© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - TELUGU ACADEMY MATHS (TELUGU ENGLISH)

SOLVED MODEL PAPER -5

Section A

1. Find the ratio in which the straight line $2 x+3 y-5=0$ divides the line joining the points $(0,0)$ and $(-2,1)$.

D Watch Video Solution
2. Find the equation of the straight lines passing through $\left(\begin{array}{ll}x_{0} & y_{0}\end{array}\right)$
parallel
3. Find the equation of the straight lines passing through ($\left.\begin{array}{ll}x_{0} & y_{0}\end{array}\right)$ perpendicular to the straight line $a x+b y+c=0$

- View Text Solution

4. Find the distance between the mid point of the line segment $\overline{A B}$ and the point $(3,-1,2)$ where $\mathrm{A}=(6,3,-4), \mathrm{B}=(-2,-1,2)$.

- Watch Video Solution

5. Find the equation of the plane through $(-1,6,2)$ are perpendicular to the join of ($1,2,3$) and ($-2,3,4$).
6. Evalute $\mathrm{Lt} \quad \sin (x-1)$
7. Evalute $\underset{x \rightarrow 1}{ } \frac{\sin (x-1)}{x^{2}-1}$

- Watch Video Solution

7. Show that:
$L t_{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}=\frac{2}{3 \sqrt{3}}$

- Watch Video Solution

8. Find the derivative of $\cos ^{-1}\left(4 x^{3}-3 x\right)$ w.r.to x .

Watch Video Solution

9. If $y=\tan ^{-1}(\sin \sqrt{x})+\operatorname{cosec}^{-1}\left(e^{2 x+1}\right)$, then $\frac{d y}{d x}=$
10. The diameter of a sphere is measured to be 40 cm . If an error of 0.02 cm is made in it, then find approximate errors in volume and surface area of the sphere.

- Watch Video Solution

11. Verify mean value theorem for the function $f(x)=x^{2}$ on $[2,4]$

(D) Watch Video Solution

Section B

1. Find the equation of locus of a point, the sum of whose distances from $(0,2)$ and $(0,-2)$ is 6 .

- Watch Video Solution

2. Find the incentre of the triangle whose vertices are $(1, \sqrt{3}),(2,0)$ and $(0,0)$

- View Text Solution

3. Show that $f(x)=\sin x$ is continuous on R.

- Watch Video Solution

4. Find the derivative of $a x^{2}+b x+c$ from the first principle.

- Watch Video Solution

5. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?
6. Find the value of k, so that the length of the subnormal at any point on the curve $x y^{k}=a^{k+1}$ is a constant.

D Watch Video Solution

Section C

1. Find the area of the parallelogram whose sides are $3 x+4 y+5=0,3 x+4 y-2=0,2 x+3 y+1=0,2 x+3 y-7=0$

- Watch Video Solution

2. If θ is the angle between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ then prove that $\cos \theta=\frac{a+b}{\sqrt{(a-b)}+4 h^{2}}$
3.

$y^{2}-4 y+3=0$ and $x^{2}+4 x y+4 y^{2}+5 x+10 y+4=0$ form a parallelogram and find the length of its sides.

D Watch Video Solution

4. Find the direction cosines of the two lines which are connected by the relations $\mathrm{I}+\mathrm{m}+\mathrm{n}=0$ an $\mathrm{mn}-2 \mathrm{nl}-2 \mathrm{~lm}=0$.

- Watch Video Solution

5.

$f(x)=\left(a^{2}-b^{2}\right)^{-1 / 2} \cdot \cos ^{-1}\left(\frac{a \cos x+b}{a+b \cos x}\right) a>b>0$ and $0<x<\pi$
,then S.T $f^{\prime}(x)=(a+b \cos x)^{-1}$.

- Watch Video Solution

6. Find the angle between the curves $y^{2}=8 x$ and $4 x^{2}+y^{2}=32$.

- View Text Solution

7. Find the positive integers x and y such that $x+y=60$ and $x y^{3}$ is maximum.
