

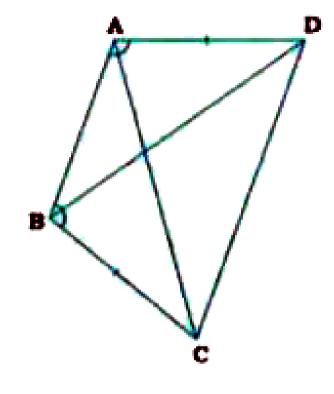
MATHS

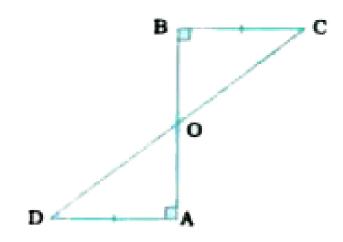
BOOKS - KUMAR PRAKASHAN KENDRA MATHS (GUJRATI ENGLISH)

TRIANGLES

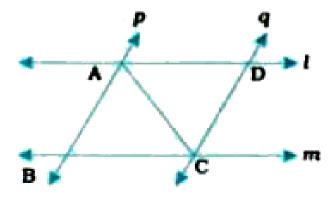
Exercise 7 1

1. In quadrilateral ACBD. AC = AD and AB bisects \angle A (see the given figure). Show that \triangle $ABC = \triangle$ ABD. What can you

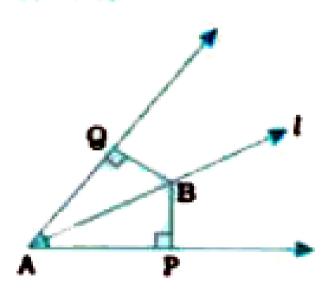

say about BC and BD?


2. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$ (see the given figure). Prove that (i)

$$riangle ABD = riangle BAC, (ii)BD = AC ext{ and } (iii) \angle ABD = \angle BAC$$

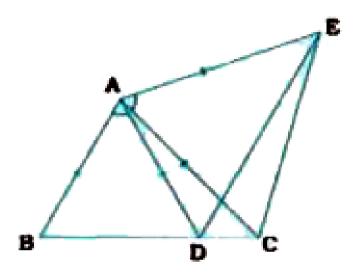


3. AD and BC are equal perpendiculars to a line segment AB (see the given figure) Show that CD bisects AB.

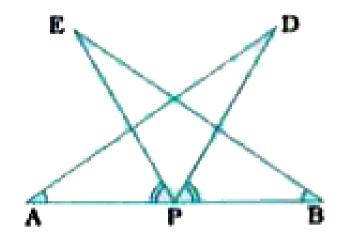

4. I and m are two parallel lines intersected by another pair of parallel lines p and show that $\ \triangle \ ABC = \ \triangle \ CDA$

5. Ray 1 is the bisector of an angle \angle A and B is any point on I. BP and BQ are perpendiculars from B to the arms of \angle A (see the given figure). Show that:

(i)
$$\triangle APB = \triangle AQB$$


(ii) BP = BQ or B is equidistant from the arms of $\angle A$

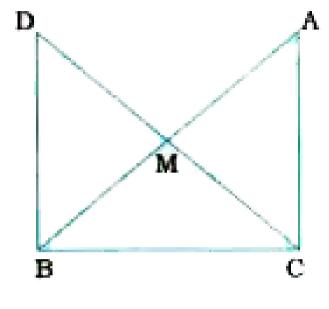
Watch Video Solution


6. In the given figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

Watch Video Solution

7. AB is a line segment and P is its midpoint. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see the given

figure). Show that:

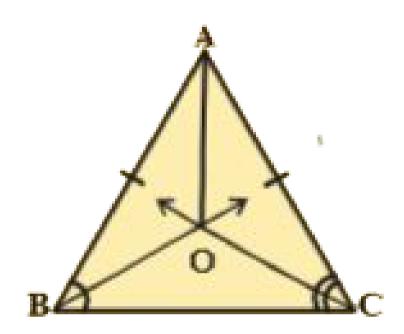

8. In right triangle ABC, right angled at C, M is the midpoint of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see the given figure). Show that:

(i)
$$\triangle AMC = \triangle BMD$$

(ii) $\angle DBC$ is a right angle

(iii)
$$\triangle$$
 $DBC = \triangle$ ACB

(iv)
$$CM=rac{1}{2}$$
 AB

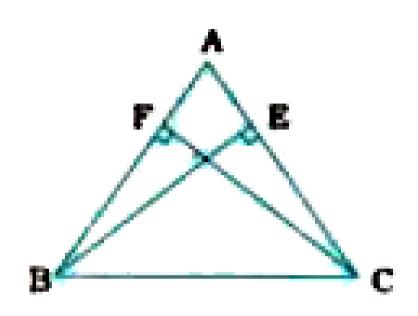


Exercise 7 2

1. In an isosceles triangle ABC, with AB = AC, the bisectors of

 $\angle B \ {
m and} \ \angle C$ intersect each other at O. Join A to O. Show that :

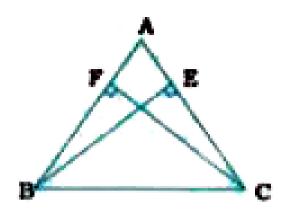
(i) OB = OC (ii) AO bisects $\angle A$


2. In \triangle ABC, AD is the perpendicular bisector of BC (see the given figure). Show that \triangle ABC is an isosceles triangle in

which AB = AB

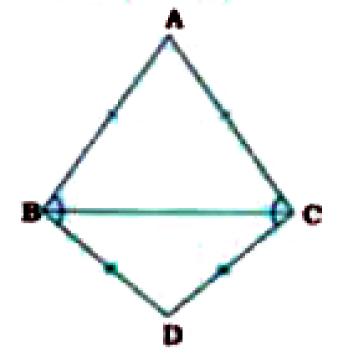
3. ABC is an isosceles trian gle in w h ich altitudes BE and CF are drawn to equal sides AC and AB respectively (see the given

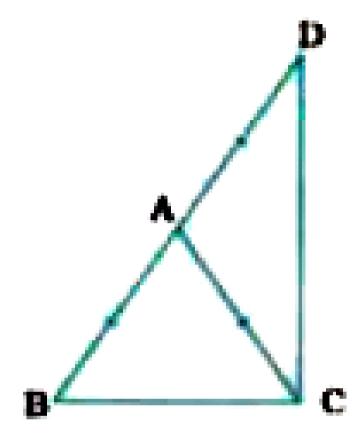
figure). Show that these altitudes are equal.



4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the given figure). Show that (i)

$$\triangle ABE \cong \triangle ACF$$


(ii) AB = AC i.e ABC is an isoceles triangle


5. ABC and DBC are two isosceles triangles on the same base BC

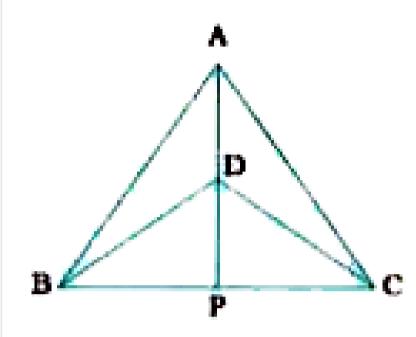
(see the given figure). Show that $\angle ABD = \angle ACD$.

6. \triangle ABC is an isosceles tr ia n g le in w h ich AB = AC. Side BA is produced to D such that AD = AB (see the given figure). Show

that \angle BCD is a right angle.

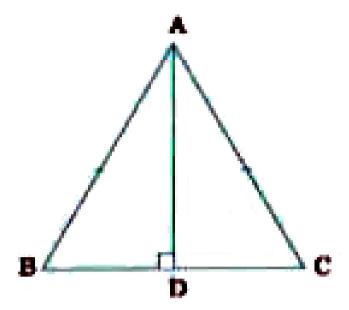
7. ABC is a right angled triangle in which $\angle A=90^\circ$ and AB =

AC. Find \angle B and \angle C.

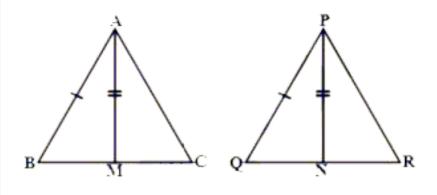

8. Show that the angles of an triangle are 60° each.

Exercise 7 3

1. \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see the given figure). If AD is extended to intersect BC at P, show that, (i) \triangle $ABD = \triangle$ ACD(ii) \triangle $ABP = \triangle$ ACP (iii) AP bisects \angle A as well as \angle D. (iv) AP is the perpendicular

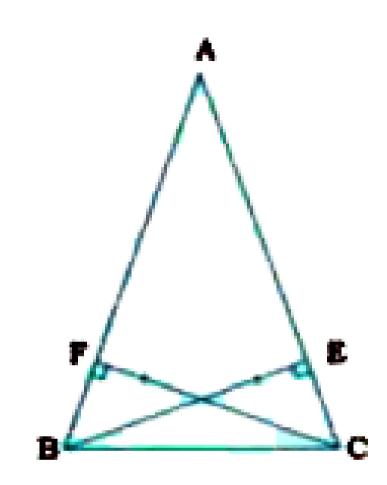

bisector of BC

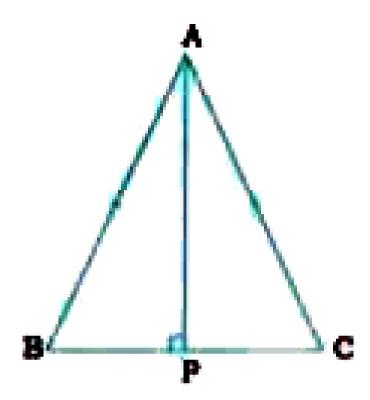
2. AD is an altitude of an isosceles triangle ABC in which AB = AC.


Show that: (i) AD bisects BC (ii) AD bisects \angle A

3. Two sides AB, BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (See figure). Show that:

 $(i)\Delta ABM\cong \Delta PQN$

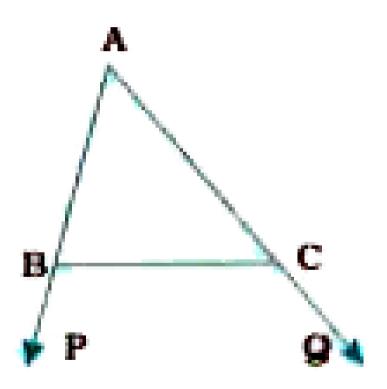

 $(ii)\Delta ABC\cong \Delta PQR$



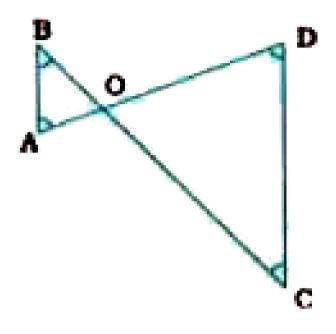
4. BE and CF are two equal altitudes of a triangle ABC. Using

RHS congruence rule, prove that the triangle ABC is isosceles.

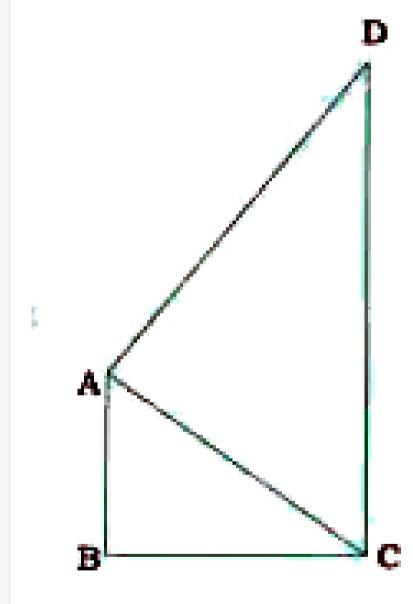
5. ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that $\angle B = \angle C$



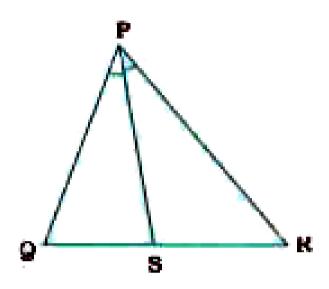
Exercise 7 4


1. Show that in a right angled triangle, the hypotenuse is the longest side.

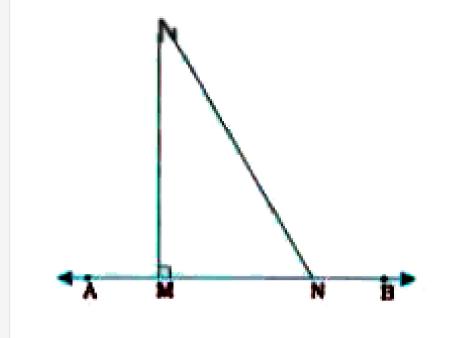
2. In the given figure, sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that AC > AB


3. In the given figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD

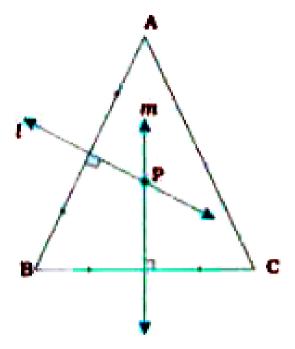
< BC.



4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see th e given figure). Show that $\angle A > \angle C$



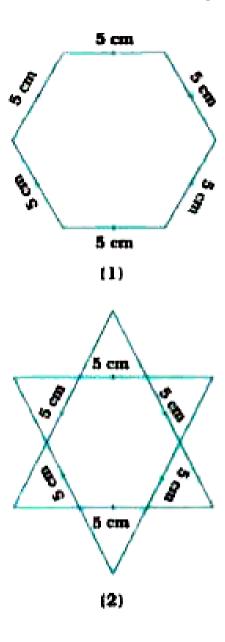
5. In the given figure, PR $\,>\,$ PQ and PS bisects $\, \angle \,$ QPR. Prove that $\, \angle PSR > \angle PSQ.$


6. Show that of all line segments drawn from a given point not on a given line, the perpendicular line segment is the shortest.

Exercise 7 5

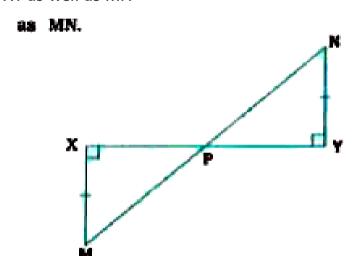
1. ABC is a triangle. Locate a point in the interior of \triangle ABC which is equidistant from all the vertices of \triangle ABC

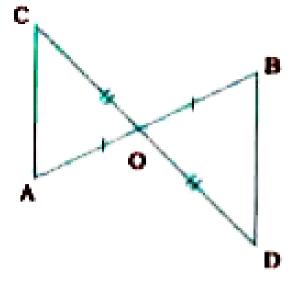
2. If the lengths of sides of right angled triangle are in A.P then the sines of the acute angles are


3. In a huge park, people are concentrated at three A points (see the given figure): A: where there are different slides and swings for children. B: near which a manmade lake is situated. C: which is near to a large parking and exit. Where should an ice cream parlour be set up so that maximum number of persons can approach it

View Text Solution

4. Complete the hexagonal and star shaped Rangolies [see figure (1) and (2) by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles

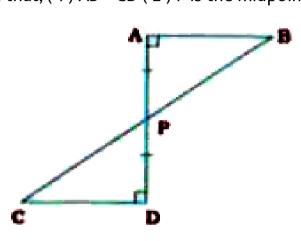

in each case. Which has more triangles?


Skill Testing Exercise

1. In the given figure, XM and YN are both < perpendicular to line segment XY and XM = YN. 4 Prove that P is the midpoint of XY as well as MN

Watch Video Solution

2. In the given figure AB and CD bisect each other at O. Prove that AC = BD.


3. In rectangle ABCD, E is the midpoint of side BC. Prove that, AE

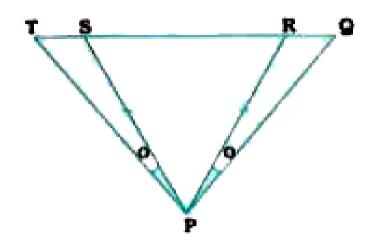
= DE.

Watch Video Solution

4. Prove that the medians of an equilateral triangle are equal.

5. In the given figure, AB and DC are both perpendicular to line segment AD. BC intersects AD at P and P is the midpoint of AD. Prove that, (1) AB = CD (2) P is the midpoint of BC.

6. In \triangle ABC, AB = AC and the bisector of $\angle A<$ intersects BC at D. Prove that, (1) \triangle ADB= \triangle $ADC(2)\angle ABC=$ $\angle ACB$


7. In \triangle ABC, the bisectors of \angle B and \angle C intersect at I. A line drawn through I and parallel to BC intersects AB at P and AC at O. Prove that PO = BP + CO.

8. In \triangle ABC, AB = AC and \angle A = 36° . The bisector of \angle C intersects AB at D. Find the measures of required angles to prove that AD = BC

9. In the given figure, PS = PR and \angle TPS = \angle QPR. Prove that PT = PQ.

10. In \triangle ABC, D is the midpoint of BC. DFZAB and DE \bot AC, where points F and E lie on AB and AC respectively. If DF = DE, prove that A ABC is an isosceles triangle.

11. In parallelogram ABCD, diagonals AC and BD are equal. Find the measure of \angle ABC and prove that the quadrilateral ABCD is a rectangle.

12. \triangle ABC and \triangle DBC are isosceles triangles on the same base BC. Prove that line AD bisects BC at right angles

13. AD, BE and CF are altitudes of \triangle ABC. If AD = BE = CF, prove that \triangle ABC is an equilateral triangle.

14. In quadrilateral ABCD, BA = BC and DA = DC. Prove that BD bisects / ABC as well as / ADC.

Watch Video Solution

15. In $\ \bigtriangleup \ ABC, AB > AC$ and D is any point of BC. Prove that, AB $\ > \$ AD.

16. In $\triangle ABC, AC > AB$. AB is extended to P and AC is extended to Q. Prove that, $\angle PBC < \angle QCB$.

17. In \triangle ABC, AD, BE and CF are altitudes. Prove I, that,

$$AD + BE + CF < AB + BC + CA$$

18. Point S lies in the interior of A PQR. Prove that, SQ + SR $\,<\,$

PQ + PR.

19. In \triangle ABC, AD is a median. Prove that AB + AC > 2AD

20. For any triangle, prove that the sum of the sides of the triangle is greater than the sum of the medians of the triangle.

Watch Video Solution

Multiple Choice Questions

1. In $\triangle ABC, \angle A=\angle C, AC=5$ and BC = 4. Then, the perimeter of \triangle ABC is

A. 9

B. 14

C. 13

D. 15

Answer: A::C

Watch Video Solution

2. In $\ \triangle$ PQR, PQ = PR, QR is extended to S and $\angle PRS = 110^{\circ}$.

Then, $\angle PQR$ =

- A. $30\,^\circ$
- B. 50°
- C. 80°
- D. 70°

Answer:

3. In $\triangle ABC$ and \triangle DEF, AB = DE, BC = EF and $\angle B = \angle E$. If the perimeter of \triangle ABC is 20, then the perimeter of \triangle DEF is

A. 10

B. 20

C. 15

D. 40

Answer: B

Watch Video Solution

4. In riangle ABC and $riangle PQR, AB = PQ, \angle A = \angle P$ an

$$\angle B = \angle Q$$
. If $\angle A + \angle C = 130^\circ$, then $\angle Q$ =

- A. 65°
- B. 130°
- C. 50°
- D. 100°

Answer:

- **5.** In \triangle PQR, $\angle P=\angle Q=\angle R$. If PQ = 6, then the perimeter of \triangle PQR is
 - A. 12
 - B. 9
 - C. 18

Answer: A

Watch Video Solution

6. In $\angle ABC, AB < AC$. Then, holds good

A.
$$\angle A < \angle B$$

B.
$$\angle B < \angle C$$

$$\mathsf{C}. \angle C < \angle A$$

D.
$$\angle C < \angle B$$

Answer: A::B::C

7. In \triangle $PQR, \angle R > \angle Q$. Then...... holds good.

$$\mathrm{A.}\,PQ>PR$$

$$\mathrm{B.}\,QR>PQ$$

$$\mathsf{C}.\,PR < PQ$$

$$\mathrm{D.}\,PQ>QR$$

Answer:

Watch Video Solution

8. In \triangle ABC, AB > BC and BC > AC. Then, the smallest angle of \triangle ABC is

A. $\angle A$

B. $\angle C$

 C . $\angle B$

D. $\angle A$ or $\angle C$

Answer: A::B

Watch Video Solution

9. cannot be the measures of the sides of a triangle.

A. 10,12,14

B. 2,3,4

C. 8,9,10

D. 2,4,10

Answer: A::B::D

10. In $\ \triangle\ PQR, PQ=4, QR=6$ and PR=5. Then, is the angle with greatest measure in $\ \triangle\ PQR$.

- A. $\angle P$
- B. $\angle Q$
- $\mathsf{C}. \angle R$
- D. $\angle QPR$

Answer: A

Watch Video Solution

11. In $\ \triangle\ XYZ, \angle X=45^\circ\$ and $\ \angle Z=60^\circ.$ Then, is the longest side of $\ \triangle\$ XYZ.

A. XY B. YZ C. XZ D. XY or YZ **Answer: Watch Video Solution 12.** BC A. AB B. BC C. CA D. AB or AC

Answer: B::C

View Text Solution

13. In $\triangle ABC, AB = 4$ holds good.

A. AC < 7

B. AC > 4

C.4 < AC < 7

D. 3 < AC < 11

Answer: A::C

View Text Solution

B. PR=10

 $\mathsf{C.}\,10>PR>4$

 $\mathrm{D.}\,7>PR>3$

Answer: A::D

Watch Video Solution

15. In $\triangle ABC$ the bisectors of $\angle B$ and $\angle C$ intersect at I if

$$\angle A = 70^{\circ}$$
 then $\angle BIC = \dots$

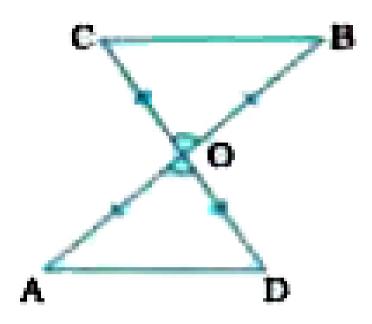
A. $35\,^\circ$

B. 75°

C. 100°

D. 125°

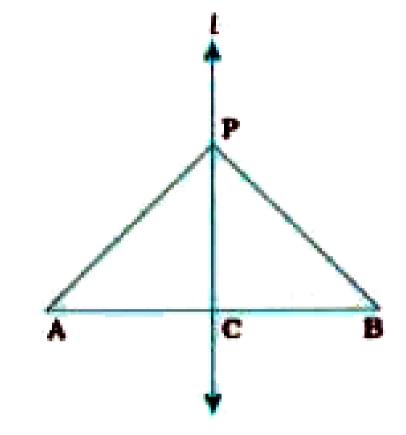
Answer: A::B



Watch Video Solution

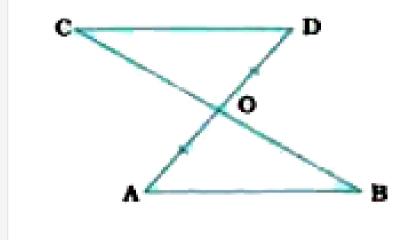
Sums To Enrich Remember

1. In the given figures, OA = OB and OD = OC. Show that


(i) \triangle $AOD = \triangle$ BOC and (ii) AD||BC

Watch Video Solution

2. AB is a line segment and line I is its perpendicular bisector. If a point P lies on I, show that P is equidistant from A and B.



Watch Video Solution

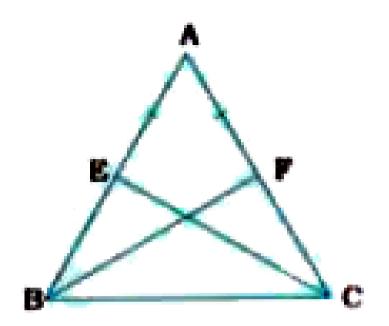
3. Line segment AB is parallel to another line segment CD. O is the midpoint of AD (see the given figure). Show that

(i)
$$\triangle = \triangle DOC$$

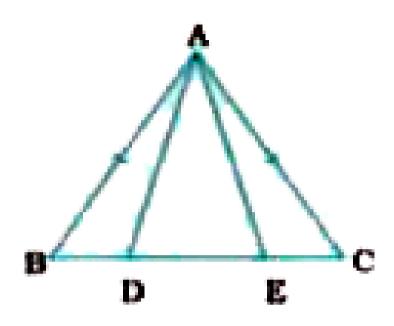
(ii) O is also the midpoint of BC

4. In \triangle ABC, the bisector AD of $\angle A$ is perpendicular to side

BC (see the given figure). Show that AB = AC and $\ \triangle \ ABC$ is

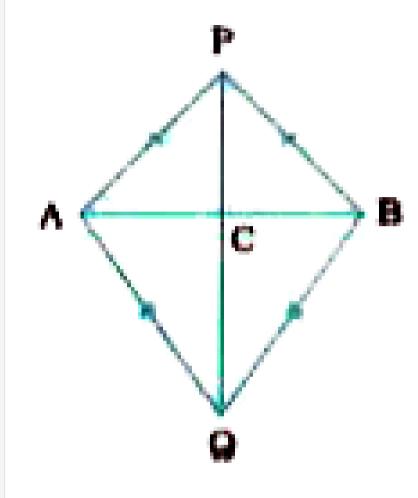

isosceles.

5. E and F are respectively the midpoints of equal sides AB and

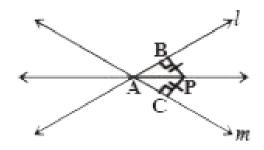

AC of \triangle ABC (see the given figure). Show that BF = CE.

0

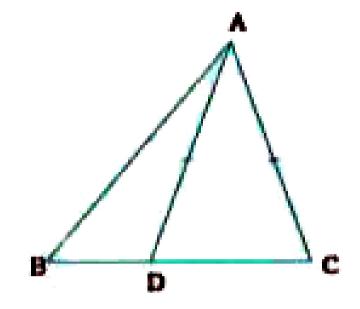
Watch Video Solution


6. In an isosceles triangle ABC with AB = AC, D and E are points on BC such that BE = CD (see the given figure). Show that AD = AE.

7. AB is a line segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B (see the given figure). Show that the line PQ is the


perpendicular bisector of AB.

Natch Video Solution


8. P is a point equidistant from two lines I and m intersecting at point A (see figure). Show that the line AP bisects the angle

between them.

9. D is a point on side BC of \triangle ABC such that AD = AC (see the given figure). Show that AB > AD.

