

India's Number 1 Education App

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU ENGLISH)

IPE:MARCH-2019(TS)

Questions

1. IF
$$f(x)=2x-1,$$
 $g(x)=rac{x+1}{2}$ for all $x\in R$, find (gof) (x) and (fog)

(x)

2. Find the domain of the real valued function:
$$f(x) = \frac{1}{6x - x^2 - 5}$$

3. IF $A=\begin{bmatrix}1&2&3\\3&2&1\end{bmatrix}$ and $B=\begin{bmatrix}3&2&1\\1&2&3\end{bmatrix}$, find 3B-2A

4. IF $A=egin{bmatrix}2&0&1\\-1&1&5\end{bmatrix}, B=egin{bmatrix}-1&1&0\\0&1&-2\end{bmatrix}$ then find $\left(AB^T\right)^T$

 $\overline{OA}=ar{i}+ar{j}+ar{k}, \overline{AB}=3ar{i}-2ar{j}+ar{k}, \overline{BC}=ar{i}+2ar{j}-2ar{k}, \overline{CD}=2ar{i}+ar{j}+$

6. Let $\bar{a}=2\bar{i}+4\bar{j}-5\bar{k}, \, \bar{b}=\bar{i}+\bar{j}+\bar{k}, \, \bar{c}=\bar{j}+2\bar{k}$. Find the unit vector

IF

5.

then find the vector
$$\overline{OD}$$

Watch Video Solution

in the opposite direction of $ar{a}+ar{b}+ar{c}$

7. Find the equation of the plane passing through the point (3,-2,1) and perpendicular to the vector (4,7,-4)

8. IF $\sin \theta = -\frac{1}{3}$ and θ does not lie in the 3^{rd} quadrant, find the value of $\cos \theta$ and $\cot \theta$

9. Find the value of $\sin^2 82\frac{1}{2} - \sin^2 22\frac{1}{2}$.

10. IF $\cosh x = 5/2$, then find the value of (i) $\cosh(2x)$ and (ii) $\sinh(2x)$

11. If
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$
 then show that $A^3 - 3A^2 - A - 3I = O$,

where I is unit matrix of order 3

- **12.** IF $ar{a}, ar{b}, ar{c}$ are noncoplanar, find the point of intersection of the line passing through the points $2ar{a}+3ar{b}-ar{c}, 3ar{a}+4ar{b}-2ar{c}$ with the line joining the points $ar{a}-2ar{b}+3ar{c}, ar{a}-6ar{b}+6ar{c}$
 - Watch Video Solution

- **13.** IF ar a=2ar i+3ar j+4ar k, ar b=ar i+ar j-ar k, ar c=ar i-ar j+ar k, compute ar ax(ar bxar c) and verify that it is perpendicular to ar a

 - **Watch Video Solution**

Prove

that

$$\left(1+\cos\frac{\pi}{10}\right)\left(1+\cos\frac{3\pi}{10}\right)\left(1+\cos\frac{7\pi}{10}\right)\left(1+\cos\frac{9\pi}{10}\right)=\frac{1}{16}$$

Watch Video Solution

If θ_1, θ_2 are solutions of the equation 15. а $\cos 2\theta + b \sin 2\theta = c, \tan \theta_1 \neq \tan \theta_2 \text{ and } a + c \neq 0,$ then find the values of (i) $\tan \theta_1 + \tan \theta_2$ (ii) $\tan \theta_1 \cdot \tan \theta_2$.

17. In $\triangle ABC$, if $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$ then show that $C=60^\circ$

Watch Video Solution

- **16.** Prove that $\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \cos^{-1}\frac{36}{85}$

Watch Video Solution

18. If $f\!:\!A o B$ is a bijective function then prove that

(i)
$$fof^{-1}=I_B$$

Watch Video Solution

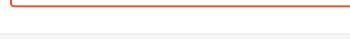
19. Using Mathematical Induction , prove that statement for all $n \in N$

$$\left(1+rac{3}{1}
ight)\!\left(1+rac{5}{4}
ight)\!\left(1+rac{7}{9}
ight)\!......\left(1+rac{2n+1}{n^2}
ight)=(n+1)^2$$

20. Show that
$$\begin{vmatrix} a+b+2c & a & b \ c & b+c+2a & b \ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3$$

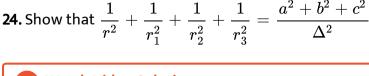
21. Solve the equations
$$3x+4y+5z=18, 2x+y+8z=13, 5x-2y+7z=20$$
 by matrix

inversion method.



22. If

 $A=(1,\ -2,\ -1), B=(4,0,\ -3), C=(1,2,\ -1), D=(2,\ -4,\ -5)$


then find distance between
$$\overline{AB}, \overline{CD}$$

Watch Video Solution

23. IF A,B,C are angles in the triangle, then prove that $\cos A + \cos B - \cos C = -1 + 4\cos\frac{A}{2}.\cos\frac{B}{2}.\sin\frac{C}{2}$

1. IF
$$f(x)=2x-1,$$
 $g(x)=rac{x+1}{2}$ for all $x\in R$, find (fog) (x)

- **2.** Find the domain of the real valued function: $f(x) = \frac{1}{6x x^2 5}$
 - Watch Video Solution

- **3.** IF $A=\begin{bmatrix}1&2&3\\3&2&1\end{bmatrix}$ and $B=\begin{bmatrix}3&2&1\\1&2&3\end{bmatrix}$, find 3B-2A
 - Watch Video Solution

- **4.** IF $A=egin{bmatrix}2&0&1\\-1&1&5\end{bmatrix}, B=egin{bmatrix}-1&1&0\\0&1&-2\end{bmatrix}$ then find $\left(AB^T\right)^T$
 - Watch Video Solution

5. $\overline{OA}=ar{i}-ar{j}-ar{k}, \overline{AB}=2ar{i}-2ar{j}-4ar{k}, \overline{BC}=2ar{i}-ar{j}+3ar{k}, \overline{CD}=3ar{i}-ar{j}$ –

IF

then find the vector \overline{OD}

- Watch Video Solution
- **6.** Let ar a=2ar i+4ar j-5ar k, ar b=ar i+ar j+ar k, ar c=ar j+2ar k. Find the unit vector
 - Watch Video Solution

in the opposite direction of $ar{a}+ar{b}+ar{c}$

Watch Video Solution

perpendicular to the vector (4,7,-4)

- **8.** IF $\sin \theta = -\frac{1}{3}$ and θ does not lie in the 3^{rd} quadrant, find the value of $\sec \theta$ and $\cot \theta$.

7. Find the equation of the plane passing through the point (3,-2,1) and

9. Find the value of $\sin^2 82\frac{1}{2} - \sin^2 22\frac{1}{2}$.

10. IF $\cosh x = 5/2$, then find the value of (i) $\cosh(2\mathsf{x})$ and (ii) $\sinh(2\mathsf{x})$

Section B

1. If
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$
 then show that $A^3 - 3A^2 - A - 3I = O$,

where I is unit matrix of order 3

2. IF $ar{a}, ar{b}, ar{c}$ are noncoplanar, find the point of intersection of the line passing through the points $2ar{a}+3ar{b}-ar{c}, 3ar{a}+4ar{b}-2ar{c}$ with the line joining the points $ar{a}-2ar{b}+3ar{c}, ar{a}-6ar{b}+6ar{c}$

3. IF
$$ar a=2ar i+3ar j+4ar k,$$
 $ar b=ar i+ar j-ar k,$ $ar c=ar i-ar j+ar k,$ compute $ar ax(ar bxar c)$ and verify that it is perpendicular to $ar a$

4. Prove that
$$\left(1+\cos\frac{\pi}{10}\right)\left(1+\cos\frac{3\pi}{10}\right)\left(1+\cos\frac{7\pi}{10}\right)\left(1+\cos\frac{9\pi}{10}\right)=\frac{1}{16}$$

5. If $heta_1, heta_2$ are solutions of the equation a $\cos 2 heta+b\sin 2 heta=c, an heta_1
eq an heta_2 an heta_2 an heta_2 an heta_2 an heta_2$ then find the

values of (i) $\tan \theta_1 + \tan \theta_2$ (ii) $\tan \theta_1 \cdot \tan \theta_2$.

Watch Video Solution

6. Prove that $\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \cos^{-1}\frac{36}{85}$

Watch Video Solution

7. In $\triangle ABC$, if $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$ then show that $C=60^\circ$

Watch Video Solution

Section C

- **1.** If $f: A \to B$ is a bijective function then prove that
- (i) $f \circ f^{-1} = I_B$

2. Using Mathematical Induction, prove that statement for all $n \in N$

$$igg(1+rac{3}{1}igg)igg(1+rac{5}{4}igg)igg(1+rac{7}{9}igg)......igg(1+rac{2n+1}{n^2}igg)=(n+1)^2.$$

3. Show that
$$\begin{vmatrix} a+b+2c & a & b \ c & b+c+2a & b \ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3$$

4. Solve the equations

3x+4y+5z=18, 2x+y+8z=13, 5x-2y+7z=20 by matrix inversion method.

5. $A=(1,\ -2,\ -1), B=(4,0,\ -3), C=(1,2,\ -1), D=(2,\ -4,\ -5)$

If

then find distance between \overline{AB} , \overline{CD}

Watch Video Solution

6. IF A,B,C are angles in the triangle, then prove that

7. Show that $rac{1}{r^2}+rac{1}{r_1^2}+rac{1}{r_2^2}+rac{1}{r_2^2}=rac{a^2+b^2+c^2}{\Delta^2}$

 $\cos A + \cos B - \cos C = -1 + 4\cos\frac{A}{2}.\cos\frac{B}{2}.\sin\frac{C}{2}$

1. Find the value of p, if the straight lines 3x+7y-1=0 and 7x-py+3=0 are mutually perpendicular.

2. IF $f(x) = \log(\tan e^x)$, then find f'(x).

3. Find the ratio in which the XZ-plane divides line joining A(-2,3,4) and B(1,2,3)

4. Reduce the equation x+2y-3z-6=0 of the plane to the normal form.

5. Evaluate $Lt_{x ightarrow 0} \frac{\log(1+5x)}{r}$

- **6.** If $f(x)=1+x+x^2+\ldots\ldots+x^{100}, ext{ then find } f'(1).$
 - Watch Video Solution

- **7.** Find the angle which the straight line $y=\sqrt{3}x-4$ makes with the Yaxis.
 - Watch Video Solution

- **8.** Verify Rolle's theorem for the function $y=f(x)=x^2+4$ on [-3,3]
 - Watch Video Solution

9. If y=cosx then find Δy and dy when $x=60^{\circ}$ $\,$ and $\,$ $\Delta x=1^{\circ}=0.0174$

rad

Watch Video Solution

Section B

1. Check the continity of the following function at 2 .

$$f(x) = egin{cases} rac{1}{2}ig(x^2-4ig) & ext{if} \;\; 0 < x < 2 \ 0 & ext{if} \;\; x = 2 \ 2 - 8x^{-3} & ext{if} \;\; x > 2 \end{cases}$$

2. A(1,2), B(2,-3), C(-2,3) are 3 points. A point P moves such that $PA^2+PB^2=2PC^2$. Show that the equation to the locus of P is 7 x - 7y + 4 = 0 .

3. A straight line through $Q(\sqrt{3},2)$ makes an angle $\pi/6$ with positive direction of the X-axis. If the straight line intersects the line $\sqrt{3}x-4y+8=0$ at P, find the distance PQ.

4. When the axes are rotated through an angle α , find the transformed equation of $x\cos\alpha+y\sin\alpha=p$.

5. S.T the tangent at any point θ on the curve $x=c\sec\theta,\,y=c\tan\theta$ is $y\sin\theta=x-\cos\theta.$

6. Find the derivative of $\cos^2 x$ from the first principle.

7. A container in the shape of an inverted cone has height 12 cm and radius 6cm at the top. If it is filled with water at the rate of $12cm^3/{\rm sec}$, what is the rate of change in the rate of change in the height of water

level when the tank is filled 8 cm?

Section C

- **1.** Find the orthocentre of the triangle whose vertices are (5, -2), (-1, 2), (1, 4).
 - Watch Video Solution

2. Prove that the aea of the triangle formed by y=x+c and the pair of lines $ax^2+2hxy=by^2=0$ is $\dfrac{e^2\sqrt{h^2-ab}}{|a+b+2h|}$ sq. units.

3. Find the angle between the lines whose d.c's are related by $l+m+n=0\&l^2+m^2-n^2=0$

4. IF the tangent at a point on the curve $x^{2/3}+y^{2/3}=a^{2/3}$ intersects the coordinate axes in A and B then show that the length AB is a constant.

5. Find the value if k , if the lines joining the origin with the points of intersection of the curve $2x^2-2xy+3y^2+2x-y-1=0$ and the x + 2y = k are mutually perpendicular .

6. Find the maximum area of the rectangle that can be formed with fixed perimeter 20.

