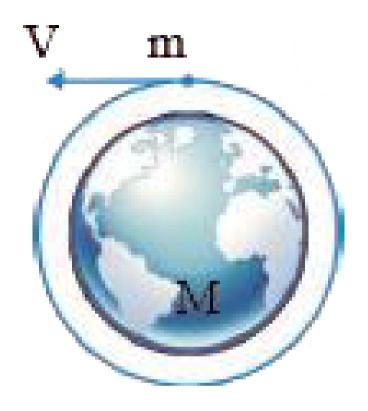


# **PHYSICS**


# NCERT - NCERT PHYSICS(BENGALI ENGLISH)

# **GRAVITATION**

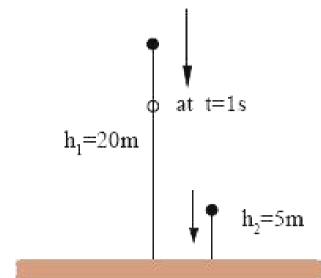
**Example** 

**1.** What is the time period of satellite near the earth's surface? (neglect height of the orbit of

satellite from the surface of the earth)?





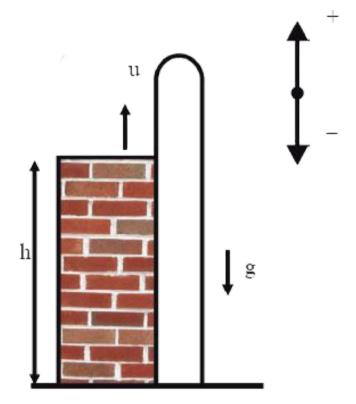

**2.** A body is projected vertically up. What is the distance covered in its last second of upward motion?  $\left(g=10m/s^2\right)$ 



**Watch Video Solution** 

3. Two bodies fall freely from different heights and reach the ground simultaneously. The time of descent for the first body is  $t_1=2s$  and for the second  $t_2=1s$ . At what height was the first body situated when the other

began to fall?  $\left(g=10m/s^2
ight)$ 






**4.** A stone is thrown vertically up from the tower of height 25m with a speed of 20 m/s

What time does it take to reach the ground?

$$\left(g=10m/s^2
ight)$$





**5.** Find the time taken, by the body projected vertically up with a speed of u, to return back to the ground.



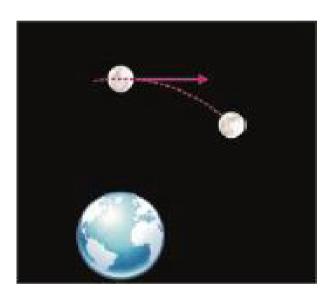
**Watch Video Solution** 

## **Think And Discuss**

**1.** Can an object move along a curved path if no force acts on it?



2. As a car speeds up when rounding a curve, does its centripetal acceleration increase? Use an equation to defend your answer.




**Watch Video Solution** 

**3.** Calculate the tension in a string that whirls a 2 kg - toy in a horizontal circle of radius 2.5 m when it moves at 3m/s.



**4.** In figure 7, we see that the moon 'falls' around earth rather than straight into it. If the magnitude of velocity were zero, how would it move?





**5.** According to the equation for gravitational force, what happens to the force between two bodies if the mass of one of the bodies doubled?



**Watch Video Solution** 

6. If there is an attractive force between all objects, why do we not feel ourselves gravitating toward massive buildings in our vicinity?



**7.** Is the force of gravity stronger on a piece of iron than on a piece of wood if both have the same mass?



**Watch Video Solution** 

**8.** An apple falls because of the gravitational attraction of earth.

What is the gravitational attraction of apple on the earth?



Watch Video Solution

**9.** Give an example for the motion of an object of zero speed and with non zero acceleration?



**Watch Video Solution** 

10. Two stones are thrown into air with speeds 20 m/s, 40m/s respectively? What are accelerations possessed by the objects?



11. When is your weight equal to mg?



**Watch Video Solution** 

**12.** Give example of when your weight is zero?



**Watch Video Solution** 

13. Where does the centre of gravity of a sphere and triangular lamina lie?



**14.** Can an object have more than one centre of gravity?



**Watch Video Solution** 

**15.** Why doesn't the leaning tower of Pisa topple over?



Let Us Improve Our Learning Reflections On Concepts

**1.** How do you explain that an object is in uniform circular motion  $(AS_1)$ 



**Watch Video Solution** 

**2.** Calculate the acceleration of the moon towards earth's center  $(AS_1)$ 



**3.** Explain universal law of gravitation.  $(AS_1)$ 



**4.** Where does the center of gravity of the atmosphere of the earth lie?  $(AS_2)$ 



Let Us Improve Our Learning Application Of Concepts

1. A car moves with constant speed of 10 m/s in a circular path of radius 10m. The mass of the car is 1000 kg. How much is the required centripetal force for the car?



Watch Video Solution

**2.** What is the speed of an apple dropped from a tree after 1.5 second? What distance will it cover during this time? Take  $g=10m/s^2$   $(AS_1)$ 



**3.** A ball is projected vertically up with a speed of 50 m/s. Find the maximum height , the time to reach the maximum height, and the speed at the maximum height  $(g=10m/s^2)(AS_1)$ 



**Watch Video Solution** 

**4.** Two spherical balls of mass 10 kg each are placed with their centers 10 cm apart. Find the

gravitational force of attraction between them.  $(AS_1)$ 



**Watch Video Solution** 

**5.** Find the free-fall acceleration of an object on the surface of the moon, if the radius of the moon and its mass are 1740 km and  $7.4 imes 10^{22}$  kg respectively. Compare this value with free fall acceleration of a body on the surface of the earth.  $(AS_1)$ 



**6.** A ball is dropped from a height. If it takes 0.2s to cross the last 6m before hitting the ground, find the height from which it is dropped. Take  $g=10m/s^2(AS_1)$ 



**Watch Video Solution** 

7. The bob of a simple pendulum of length 1 m has mass 100g and a speed of 1.4 m/s at the lowest point in its path. Find the tension in

the string at this moment. Take  $g=9.8m/\mathrm{sec}^2(AS_1)$ 



8. What path will the moon take when the gravitational interaction between the moon and earth disappears?  $(AS_2)$ 



**9.** Can you think of two particles which do not exert gravitational force on each other? why?  $(AS_2)$ 



**Watch Video Solution** 

Let Us Improve Our Learning Multiple Choice **Questions** 

1. The acceleration which can change only the direction of velocity of a body is called

- A. Acceleration due to gravity
- B. Uniform acceleration
- C. Centripetal acceleration
- D. Centrifugal acceleration

#### **Answer:**



**Watch Video Solution** 

2. The distance between the Earth and the Moon is

- A. 3,84,400 Km
- B. 3,84,400 cm
- C. 84,000 Km
- D. 86,000 Km

## **Answer:**



**Watch Video Solution** 

**3.** The value of Universal Gravitaitonal Constant is

A. 
$$6.67 imes10^{-11}N$$
.  $m^2Kg^{-2}$ 

B.  $9.8m/\mathrm{sec}^2$ 

C. 
$$6.67 imes 10^{-12} N.\ m^2 Kg^{-2}$$

D.  $981m/\sec^2$ 

#### **Answer:**



**Watch Video Solution** 

**4.** The weight of an object whose mass is 1 Kg is

A. 
$$1Kg/m^2$$

B.  $9.8m/\mathrm{sec}^2$ 

 $\mathsf{C}.\,9.8N$ 

D.  $9.8N/m^2$ 

## Answer:



**Watch Video Solution** 

**5.** The state of a freely falling body is

A. Heavy weight

- B. Less weight
- C. Weight less
- D. Constant weight

#### **Answer:**

