© ${ }^{\prime}$ doubtnut

MATHS

BOOKS - TELUGU ACADEMY MATHS

 (TELUGU ENGLISH)

 (TELUGU ENGLISH)}

IPE:MARCH-2018(TS)

Section A

1. Find the value of x, if the slope of the line passing through (2,5) and ($\mathrm{x}, 3$) is 2.
2. Transform the equation $x+y+1=0$ into Normal form.

D Watch Video Solution

3. Find the ratio in which the XZ-plane divides line joining $A(-2,3,4)$ and $B(1,2,3)$

D Watch Video Solution

4. Find the intercepts of the plane
$4 x+3 y-2 z+2=0$ on the coordinate axes.

- Watch Video Solution

5. Compute $L t_{x \rightarrow 0} \frac{\sin a x}{\sin b x}, b \neq 0, a \neq b$

(D) Watch Video Solution

6. Evaluate $\stackrel{\text { Lt }}{x \rightarrow \pi / 2} \frac{\cos x}{\left(x-\frac{\pi}{2}\right)}$

(D) Watch Video Solution

7. If $y=\frac{a-x}{a+x},(x \neq-a)$ then find $\frac{d y}{d x}$
8. If $y=\left(\cot ^{-1} x^{3}\right)^{2}$ then find $\frac{d y}{d x}$.

- Watch Video Solution

9. If the increase in the side of a square is 2% then find the approximate percentage of increase in the area of the square.

- Watch Video Solution

10. Verify the conditions of Lagrange's mean value theorem for the function $x^{2}-1$ on [2,3]

Section B

1. Find the locus of the third vertex of a right angled triangle , the ends of whose hypotenuse are $(4,0)$ and $(0,4)$

D Watch Video Solution

2. Find the transformed equation of
$x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$ when the axes are rotated through an angle 30°.

- Watch Video Solution

3. Find the value of k if the lines $2 x-3 y+k=0,3 x-4 y-13=0,8 x-11 y-33=0$ are concurrent.

- Watch Video Solution

4. Find the real constants a, b, so that the function f
given by $f(x)= \begin{cases}\sin x & \text { if } x \leq 0 \\ x^{2}+a & \text { if } 0<x<1 \\ b x+3 & \text { if } 1 \leq x \leq 3 \\ -3 & \text { if } x>3\end{cases}$
continuous on R.
5. Find the derivative of $\sin 2 x$ from the first principle.

- Watch Video Solution

6. Show that at any point (x, y) on the curve $y=b^{\frac{x}{a}}$,
the length of the subtangent is a constant and the
length of the subnormal is $\frac{y^{2}}{a}$.

D Watch Video Solution

7. A particle is moving along a line according
$s=f(t)=4 t^{3}-3 t^{2}+5 t-1$ where s is measured
in meters and t is measured in seconds. Find the velocity and acceleration at time t . At what time the acceleration is zero.

D Watch Video Solution

Section C

1. Find the circumcentre of the triangle whose vertices are $(1,3)(-3,5)$ and (5,-1).
2. Show that the lines joining the origin to the points of intersection of the curve $x^{2}+x y+y^{2}+3 x+3 y-2=0$ and the straight line $x-y-\sqrt{2}=0$ are mutually perpendicular .

- Watch Video Solution

3. Show that tha angles between the diagonals of a rectangular parallelopiped having sides a,b and c are $\cos ^{-1}\left(\frac{|\alpha|}{a^{2}+b^{2}+c^{2}}\right)$,
$\alpha= \pm a^{2} \pm b^{2} \pm c^{2}$ and $|\alpha| \neq a^{2}+b^{2}+c^{2}$. Hence
find the angle between the diagonals of a cube.
4. If $y=\tan (-1)\left(\frac{\sqrt{\left(1+x^{2}\right)}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)$ then
find $\frac{d y}{d x}$.

- Watch Video Solution

5. Show that the equation of the tangent to the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2(a \neq 0, b \neq 0)$ at the point (a, b) is $\frac{x}{a}+\frac{y}{b}=2$

D Watch Video Solution

6. From a rectangular sheet of dimensions $30 \mathrm{~cm} \times 80 \mathrm{~cm}$, four squares of sides xcm are removed at the corners, and the sides are then turned up so as to form an open rectangular box.

What is the value of x, so that the volume of the box is the greatest?

