© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU

ENGLISH)

PAIR OF LINES

Laq

1. If the equation $a x^{2}+2 h x y+b y^{2}=0$ represents a pair of lines then prove that the equation of the pair of angular bisection is $h\left(x^{2}-y^{2}\right)=(a-b) x y=0$.
2. Prove that the aea of the triangle formed by $y=x+c$ and the pair of lines $a x^{2}+2 h x y=b y^{2}=0$ is $\frac{e^{2} \sqrt{h^{2}-a b}}{|a+b+2 h|}$ sq. units.

- Watch Video Solution

3. Show that the product of the perpendicular from (alpha,beta) to the pair of lines

$$
S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \quad \text { is }
$$

$$
\frac{\left|a \alpha^{2}+2 h \alpha \beta+2 g \alpha+2 f \beta+c\right|}{\sqrt{(a-b)^{2}+4 h^{2}}} \text { Hence or otherwise find the }
$$

product of the perpendicular from the origin

(Watch Video Solution

4. Show that product of the perpendicular distances from origin to pair of lines represented by $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is
$\frac{|c|}{\sqrt{(a-b)^{2}+4 h^{2}}}$

(D) Watch Video Solution

5. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of lines then prove that

$$
\triangle=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0
$$

(D) Watch Video Solution
6. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of lines then prove that
$h^{2} \geq a b, f^{2} \geq b c, g^{2} \geq a c$.

- View Text Solution

7.	Prove	that
$3 x^{2}+7 x y+2 y^{2}+5 x+5 y+2=0$	represents a pair of	

straight lines. Find the point of intersection. Also find the angle between them.

- Watch Video Solution

8. S.T the equation $2 x^{2}-13 x y-7 y^{2}+x+23 y-6=0$ represents a pair of straight lines. Also find the angle between
them and the coordinates of the point of intersection of the lines.

(D) Watch Video Solution

9. Find k , if the equation $2 x^{2}+k x y-6 y^{2}+3 x+y+1=0$ represents a pair of lines. Find the point of intersection of the lines and angle between the lines for this value of k.

- Watch Video Solution

10. Find the centroid and area of triangle formed by the lines
$3 x^{2}-4 x y+y^{2}=0,2 x-y=6$.

- Watch Video Solution

11. Find the centroid and the area of the triangle formed by the lines $2 y^{2}-x y-6 x^{2}=0, x+y+4=0$

- Watch Video Solution

12. Find the centroid and the area of the triangle formed by the lines $12 x^{2}-20 x y+7 y^{2}=0,2 x-3 y+4=0$

- Watch Video Solution

13. Prove that the line $l x+m y+n=0$ and the pair of lines
$(l x+m y)^{2}-3(m x-l y)^{2}=0$ form an equilateral triangle and its area is $\frac{n^{2}}{\sqrt{3}\left(l^{2}+m^{2}\right)}$
14. Find the area of the triangle formed by the lines
$x^{2}-4 x y+y^{2}=0$ and $x+y=1$

- Watch Video Solution

15. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two parallel lines then prove that $h^{2}=a b$.

- Watch Video Solution

16. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two parallel lines then prove that $a f^{2}=b g^{2}$.
17. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two parallel lines then prove that the distance between the parallel lines is $2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$ or $2 \sqrt{\frac{f^{2}-b c}{b(a+b)}}$.

D Watch Video Solution

18. Show that the following equations represents a pair of parallel lines and also find the distance between them.
$8 x^{2}-24 x y+18 y^{2}-6 x+9 y-5=0$ represents a pair of parallel lines and find the distance between them.

D Watch Video Solution

19. If the pair of lines
$6 x^{2}-5 x y-6 y^{2}=0,6 x^{2}-5 x y-6 y^{2}+x+5 y-1=0$
form a square then area of square is

- Watch Video Solution

20. Show that two pairs of lines
$3 x^{2}+8 x y-3 y^{2}=0$ and $3 x^{2}+8 x y-3 y^{2}+2 x-4 y-1=0$
forms a square.

- Watch Video Solution

$$
\begin{aligned}
& \text { 21. If } \\
& \text { the } \\
& a x^{2}+2 h x y+b y^{2}=
\end{aligned}=0, a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \text { of }=0
$$

$(a-b) f g+h\left(f^{2}-g^{2}\right)=0$.

- Watch Video Solution

22. Find the angle between the lines joining the origin to the points of intersection of the curve $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and the line $3 x-y+1=0$.

- Watch Video Solution

23. Find the value if k, if the lines joining the origin with the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the $\mathrm{x}+2 \mathrm{y}=\mathrm{k}$ are mutually perpendicular .
24. If the straight lines joining the origion with the points of intersection of the curve $3 x^{2}-x y+3 y^{2}+2 x-3 y+4=0$
\& the line $2 x+3 y=k$ are perpendicular then prove that $6 k^{2}-5 k+52=0$.

- Watch Video Solution

25. Show that the lines joining the origin with the points of intersection of the curve
$7 x^{2}-4 x y+8 y^{2}+2 x-4 y-8=0 \quad$ with the line $3 x-y=2$ are mutually perpendicular.

(Watch Video Solution

26. Show that the lines joining the origin to the points of intersection of the curve $x^{2}+x y+y^{2}+3 x+3 y-2=0$ and the straight line $x-y-\sqrt{2}=0$ are mutually perpendicular.

D Watch Video Solution

27. Find the condition for the chord $1 x+m y=1$ of the circle $x^{2}+y^{2}=a^{2}$ to subtend a right angle at the origin.

(D) Watch Video Solution

28. Find the condition for the lines joining the origin to the points of intersection of the circle $x^{2}+y^{2}=a^{2}$ and the line $\mid x+m y=1$ to coincide.
29. Write down the equation of the pair of straight lines joining the origin to the points of intersection of the $6 x-y+8=0$ with the pair of straight lines $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0$. Show that the lines so obtained make equal angles with the coordinates axes.

- Watch Video Solution

30. Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$
31. If one jine of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes, then prove that $(a+b)^{2}=4 h^{2}$.

- Watch Video Solution

32. Show that the lines $(x+2 a)^{2}-3 y^{2}=0, x=a$ form an equilateral triangle.

- Watch Video Solution

33. Show that the straight lines represented by $3 x^{2}+48 x y+23 y^{2}=0,3 x-2 y+13=0 \quad$ form \quad an equilateral triangle of area $\frac{13}{\sqrt{3}}$ sq. units

$$
\begin{aligned}
& \text { 34. Show } \\
& x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0
\end{aligned} \text { and } 5 x+2 y-8=0 \text { the line }
$$

are concurrent.

- Watch Video Solution

35. Find the equation of the bisector of the acute angle between the lines $3 x-4 y+7=0,12 x+5 y-2=0$

D Watch Video Solution

> 36. Show that the straight
> $y^{2}-4 y+3=0$ and $x^{2}+4 x y+4 y^{2}+5 x+10 y+4=0$
form a parallelogram and find the length of its sides.

- Watch Video Solution

Miscellaneous

1. If two of the sides of a parallelogram are represented by $a x^{2}+2 h x y+b y^{2}=0$ and $p q+q y=1$ is one of its diagonals, prove that the other diagonal is
$y(b p-h q)=x(a q-h p)$.

(D) Watch Video Solution

2. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of lines, then show that the square of the distance of their point of intersection from the origin is
$\frac{c(a+b)-f^{2}-g^{2}}{a b-h^{2}}$. Also show that the square of this
distance is $\frac{f^{2}+g^{2}}{h^{2}+b^{2}}$ if the given lines are perpendicular.
