© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU

ENGLISH)

IPE:MAY-2014

Section A

1. Transformation the equation $4 x-3 y+12=0$ into
(i) slope intercept form (ii) intercept form
2. Find the value of ' p ' if the lines
$4 x-3 y-7=0,2 x+p y+2=0$ and $6 x+5 y-1=0$
are concurrent .,

- Watch Video Solution

3. Find the ratio which the XZ -plane divides the line
joining $A(-2,3,4)$ and $B(1,2,3)$

D Watch Video Solution

4. Find the equation of the plane which makes intercepts
$1,2,4$ on the x, y, z - axes respectively.
5. Evaluate $L t_{x \rightarrow 0} \frac{x\left(e^{x}-1\right)}{1-\cos x}$

D Watch Video Solution

6. Compute $\lim _{x \rightarrow \infty} \frac{x^{2}+5 x+2}{2 x^{2}-5 x+1}$

- Watch Video Solution

7. If $f(x)=1+x+x^{2}+\ldots \ldots \ldots \ldots+x^{100}$, then find $f^{\prime}(1)$.
8. If $y=a e^{n x}+b e^{-n x}$, then prove that $y^{\prime \prime}=n^{2} y$.

D Watch Video Solution

9. If the increase in the side of a square is 4% then find the approximate percentage of increase in the area of the square.

(D) Watch Video Solution

10. Define the strictly increasing function and strictly decreasing function on an interval.
11. If the distance from ' P ' to the points $(2,3)$ and $(2,-3)$ are in the ratio $2: 3$, then find the equation of the locus of P.

D Watch Video Solution

2. When the axes rotated through an angegle $\frac{\pi}{4}$, find the transformed equation of $3 x^{2}+10 x y+3 y^{2}=9$.
3. If $Q(h, k)$ is the foot of the perpendicular of $P\left(x_{1}, y_{1}\right)$ on the line $a x+b y+c=0$ then prove that $\left(h-x_{1}\right), a=\left(k-y_{1}\right), b=-\left(a x_{1}+b y_{1}+c\right):\left(a^{2}+b^{2}\right)$

- Watch Video Solution

4.

Show
that
$f(x)=\left\{\begin{array}{l}\frac{\cos a x-\cos b x}{x^{2}} \\ \frac{1}{2}\left(b^{2}-a^{2}\right)\end{array}\right.$ if $x \neq 0$ is continuous at 0

D Watch Video Solution

5. Find the derivative of $\cos a x$ from the first Principle.

- Watch Video Solution

6. Find the equations of the tangent and the normal to
the curve $y=x^{3}+4 x^{2}$ at $(-1,3)$

- Watch Video Solution

7. Find the length of subtangent, subnormal at a point on the curve
$x=a(\cos t+\sin t), y=a(\sin t-t \cos t)$

- Watch Video Solution

1. Find the orthocentre of the triangle formed by the lines $x+2 y=0,4 x+3 y=5$ and $3 x+y=0$

- Watch Video Solution

2. Show that the product of the perpendicular from

$$
\begin{aligned}
& \text { (alpha,beta) to the pair of lines } \\
& S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \\
& \frac{\left|a \alpha^{2}+2 h \alpha \beta+2 g \alpha+2 f \beta+c\right|}{\sqrt{(a-b)^{2}+4 h^{2}}} \text { Hence or otherwise }
\end{aligned}
$$

find the product of the perpendicular from the origin
3. Find the angle between the lines joining the origin to the points of intersection of the curve $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and the line $3 x$ $y+1=0$.

- Watch Video Solution

4. Find the angle between the lines whose d.c's are related by $l+m+n=0 \& l^{2}+m^{2}-n^{2}=0$

- Watch Video Solution

5. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$ then prove that
$\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$.

- Watch Video Solution

6. The curves $a x^{2}+b y^{2}=1$ and $A x^{2}+B y^{2}=1$ intersect orthogonally, then

(D) Watch Video Solution

7. Find the positive integers x and y such that $x+y=60$ and $x y^{3}$ is maximum.
\square

