© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA PHYSICS (GUJRATI ENGLISH)

QUESTION PAPER 01

Section A

1. A particle has an initial velocity
$(12 \hat{i}+10 \hat{j}) m s^{-1}$ and an acceleration of

$(0.5 \hat{i}+0.6 \hat{j}) \mathrm{ms}^{-2}$. Its speed after 20 s is

- Watch Video Solution

2. Wind velocity is due to difference of

- Watch Video Solution

3. Match the following property :

Column I	Column II
1. Force 2. Momentum	a. ms^{-2} b. $\mathrm{kg} \mathrm{ms}^{-2}$ c. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$ d. $\mathrm{kg} \mathrm{ms}^{-1}$

D Watch Video Solution

4. The unifrom circular motion of an object is a constant acelerated motion, state whether this statement is true or false .

5. Wind velocity is due to difference of

D Watch Video Solution
6. Match the following property :

Column I	Column II
1. Force	a. ms^{-2}
2. Momentum	b. $\mathrm{kg} \mathrm{ms}^{-2}$ c. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$ d. $\mathrm{kg} \mathrm{ms}^{-1}$

D Watch Video Solution
7. The unifrom circular motion of an object is a constant acelerated motion, state whether this statement is true or false.

D Watch Video Solution

Section B

1. Safety (seat) belts are used to prevent accident while driving. Why ?
2. State Newton's third law of motion and explain giving an example.

- Watch Video Solution

3. Maganbhai completes a round, around the boundary of a square filed of length 20 meter , in 80 seconds. What would be his displacement form the origin position after 4 minute and 40 second?

- Watch Video Solution

4. Safety (seat) belts are used to prevent accident while driving. Why ?

- Watch Video Solution

5. State Newton's third law of motion and explain giving an example.

- Watch Video Solution

6. Maganbhai completes a round, around the boundary of a square filed of length 20 meter, in 80 seconds. What would be his displacement form the origin position after 4 minute and 40 second?

D Watch Video Solution

Section D

1. The mass of a car is 1200 kg . It comes to rest due to retardation of $2 m s^{-2}$.

What would be the force (frictional force) acting between the car and road ?

D Watch Video Solution

2. Define Interia. Clarify the term Interia giving practical example in daily life .

D Watch Video Solution

3. Derive the equations of motion by using

Velocity \rightarrow Time graph.
(a) $v=u+a t$ (b) $s=u t+\frac{1}{2} a t^{2}$

Where , $v=$ Final velocity of an object .
$u=$ Initial velocity of an object.
a = Acceleration of an object .
$\mathrm{t}=$ Time duration .

D Watch Video Solution

4. The mass of a car is 1200 kg . It comes to rest due to retardation of $2 m s^{-2}$.

What would be the force (frictional force) acting between the car and road ?

Watch Video Solution

5. Define Interia . Clarify the term Interia giving practical example in daily life .

- Watch Video Solution

