

India's Number 1 Education App

MATHS

BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI ENGLISH)

AREAS OF PARALLELOGRAMS AND TRIANGLES

Exercise 92

1. In parallelogam ABCD, $AM \perp CD$ and $AN \perp BC$. If AM=8 cm, AB=12 cm and AD=16 cm, find AN.

2. If E, F G and H are respectively the midpoints of the sides AB, BC, CD and AD of a parallelogram ABCD, show that ar(EFGH) $=\frac{1}{2}$

ar (ABCD).

3. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD show that

Watch Video Solution

Exercise 93

1. In a triangle ABC , E is the midpoint of median AD. Show that $ar(BED) = \frac{1}{4}ar(ABC)$

2. Show that four points (1, -2), (3, 6), (5, 10) and

(3, 2) are the vertices of a parallelogram.

Watch Video Solution

3. In the given figure , ABCD is a parallelogram and BC is produced to a point Q such that AD=CQ. If AQ intersect DC at P, show that

```
ar(BPC)=ar(DPQ).
```


5. XY is a line parallel to side BC of a triangle ABC. If BE||AC and CF ||AB meet XY at E and F respectively, show that ar(ABE)=ar(ACF)

6. Diagonals AC and BD of a quadrilateral ABCD

intersect each other at P. Show that ar (APB) x

ar(CPD)=ar(APD) x ar(BPC)

7. In the given figure, ABCD is a trapezium with AB||DC. E is a point on extended BC. Prove that ar (BDE) = ar (ACED).

8. In the given figure, ABED is a parallelogram

and DE and EC . Prove that ar (ABF)=ar(BEC)

10. In the given figure , ABCD , DCFE and ABFE

are parallelograms . Show that

Watch Video Solution

1. Answer the following by a number or a word

or a sentence :

If the area of a square is same as the area of a

circle, find the ratio of the perimeter of the

square and that of the circle.

ar(ADE)=ar(BCF).

Watch Video Solution

3. In the given figure, ABED is a parallelogram and DE and EC . Prove that ar (ABF)=ar(BEC)

segment BO. Prove that (1) ar(ADO)=ar(CDO)

(2)ar(ABP)=ar(CBP)

Sum To Enrich Remember

1. In the given figure, ABED is a parallelogram

and DE and EC . Prove that ar (ABF)=ar(BEC)

2. If a triangle and a parallelogram are on the same base and between the same parallels, then prove that the area of the triangle is equal to half the area of the parallelogram.

Watch Video Solution

3. Show that a median of a triangle divides it

into two triangles of equal areas.

4. In the following figure AC = 10&BD = 14,

then area of quadrilateral ABCD-

Skill Testing Exercise

1. In a triangle ABC , E is the midpoint of median AD. Show that $ar(BED) = \frac{1}{4}ar(ABC)$

2. ABCD is a parallelogram. The diagonals AC and BD intersect each other at 'O'. Prove that $ar(\Delta AOD) = ar(\Delta BOC)$. (Hint: Congruent

figures have equal area)

3. In $\triangle ABC$, AD is a median . E is the midpoint of AD and F is the midpoint of AE. Prove that ar(ABF)= $\frac{1}{8}$ ar(ABC).

4. ABCD is a parallelogram in which P and Q are midpoints of opposite sides AB and CD (see the given figure). If AQ intersects DP at S and BQ intersects CP at R. Show that:

APCQ is a parallelogram.

5. In parallelogram ABCD, AB=8 cm. The lengths of altitudes corresponding to AB and AD are 4 cm and 5 cm respectively. Find the length of AD.

Watch Video Solution

6. In parallelogram PQRS. RS=12 cm . The lengths of altitudes corresponding to PQ and QR are 6 cm and 9 cm respectively. Find the length of PS.

7. Prove that the area of a rhombus is equal to

half of the product of the diagonals.

8. prove that the line segment joining the midpoints of two opposite sides of a parallelogram divides the parallelogram into two parallelograms with equal area.

9. In quadrilateral ABCD, AM and CN are altitudes on diagonal BD drawn from A and C respectively .Prove that $ar(ABCD) = \frac{1}{2} BD(AM+CN)$

Watch Video Solution

10. In the given figure, ABED is a parallelogram

and DE and EC . Prove that ar (ABF)=ar(BEC)

11. In riangle ABC, point D lies on side BC. E is the

midpoint of AD. Prove that,

 $ar(EBC) = \frac{1}{2}ar(ABC)$

Watch Video Solution

12. In riangle ABC, point D lies on side BC. E is the

midpoint of AD. Prove that,

$$ar(EBC) = \frac{1}{2}ar(ABC)$$

Multiple Choice Questions Mcqs

- **1.** Area of a parallelogram =____
 - A. $\frac{1}{2}$ x base x corresponding altitude
 - B. $\frac{1}{2}$ x the product the diagonals
 - C. base x corresponding altitude
 - D. $\frac{1}{2}$ x the product of adjacent sides

Answer: A::B::C::D

- A. base x corresponding altitude
- B. base + corresponding altitude

C.
$$\frac{1}{2}$$
 x base x corresponding altitude

D. 2 x base x corresponding altitude

Answer: A::B::C::D

3. ABCD is a rectangle . If AB=10 cm and ar(ABCD)=150 cm^2 , then BC=___ cm.

A. 7.5

B. 15

C. 30

D. 12

Answer: A

4. ABCD is a square . If ar(ABCD)=36 cm^2 . Then

AB=___ cm.

A. 18

B. 9

C. 6

D. 12

Answer:

5. In $\triangle ABC$, BC=10 cm and the length of altitude AD is 5 cm. Then , ar(ABC)=.... cm^2 .

A. 50

B. 100

C. 25

D. 15

Answer: B

6. In riangle ABC, AD is an altitude . If BC=8 cm and ar (ABC)=40 cm^2 , then AD= ____ cm. A. 5 B.10 C. 15 D. 20 Answer: A Watch Video Solution

7. In riangle PQR , PM is an altitude and QR is the hypotenuse. If QR=12 cm and PM=6 cm, then ar(PQR)= $__cm^2$

A. 18

B. 72

C. 36

D. 24

Answer: C

8. In riangle XYZ, XZ is the hypotenuse. If XY = 8

cm and YZ=12 cm, then ar(XYZ)= $__$ cm^2

A. 20

B.40

C. 96

D. 48

Answer: D

9. In parallelogram ABCD, AM is an altitude corresponding to base BC. If BC =8 cm and AM=6 cm, then ar(ABCD)= $__cm^2$

A. 48

B. 24

C. 12

D. 96

Answer: D

10. In parallelogram PQRS, QR=10 cm and ar(PQRS)=120 cm^2 . Then the length of altitude PM corresponding to base QR is ____ cm.

- A. 6
- B. 12
- C. 18
- D. 24

Answer: A::B

11. For parallelogram ABCD, ar(ABCD)=48 cm^2 .

Then ar(ABC)= $_cm^2$

A. 96

B.48

C. 24

D. 12

Answer: B::D

12. ABCD is a rhombus . If AC=6cm and BD=9

cm, then ar(ABCD)=__ cm^2

A. 15

B. 7.5

C. 54

D. 27

Answer: B

13. PQRS is a rhombus. If ar (PQRS)=40 cm^2 and

PR = 8 cm, then QS=__cm.

A. 20

B. 10

C. 25

D. 40

Answer: A

14. In $riangle PQR, riangle Q = 90^{\circ}$, PQ=5 cm and PR=13 cm. Then ar(PQR)= $_$ cm^2 A. 15 B. 30 C.45 D. 60 Answer: C Watch Video Solution

15. In $\triangle ABC$, P,Q and R are the midpoints of AB, BC and CA respectively. If ar(ABC)=32 cm^2 , then ar(PQR)= $__cm^2$

A. 128

B. 16

C. 8

D. 64

Answer:

16. In $\triangle ABC$, P, Q and R are the midpoints of AB, BC and CA respectively . If ar(ABC)=___40 cm^2 , then ar(PBCR)=__ cm^2

A. 10

B. 20

C. 30

D. 40

Answer: C

17. In $\triangle ABC$, P, Q and R are the midpoints of AB, BC and CA respectively . If ar(PBQR)=36 cm^2 , then ar(ABC)= $_cm^2$

A. 18

B. 36

C. 54

D. 72

Answer: B

