a 20 V supply. It is then disconnected from the supply
and is connected to another uncharged 60 pF capacitor in parallel. The electrostatic energy that is lost in this process by the time the
charge is redistributed between them is (in
nJ)
A. 30
B. 15
C. 12
D. 6

Answer:

D Watch Video Solution
15. If two capacitors C_{1} and C_{2} are connected
in a parallel combination then the equivalent capacitance is $10 \mu F$. If both the capacitors are connected across a I V battery, then energy
stored in C_{2} is 4 times of that in C_{1}. The equivalent capacitance if they are connected in series is
A. $16 \mu F$
B. $1.6 \mu F$
C. $4 \mu F$

D. $\frac{1}{4} \mu F$

Answer: A

D Watch Video Solution

16. If the electric field around a surface is given
by
$|\vec{E}|=\frac{Q}{E_{0}|\vec{A}|}$ where \vec{A} is the normal area of
surface and Q_{in} is the charge enclosed by the
surface. This relation of Gauss's law is valid when
A. the surface is equipotential.
B. the magnitude of the electric field is
constant.
C. the magnitude of the electric field is
constant and the surface is
equipotential.
D. for all the Gaussian surfaces.

Answer: A::C::D

17. A parallel plate air capacitor of capacitance
C is connected to a cell of emf V and then disconnected from it. A dielectric slab of dielectric constant K, which can just fill the air gap of the capacitor, is now inserted in it. Which of the following is incorrect?
A. (A) The energy stored in the capacitor decreases K times.
B. (B) The change in energy stored is

$$
\frac{1}{2} C V^{2}\left(\frac{1}{K}-1\right)
$$

C. (C) The charge on the capacitor is not conserved.

D. (D) The potential difference between the

 plates decreases K times.
Answer: A::C::D

D Watch Video Solution

18. A parallel plate air capacitor has capacity ' C ' distance of separation between plates is ' d ' and potential difference ' V ' is applied between
the plates force of attraction between the plates of the parallel plate air capacitor is:

$$
\begin{aligned}
& \text { A. } \frac{C^{2} V^{2}}{2 d^{2}} \\
& \text { B. } \frac{C^{2} V^{2}}{2 d} \\
& \text { C. } \frac{C V^{2}}{2 d} \\
& \text { D. } \frac{C V^{2}}{d}
\end{aligned}
$$

Answer: B::C::D

D Watch Video Solution

19. In a certain region, the electric potential is
given by the formula $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=6 \mathrm{xy}-\mathrm{y}+2 \mathrm{yz}$
Find the components of electric field and the vector electric field at point $(1,1,0)$ in this field.

Find the vector of electric at $(1,1,0)$.

$$
\begin{aligned}
& \text { A. }-(6 \hat{i}+9 \hat{j}+\hat{k}) \\
& \text { B. }-(3 \hat{i}+5 \hat{j}+3 \hat{k}) \\
& \text { C. }-(6 \hat{i}+5 \hat{j}+2 \hat{k}) \\
& \text { D. }-(2 \hat{i}+3 \hat{j}+\hat{k})
\end{aligned}
$$

20. A capacitor of $2 \mu \mathrm{~F}$ is charged as shown in
the diagram. When the switch S is turned to
position 2, the percentage of its stored energy dissipated is

A. 20%
B. 75%
C. 80%
D. 0%

Answer:

D Watch Video Solution

21. A parallel-plate capacitor of area A, plate separation d and capacitance C is filled with
four dielectric ,materials having dielectric
constants K_{1}, K_{2}, K_{3} and K_{4} as shown in the
figure below. If a single dielectric material is to
be used to have the same capacitance C in this
capacitor, then its dielectric constant K is given by

$$
\begin{aligned}
& \text { A. } \frac{2}{K}=\frac{3}{K_{1}+K_{2}+K_{3}}+\frac{1}{K_{4}} \\
& \text { B. } \frac{1}{K}=\frac{1}{K_{1}}+\frac{1}{K_{2}}+\frac{1}{K_{3}}+\frac{3}{2 K_{4}}
\end{aligned}
$$

C. $K=K_{1}+K_{2} K_{3}+3 K_{4}$

$$
\text { D. } K=\frac{2}{3}\left[K_{1}+K_{2}+K_{3}\right]+2 K_{4}
$$

Answer: A::B::C::D

D Watch Video Solution

22. A molecule of a substance has permanent dipole moment p. A mole of this substance is polarised by applying a strong electrostatic field E. The direction of the field is suddenly changed by an angle of 60°. If N is the

Avogadro's nwnber the amount of work done by the field is
A. 2 NpE
B. $\frac{1}{2} \mathrm{NpE}$
C. NpE
D. $\frac{3}{2} \mathrm{Npe}$

Answer: A::B

- Watch Video Solution

23. A parallel plate capacitor is to be designed
using a dielectric of dielectric constant 5 , so as
to have a dielectric strength of $10^{9} \mathrm{Vm}^{-1}$. If the voltage rating of the capacitor is 12 kV , the minimum area of each plate required to have a capacitance of 80 pF is

> А. $10.5 \times 10^{-6} \mathrm{~m}^{2}$
> B. $21.7 \times 10^{-6} \mathrm{~m}^{2}$
> C. $25.0 \times 10^{-5} \mathrm{~m}^{2}$
> D. $12.5 \times 10^{-5} \mathrm{~m}^{2}$

Answer: A::B

D Watch Video Solution

24. A wheel having mass m has charges $+q$
and - q on diametrically opposite points. It remains in equilibrium on a rough inclined
plane in the presence of a vertical electric field
E. Then value of E is

A. $\frac{m g \tan \theta}{q}$
B. $\frac{m g}{q}$
C. $\frac{m g}{2 q}$
D. $\frac{m g \tan \theta}{2 q}$

Answer: B

D Watch Video Solution
25. Q amount of electric charge is present on
the surface of a sphere having radius R.

Calculate the total energy of the system.
A. $\frac{k Q^{2}}{R}$
B. $\frac{1}{2} \frac{k Q^{2}}{R}$
C. $\frac{k Q^{2}}{R^{2}}$
D. $\frac{1}{2} \frac{k Q^{2}}{R^{2}}$

Answer: A::B
26. Charges $1 \mu \mathrm{c}$ are placed at each of the four corners of a square of side $2 \sqrt{2} \mathrm{~m}$. The potential at the point of Intersection of the diagonals is ($\mathrm{K}=9 \times 10^{9} \mathrm{Sl}$ unit)
A. $18 \times 10^{3} \mathrm{~V}$
B. 1800 V
C. $18 \sqrt{2} \times 10^{3} \mathrm{~V}$
D. None of these

Answer: A::C

D View Text Solution

27. Energy of a charged capacitor is U . Now it
is. removed from the battery and then it is
connected to another uncharged capacitor having the capacitance twice the first one In parallel. The energy of first and second capacitors respectively is

$$
\text { A. } \frac{1}{9} U, \frac{1}{9} \cup
$$

B. $\frac{2}{9} U, \frac{1}{9} U$
C. $\frac{1}{9} U, \frac{2}{9} U$
D. $\frac{2}{9} U, \frac{2}{9} \cup$

Answer: A::B

D Watch Video Solution

28. The dimensional formula of capacitance Is

...... Take Q as the dimension formula of charge.
A. $M^{1} L^{-2} Q^{-2}$
B. $M^{-1} L^{-2} T^{2} Q^{2}$
C. $M^{-1} L^{-2} T^{2} Q^{2}$
D. $M^{1} L^{-2} T^{-2} Q^{-2}$

Answer: A::B

D Watch Video Solution

29. A uniform electric field is prevailing in X direction in certain region. The Co-ordinates of points P, Q and R are $(0,0),(2,0),(0,2)$ respectively which of the following
alternatives is true for the potentials at these points?
A. $V_{P}>V_{Q}, V_{P}=V_{R}$
B. $V_{P}=V_{Q}, V_{P}>V_{R}$
C. $V_{P}<V_{R}, V_{Q}=V_{R}$
D. $V_{P}=V_{Q}, V_{P}<V_{Q}$

Answer:

D View Text Solution

30. An electric dipole of dipole moment \vec{P} is
placed parallel to the uniform electric field of intensity \vec{E}. On rotating it through 180° the amount of work done is
A. zero
B. $-2 p E$
C. pE
D. 2 pE

Answer: B
31. Ten identical square metallic plates are arranged as shown in figure. Length of each plate is I. The equivalent capacitance of this arrangement would be

$$
\text { A. } \frac{3 \in_{0} l^{2}}{2 d}
$$

> B. $\frac{5 \in_{0} l^{2}}{3 d}$
> C. $\frac{3 \in_{0} l^{2}}{d}$
> D. $\frac{4 \in_{0} l^{2}}{d}$

Answer: B::C::D

D View Text Solution

32. On the axis and on the equator of an electric dipole for all points
A. (A) On both of them $V \neq 0$
B. (B) On both of them $V=0$
C. (C) On the axis $V=0$ and on equator V
$\neq 0$
D. (D) On the axis $V \neq 0$ and on equator V

$$
=0
$$

Answer: A::D

- Watch Video Solution

33. The unit of polarizabity of the molecule is

A. $C^{2} m^{1} N^{-1}$
B. $C^{2} m^{-1} N^{1}$
C. $C^{-2} m^{1} N^{-1}$
D. $C^{2} m^{-1} N^{-1}$

Answer: A::B::C

- View Text Solution

34. The unit of Intensity of polarization is

$$
\begin{aligned}
& \text { A. } \frac{C}{m^{2}} \\
& \text { B. } \frac{C^{2}}{m^{2}} \\
& \text { C. } \frac{C^{2}}{m} \\
& \text { D. } \frac{m^{2}}{C}
\end{aligned}
$$

Answer: B::C

D Watch Video Solution
35. In the figure area of each plate is A and the distance between consecutive plates is as shown in the figure. What is the effective capacitance between points A \& B.

(a) $\frac{A \varepsilon_{0}}{d}$
(b) $\frac{3 A \varepsilon_{0}}{d}$
(c) $\frac{2 A \varepsilon_{0}}{d}$
(d) $\frac{4 A \varepsilon_{0}}{d}$

$$
\text { A. } \frac{A \varepsilon_{0}}{d}
$$

B. $\frac{3 A \varepsilon_{0}}{d}$
C. $\frac{2 A \varepsilon_{0}}{d}$
D. $\frac{4 A \varepsilon_{0}}{d}$

Answer: A::B::D

- Watch Video Solution

36. A moving positive charge approaches a negative charge. What will happen to the potential energy of the system?
A. will remain constant
B. will decrease
C. will increase
D. may increase or decrease

Answer: A::C::D

D Watch Video Solution
37. Value of dielectric strength for air is
$V m^{-1}$
A. 3×10^{4}
B. 3×10^{6}
C. 6×10^{3}
D. 4×10^{3}

Answer: A::C

D Watch Video Solution
38. Three capacitors of $2 \mathrm{pF}, 3 \mathrm{pF}$ and 4 pF are connected in parallel. What is the total capacitance of a network?
A. 9 pF
B. $\frac{12}{13} \mathrm{pF}$
C. $\frac{13}{12} p F$
D. $\frac{1}{9} \mathrm{pF}$

Answer:

- Watch Video Solution

39. Equipotential surface through a point is
to the electric field at that point.
A. parallel
B. normal
C. at an angle of 45°
D. at an angle of 30°

Answer: A

- Watch Video Solution

