

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU ENGLISH)

IPE:MAY-2016(TS)

Questions

1. IF
$$A = \left[egin{array}{cc} 2 & 4 \\ -1 & k \end{array}
ight]$$
 and $A^2 = 0$ then find the value of k

2. Find the rank of
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Watch Video Solution

3. Let ar a=ar i+2ar j+3ar k&ar b=3ar i+ar j. Find a unit vector in the direction of ar a+ar b

Watch Video Solution

4. Find the vectore equation of the line passing through the point $2\bar{i}+\bar{j}+3\bar{k}$ parallel to vector $4\bar{i}-2\bar{j}+3\bar{k}$.

5. IF the vectors $2ar{i}+\lambdaar{j}-ar{k}, 4ar{i}-2ar{j}+2ar{k}$ are perpendicular to each other then find λ .

6. Find the maximum and minimum value of $f(x) = 3\cos x + 4\sin x$

7. Show that
$$\dfrac{1}{\sin 10^{\circ}}-\dfrac{\sqrt{3}}{\cos 10^{\circ}}=4$$

8. If $A=\{\,-\,2,\,-\,1,\,0,\,1,\,2\}\,$ and $\,f\!:\!A o B$ is a surjection defined by $f(x)=x^2+x+1$ then find B.

9. If
$$f(y)=rac{y}{\sqrt{1}-y^2},$$
 $g(y)=rac{y}{\sqrt{1+y^2}}$ then show that $fog(y)=y.$

10. IF $\sinh x=3/4$ then find $\cosh 2x$ and $\sinh 2x$.

11. If
$$I=\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
 and $E=\begin{bmatrix}0&1\\0&0\end{bmatrix}$ then show that $(aI+bE)^3=a^3I+3a^2bE$ where I is identify matrix of order 2.

Show that the four points

 $-ar{a}+4ar{b}-3ar{c},\,3ar{a}+2ar{b}-5ar{c},\,\,-3ar{a}+8ar{b}-5ar{c},\,\,-3ar{a}+2ar{b}+ar{c}$

13. Find the distance of a point (2,5,-3) from the planer r.(6i-

are coplanar, where
$$ar{a},\,ar{b},\,ar{c}$$
 are non-coplanar vectors.

12.

14. For
$$A \in R$$
, P.T (i)

$$\sin A \sin\Bigl(\frac{\pi}{3}+A\Bigr) \sin\Bigl(\frac{\pi}{3}-A\Bigr) = \frac{1}{4} \sin 3A \tag{ii}$$

$$\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = 3/16$$

15. Solve
$$\sqrt{2}(\sin x + \cos x) = \sqrt{3}$$

16. Prove that
$$2\sin^{-1}\left(\frac{3}{5}\right)-\cos^{-1}\frac{5}{13}=\cos^{-1}\left(\frac{323}{325}\right)$$
.

17. Prove that $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{s^2}{\Delta}$

Watch Video Solution

18. If $f\colon A o B$ is a bijective function then prove that

- (i) $fof^{-1}=I_B$
 - Watch Video Solution

- **19.** Using the principle of finite Mathematical Indcution prove that
- $2.3 + 3.4 + 4.5 + \dots$ upto n terms $= \frac{n(n^2 + 6n + 11)}{3}$

•

watch video Solution

$$\left|egin{array}{cccc} a+b+2c & a & & b \ c & & b+c+2a & b \ c & & a & & c+a+2b \end{array}
ight|=2(a+b+c)^3$$

21. By using Cramer's solve
$$x+y+z=1, \, 2x+2y+3z=6, \, x+4y+9z=3$$

22. IF
$$ar a=ar i-2ar j-3ar k,\,ar b=2ar i+ar j-ar k$$
 and $ar c=ar i+3ar j-2ar k$,find $ar a.$ $(ar b imesar c).$

23. IF A,B,C are angles of a triangle , Prove that $\cos 2A + \cos 2B + \cos 2C = -4\cos A\cos B\cos C - 1$

24. In a ΔABC if $r_1=8, r_2=12, r_3=24$ find a,b,c.

Section 1

1. Find the value of x, if the slope of the line passing through (2,5) and (x,3) is 2.

Watch Video Solution

2. Find the centroid of the tetrahedron whose vertices are (2,3,-4) (-3,3,-2),(-1,4,2), (3,5,1)

Watch Video Solution

3. Find the direction cosines of the normal to the plane

$$x + 2y + 2z - 4 = 0$$

- **4.** Evaluate $Lt_{x
 ightarrow 0} \frac{e^x \sin x 1}{x}$
 - Watch Video Solution

- 5. Is f defined by $f(x)=egin{cases} rac{\sin 2x}{x} & ext{if} & x
 eq 0 \ 1 & ext{if} & x=0 \end{cases}$ continuous0?
 - Watch Video Solution

- **6.** Find $\frac{d}{dx}(\sec\sqrt{\tan x})$.
 - Watch Video Solution

7. If $y = \sin^{-1}(\cos x)$ then find $\frac{dy}{dx}$

8. If the increase in the side of a square is 4% then find the approximate percentage of increase in the area of the square.

Watch Video Solution

9. Verify Rolle's theorem for the functions $f(x) = x(x+3)e^{-x/2}$ on [-3,0]

1. Find the equation of the locus of P, if A=(2,3), B=(2,-3) and

PA + PB = 8.

Watch Video Solution

2. Find the transformed equation of

 $3x^2+10xy+3y^2=9$ when the axes are rotated through an angle $rac{\pi}{4}$

Watch Video Solution

3. Find the equation of the line perpendicular to the line

3x + 4y + 6 = 0 and making intercept -4 on X-axis.

4. Find
$$\displaystyle rac{\operatorname{Lt}}{x o a} \left(rac{x \sin a - a \sin x}{x - a}
ight)$$

- **5.** If $y=a\cos(\sin x)+b\sin(\sin x)$ then prove that $y''+(\tan x)y'+y\cos^2 x=0.$
 - Watch Video Solution

- **6.** S.T the curves $6x^2-5x+2y=0, 4x^2+8y^2=3$ touch each other at $\left(\frac{1}{2},\frac{1}{2}\right)$.
 - **Natch Video Solution**

7. The volume of a cube is increasing at a rate of 8 cubie centimeters per second. How fast is the surface area increasing when the length of the edge is 12 cm?

Watch Video Solution

Section 3

1. Find the circumcentre of the triangle whose vertices are (1,3) (0,-2) and (-3,1).

2. Write down the equation of the pair of straight lines joining the origin to the points of intersection of the 6x-y+8=0 with the pair of straight lines $3x^2+4xy-4y^2-11x+2y+6=0$. Show that the lines so obtained make equal angles with the coordinates axes.

Watch Video Solution

3. If a line makes angles $\alpha,\beta,\lambda,\delta$ with the four diagonals of a cube, then show that $\cos^2\alpha+\cos^2\beta+\cos^2\lambda+\cos^2\delta=\frac{4}{3}.$

4. If $x^y + y^x = a^b$ then prove that

$$rac{dy}{dx} = \ -\left[rac{yx^{y-1}+y^x\log y}{x^y\log x+xy^{x-1}}
ight].$$

5. Find the length of subtangent subnormal at a pont t on the curve $x=a(\cos t+\sin t)y=a(\sin t-t\cos t)$

6. The profit function p(x) of a company, selling x items per day is given by p(x)=(150-x)x-1600. Find the number of items that the company should sell to get maximum profit. Also find the maximum profit.

