

India's Number 1 Education App

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU ENGLISH)

PROPERTIES OF TRIANGLES

Spq

1. Prove that $r + r_1 + r_2 - r_3 = 4R \cos C$

Watch Video Solution

2. In $\triangle ABC$, if AD, BE, CF are the perpendiculars drawn from the vertices A, B, C to the opposite sides, shot that

$$\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}=\frac{1}{r} \text{ and } (ii)AD.\ BE.\ CF=\frac{\left(abc\right)^2}{8R^3}=\frac{8\Delta^3}{abc}$$

3. If
$$\sin \theta = \frac{a}{b+c}$$
 then show that $\cos \theta = \frac{2\sqrt{bc}}{b+c} \cos \left(\frac{A}{2}\right)$

Watch Video Solution

4. In ΔABC show that

$$\sin^2 \cdot \frac{A}{2} + \sin^2 \cdot \frac{B}{2} + \sin^2 \cdot \frac{C}{2} = 1 - \frac{r}{2R}$$
 (ii)
$$\cos A + \cos B + \cos C = 1 + \frac{r}{R}$$

Watch Video Solution

5. Let an object be placed at some height h cm and let P and Q two points of observation which are at a distance 10 cm a part on a line inclined at angle 15° to the horizontal. If the angles of elevation of the object from P and Q are 30° and 60° respectively then find h.

1. Show that $\dfrac{\cos A}{a}+\dfrac{\cos B}{b}+\dfrac{\cos C}{c}=\dfrac{a^2+b^2+c^2}{2abc}$

- **2.** Prove that $\frac{a}{bc}+\frac{\cos A}{a}=\frac{b}{ca}+\frac{\cos B}{b}=\frac{c}{ab}+\frac{\cos C}{c}$
 - Watch Video Solution

- **3.** Prove that $\cot A + \cot B + \cot C = \frac{a^2 + b^2 + c^2}{4\Lambda}$
 - Watch Video Solution

- **4.** In $\triangle ABC$, if $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$ then show that $C=60^\circ$
 - Watch Video Solution

5. If $C=60^{\circ}$, then show that $\frac{a}{b+c}+\frac{b}{c+a}=1$

- **6.** In a ΔABC if $a\!:\!b\!:\!c=7\!:\!8\!:\!9$ then show that $\cos A\!:\!\cos B\!:\!\cos C=14\!:\!11\!:\!6$
 - Watch Video Solution

- **7.** Show that $a^2 \cot A + b^2 \cot B + c^2 \cot C = \frac{abc}{R}$
 - Watch Video Solution

- **8.** Prove that $\dfrac{1+\cos(A-B)\cos C}{1+\cos(A-C)\cos B}=\dfrac{a^2+b^2}{a^2+c^2}$
 - **Watch Video Solution**

9. Show that $b^2 \sin 2C + c^2 \sin 2B = 2bc \sin A$

10. In a ΔABC if $a\cos A=b\cos B$ the prove that triangle is either isosceles or right angled .

11. In $\triangle ABC$ show that $(a+b+c)\bigg(an.~rac{A}{2}+ an.~rac{B}{2}\bigg)=2\cot.~rac{C}{2}$

12. If $\frac{\cot A}{2}$: $\cot \frac{B}{2}$: $\cot \frac{C}{2} = 3:5:7$ then show that a:b:c=6:5:4.

13. Prove that $\cot. \, rac{A}{2} + \cot. \, rac{B}{2} + \cot. \, rac{C}{2} = rac{s^2}{\Delta}$

14. Prove that an. $rac{A}{2}+ an.$ $rac{B}{2}+ an.$ $rac{C}{2}=rac{bc+ca+ab-s^2}{\Lambda}$

15. If \cot . $\frac{A}{2}+\cot$. $\frac{B}{2}+\cot$. $\frac{C}{2}$ are in A.P , then prove that a, b, c are in

16. If \sin^2 . $\frac{A}{2}+\sin^2$. $\frac{B}{2}+\sin^2$. $\frac{C}{2}$ are in H.P , show that a , b, c are in H.

Р

A.P

17. In ΔABC prove that $an\!\left(rac{B-C}{2}
ight)=rac{b-c}{b+c}\!\cot.rac{A}{2}$

18. Show that
$$\dfrac{1}{r^2}+\dfrac{1}{r_1^2}+\dfrac{1}{r_2^2}+\dfrac{1}{r_3^2}=\dfrac{a^2+b^2+c^2}{\Delta^2}$$

Laq

- **1.** Show that $r(r_1 + r_2 + r_3) = ab + bc + ca s^2$.
 - **Watch Video Solution**

- **2.** Prove that $\frac{r_1(r_2+r_3)}{\sqrt{r_1r_2+r_2r_2+r_2r_1}}=a$
 - Watch Video Solution

- **3.** Prove that $4(r_1r_2 + r_2r_3 + r_3r_1) = (a+b+c)^2$
- Watch Video Solution

- **4.** Prove that $\left(\frac{1}{r}-\frac{1}{r_1}\right)\left(\frac{1}{r}-\frac{1}{r_2}\right)\left(\frac{1}{r}-\frac{1}{r_3}\right)=\frac{abc}{\Delta^3}=\frac{4R}{r^2s^2}$
 - Watch Video Solution

- **5.** Show that $(r_1+r_2)\mathrm{sec}^2$. $\frac{C}{2}=(r_2+r_3)\mathrm{sec}^2$. $\frac{A}{2}=(r_3+r_1)\mathrm{sec}^2$. $\frac{B}{2}$
 - View Text Solution

- **6.** Show that $r_1+r_2+r_3-r=4R$
 - Watch Video Solution

7. Show that $r+r_3+r_1-r_2=4R\cos B$.

8. If
$$A,A_1,A_2,A_3$$
 are the areas of incircle and ex-circle of a triangle respectively then prove that $\frac{1}{\sqrt{A_1}}+\frac{1}{\sqrt{A_2}}+\frac{1}{\sqrt{A_3}}=\frac{1}{\sqrt{A}}$

In

a

$$\Delta ABC$$
 if $a=13, b=14, c=15$ then show that $R=rac{65}{8}, r=4, r_1=$

9.

10. In a ΔABC if $r_1 = 8, r_2 = 12, r_3 = 24$ find a, b,c .

12. In
$$\triangle ABC$$
 prove that $\frac{r_1}{bc} + \frac{r_2}{ca} + \frac{r_3}{ab} = \frac{1}{r} - \frac{1}{2R}$

13. In
$$\triangle ABC$$
, show that $\frac{ab-r_1r_2}{r_3}=\frac{bc-r_2r_3}{r_1}=\frac{ca-r_3r_1}{r_2}$

$$rac{1}{p_1} + rac{1}{p_2} + rac{1}{p_3} = rac{1}{r}$$

15. If
$$P_1,\,P_2,\,P_3$$
 are altitudes of a ΔABC then show that

14. If p_1, p_2, p_3 are altitudes of a ΔABC then show that

$$rac{1}{P_1} + rac{1}{P_2} - rac{1}{P_3} = rac{1}{r_3}$$

16. If $P_1,\,P_2,\,P_3$ are altitudes of a ΔABC then show that

$$P_1 P_2 P_3 = \frac{(abc)^2}{8R^3} = \frac{8\Delta^3}{abc}$$

17. In
$$\Delta ABC$$
 , with usual notation show that
$$\frac{(a+b+c)^2}{a^2+b^2+c^2}=\frac{\cot.\frac{A}{2}+\cot.\frac{B}{2}+\cot.\frac{C}{2}}{\cot A+\cot B+\cot C}$$

18. If $a=(b+c)\cos\theta$, then prove that $\sin\theta=\frac{2\sqrt{bc}}{b+c}\cos\left(\frac{A}{2}\right)$

20. In
$$\triangle ABC$$
 prove that $a\cos^2 \cdot \frac{A}{2}b\cos^2 \cdot \frac{B}{2}c\cos^2 \cdot \frac{C}{2} = s + \frac{A}{R}$

Laq Saq Vsaq 2 Dhardq 3 Dmis Q

1. If
$$\frac{a^2+b^2}{a^2-b^2}=\frac{\sin C}{\sin(A-B)}$$
 , then S.T . ΔABC is either isoceles or right angled triangle .

2. In a riangle ABC if $a^2+b^2+c^2=8R^2$ then show that riangle ABC is a right angled triangle.

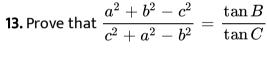
- **3.** In $\triangle ABC$ show that $\sum a^3 \cos(B-C) = 3abc$
 - Watch Video Solution

- **4.** In $\triangle ABC$ prove that $\cos^2 \cdot \frac{A}{2} + \cos^2 \cdot \frac{B}{2} + \cos^2 \cdot \frac{C}{2} = 2 + \frac{r}{2R}$
 - **Watch Video Solution**

- **5.** If P_1,P_2,P_3 are the altitudes of the ΔABC then , show that $\frac{1}{P_1^2}+\frac{1}{P_2^2}+\frac{1}{P_3^2}=\frac{\cot A+\cot B+\cot C}{\Delta}$
 - Watch Video Solution

- **6.** In $\triangle ABC$ prove that $(b-c)^2\cos^2$. $\frac{A}{2}+(b+c)^2\sin^2$. $\frac{A}{2}=a^2$
 - **Natch Video Solution**

7. Show that
$$\frac{c-b\cos A}{b-c\cos A}=\frac{\cos B}{\cos C}$$


- **8.** If b +c =3a , then find the value of \cot . $\frac{B}{2}$ \cot . $\frac{C}{2}$
 - Watch Video Solution

- **9.** Show that $2(\operatorname{bc}\cos A + \operatorname{ca}\cos B + \operatorname{ab}\cos C) = a^2 + b^2 + c^2$.
 - Watch Video Solution

- **10.** Prove that $a(b\cos C c{\cos}B) = b^2 c^2$
 - Watch Video Solution

12. If
$$\tan \frac{A}{2} = \frac{5}{6}$$
 and $\tan \frac{C}{2} = \frac{2}{5}$ then determine the relation between a, b,c

- **14.** What is the value of r/R in an equilateral triangle .
 - Watch Video Solution

Watch Video Solution

15. If $rr_2 = r_1r_3$ then find B.

16. Express $\sum r_1 \cot \frac{A}{2}$ interms of s .

17. Show that $rr_1\cot.rac{A}{2}=\Delta.$

18. In ΔABC , show that the sides a, b, c are in A.P ., if and only if $r_1,\,r_2,\,r_3$ are in H.P

19. If the lengths of the sides of a triangle are 3 , 4,5 find the circumradius of the triangle .

20. If the sides of a triangle are 13,14,15, then find circum diameter.

21. If a=6, b=5, c=9 then angle A.

22. If a = 2, b = 3 c=4 then find cos A.

23. Show that $\sum{(b+c)\cos{A}}=2s$ Prove that

$$(b+c)\cos A + (c+a)\cos B + (a+b)\cos C = a+b+c$$

24. If (a+b+c) (b+c-a) = 3bc then find angle A.

25. In ΔABC prove that $(b-c)^2\cos^2$. $rac{A}{2}+(b+c)^2\sin^2$. $rac{A}{2}=a^2$

26. If an. $rac{C-A}{2}=k\cot.rac{B}{2}$ then find k .

27. Show that $\frac{c-b\cos A}{b-c\cos A}=\frac{\cos B}{\cos C}$

29. If
$$\cot$$
. $\frac{A}{2}=\frac{b+c}{a}$ find angle B

30. Show that
$$b^2 \sin 2C + c^2 \sin 2B = 2bc \sin A$$

31. In
$$\Delta ABC$$
 show that $\dfrac{b^2-c^2}{a^2}=\dfrac{\sin(B-C)}{\sin(B+C)}$

32. Show that a
$$\cos A + b \cos B + c \cos C = rac{2\Delta}{R}$$

33. Show that $a^2\sin 2C + c^2\sin 2A = 4\Delta$

34. In ΔABC , prove that $\dfrac{1}{r_1}+\dfrac{1}{r_2}+\dfrac{1}{r_3}=\dfrac{1}{r}.$

Watch Video Solution

35. Show that $rr_1r_2r_3=\Delta^2$

36. If $A=90^{\circ}$, show that 2(r+R)=b+c

37. If s = 12 and $A=90^\circ$ then find the value of r_1

38. If a = 18 , b=24 , c=30 , find
$$r_1$$
 .

39. If a , b, c are in A .P ., then show that 3 an. $\frac{A}{2} an.$ $\frac{C}{2}=1$

40. If $a\cos^2$. $\frac{C}{2}+c\cos^2\frac{A}{2}=\frac{3b}{2}$, then show that a, b , c are in A.P

41. Two tress A and B are on the same side of a river . From a point C in the river the distane of the tress A and B are 250m and 300m respectively

. If the angle C is $45\,^\circ$ find the distances between the tress (use

$$\sqrt{2}=1.414$$
)

42. The upper $3/4^{th}$ portion of a vertical pole subtends an angle $\tan^{-1}(3/5)$ at a point in the horizontal plane through its foot and at a distance 40 m from the foot . Given that the vertical pole is at a height less than 100m from the gound ,find its height .

43. AB is a vertical pole with B at the ground level and and A at the top .A man finds that the angle of elevation of the point A from a certain point C on the ground is 60° . He moves away from the pole along the line BC to a point D such that CD = 7 m .From D . the angle of elevation of the point A is 45° . Find the height of the pole .

44. The angle of elevation of the toop point P of the vertical tower PQ of height h from a point A 45° and from a point B is 60° , where B is a point at a distance 30 meters from the point A measured along the line AB which makes an angle 30° with AQ . Then the height of the tower is.

