びdoubtnut

India's Number 1 Education App

BOOKS - KUMAR PRAKASHAN KENDRA PHYSICS (GUJRATI ENGLISH)

SAMPLE QUESTION PAPER

Part A

1. A charged ball from a silk thread, which makes an angle θ with a large charged
conducting sheet. The surface charge density
σ of the sheet is proportional to.....
A. $\tan \theta$
B. $\sin \theta$
C. $\cos \theta$
D. $\cot \theta$

Answer: A
(Watch Video Solution
2. Two charges are at a distance d apart. If a
copper plate of thickness $\frac{d}{2}$ is placed between them, if effective force will be,
A. 2 F
B. $F / 2$
C. 4 F
D. $\sqrt{2} F$

Answer:

D Watch Video Solution
3. A point charge q is placed at the centre of a
cube of side length L . The electric flux emerging from the cube is......

$$
\text { A. } \frac{q}{e_{0}}
$$

B. zero
C. $\frac{(6 q l)^{2}}{e_{0}}$
D. $\frac{q}{6 L^{2} e_{0}}$

Answer: A

4. What charge would be required to electrify
a sphere of radius 25 cm , so as to get a surface
charge density of $\frac{3}{\pi} \frac{C}{m^{2}}$?
A. 0.25
B. 0.75 C
C. 0.57 C
D. 0.5 C

Answer: B
5. Two field lines can never crosses each other because,
A. field lines are closed curves
B. field lines repels each other
C. field line crowded only near the charge
D. field has a unique direction at each point

Answer: D

D Watch Video Solution
6. IF have energy of a $100 \mu F$ capacitor charge to 6 kV could all be used to lift a 50 kg mass, then the greatest vertical height through which mass could be raised in...... m
A. 3.6
B. 0.6
C. 1.2
D. 12

Answer: A

7. The electrical potential at a certain distance

 from a point charge is 600 V the electric field is $200 \mathrm{~N} / \mathrm{C}$. The distance of the point charge is....m.A. 2
B. 3
C. 1
D. 0
8. The dimensional formula of dielectric strength is.......
A. $M^{1} L^{1} T^{2} Q^{-1}$
B. $M^{1} L^{2} T^{-2} Q^{-1}$
C. $M^{-1} L^{-1} T^{2} Q^{1}$
D. $M^{-1} L^{-1} T^{2} Q^{2}$

Answer: A

D Watch Video Solution
9. IF X joule of work must be done to move electric charge to 4C from a place, where potential is -10 V to another place. Where potential is 5 V , then the value of XJ.
A. 30
B. 60
C. 50
D. 100

Answer: B

D Watch Video Solution

10. A wire of resistance ` 20 Omega is bent in
the form of a circle. Then the effective resistance between the ends of the diameter is.
A. 5Ω
B. 10Ω
C. 15Ω

D. 20Ω

Answer: A

D Watch Video Solution

11. A carbon resistor has coloured bands orange, green, golden and silver then its resistance will be
A. $2.5 \pm 10 \% \Omega$
B. $3.5 \pm 5 \% \Omega$

C. $3.5 \pm 10 \% \Omega$

D. $350 \pm 10 \% \Omega$

Answer: C

- Watch Video Solution

12. The resistance of wire is 10Ω IF the length of wire is increase by $\mathrm{n} \%$ the new resistance is
10.2Ω then $\mathrm{n} . . .$.
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

13. Which of the following is correct explanatio
for mobility μ ?

$$
\text { A. } \mu=\frac{m \tau}{e}
$$

$$
\begin{aligned}
& \text { B. } \mu=\frac{e m}{\tau} \\
& \text { C. } \mu=\frac{e \tau}{m} \\
& \text { D. } \mu=\frac{e}{m}
\end{aligned}
$$

Answer: C

D Watch Video Solution

14. An element $\Delta l=\Delta x \hat{i}$ is placed at origin and carries a current $\mathrm{I}=10 \mathrm{~A}$. IF $\Delta x=1 \mathrm{~cm}$
magnetic field at point P is..... T .

A. $-4 \times 10^{-8} \hat{j}$
B. $4 \times 10^{-8} \hat{j}$
C. $4 \times 10^{-8} \hat{i}$
D. $4 \times 10^{-8} \hat{k}$
15. A circular current loop of magnetic moment M is in an arbitary orientation is an external magnetic field \vec{B}. The work done to rotate the loop by 30° about an axis perpendicular to its plane is....
A. MB
B. $\frac{\sqrt{3}}{2} M B$
c. $\frac{M B}{2}$
D. zero

Answer:

D Watch Video Solution

16. In a cyclotron, a charge particle,
A. undergoes acceleration all the time
B. speeds up the dees because of the magnetic field
C. speeds up in a dee.

D. slows down within a dee and speeds up

 between does
Answer: A

D Watch Video Solution

17. A permanent magnet in the shape of a thin
cylinder of length 10 cm has $M=10^{6} \mathrm{~A} / \mathrm{m}$.

Calculate the magnetisation current Im......
A. $10^{2} A$
B. $10^{4} A$
C. $10^{5} \mathrm{~A}$
D. $10^{6} \mathrm{~A}$

Answer: C

D Watch Video Solution

18. A magnet of m magnetic moment is rotate
up to 360° in magnetic field H then the work done is.
A. 0
B. mH
C. 2 mH
D. $2 \pi \mathrm{mH}$

Answer: A

D Watch Video Solution

19. The dimensional formula of $\frac{B^{2}}{2 \mu_{0}}$ is......
A. $M^{-1} L^{1} T^{2}$
B. $M^{1} L^{-1} T^{-2}$
C. $M^{-1} L^{-1} T^{-2}$
D. $M^{1} L^{1} T^{2}$

Answer: B

D Watch Video Solution

20. A square of side LM lies in the ry plane in a region, when the magnetic field is given by $\vec{B}=B_{0}(2 \hat{i}+3 \hat{j}+4 \hat{k}) \quad$ T where $\quad B_{0}$ is
constant. The magnitude of flux passing
through the square isWb.

A. $2 B_{0} L^{2}$
B. $3 B_{0} L^{2}$
C. $4 B_{0} L^{2}$
D. $\sqrt{29} B_{0} L^{2}$

Answer: C
(Watch Video Solution
21. The self inductance \angle of a solenoid of
length and are of cross section A with a fixed number of turns N increases as,
A. I and A increase
B. I decreases and A increases
C. I increases and A decreases
D. both I and A decreases

Answer: B

- Watch Video Solution

22. A 1 m long metal wire moving perpendicular

with speed $5 \mathrm{~m} / \mathrm{s}$ is a magnetic field of 0.1T.
Then the induced emf between two ends of wire is......V
A. 1
B. 2
C. 0.5
D. 0.25

Answer: C
23. The output of a step down transfomer is measured to be 24 V when connected to a 12 W
light bulb. The value of the peak current is.
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. 2
D. $2 \sqrt{2}$

D Watch Video Solution

24. A capacitor of $250 \mu F$ is connected parallel
with a inductor of 0.16 mH . IF the effective resistance is 20Ω then resonant frequency....... Hz.
A. 9×10^{4}
B. 16×10^{7}
C. 8×10^{5}
D. 9×10^{3}

Answer:

D Watch Video Solution

25. A coil of reactance 8Ω and resistance 6Ω is
connected in DC circuit then the effective resistance of the circuit Ω.
A. 14
B. 8
C. 6
D. $\frac{24}{7}$

Answer: C

D Watch Video Solution

26. How much average power is stored in an
inductor when it is connected with AC source?
A. $\frac{1}{2} L i^{2}$
B. $L i^{2}$
C. 0
D. Li

Answer: C

- Watch Video Solution

27. The ratio of contributions made by the electric field and magnetic field components to the intensity of the EM wave is.
A. $C: 1$
B. $C^{2}: 1$
C. 1:1
D. $\sqrt{C}: 1$

Answer: C

- Watch Video Solution

28. The electric field intensity produced by the radiations coming from 100 W bulb at a 3 m distance is E . The electric field intensity
produced by the radiations coming from 50W bulb at the same distance is
A. $\frac{E}{2}$
B. 2 E
C. $\frac{E}{\sqrt{2}}$
D. $\sqrt{2} E$

Answer: A
(Watch Video Solution
29. The charging current of capacitor is 0.25 A .

Then the displacement current around its plates is......A
A. 1.25
B. 1.5
C. 0.25
D. 0.5

Answer: C

D Watch Video Solution
30. If lower half of a concave mirror is blackned
then
A. image distance increases
B. image distance decreases
C. image intensity increases
D. image intensity decreases

Answer: D

D Watch Video Solution
31. When a light wave travels from air to glass,
A. its wavelength decreases
B. its wavelength increases
C. there is no change in wavelength
D. its frequency decreases

Answer: A

D Watch Video Solution

32. A fish which is at a depth of 12 cm in water $\left(\mu=\frac{4}{3}\right)$ is viewed by an observer on the bank of a lake. Its apparent depth as observed by the observer iscm.
A. 3
B. 9
C. 12
D. 16

Answer: B
33. In an equilateral prism if incident angle is

45 then minimum deviation is......
A. 30°
B. 60°
C. 45°
D. 90°

Answer: A

D Watch Video Solution
34. Astigmatism for a human eye can be removed by using.......
A. concave lens
B. convex lens
C. cylindrical lens
D. prism lens

Answer: C

D Watch Video Solution
35. In young double slit experiment, if the width of $4^{\text {th }}$ bright fringe is $2 \times 10^{-2} \mathrm{~cm}$, then the width of $6^{\text {th }}$ bright fringe will be....cm.
A. 10^{-2}
B. 3×10^{-2}
C. 2×10^{-2}
D. 1.5×10^{-2}

Answer: C

- Watch Video Solution

36. The bending of beam of light around corners of obstacles is called.
A. reflection
B. refraction
C. diffraction
D. interference

Answer: C

D Watch Video Solution
37. An unpolarised beam of light of intensity l_{0}
falls on a poloroid. The intensity of the emergent beam is
A. $\frac{I_{0}}{2}$
B. I_{0}
C. $\frac{I_{0}}{4}$
D. zero

Answer: A
38. Which of the given phenomenon is based on the fact that light waves are transverse electromagnetic waves?
A. Diffraction
B. Interference
C. Polarisation
D. Refraction

Answer: C

- Watch Video Solution

39. The condition for obtaining secondary maxima in the diffraction pattern due to single slit is...
A. $a \sin \theta=n \lambda$
B. $a \sin \theta=(2 n-1) \frac{\lambda}{2}$
C. $a \sin \theta=(2 n-1) \lambda$
D. $a \sin \theta=\frac{n \lambda}{2}$

Answer: B

D Watch Video Solution

40. Variation of photoelectric current with

 intensity of light is shown by graph.......

Answer: D

- Watch Video Solution

41. An X ray tube is operated at 50 kV , the maximum wavelength produced is........A.
A. 0.75
B. 0.25
C. 1
D. 2.5

Answer: B

D Watch Video Solution

42. de- Broglie wavelength associated with an
electron, accelerating through a potential
A. gamma rays
B. X-rays
C. ultraviolet
D. visible region

Answer: B

- Watch Video Solution

43. IF E_{p} and E_{k} represent potential energy
and kinetic energy respectively of an orbital electron, then according to Bohr's theory.

$$
\text { A. } E_{k}=-\frac{E_{p}}{2}
$$

B. $E_{k}=E_{p}$
C. $E_{k}=2 E_{p}$
D. $E_{k}=-2 E_{p}$

Answer: A

D Watch Video Solution

44. Highest energy level of an electron corresponds to $n=\infty$ and it has an energy of.......eV.
A. zero
B. ∞
C. 13.6
D. -13.6

Answer: A

D Watch Video Solution

45. An hydrogen atom in its ground state absorbs 10.2 eV of energy. The orbital angular momentum is increased by.......js.
A. 1.05×10^{-34}
B. 3.16×10^{-34}
C. 2.11×10^{-34}
D. 4.22×10^{-34}

Answer: A

D Watch Video Solution

46. Heavy stable nuclei have more neutrons
then protons this is because of....
A. neutrons are heavier than proton
B. electrostatic force between protons are repulsive
C. neutron decay into protons through

$$
B-d e c a y
$$

D. nucleur forces between neutrons are weaker than that between protons.

Answer:

D Watch Video Solution

47. A radioactive substance decays to $\frac{1}{16}$ th of the initial mass in 40 days. The half life of the substance is..... Day.
A. 20
B. 10
C. 5
D. 2.5

Answer: B

D Watch Video Solution

48. Fill in the blank. ${ }_{-} 15^{32} P \rightarrow \ldots .+\bar{e}+\bar{v}$
(anti neutrino)
A. $-7^{14} N$
B. $-5^{11} B$
C. $-16^{32} S$
D. $-10^{22} \mathrm{Ne}$

Answer: C

D Watch Video Solution

49. In ideal junction diode as shown in figure
the current flowing through $A B$ is.........A.

A. 10^{-2}
B. 10^{-1}
C. 10^{-3}
D. 0

Answer: A

D Watch Video Solution
50. The boolean expression of NOR gate is.......

$$
\begin{aligned}
& \text { A. } y=\bar{A} \\
& \text { B. } y=A+B \\
& \text { C. } y=A . B \\
& \text { D. } y=\overline{A+B}
\end{aligned}
$$

Answer: D

- Watch Video Solution

1. Define electric line of force and give its two important properties.

D Watch Video Solution

2. In a meterbridge, the null point is found at a distance of 33.7 cm from A. If a resistance of

12 W is connected in parallel with S , the null points occurs at 51.9 cm Determine the values
of R and S.

- Watch Video Solution

3. The wires which connect the battery of an automobile to its starting motor carry a current of 300a (for a short time). What is the force per unit length between the wires if they
are 70 cm long and 1.5 cm apart? IS the force attractive or repulsive?

D Watch Video Solution

4. A closely wound solenoid of 800 turns and area of cross section $2.5 \times 10^{-4} m^{2}$ carries a current of 3.0A. Explain the sense in which the solenoid acts like a bar magnet.
5. The earth magnetic field at the equator is approximately 04.G. Estimate the earth's dipole moment.

- Watch Video Solution

6. Predict the direction of induced current in
the situations described by the following
figures (a) to (d).

(Tapping key just closed) Rheostat setting being changed
(d)

- Watch Video Solution

7. Give any four characteristic of electromagnetic waves.

D Watch Video Solution

8. Explain the nuclear binding energy with example of ${ }_{-} 8^{16} O$.

D Watch Video Solution

9. Find the energy equivalent of one atomic mass unit, first in joules and then in MeV. Using this express the mass defect of ${ }_{-} 8^{16} O$ in MeV / c^{2}.
10. Explain the use of Zener diode as a voltage regulator.

D Watch Video Solution

Part B Section B

1. A room has $A C$ run for 5 hours a day at a
voltage of 220 V . The wiring of the room consists of Cu of 1 mm radius and a length of

10 m . Power consumption per day is 10 commerical units. What fraction of its goes in
the joule heating in wires? What would happen if the wiring is made of aluminium of the same dimensions.

D Watch Video Solution

2. What is parallel connections of cells? Derive
the equivalent equation of parallel connections of two cells.

D Watch Video Solution

3. For a circular coil of radius R and N turns carrying current. Prove that the magnitude of the magnetic field at a point on its axis at a distance X from its centre is given by $B=\frac{\mu_{0} I R^{2} N}{2\left(x^{2}+R^{2}\right)^{3 / 2}}$

D Watch Video Solution

4. Explain the reflection of a plane wave using Huygen's principle.
5. Two towers on top of two hills are 40km apart. The line joining them passes 50m above a hill halt way between the towers. What is the longest wavelength the towers without appreciable diffraction effects?

D Watch Video Solution

6. What is the de-Broglie wavelength associated with (a) an electron moving with a
speed of $5.4 \times 10^{6} \mathrm{~ms}^{-1}$ and (b) A ball of mass 150 g travelling at $30.0 \mathrm{~ms}^{-1}$?

D Watch Video Solution

7. Photoelectric effect can not be explain by using wave theory of light why?

(Watch Video Solution

8. Write the truth table for the circuits given in
figure consisting of NOR gates only. Identify
the logic operations (OR, AND, NOT) performed by the two circuits.

D Watch Video Solution

Part B Section C

1. Two charges $-q$ and $+q$ are located at points
($0,0,-a$) and ($0,0, a$), respectively.
(a) What is the electrostatic potential at the points $(0,0, z)$ and $(x, y, 0)$?
(b) Obtain the dependence of potential on the distance r of a point from the origin when $r / a \gg 1$.
(c) How much work is done in moving a small test charge from the point $(5,0,0)$ to $(-7,0,0)$ along the x-axis? Does the answer change if the path of the test charge between the same points is not along the x-axis?
2. Derive an expression for the impedance of an a.c circuit with an inductor L and a resistor R in series.

- Watch Video Solution

3. A resistor of 200Ω and a capacitor of
$15.0 \mu F$ are connected in series to a 220 V , 50 Hz as source .
(a) Calculate the current in the circuit.
(b) Calculate the voltage (rms) across the resistor and the capacitor. Is the alebraic sum of these voltages more than the source voltage? If yes resolve the paradox.

D Watch Video Solution

4. Use the mirror equation to deduce that:
(a) An object placed between f and $2 f$ of a concave mirror produces a real image beyond $2 f$.
(b) A convex mirror always produce a virtual image independent of the location of the object.
(c) The virtual image produced by a convex mirror is always diminished in size and it located between the focus and the pole.

- Watch Video Solution

5. A hydrogen atom initially in the ground level
absorbs a photon, which excites it to be the
$\mathrm{n}=4$ level. Determine the wavelength and
frequency of the photon.

- Watch Video Solution

