

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU ENGLISH)

IPE:MARCH-2015(TS)

Ipe March 2015 Ts Maths 1 B

1. Find the equation of the straight line passing through (-4,5) and cutting off equal

and non-zero intercepts on the co-ordinate axes.

Watch Video Solution

2. Find the equation of the straight line perpendicular to the line 5x-3y+1=0 and passing through the point (4,-3).

3. Find the third vertex of ΔABC , if two of its vertices are A (-2,3) , B(4,5) and its centroid is O(1,2) .

Watch Video Solution

4. Find the angle between the planes

$$x + 2y + 2z - 5 = 0$$

and

$$3x + 3y + 2z - 8 = 0$$

5. Compute $\lim_{x o a} rac{ an(x-a)}{x^2-a^2} (a
eq 0).$

Watch Video Solution

6. Compute $\lim_{x\to 0} \left(\frac{e^x-1}{\sqrt{1+x}-1} \right)$

Watch Video Solution

7. Find the derivative of $y = \sqrt{2x - 3} + \sqrt{7 - 3x}.$

8. Find the derivative of $y=\sin^{-1}\Bigl(\dfrac{2x}{1+x^2}\Bigr)$

Watch Video Solution

9. If $y=x^2+3x+6$ then find $\ riangledown\ y$ and dy when $x=10,\ riangledown\ x=0.01.$

10. Verify Rolle's theorem for the function $y=f(x)=x^2+4$ on [-3,3]

Watch Video Solution

11. A(5,3) and B(3,-2) are 2 fixed points. Find the equation of locus of P, so that the area of \triangle PAB is 9sq. Units.

12. When the axes are rotated through an angle 45° , the transformed equation of a curve is $17x^2-16xy+17y^2=225$. Find the original equation of the curve.

Watch Video Solution

13. A straight line with slope 1 passes through Q(-3,5) and meets the straight line x+y-6=0 at P. Find the distance PQ.

14. If f is given by

$$f(x) = \left\{ egin{array}{ll} k^2x - k & ext{if} & x \geq 1 \ 2 & ext{if} & x < 1 \end{array}
ight.$$
 is a continuous

function on R, then find k.

Watch Video Solution

15. Find the derivative of x^3 from the first principle.

16. A particle is moving along a line according $s=f(t)=4t^3-3t^2+5t-1$ where s is measured in meters and t is measured in seconds. Find the velocity and acceleration at time t. At what time the acceleration is zero.

Watch Video Solution

17. Determine the intervals in which $f(x) = rac{2}{(x-1)} + 18x, \ orall x \in R - \{0\}$ IS stricly increasing and decreasing.

18. Find the orthocentre of the triangle whose sides

sides are
$$7x+y-10=0, x-2y+5=0, x+y+2=0$$

19. Prove that the line lx+my+n=0 and the pair of lines $\left(lx+my\right)^2-3\left(mx-ly\right)^2=0$ form an

equilateral triangle and its area is

$$\frac{n^2}{\sqrt{3}(l^2+m^2)}$$

Watch Video Solution

20. Find the value if k, if the lines joining the origin with the points of intersection of the curve $2x^2 - 2xy + 3y^2 + 2x - y - 1 = 0$ and the x + 2y = k are mutually perpendicular.

21. Find the angle between the lines, whose direction cosines are given by the equation 3l + m + 5n = 0 and 6mn - 2nl + 5lm = 0.

Watch Video Solution

22. Find the derivative of $(\sin x)^{\log x} + x^{\sin x}$.

23. IF the tangent at a point on the curve $x^{2/3}+y^{2/3}=a^{2/3}$ intersects the coordinate axes in A and B then show that the length AB is a constant.

Watch Video Solution

24. A window is in the shape of a rectangle surmounted by a semi-circle. If the perimeter of the window be 20 feet then find the maximum area.

