

India's Number 1 Education App

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU ENGLISH)

FUNCTIONS

Exercise Composite Functions

1. If
$$f(x)=2x-1,$$
 $g(x)=rac{x+1}{2}$ for all $x\in R$, find $(gof)(x)$

- **2.** If $f(x)=1/x, g(x)=\sqrt{x}$ for all $x\in(0,\infty)$, then find (gof)(x).
 - **Natch Video Solution**

3. If $f\!:\!R o R, g\!:\!R o R$ are defined by $f(x)=4x-1, g(x)=x^2+2$ then find (i) (gof)(x)

4. If $f\!:\!R o R,g\!:\!R o R$ are defined by $f(x)=4x-1,g(x)=x^2+2$ then find (ii) $(gof)\Big(rac{a+1}{4}\Big)$

5. If $f\!:\!R o R,g\!:\!R o R$ are defined by $f(x)=4x-1,g(x)=x^2+2$ then find (iii) fof(x)

6. If $f: R \to R, g: R \to R$ are defined

by

by

f(x) = 4x - 1, $g(x) = x^2 + 2$ then find (iv) go(fof)(x)

Watch Video Solution

7. If $f\!:\!R o R,g\!:\!R o R$ are defined by $f(x)=3x-1 \,\, {
m and} \,\, g(x)=x^2+1$, then find (i) (fog)(2)

8. If $f: R \to R, g: R \to R$ are defined $f(x)=3x-1 \,\, {
m and} \,\, g(x)=x^2+1$, then find (ii) $(fof)ig(x^2+1ig)$

If $f\!:\!R o R,\,g\!:\!R o R$ are defined

by

 $f(x)=3x-1 \,\, {
m and} \,\, g(x)=x^2+1$, then find (iii) (gof)(2a-3)

9.

10. If f(x) = 2, $g(x) = x^2$, h(x) = 2x then find (fogoh)(x)

11. If
$$f(x)=rac{x+1}{x-1}, x
eq 1$$
 then find $(fofof)(x)$.

Exercise Functions As Ordered Pairs

1. If $f = \{(1,2), (2, \ -3), (3, \ -1)\}$ then find (i) 2f

2. If
$$f = \{(1,2), (2,-3), (3,-1)\}$$
 then find (ii) f^2

3. If $f = \{(4,5), (5,6), (6,-4)\}, g = \{(4,-4), (6,5), (8,5)\}$

4. If $f = \{(4,5), (5,6), (6,-4)\}, g = \{(4,-4), (6,5), (8,5)\}$

find (i)
$$f + g$$

find (ii)
$$f-g$$

5. If
$$f = \{(4,5), (5,6), (6,-4)\}, g = \{(4,-4), (6,5), (8,5)\}$$

find (iii) fq

6. If $f = \{(4,5), (5,6), (6,-4)\}, g = \{(4,-4), (6,5), (8,5)\}$

find (iv) \sqrt{f}

Watch Video Solution

Watch Video Solution

1. If $f = \{(1,2), (2,-3), (3,-1)\}$ then find (i) 2+f

2. If $f = \{(1,2), (2,-3), (3,-1)\}$ then find \sqrt{f}

3. $f\!:\!R \to R$ defined by $f(x) = \frac{2x+1}{3}$, then this function is injection or not? Justify.

- **4.** Find the inverse of the real function of $f(x)=ax+b, a \neq 0$.
 - Watch Video Solution

- **5.** Find the domain of the real function $\frac{\sqrt{3+x}+\sqrt{3-x}}{x}$
 - **Watch Video Solution**

1. If $A=\{\,-2,\,-1,0,1,2\}$ and $f\!:\!A o B$ is a surjection defined by $f(x)=x^2+x+1$ then find B.

- **2.** If $A=\left\{0,\frac{\pi}{6},\frac{\pi}{4},\frac{\pi}{3},\frac{\pi}{2}\right\}$ and $f\!:\!A\to B$ is a surjection defined by $f(x)=\cos x$ then find B.
 - Watch Video Solution

- **3.** If Q is the set of all rational numbers, and $f\!:\!Q o Q$ is defined by $f(x)=5x+4,\ orall x\in Q,$ show that f is a bijection.
 - Watch Video Solution

Exercise Inverse Of A Function

1. If $f\colon Q \to Q$ is defined by f(x) = 5x + 4, find f^{-1} .

2. Find the inverse function of $f(x) = \log_2 x$

3. Find the inverse function of $f(x) = 5^x$.

Exercise Even Odd Functions

1. Determine whether the function $f(x) = \log\Bigl(x + \sqrt{x^2 + 1}\Bigr)$ is even or odd.

2. Determine whether the function $f(x) = x \left(\frac{e^x - 1}{e^x + 1} \right)$ is even or odd

Exercise Domains And Ranges

1. Find the domain of the real function $f(x) = \sqrt{16 - x^2}$

2. Find the domain of the real function $f(x) = \sqrt{x^2 - 25}$

3. Find the domain of $\sqrt{x^2-3x+2}$

4. Find the domain of the real function $f(x) = \sqrt{4x - x^2}$

5. Find the domain of the real function $f(x) = \sqrt{2-x} + \sqrt{1+x}$

7. Find the domain of $\dfrac{1}{\sqrt{x^2-a^2}}$

- **8.** Find the domain of the real function $\log (x^2 4x + 3)$
 - Watch Video Solution

- **9.** Find the domain of the real function $f(x) = \dfrac{1}{\log(2-x)}$
 - Watch Video Solution

10. Find the domain of the real function
$$\frac{\sqrt{2+x}+\sqrt{2-x}}{x}$$

11. Find the domain of the real function $\frac{2x^2 - 5x + 7}{(x-1)(x-2)(x-3)}$

12. Find the domain of the real function
$$f(x) = \frac{1}{(x^2-1)(x+3)}$$

13. Find the domain of $f(x) = \frac{1}{6x - x^2 - 5}$

14. Find the domain of $f(x) = \frac{3^x}{x+1}$

15. Find the range of the real function $\frac{x^2-4}{x-2}$

16. Find the domain and range of the function $f(x) = \frac{x}{2-3x}$

17. Find the domain and range of the real valued function $f(x) = rac{2+x}{2-x}$

20. If the function
$$f$$
 is defined by $f(x)=egin{cases} x+2,&x>1\ 2,&-1\leq x\leq 1\ x-1,&-3g< x<-1 \end{cases}$ then find the values of (i) $f(3)$

21. If the function
$$f$$
 is defined by $f(x)=egin{cases} x+2,&x>1\ 2,&-1\leq x\leq 1\ x-1,&-3g< x<-1 \end{cases}$ then find the values of (ii) $f(0)$

18. Find the domian and range of the real function $f(x) = \sqrt{9-x^2}$

19. Find the domian and range of the real function $f(x) = \sqrt{9-x^2}$

22. If the function
$$f$$
 is defined by $\int x+2, \ x>1$

$$f(x)= egin{cases} x+2,&x>1\ 2,&-1\leq x\leq 1\ x-1,&-3< x<-1 \end{cases}$$
 then find the values of (iii)

23. If the function
$$f$$
 is defined by
$$f(x)=\begin{cases} x+2, & x>1\\ 2, & -1\leq x\leq 1\\ x-1, & -3g< x<-1 \end{cases}$$
 then find the values of (iv)
$$f(2)+f(-2)$$

24. If the function f is defined by $f(x)=\begin{cases}x+2,&x>1\\2,&-1\leq x\leq 1\\x-1,&-3< x<-1\end{cases}$ then find the values of (v)

f(-5)

25. If the function
$$f$$
 is defined by $f(x)= \begin{cases} 3x-2,&x>3\\ x^2-2,&-2\leq x\leq 2\\ 2x=1,&x<-3 \end{cases}$ then find the values, if exist, of (i) $f(4)$

26. If the function
$$f$$
 is defined by $f(x)=$
$$\begin{cases} 3x-2,&x>3\\x^2-2,&-2\leq x\leq 2\\2x=1,&x<-3 \end{cases}$$
 then find the values, if exist, of (ii) $f(2.5)$

27. If the function f is defined by $f(x)= \left\{ egin{array}{ll} 3x-2,& x>3 \ x^2-2,& -2\leq x\leq 2 \ 2x=1,& x<-3 \end{array}
ight.$

then find the values, if exist, of (iii) $f(\,-2)$

28. If the function f is defined by $f(x)=\begin{cases}3x-2,&x>3\\x^2-2,&-2\leq x\leq 2\\2x=1,&x<-3\end{cases}$ then find the values, if exist, of (iv) f(-4)

29. If the function f is defined by f(x)= $\begin{cases} 3x-2,&x>3\\x^2-2,&-2\leq x\leq 2\\2x=1,&x<-3 \end{cases}$ then find the values, if exist, of (v) f(0)

30. If the function f is defined by f(x)= $\begin{cases} 3x-2,&x>3\\x^2-2,&-2\leq x\leq 2\\2x=1,&x<-3 \end{cases}$ then find the values, if exist, of (vi) f(-7)

31. If f and g are real valued functions define by $f(x)=2x-1 \ {
m and} \ g(x)=x^2$ then find (i) (3f-2g)(x)

32. If f and g are real valued functions define by $f(x)=2x-1 \,\, {
m and} \,\, g(x)=x^2$ then find (ii) (fg)(x)

33. If f and g are real valued functions define by
$$f(x)=2x-1 \,\, {
m and} \,\, g(x)=x^2$$
 then find (iii) $(f+g+2)(x)$

34. If f and g are real valued functions define by f(x)=2x-1 and $g(x)=x^2$ then find (iv) $\left(\frac{\sqrt{f}}{g}\right)(x)$

35. If
$$f(x)=x^2 \,\, ext{and} \,\, g(x)=|x|$$
 , then find (i) $f+g$

- Watch video Solution

37. If
$$f(x)=x^2 \, ext{ and } \, g(x)=|x|$$
 , then find (iii) fg

38. If $f(x)=x^2 \,\, ext{and} \,\, g(x)=|x|$, then find (iv) 2f

39. If $f(x)=x^2 \,\, ext{and} \,\, g(x)=|x|$, then find (v) f^2

40. If $f(x) = x^2$ and g(x) = |x|, then find (vi) f + 3

(fog)(y) = y

1. If
$$f(y)=rac{y}{\sqrt{1-y^2}},$$
 $g(y)=rac{y}{\sqrt{1+y^2}}$ then show that

- **2.** If $f\!:\!R o R,g\!:\!R o R$ are defined by $f(x)=2x^2+3$ and g(x)=3x-2, then find (i) $(\log)(x)$
 - Watch Video Solution

- **3.** If $f\!:\!R o R,\,g\!:\!R o R$ are defined by $f(x)=2x^2+3$ and g(x)=3x-2, then find (ii) (gof)(x)
 - **Natch Video Solution**

4. If $f\!:\!R o R,\,g\!:\!R o R$ are defined by

$$f(x)=2x^2+3 \,\, {
m and} \,\, g(x)=3x-2, \,\, {
m then \,\, find \,\, (iii)} \,\, (fof)(0)$$

5. If $f\!:\!R o R,g\!:\!R o R$ are defined by $f(x)=2x^2+3$ and g(x)=3x-2, then find (iv) go(fof)(3).

6. $f\!:\!R-\{0\} o R$ is defined as $f(x)=x+rac{1}{x}$ then show that $(f(x))^2=fig(x^2ig)+f(1)$

7. If $f\!:\!R-\{0\} o R$ is defined by $f(x)=x^3-rac{1}{x^3}$, then S.T f(x)+f(1/x)=0.

8. If
$$f\!:\!R-(\,\pm\,1) o R$$
 is defined by $f(x)=\log\Bigl|rac{1+x}{1-x}\Bigr|$, then show that $f\Bigl(rac{2x}{1+x^2}\Bigr)=2f(x).$

9. If
$$f\!:\!R o R,g\!:\!R o R$$
 are defined $f(x)=3x-2,g(x)=x^2+1,$ then find (i) $ig(gof^{-1}ig)(2)$

by

10. If
$$f\!:\!R o R,\,g\!:\!R o R$$
 are defined

$$f(x)=3x-2,$$
 $g(x)=x^2+1$, then find (ii) $(\mathrm{gof})(x-1)$

by

11. If
$$f\!:\!R o R,g\!:\!R o R$$
 are defined by $f(x)=2x-3,g(x)=x^3+5$ then find $(\log)^{-1}(x)$

12. If $f(x) = 1 + x + x^2 + \dots$ for |x| < 1 then show that

 $f^{-1}(x) = \frac{x-1}{x}$

13. If
$$f(x)=rac{x-1}{x+1}, x
eq \pm 1, ext{ show that } fof^{-1}(x)=x.$$

14. If
$$f\colon [1,\infty) o [1,\infty)$$
 is defined by $f(x) = 2^{x\,(\,x\,-\,1\,)}$ then find $f^{-1}(x).$

15. If $f(x)=e^x$ and $g(x)=\log_e x$, then show that fog=gof and find f^{-1} and g^{-1} .

16. Let $f(x)=x^2, g(x)=2^x.$ Then solve the equation (fog)(x)=(gof)(x).

17. On what domain the functions

$$f(x)=x^2-2x \ \ {
m and} \ \ g(x)=\ -x+6$$
 are equal?

18. If
$$f(x)=rac{\cos^2x+\sin^4x}{\sin^2x+\cos^4x}$$
 $orall x\in R$ then show that $f(2012)=1$.

- **19.** If $f\!:\!R o R$ is defined by $f(x)=rac{1-x^2}{1+x^2}$ then show that $f(an heta)=\cos 2 heta.$
 - Watch Video Solution

20. Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function from $A=\{1,2,34,\}$. to $B=\{1,3,5,7\}$? If this is given by the formula

Watch Video Solution

g(x) = ax + b, then find a and b.

23. Determine whether the function $f: R \to (0, \infty)$ defined by

22. If $f\colon N o N$ is defined as f(x)=2x+5, is f onto?

 $f(x)=2^x$ is one one (or) onto (or) bijection.

24. Determine whether the function $f\colon (o,\infty) o R$ defined by $f(x){\log_e x}$ is one one (or)onto (or)bijection.

25. Determine whether the function $f\!:\!R o[0,\infty)$ defined by $f(x)=x^2$ is one one (or)onto (or)bijection.

26. Determine whether the function $f\!:\!R o[0,\infty)$ defined by $f(x)=x^2$ is one one (or)onto (or)bijection.

27. Determine whether the function $f\!:\!R o(0,\infty)$ defined by $f(x)=2^x$

is one one (or) onto (or) bijection.

28. If $A=\{x\colon -1\le x\le 1\},$ $f(x)=x^2 \ ext{and} \ g(x)=x^3,$ which of the following functions are onto? (i) $f\colon A\to A$

29. If $A=\{x\colon -1\le x\le 1\},$ $f(x)=x^2\ ext{and}\ g(x)=x^3,$ which of the following functions are onto? (ii) $g\colon A\to A$

30. Let $A=\{1,2,3\}, B=\{a,b,c\}, C=\{p,q,r\}.$ If

$$f\!:\!A o B,g\!:\!B o C$$
 are defined by $f=\{(1,a),(2,c),(3,b)\},\,g=\{a,q),(b,r),(c,p)\}$ then show that $f^{-1}og^{-1}=(gof)^{-1}.$

31. Determine whether the function $f(x) = a^x - a^{-x} + \sin x$ is even or odd.

32. Determine whether the function $f(x) = \sin x + \cos x$ is even or odd.

33. P.T the real valued function $f(x)=rac{x}{e^x-1}+rac{x}{2}+1$ is an even function on $R-\{0\}.$

34. Find the domain of the real valued function $f(x)=\sqrt{(x-lpha)(eta-x)},$ (heta<lpha<eta).

35. Find the domian of the real valued function $f(x) = \sqrt{\log_{0.3}{(x-x)^2}}$

37. Find the domain of
$$f(x) = \sqrt{[x] - x}$$

38. Find the domain of $f(x) = \sqrt{[x] - x}$

39. Find the domain of $f(x) = \log(x - |x|)$.

40. Find the domain of $f(x) = \frac{1}{\left(\sqrt[3]{x}-2(\log_{4-x}10)\right)}$.

41. Find the domain and range of the function f(x) = |x| + |1+x|

Exercise Miscellaneous

1. Define a One-one function. Give an example.

2. Define a Onto function. Give an example.

3. Define a Bijective function. Give an exmple.

Watch Video Solution
4. Define an Even funtion and an Odd function. Give an example to
each.
Watch Video Solution
5. Define an Identity function.
Watch Video Solution
6. Define a Constant Function.
Watch Video Solution
7. Define an Polynomial function.

Watch Video Solution
8. Define an Algebraic function. Watch Video Solution
Water video Soldton
9. Define a Rational function. Give an example.
Watch Video Solution
10. Define Modulus function. What is its domain and range?
Watch Video Solution
11. Define Greatest integer function. What is its domain and range?
Watch Video Solution

12. Define Signum function. What is its domain and range?

13. If $f(x+y)=f(xy)\, orall x,\, y\in R$ then prove that f is a constane function.

14. Find the domain of definition of the function y(x), given by the equation $2^x+2^y=2$.

15. Find the domain of
$$f(x) = \sqrt{\log_{10}\!\left(rac{3-x}{x}
ight)}$$

16. Find the domain of the real function $f(x) = \dfrac{1}{\sqrt{\left[x\right]^2 - \left[x\right] - 2}}.$

17. Find the domain of f(x) = |x-3|.

- **18.** Find the domain of $f(x) = \sqrt{\frac{4-x^2}{[x]+2}}$
 - **Watch Video Solution**

20. Find the range of $\log \lvert 4 - x^2 vert$

21. Find the range of $\frac{\sin \pi[x]}{1+\left[x ight]^2}$.

- **22.** Find the range of $\sqrt{9+x^2}$.
 - Watch Video Solution

23. Find the domain and range of $f(x) = rac{ an \pi[x]}{1 + \sin x[x] + [x^2]}.$

24. If the function $f\colon R o R$ defined by $f(x)=rac{3^x+3^{-x}}{2}$, then S.T f(x+y)+f(x-y)=2f(x)f(y).

25. If the function $f\colon R\to R$ defined by $f(x)=\frac{4^x}{4^x+2},$ then show that f(1-x)=1-f(x), and hence deduce the value of $f\Big(\frac14\Big)+2f\Big(\frac12\Big)+f\Big(\frac34\Big).$

26. If
$$f(x)=\cos(\log x)$$
, then show $f\Big(\frac{1}{x}\Big).\ f\Big(\frac{1}{y}\Big)-\frac{1}{2}\bigg[f\Big(\frac{x}{y}\Big)+f(xy)\bigg]=0$

27. If
$$A=\{1,2,3\}, B=(lpha,eta,\gamma), c=(p,q,r) ext{ and } (f{:}A o B,g{:}B o C$$

defined by $f=\{(1,\alpha),(2,\gamma),(3,\beta)\},g=\{(\alpha,q),(\gamma,p)\}$

that

then show that f and g are bijective functions and $\left(gof\right)^{-1}=f^{-1}og^{-1}.$