

India's Number 1 Education App

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU ENGLISH)

IPE:MAY-2018(TS)

Section A

1. If
$$f\!:\!R-\{0\} o R$$
 is defined by $f(x)=x^3-rac{1}{x^3}$, then S.T

$$f(x) + f(1/x) = 0.$$

- **2.** Find the domain of the real function $f(x)=rac{1}{(x^2-1)(x+3)}$
 - Watch Video Solution

3. IF $\begin{bmatrix} x-2 & 2y-8 \\ z+2 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ -2 & a-4 \end{bmatrix}$ then find the values of z,y,z

and a.

Watch Video Solution

4. IF
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 2 & 5 & 6 \\ 2 & m & 7 \end{bmatrix}$$
 is symmetric, find the value of x

5. IF the vectors $-3\bar{i}+4\bar{j}+\lambda\bar{k}, \mu\bar{i}+8\bar{j}+6\bar{k}$ are collinear vectors then find $\lambda \& \mu$.

Watch Video Solution

6. Find the shortest distance between the skew lines.

$$egin{aligned} ar{r} &= \left(6ar{i} + 2ar{j} + 2ar{k}
ight) + tig(ar{i} - 2ar{j} + 2ar{k}ig) \ ar{r} &= \left(-4ar{i} - ar{k}
ight) + s(3ar{i} - 2ar{j} - 2ar{k}ig) \end{aligned}$$

and

7. If
$$a\cos\theta-b\sin\theta=c,$$
 then show that $a\sin e\theta+b\cos=\pm\sqrt{a^2+b^2-c^2}$

8. Find the maximum and minimum value of $f(x) = 3\cos x + 4\sin x$

9. Find the equation of the straight line passing through (-4,5) and cutting off equal intercepts on the coordinate axes.

Find the distance parallel lines between the 5x - 3y - 4 = 0, 10x - 6y - 9 = 0.

10.

11. Find the coordinates of the vertex 'C' of ΔABC if its centroid is the origin and the vertices A,B are (1,1,1) are (-2,4,1) respectively.

12. Find the intercepts of the plane 4x + 3y - 2z + 2 = 0 on the coordinate axes.

14. Fvaluate:

$$Lt_{x o 3} rac{x^2 - 8x + 15}{x^2 - 9}$$

Watch Video Solution

15. If $f(x) = xe^x \sin x$ then find f'(x).

Watch Video Solution

16. If $y=e^{a\sin^{-1}x}$ then prove that $\frac{dy}{dx}=\frac{ay}{\sqrt{1-x^2}}$

Watch Video Solution

17. If the increase in the side of a square is 4% Then find the approximate percentage of increase in the area of the square.

18. Define Lagrange's Mean value theorem.

Watch Video Solution

Section B

1. IF
$$3A=\begin{bmatrix}1&2&2\\2&1&-2\\-2&2&-1\end{bmatrix}$$
 then show that $A^{-1}=A$ '.

Watch Video Solution

Show that the four points 2. $-ar{a} + 4ar{b} - 3ar{c}, \, 3ar{a} + 2ar{b} - 5ar{c}, \, -3ar{a} + 8ar{b} - 5ar{c}, \, -3ar{a} + 2ar{b} + ar{c}$ are coplanar, where $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors.

3. The vectors $\overline{AB}=3\overline{i}-2\overline{j}+2\overline{k}$ and $\overline{BC}=-\overline{i}-2\overline{k}$ represent adjacent sides of a parallelogram ABCD. Find the angle between the diagonals.

Solve

4. Show that $\cos^4 \frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4 \frac{5\pi}{8} + \cos^4 \frac{7\pi}{8} = \frac{3}{2}$

 $3\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 2\tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3}$

6. If $\sin \theta = \frac{a}{b+c}$ then show that $\cos \theta = \frac{2\sqrt{bc}}{b+c} \cos \left(\frac{A}{2}\right)$

5.

7. Find the equation of locus of a point such that the difference of whose distances from (-5,0) and (5,0) is 8

Watch Video Solution

8. When the axes are rotated through an angle 45° , the transformed equation of a curve is $17x^2-16xy+17y^2=225$. Find the original equation of the curve.

Watch Video Solution

9. A straight line through P(3,4) makes an angle of 60° with the positive direction of the X-axis. Find the coordinates of the points with the line whre are 5 units away from P.

10. If f is given by f(x)= $\begin{cases} k^2x-k & \text{if} \ x\geq 1 \\ 2 & \text{if} \ x<1 \end{cases}$ is a continuous function on R, then find k .

11. Find the derivative of $\cot x$ from the first principle.

12. Find the equations of tangent and normal to the curve xy = 10 at (2, 5)

13. The volume of a cube is increasing at a rate of 9 cubic centimeters per second. How fast is the surface area increasing when the length of edge is 10 cms?

Section C

1. If $f = \{(4,5), (5,6), (6,-4)\}, g = \{(4,-4), (6,5), (8,5)\}$ find (i) f+g

Watch Video Solution

2. Using the principle of finite Mathematical Induction prove that

$$1^{2}+\left(1^{2}+2^{2}
ight)+\left(1^{2}+2^{2}+3^{2}
ight)+......nterms=rac{n(n+1)^{2}(n+2)}{12},\ orall n$$

3. Show that
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^2 = \begin{vmatrix} 2bc - a^2 & c^2 & b^2 \\ c^2 & 2ac - b^2 & a^2 \\ b^2 & a^2 & 2ab - c^2 \end{vmatrix} = (a^3 + b^3 + c^3 - 3abc)^2$$

Solve 4. the

equations x + y + 3z = 5, 4x + 2y - z = 0, -x + 3y + z = 5 by matrix

inversion method.

5. IF A,B,C are angles in the triangle, then prove that $\cos A + \cos B - \cos C = -1 + 4\cos\frac{A}{2}.\cos\frac{B}{2}.\sin\frac{C}{2}$

6. In a ΔABC if $r_1=8, r_2=12, r_3=24$ find a,b,c.

7. Find the circumcentre of the triangle whose vertices are (1,3) (0,-2) and (-3,1).

8. Show that the product of the perpendicular from (alpha,beta) to the pair of lines
$$S\equiv ax^2+2hxy+by^2+2gx+2fy+c=0$$
 is
$$\frac{|a\alpha^2+2h\alpha\beta+2g\alpha+2f\beta+c|}{\sqrt{\left(a-b\right)^2+4h^2}}$$
 Hence or otherwise find the product of

the perpendicular from the origin

- **9.** Find the angle between the lines joining the origin to the points of intersection of the curve $x^2+2xy+y^2+2x+2y-5=0$ and the line 3x-y+1=0.
 - Watch Video Solution

10. If a line makes angles $lpha,\,eta,\,\lambda,\,\delta$ with the four diagonals of a cube, then show that $\cos^2lpha+\cos^2eta+\cos^2\lambda+\cos^2\delta=rac{4}{3}.$

11. If
$$y=\tan(\,-1)igg(rac{\sqrt{(1+x^2)}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}igg)$$
 then find $rac{dy}{dx}$.

12. IF the tangent at any point P on the curve $x^my^n=a^{m+n},\,mn\neq 0$ meets the coordinate axes in A.B then show that $AP\colon BP$ is a constant.

13. A wire of length I is cut into two parts which are bent respectively in the form of a square and a circle. What are the lengths of pieces of wire so that the sum of areas is least?

