

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU ENGLISH)

IPE:MARCH-2018(AP)

Questions

- **1.** Find the domain of the real function $f(x) = \sqrt{x^2 25}$
 - 0

Watch Video Solution

2. IF $f\!:\!R o R,g\!:\!R o R$ are defined by f(x)=3x-1 and $g(x)=x^2+1$, then find (fog)(2)

3. Define a symmetric matrix. Give one example of order 3×3

4. Find the Adjoint and Inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$

5. IF the vectors $-3\bar{i}+4\bar{j}+\lambda\bar{k},$ $\mu\bar{i}+8\bar{j}+6\bar{k}$ are collinear vectors then find $\lambda\&\mu.$

Watch Video Solution

6. Find the vector equation of plane passing through Points (0,0,0), (0,5,0) and (2,0,1)

Watch Video Solution

7. Find the angle between the vectors $ar{i}+2ar{j}+3ar{k}$ and $3ar{i}-ar{j}+2ar{k}$

Watch Video Solution

8. Find $\sin 330^\circ$. $\cos 120^\circ + \cos 210^\circ$. $\sin 300^\circ$

9. Find the extreme values of $\cos 2x + \cos^2 x$

10. Prove that $\cosh 2x = 2\cosh^2 x - 1$

11. IF
$$A = \begin{bmatrix} 7 & -2 \\ -1 & 2 \\ 5 & 3 \end{bmatrix}$$
 . $B = \begin{bmatrix} -2 & -1 \\ 4 & 2 \\ -1 & 0 \end{bmatrix}$ then find AB'

and BA'

12. Show that the four points
$$-ar a+4ar b-3ar c,\,3ar a+2ar b-5ar c,\,-3ar a+8ar b-5ar c,\,-3ar a+2ar b+ar c$$

13. Let $ar{a}$ and $ar{b}$ be vectors, satisfying $|ar{a}|=|ar{b}|=5$ and

 $(ar{a},ar{b})=45^{\circ}.$ Find the area of the triangle having $ar{a}-2b$

are coplanar, where $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors.

and $3\bar{a}+2\bar{b}$ as two of its sides.

14. If A is not an integral multiple of $\frac{\pi}{2}$, prove that

- (i) $\tan A + \cot A = 2\cos ec2A$
- (ii) cot A tan A = 2cot 2A`

15. Solve $\sqrt{3}\sin\theta-\cos\theta=\sqrt{2}$

16. Prove that
$$\sin^{-1}\frac{4}{5}+\sin^{-1}\frac{5}{13}+\sin^{-1}\left(\frac{16}{65}\right)=\frac{\pi}{2}$$

17. If $a=(b-c)\mathrm{sec} \theta$, then prove that $\tan \theta = \frac{2\sqrt{bc}}{b-c}\frac{\sin A}{2}$.

18. If $f\colon A o B, g\colon B o C$ are two bijective functions then prove that $gof\colon A o C$ is also a bijective function.

19. Using the P.M.I 2prove that
$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + + nterms = \frac{n}{2n+1}$$

$$\left|egin{array}{cccc} a+b+2c & a & b \ c & b+c+2a & b \ c & a & c+a+2b \end{array}
ight|=2\left(a+b+c
ight)^3$$

that

Watch Video Solution

- **21.** Solve the system of equations
- 2x y + 3z = 9, x + y + z = 6, x y + z = 2 using
- Gauss Jordan method.

Watch Video Solution

- **22.** Fo any four vectors $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} , prove that
- (i) $\left(ar{a} imesar{b}
 ight) imes\left(ar{c} imesar{d}
 ight)=\left\lceil\overline{a}\overline{c}ar{d}
 ceilar{b}-\left\lceilar{b}ar{c}ar{d}
 ight
 ceilar{a}$ and (ii)
- $ig(ar{a} imesar{b}ig) imesig(ar{c} imesar{d}ig)=ig[ar{a}ar{b}ar{d}ig]ar{c}-ig[ar{a}ar{b}ar{c}ig]ar{d}$

23. If A,B,C are angles in a triangle , then prove that $\cos A + \cos B + \cos C = 1 + 4\sin. \ \frac{A}{2}\sin. \ \frac{B}{2}\sin. \ \frac{C}{2}$

24. Show that $r + r_3 + r_1 - r_2 = 4R \cos B$.

