©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - VK JAISWAL CHEMISTRY (HINGLISH)

CHEMICAL BONDING (BASIC)

Level 1

1. The correct order of boiling point is :

(I)

(II)

(III)
A. $I>I I>I I I$
B. $I I I>I I>I$
C. $I I>I>I I I$
D. $I I I>I>I I$

Answer: B

- Watch Video Solution

2. Which of the following is not true about $\mathrm{H}_{2} \mathrm{O}$ molecule ?
A. The molecule has $\mu=0$
B. The molecule can act as a base
C. Shows abnormally high boiling point in comparison to the hydrides of other elements of oxygen group
D. The molecule has a bent shape

Answer: A

3. The boiling points at atmospheric pressure of $\mathrm{HF}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}$ can be arranged in the following order :
A. $\mathrm{HF}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{NH}_{3}$
C. $\mathrm{HF}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}$
D. $\mathrm{HF}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}$

Answer: A

- Watch Video Solution

4. The correct order of strength of H - bond in the following compound
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{~S}$
C. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}_{2}$
D. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{~S}$

Answer: D

- Watch Video Solution

5. Which compound has electrovalent, covalent, co-ordinate as well as hydrogen bond?
A. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: A

- Watch Video Solution

6. Which statement is correct ?
A. m.p. of $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ are maximum in their respective group due to intermolecular H -Bonding
B. b.p. of CH_{4} out of $\mathrm{CH}_{4}, \mathrm{SiH}_{4}, \mathrm{GeH}_{4}$ and SnH_{4} is least due to weak intermolecular force of attraction
C. formic acid forms dimer by H -bonding
D. all are correct

Answer: D

- Watch Video Solution

7. Which of the following molecules are expected to exhibit intermolecular H -bonding ?
(I) Acetic acid ((II) o-nitrophenol (III) m-nitrophenol (IV)o-boric acid Select correct alternate :
A. I, II, III
B. I,II,IV
C. I,III,IV
D. II,III,IV

Answer: C

- Watch Video Solution

8. Which of the following compounds can form H -bonding with each other?
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{O}$
B. Phenol and CH_{4}
C. CHF_{3} and acetone
D. PH_{3} and HF

Answer: A

9. $B F_{3}$ and $N F_{3}$ both are covalent compounds but $N F_{3}$ is polar whereas $B F_{3}$ is non-polar. This is because :
A. Nitrogen atom is smaller than boron atom
B. N-F bond is more polar than B-F bond
C. $N F_{3}$ is pyramidal whereas $B F_{3}$ is planar triangular
D. $B F_{3}$ is electron deficient whereas $N F_{3}$ is not

Answer: C

- Watch Video Solution

10. Dipole moment of $N F_{3}$ is smaller than :
A. NH_{3}
B. CO_{2}
C. $B F_{3}$
D. CCl_{4}

Answer: A

- Watch Video Solution

11. Which of the following molecules will have polar bonds but zero dipole moment?
A. O_{2}
B. CHCl_{3}
C. $C F_{4}$
D. none of these

Answer: C

12. Which has maximum dipole moment?

A.

B.

C.

Cl
D.

Answer: B

D Watch Video Solution

13. Which of the following compound is planar and non-polar ?
A. XeO_{4}
B. $S F_{4}$
C. XeF_{4}
D. $C F_{4}$

Answer: C

- Watch Video Solution

14. $\mathrm{H}_{2} \mathrm{O}$ has a net dipole moment while BeF_{2} has zero dipole moment because :
A. F is more electronegativity than oxygen
B. Be is more electronegativity than oxygen
C. $\mathrm{H}_{2} \mathrm{O}$ molecule is linear and $\mathrm{Be} F_{2}$ is bent
D. BeF_{2} molecule is linear and $\mathrm{H}_{2} \mathrm{O}$ is bent

Answer: D

- Watch Video Solution

15. Correct set of species with zero dipole moment is :
(i) CO_{2} (ii) COCl_{2}
(iii) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(iv) $B C l_{3}$
A. I and iv
B. ii and iv
C. iii and iv
D. I, iii and iv
16. Which pair of molecules are polar species ?
A. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
B. $B F_{3}$ and PCl_{3}
C. SO_{2} and SCl_{2}
D. CS_{2} and SO_{3}

Answer: C

- Watch Video Solution

17. In which molecule does the chlorine have the most positive partial charge?
A. HCl
B. BrCl
C. Ocl_{2}
D. $S C l_{2}$

Answer: C

- Watch Video Solution

18. Which of the following attraction is strongest ?
A.

B. $\mathrm{CHCl}_{3}:=\mathrm{CHCl}_{3}$
c.

D.

Answer: D

- View Text Solution

19. Which is distilled first ?
A. Liquid H_{2}
B. Liquid CO_{2}
C. Liquid O_{2}
D. Liquid N_{2}

Answer: A

- Watch Video Solution

20. Molecular size of $I C I$ and $B r_{2}$ is nearly same but $b . p t$. of $I C I$ is about 40° higher than $B R_{2}$. This is due to :
A. Icl bond is stronger than $\mathrm{Br}-\mathrm{Br}$ bond
B. IE of iodine $<$ IE of bromine
C. Icl is polar while $B r_{2}$ is nonpolar
D. I has larger size than Br

Answer: C

- Watch Video Solution

21. Which of the following order of molecular force of attraction among given species is incorect ?
A. $\mathrm{HI}>\mathrm{HBr}>\mathrm{Cl}_{2}$
B. $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CCl}_{4}>\mathrm{CH}_{4}$
C. n-pentane $>$ iso-pentane $>$ neo-pentane
D. $\mathrm{OH}_{2}>\mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{OBr}_{2}$

Answer: D

- Watch Video Solution

22. Which gas should not be collected over water because of its high solubility in water ?
A. H_{2}
B. N_{2}
C. CH_{4}
D. HCl

Answer: D

D Watch Video Solution

23. Low melting point is expected for a solid:
A. Ionic solid
B. Metallic solid
C. Molecular solid
D. Covalent solid

Answer: C

24. Which substance has the strongest London dispersion forces ?
A. SiH_{4}
B. CH_{4}
C. SnH_{4}
D. GeH_{4}

Answer: C

- Watch Video Solution

25. Which of the following compounds has the lowest boiling point ?
A. HF
B. HCl
C. HBr
D. HI

Answer: B

- Watch Video Solution

26. When the substances $\mathrm{Si}, \mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ are arranged in order of increasing melting point, what is the correct order ?
A. $\mathrm{Si}, \mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}$
B. $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{Si}, \mathrm{KCl}$
C. $\mathrm{KCl}, \mathrm{Si}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{OH}$
D. $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{KCl}, \mathrm{Si}$

Answer: D

- Watch Video Solution

27. Which substance has the highest melting point ?
A. CO
B. CO_{2}
C. SiO_{2}
D. $\mathrm{P}_{2} \mathrm{O}_{5}$

Answer: C

- Watch Video Solution

28. How many $s p^{2}$ and sp-hybridised carbon atoms are present respectively in the following compound ?

A. 4,2
B. 6,0
C. 3,3
D. 5,1

Answer: B

- Watch Video Solution

29. Which of the following is a correct set with respect to molecule, hybridization, and shape?
A. $B e C l_{2}, s p^{2}$, linear
B. $B e C l_{2}, s p^{2}$, triangular planar
C. $B C l_{3}, s p^{2}$, triangular planar
D. $B C l_{3}, s p^{3}$, tetrahedral

Answer: C

- Watch Video Solution

30. Hybridisation of central atom in ICl_{2}^{+}is
A. $d s p^{2}$
B. $s p$
C. $s p^{2}$
D. $s p^{3}$

D Watch Video Solution

31. The state of hybridization of the central atom is not the same as in the others :
A. B in $B F_{3}$
B. O in $\mathrm{H}_{3} \mathrm{O}^{+}$
C. N in NH_{3}
D. P in PCl_{3}

Answer: A

- Watch Video Solution

32. The number of $s p^{2}-s$ sigma bonds in benzene are
A. 3
B. 6
C. 12
D. none of these

Answer: B

- Watch Video Solution

33. The hybridization of the central atom will change when :
A. NH_{3} combines with H^{+}
B. $\mathrm{H}_{3} \mathrm{BO}_{3}$ combines with OH^{-}
C. NH_{3} forms NH_{2}^{-}
D. $\mathrm{H}_{2} \mathrm{O}$ combines with H^{+}

Answer: B

34. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ has hybridisation :
A. $s p, s p, s p^{2}, s p^{2}$
B. $s p^{3}, s p^{3}, s p^{2}, s p$
C. $s p^{3}, s p^{3}, s p^{2}, s p^{2}$
D. $s p^{3}, s p^{2}, s p^{2}, s p$

Answer: C

- Watch Video Solution

35. The state of hybridization of xenon of $X e F_{6}$ is
A. $s p^{3} d^{3}$
B. $s p^{3} d^{2}$
C. $s p^{3} d$
D. $s p^{3}$

Answer: A

- Watch Video Solution

36. During the complete combustion of methane CH_{4}, what change in hybridisation does the carbon atom undergo ?
A. $s p^{3}$ to sp
B. $s p^{3}$ to $s p^{2}$
C. $s p^{2}$ to $s p$
D. $s p^{2}$ to $s p^{3}$

Answer: A

- Watch Video Solution

37. The hybridisation of central iodine atom in $I F_{5}, I_{3}^{-}$and I_{3}^{+}are respectively :
A. $s p^{3} d^{2}, s p^{3} d, s p^{3}$
B. $s p^{3} d, s p^{3} d, s p^{3}$
C. $s p^{3} d^{2}, s p^{3} d^{2}, s p^{3}$
D. $s p^{3} d, s p^{3} d^{2}, s p^{3}$

Answer: A

- Watch Video Solution

38. In which of the following combination hybridisation of central atom (*) does not change?
A. $\mathrm{H}_{2} \mathrm{O}+\stackrel{*}{\mathrm{C}} \mathrm{O}_{2}$
B. $\mathrm{H}_{3} \stackrel{*}{B} \mathrm{O}_{3}+\mathrm{OH}^{-}$
C. $B F_{3}+\stackrel{*}{N} H_{3}$
D. none of these

Answer: C

- Watch Video Solution

39. Which of the following species has used both axial set of d-orbitals in hybridisation of central atom ?
A. $P B r_{4}^{+}$
B. PCl_{4}^{-}
C. $I C l_{4}^{-}$
D. none of these

Answer: C

40. Which bonds are formed by a carbon atom with $s p^{2}$-hybridisation ?
A. 4π-bonds
B. 2π-bonds and 2σ-bonds
C. 1π-bonds and 3σ-bonds
D. 4σ-bonds

Answer: C

- Watch Video Solution

41. What are the hybridisation of the carbon atoms labeled C_{1} and C_{2}, respectively in glycine?

$C_{1} \quad C_{2}$
A.
$s p^{2} \quad s p^{2}$
$C_{1} \quad C_{2}$
B.
$s p^{2} \quad s p^{3}$
$C_{1} \quad C_{2}$
C.
$s p^{3} \quad s p^{2}$
D.
$C_{1} \quad C_{2}$
$s p^{3} \quad s p^{3}$

Answer: C

- Watch Video Solution

42. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angles in $\mathrm{H}_{3} \mathrm{O}^{+}$are approximately 107°. The orbitals used by oxygen in these bonds are best described as :
A. p-orbitals
B. sp-hybrid orbitals
C. $s p^{2}$-hybrid orbital
D. $s p^{3}$-hybrid orbital
43. Which pair of elements can form multiple bond with itself and oxygen
?
A. F,N
B. N, Cl
C. N,P
D. N, C

Answer: D

- Watch Video Solution

44. Which of the following is a covalent compound ?
A. $\mathrm{Al}_{2} \mathrm{O}_{3}$
B. AlF_{3}
C. $A l C l_{3}$
D. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: C

- Watch Video Solution

45. Which of the following is an example of super octet molecule ?
A. ClF_{3}
B. $P C l_{5}$
C. $I F_{7}$
D. All the three

Answer: D

46. Which of the following molecule is theoretically not possible ?
A. $S F_{4}$
B. $O F_{2}$
C. $O F_{4}$
D. $O_{2} F_{2}$

Answer: C

- Watch Video Solution

47. The phosphate of a metal has the formula MHPO_{4}. The formula of its chloride would be
A. MCl
B. MCl_{2}
C. $M C l_{3}$
D. $M_{2} C l_{3}$

Answer: B

- Watch Video Solution

48. The compound that has the higest ionic character associated with the $\mathrm{X}-\mathrm{Cl}$ bond is :
A. $P C l_{5}$
B. BCl_{3}
C. CCl_{4}
D. SiCl_{4}

Answer: D

- Watch Video Solution

49. The bond having the highest bond energy is :
A. $C=C$
B. $C=S$
C. $C=O$
D. $P=N$

Answer: C

- Watch Video Solution

50. Which of the following species in neither hypervalent nor hypovalent ?
A. ClO_{4}^{-}
B. $B F_{3}$
C. SO_{4}^{2-}
D. CO_{3}^{2-}
51. In which of the following species central atom is NOT surrounded by exactly 8 valence electrons ?
A. $B F_{4}^{-}$
B. NCl_{3}
C. PCl_{4}^{+}
D. $S F_{4}$

Answer: D

- Watch Video Solution

52. Which atom can have more than eight valence electrons when it is forming covalent bonds ?
A. H
B. N
C. F
D. Cl

Answer: D

- Watch Video Solution

53. Which bond is expected to be the least polar?
A. O-F
B. P-F
C. $\mathrm{Si}-\mathrm{N}$
D. $B-F$

Answer: A

54. Which set contains only covalently bonded molecules ?
A. $B C l_{3}, S i C l_{4}, P C l_{3}$
B. $\mathrm{NH}_{4} \mathrm{Br}, \mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{HBr}$
C. $I_{2}, H_{2} S, N a I$
D. $A l, O_{3}, A s_{4}$

Answer: A

- Watch Video Solution

55. Which molecule does not exist ?
A. $O F_{2}$
B. $O F_{4}$
C. $S F_{2}$
D. $S F_{4}$

- Watch Video Solution

56. Solid NaCl is a bad conductor of electricity because
A. in solid NaCl there are no ions
B. solid NaCl is covalent
C. in solid NaCl there is no mobility of ions
D. in solid NaCl there are no electrons

Answer: C

- Watch Video Solution

57. An ionic compound $A^{+} B^{-}$is most likely to be formed when :
A. the ionization energy of A is high and electron affinity of B is low
B. the ionization energy of A is low and electron affinity of B is high
C. both, the ionization energy of A and electron affinity of B are high
D. both, the ionization energy of A and electron affinity of B are low

Answer: B

- Watch Video Solution

58. A compound contains three elements A, B and C, if the oxidation number of $A=+2 \quad B=+5$ and $C=-2$ then possible formula of the compound is
A. $A_{3}\left(B_{4} C\right)_{2}$
B. $A_{3}\left(B C_{4}\right)_{2}$
C. $A_{2}\left(B C_{3}\right)_{2}$
D. $A B C_{2}$

Answer: B

59. Which pair of atoms form strongest ionic bond ?
A. Al and As
B. Al and N
C. Al and Se
D. Al and O

Answer: D

D Watch Video Solution

60. The correct order of increasig $C-O$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is
A. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
B. $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
c. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
D. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$

Answer: A

- Watch Video Solution

61. Resonance structures can be written for.
A. O_{3}
B. NH_{3}
C. CH_{4}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

62. The correct order of $\mathrm{Cl}-\mathrm{O}$ bond order is :
A. $\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{4}^{-}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}^{-}$
B. $\mathrm{ClO}^{-}<\mathrm{ClO}_{4}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{2}^{-}$
c. $\mathrm{ClO}^{-}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{4}^{-}$
D. $\mathrm{ClO}_{4}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}^{-}$

Answer: C

- Watch Video Solution

63. How many resonance structures can be drawn for the nitrate ion, NO_{3}^{-}?
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

64. Among given species identify the isostructural pairs :
A. $\left[N F_{3}\right.$ and $\left.B F_{3}\right]$
B. $\left[B F_{4}^{-}\right.$and $\left.N H_{4}^{+}\right]$
C. $\left[B C l_{3}\right.$ and $\left.B r C l_{3}\right]$
D. $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}^{-}\right]$

Answer: B

- Watch Video Solution

65. 0.01 mole $H_{3} P O_{x}$ is completely neutralised by 0.56 gram of KOH hence :
A. $x=3$ and given acid is dibasic
B. $x=2$ and given acid is monobasic
C. $x=3$ and given acid is monobasic
D. $x=4$ and given acid forms three series of salt

Answer: B

D Watch Video Solution

66. The solid $P C l_{5}$ exists as
A. $P C l_{5}$
B. $\mathrm{PCl}_{4}^{+} \mathrm{Cl}^{-}$
C. $P C l_{4}^{+} P C l_{6}^{-}$
D. $P C l_{5} \cdot C l_{2}$

Answer: C

67. The ratio of σ - bond and $\pi-$ bond in tetracryano ethylene is:
A. 2:1
B. 1:1
C. 1:2
D. none of these

Answer: B

- Watch Video Solution

68. The bonds present in $\mathrm{N}_{2} \mathrm{O}_{5}$ are .
A. only ionic
B. only covalent
C. covalent and co-ordinate
D. covalent and ionic

Answer: C

- Watch Video Solution

69. The pair of species with similar shape is
A. $\mathrm{PCl}_{3}, \mathrm{NH}_{3}$
B. $C F_{4}, S F_{4}$
C. $\mathrm{PbCl}_{2}, \mathrm{CO}_{2}$
D. $P F_{5}, I F_{5}$

Answer: A

- Watch Video Solution

70. Which of the following statements is correct in the context of the allene molecule, $C_{3} H_{4}$?
A. The central carbon is $s p$ hybridized
B. The terminal carbon atoms are $s p^{2}$ hybridized
C. The planes containing the CH_{2} groups are mutually perpendicular to permit the formations two separate π-bonds
D. all are correct

Answer: D

D Watch Video Solution

71. Number of S-S bond is $\mathrm{H}_{2} \mathrm{~S}_{n} \mathrm{O}_{6}$:
A. n
B. $(\mathrm{n}-1)$
C. ($\mathrm{n}-2$)
D. $(\mathrm{n}+1)$

Answer: B

- Watch Video Solution

72. How many S-S bonds, S-O-S bonds, σ-bonds, π-bonds are present in trimer of sulphur trioxide ?
A. $0,3,16,2$
B. $0,3,12,6$
C. $0,6,12,16$
D. $0,4,12,6$

Answer: B

73. Number of identical $\mathrm{Cr}-\mathrm{O}$ bonds in dichromate ion $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is :
A. 4
B. 6
C. 7
D. 8

Answer: B

- Watch Video Solution

74. The nodal plane in the π-bond of ethene is located in:
A. the molecular plane
B. a plane parallel to the molecular plane
C. a plane perpendicular to the molecular plane which bisects the
D. a plane perpendicular to the molecular plane which contains the carbon-carbon bond

Answer: A

- Watch Video Solution

75. Which of the following are isoelectronic and isostructural ?
$\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}$
A. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
C. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}$

Answer: A

76. In the electronic structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$, the total number of unshared electrons is
A. 20
B. 16
C. 12
D. 8

Answer: B

- Watch Video Solution

77. Which of the following xenon compound has the same number of lone pairs as in I_{3}^{-}? (near central atom)
A. XeO_{4}
B. XeF_{4}
C. XeF_{2}
D. XeO_{3}

Answer: C

- Watch Video Solution

78. The geometry of $\mathrm{XeF}_{3}{ }^{+}$is
A. Trigonal planar
B. Pyramidal
C. Bent T-shpae
D. See-saw

Answer: C

- Watch Video Solution

79. Which of the following shape are not possible for possible value of n in $X e F_{n}$ molecule ?
A. Linear
B. Square planar
C. Trigonal planar
D. Capped octahedral

Answer: C

- Watch Video Solution

80. BeCl_{2} is not isostructural with
A. ICl_{2}^{-}
B. $\mathrm{C}_{2} \mathrm{H}_{2}$
C. XeF_{2}
D. GeCl_{2}

Answer: D

D View Text Solution

81. Which statement is true about the most stable Lewis structure for $C S_{2}$?
A. There are no lone pairs in molecule
B. All bonds are double bonds
C. The central atom does not have an octet of electrons
D. A sulfur atom must be the central atom for the structure to be stable

Answer: B

(Watch Video Solution

82. Shape of the compounds XeF_{3}^{+}and XeF_{5}^{+}are respectively
A. Square pyramidal, T-shpaed
B. Bent-T-shape, square pyramidal
C. See-saw, square pyramidal
D. Square pyramidal, see -saw

Answer: B

- Watch Video Solution

83. In which of the following species maximum atom can lie in same plane ?
A. $\mathrm{XeF}_{2} \mathrm{O}_{2}$
B. $P C l_{5}$
C. $A s H_{4}^{+}$
D. $X e F_{4}$
84. Correct statement regarding molecules $S F_{4}, C F_{4}$ and XeF_{4} are :
A. 2,0 and 1 lone pairs of central atom respectively
B. 1,0 and 1 lone pairs of central atom respectively
C. 0,0 and 2 lone pairs of central atom respectively
D. 1,0 and 2 lone pairs of central atom respectively

Answer: D

- View Text Solution

85. The geometrical arrangement and shape of I_{3}^{-}are respectively
A. trigonal bipyramidal geometry, linear shape
B. hexagonal geometry, T-shape
C. triangular planar geometry, triangular shape
D. tetrahedral geometry, pyramidal shape

Answer: A

- Watch Video Solution

86. Which of the following statements is incorrect for PCl_{5} ?
A. Its three P-Cl bond lengths are equal
B. It involves $s p^{3}$ d hybridization
C. It has an regular geometry
D. Its shape is trigonal bipyramidal

Answer: C

- Watch Video Solution

87. Molecular shape of $S F_{4}, C F_{4}$ and $X e F_{4}$ are
A. the same with 2,0 and 1 lone pair of electrons respectively
B. the same with 1,1 and 1 lone pair of electrons respectively
C. the same with 0 m 1 and 2 lone pair of electrons respectively
D. the same with 1,0 and 2 lone pair of electrons respectively

Answer: D

- Watch Video Solution

88. The structure of the noble gas compound $X e F_{4}$ is:
A. square planar
B. distorted tetrahedral
C. tetrahedral
D. octahedral

Answer: A

89. The molecule exhibiting maximum number of non-bonding electron pairs (l.p.) around the central atom is :
A. XeOF_{4}
B. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
C. XeF_{3}^{-}
D. XeO_{3}

Answer: C

- View Text Solution

90. Which is the following pairs of species have identical shapes ?
A. NO_{2}^{+}and NO_{2}^{-}
B. PCl_{5} and $\mathrm{Br} \mathrm{F}_{5}$
C. XeF_{4} and ICl_{4}^{-}
D. TeCl_{4} and XeO_{4}

Answer: C

- Watch Video Solution

91. The shapes of $\mathrm{XeF}_{4}, \mathrm{XeF}_{5}^{-}$and $S n C l_{2}$ are:
A. octahedral, trigonal bipyramidal and bent
B. square pyramidal, pentagonal planar and linear
C. square planar, pentagonal planar and angular
D. see-saw, T-shaped and linear

Answer: C

- Watch Video Solution

92. Which is not correctly matched ?
A. XeO_{3}-Trigonal bipyramidal
B. ClF_{3}-bent T-shape
C. XeOF_{4} - Square pyramidal
D. XeF_{2} - Linear shape

Answer: A

- Watch Video Solution

93. Amongst $\mathrm{NO}_{3}^{-}, \mathrm{AsO}_{3}^{3-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$ and BO_{3}^{2-}, the nonplanar species are :
A. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}, \mathrm{BO}_{3}^{3-}$
B. $\mathrm{AsO}_{3}^{3-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
C. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{BO}_{3}^{3-}$
D. $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}, \mathrm{BO}_{3}^{3-}$
94. The geometry of ammonia molecule can be best described as :
A. Nitrogen at one vetex of a regular tetrahedron, the other three vertices being occupied by three hydrogens
B. Nitrogen at the centre of the tetrahedron, three of the vertices being occupied by three hydrogens
C. Nitrogen at the centre of an equilateral triangle, three corners being occupied by three hydrogens
D. Nitrogen at the junction of a T , three open ends being occupied by
three hydrogens

Answer: B

- Watch Video Solution

95. Which molecular geometry is least likely to result from a trigonal bipyramidal electron geometry?
A. Trigonal planar
B. See-saw
C. Linear
D. T-shpaed

Answer: A

- Watch Video Solution

96. Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is falese :
(I) The order of repulsion between different pair of electron is
$I_{p}-I_{p}>I_{p}-b_{p}>b_{p}-b_{p}$
(II) In general, as the number o flone pair of electron on central atom increases, value of bond angle from normal bond angle also increases
(III) The number of lone pair on O in $\mathrm{H}_{2} \mathrm{O}$ is 2 while on N in NH_{3} is 1
(IV) The structures of xenon fluorides and xenon oxyfluorides could not be explained on the basis of VSEPR theory
A. TTTF
B. TFTF
C. TFT T
D. TF F F

Answer: B

- Watch Video Solution

97. Which species is planar ?
A. CO_{3}^{2-}
B. SO_{3}^{2-}
C. ClO_{3}^{-}
D. $B F_{4}^{-}$

Answer: A

- Watch Video Solution

98. What is the geometry of the IBr_{2}^{-}ion ?
A. Linear
B. Bent shape with bond angle of about 90°
C. Bent shape with bond angle of about 109°
D. Bent shape with bond angle of about 120°

Answer: A

- Watch Video Solution

99. What is the shape ClF_{3} molecule ?
A. Trigonal planar
B. Trigonal pyramidal
C. T-shaped
D. Tetrahedral

Answer: C

- Watch Video Solution

100. Which species below has the same general shape as $N H_{3}$?
A. SO_{3}^{2-}
B. CO_{3}^{2-}
C. NO_{3}^{-}
D. SO_{3}

Answer: A

101. According to VSEPR theory, in which species do all the atoms lie in the same plane?
102. $\mathrm{CH}_{3}^{+} \quad$ 2. CH_{3}^{-}
A. 1 only
B. 2 only
C. both 1 and 2
D. neither 1 nor 2

Answer: A

- Watch Video Solution

102. Which of the following species / molecules does not have same number of bond pairs and lone pairs?
B. $\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$
D. O_{3}

Answer: D

- Watch Video Solution

103. Least stable hydride is
A. stannane
B. silane
C. plumbane
D. germane

Answer: C

104. The lowest $\mathrm{O}-\mathrm{O}$ bond length in the following molecule is:
A. $O_{2} F_{2}$
B. O_{2}
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. O_{3}

Answer: B

- Watch Video Solution

105. The fluorine molecules is formed by :
A. p-p orbitals (sideways overlap)
B. p-p orbitals (end -to -end overlap)
C. sp -sp orbitals
D. $\mathrm{s}-\mathrm{s}$ orbitals

Answer: B

D Watch Video Solution

106. Which of the following leads to bonding?
A.

B.
s-orbital p-orbital

C.
p-orbital p-orbital

D.

Answer: B
107. Which of the following overlaps is incorrect (assuming Z-axis is internucler axis) ?
(A) $2 P_{y}+2 p_{y} \rightarrow \pi$ - Bond formation
(B) $2 p_{x}+2 p_{x} \rightarrow \sigma$ - Bond formation
(C) $33 d_{x y}+3 d p_{x y} \rightarrow \pi$ - Bond formation
(D) $2 s+2 p_{y} \rightarrow \pi$ - Bond formation
(E) $3 d_{x y}+3 d_{x y} \rightarrow \delta$ - Bond formation
(F) $2 p_{x}+2 p_{x} \rightarrow \sigma$-Bond formation
A. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
B. C,F
C. B,E
D. B,C,D

Answer: D

- Watch Video Solution

108. Which of the following overlapping is not present in XeO_{3} molecule ?
A. $s p^{3}+p_{x}$
B. $s p^{3}+p_{y}$
C. $d_{x z}+p_{x}$
D. $s p^{3}+s$

Answer: D

- Watch Video Solution

109. How many sigma bonds are in a molecule of diethyl ether, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$?
A. 14
B. 12
C. 8
D. 16

Answer: A

- Watch Video Solution

110. The lattice energies of $\mathrm{KF}, \mathrm{KCl}, \mathrm{KBr}$ and KI follow the order :
A. $K F>K C l>K B r>K I$
B. $K I>K B r>K C l>K F$
C. $\mathrm{KF}>\mathrm{KCl}>\mathrm{KI}>\mathrm{KBr}$
D. $\mathrm{KI}>\mathrm{KBr}>\mathrm{KF}>\mathrm{KCl}$

Answer: A

- Watch Video Solution

111. Which set of compounds in the following pair of ionic compounds has the higher lattice energy ?
(i) KCl or MgO
(ii)LiF or LiBr
(iii) $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ or NaCl
A. $\mathrm{KCl}, \mathrm{LiBr}, M g_{3} N_{2}$
B. $\mathrm{MgO}, \mathrm{LiBr}, \mathrm{Mg}_{3} \mathrm{~N}_{2}$
C. $\mathrm{MgO}, \mathrm{LiF}, \mathrm{NaCl}$
D. $\mathrm{MgO}, \mathrm{LiF}, M g_{3} N_{2}$

Answer: D

- Watch Video Solution

112. The incorrect order of lattice energy is:
A. $A l F_{3}>M g F_{2}$
B. $L i_{3} N>L i_{2} O$
C. $\mathrm{NaCl}>\mathrm{LiF}$
D. $T i C>S c N$

Answer: C

- Watch Video Solution

113. Which ionic compound has the largest amount of lattice energy ?
A. NaF
B. $A l F_{3}$
C. $A l N$
D. $M g F_{2}$

Answer: C

- Watch Video Solution

114. Which of the following compounds has the smallest bond angle in its molecule?
A. OH_{2}
B. SH_{2}
C. NH_{3}
D. SO_{2}

Answer: B

- Watch Video Solution

115. Maximum bond angle is present in case of
A. BBr_{3}
B. BCl_{3}
C. $B F_{3}$
D. none of these

- Watch Video Solution

116. The correct order of $\mathrm{H}-\mathrm{M}-\mathrm{H}$ bonds angle is :
A. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$
B. $A s H_{3}<\mathrm{SbH}_{3}<P H_{3}<\mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{BiH}_{3}<\mathrm{SbH}_{3}$
D. $\mathrm{BiH}_{3}<\mathrm{SbH}_{3}<\mathrm{AsH}_{3}<\mathrm{PH}_{3}$

Answer: D

Watch Video Solution

117. The correct increasing bomnd angle among $B F_{3}, P F_{3}$ and $C I F_{3}$ follow the order
A. $B F_{3}<P F_{3}<C l F_{3}$
B. $P F_{3}<B F_{3}<C l F_{3}$
C. $\mathrm{ClF}_{3}<P F_{3}<B F_{3}$
D. $B F_{3}=P F_{3}=C l F_{3}$

Answer: C

- Watch Video Solution

118. Among the following species, the least angle around the central atom is in :
A. O_{3}
B. I_{3}^{-}
C. NO_{2}^{-}
D. PH_{3}
119. The bond angles of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{\oplus}$ and $\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}$ are in the order.
A. $\mathrm{NH}_{2}^{-}>\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}$
B. $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$
C. $\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}>\mathrm{NH}_{4}^{+}$
D. $\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-}$

Answer: B

- Watch Video Solution

120. The H-C-H bond angle in $\mathrm{CH}_{4} i s 109.5^{\circ}$, due to lone pair repulsion, the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle in $\mathrm{H}_{2} \mathrm{O}$ will :
A. remain the same
B. increase
C. decrease
D. become 180°

Answer: C

- Watch Video Solution

121. The molecule having the largest bond angle is :
A. $\mathrm{H}_{2} \mathrm{O}$
B. $H_{2} S$
C. $\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{Te}$

Answer: A

- Watch Video Solution

122. The compound $M X_{4}$ is tetrahedral. The number of $\angle X M X$ angles formed in the compound is
A. three
B. four
C. five
D. six

Answer: D

- Watch Video Solution

123. Which of the following is the correct order for increasing bond angle ?
A. $\mathrm{Nh}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{OF}_{2}<\mathrm{Cl}_{2} \mathrm{O}$
C. $\mathrm{H}_{2} \mathrm{Te}^{+}<\mathrm{H}_{3} \mathrm{Se}^{+}<\mathrm{H}_{3} \mathrm{~S}^{+}<\mathrm{H}_{3} \mathrm{O}^{+}$
D. $B F_{3}<B C l_{3}<B B r_{3}<B I_{3}$

Answer: C

- Watch Video Solution

124. The correct order of boiling point is :

(I)

(II)
OH

(III)
A. $I>I I>I I I$
B. $I I I>I I>I$
C. $I I>I>I I I$
D. $I I I>I>I I$

Answer: B

125. Which of the following is not true about $\mathrm{H}_{2} \mathrm{O}$ molecule ?
A. The molecule has $\mu=0$
B. The molecule can act as a base
C. Shows abnormally high boiling point in comparison to the hydrides of other elements of oxygen group
D. The molecule has a bent shape

Answer: A

- Watch Video Solution

126. The boiling points at atmospheric pressure of $\mathrm{HF}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}$ can be arranged in the following order :
A. $\mathrm{HF}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{NH}_{3}$
C. $\mathrm{HF}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}$
D. $H F<\mathrm{NH}_{3}<\mathrm{H}_{2} S$

Answer: A

- Watch Video Solution

127. The correct order of strength of H - bond in the following compound :
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{~S}$
C. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}_{2}$
D. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{~S}$

Answer: D

- Watch Video Solution

128. Which compound has electrovalent, covalent, co-ordinate as well as hydrogen bond?
A. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: A

- Watch Video Solution

129. Which statement is correct ?
A. m.p. of $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ are maximum in their respective group due to intermolecular H -Bonding
B. b.p. of CH_{4} out of $\mathrm{CH}_{4}, \mathrm{SiH}_{4}, \mathrm{GeH}_{4}$ and SnH_{4} is least due to
C. formic acid forms dimer by H -bonding
D. all are correct

Answer: D

- View Text Solution

130. Which of the following molecules are expected to exhibit intermolecular H -bonding ?
(I) Acetic acid ((II) o-nitrophenol (III) m-nitrophenol (IV)o-boric acid Select correct alternate :
A. I, II, III
B. IIII,IV
C. I,III,IV
D. IIIIII,IV

Answer: C

131. Which of the following compounds can form H -bonding with each other?
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{O}$
B. Phenol and CH_{4}
C. CHF_{3} and acetone
D. PH_{3} and HF

Answer: A

- Watch Video Solution

132. $B F_{3}$ and $N F_{3}$ both are covalent compounds but $N F_{3}$ is polar whereas $B F_{3}$ is non-polar. This is because :
A. Nitrogen atom is smaller than boron atom
B. N-F bond is more polar than B-F bond
C. $N F_{3}$ is pyramidal whereas $B F_{3}$ is planar triangular
D. $B F_{3}$ is electron deficient whereas $N F_{3}$ is not

Answer: C

- Watch Video Solution

133. Dipole moment of $N F_{3}$ is smaller than :
A. NH_{3}
B. CO_{2}
C. $B F_{3}$
D. $C C l_{4}$

Answer: A

134. Which of the following molecules will have polar bonds but zero dipole moment?
A. O_{2}
B. CHCl_{3}
C. $C F_{4}$
D. none of these

Answer: C

- Watch Video Solution

135. Which has maximum dipole moment ?

B.

C.

Cl
D.

Answer: B

- View Text Solution

136. Which of the following compound is planar and non-polar?
A. XeO_{4}
B. $S F_{4}$
C. XeF_{4}
D. $C F_{4}$

Answer: C

- Watch Video Solution

137. $\mathrm{H}_{2} \mathrm{O}$ has a net dipole moment while BeF_{2} has zero dipole moment because :
A. F is more electronegativity than oxygen
B. Be is more electronegativity than oxygen
C. $\mathrm{H}_{2} \mathrm{O}$ molecule is linear and BeF_{2} is bent
D. BeF_{2} molecule is linear and $\mathrm{H}_{2} \mathrm{O}$ is bent
138. Correct set of species with zero dipole moment is :
(i) CO_{2}
(ii) COCl_{2}
(iii) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(iv) $B C l_{3}$
A. i and iv
B. ii and iv
C. iii and iv
D. I, iii and iv

Answer: A

- Watch Video Solution

139. Which pair of molecules are polar species ?
A. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
B. $B F_{3}$ and PCl_{3}
C. $S O_{2}$ and $S C l_{2}$
D. $C S_{2}$ and SO_{3}

Answer: C

- Watch Video Solution

140. In which molecule does the chlorine have the most positive partial charge?
A. HCl
B. BrCl
C. OCl_{2}
D. $S C l_{2}$

Answer: C

141. Which of the following attraction is strongest ?
A.

B.
$\mathrm{CHCl}_{3}: \mathrm{E}: \mathrm{CHCl}_{3}$
C.

D.

Answer: D

D View Text Solution

142. Which is distilled first ?
A. Liquid H_{2}
B. Liquid CO_{2}
C. Liquid O_{2}
D. Liquid N_{2}

D Watch Video Solution

143. The molecular size of Icl and $B r_{2}$ is approximately same, but b.p. if Icl is about $40^{\circ} C$ higher than that of $B r_{2}$. It is because :
A. Icl bond is stronger than $\mathrm{Br}-\mathrm{Br}$ bond
B. IE of iodine < IE of bromine
C. Icl is polar while $B r_{2}$ is nonpolar
D. I has larger size than Br

Answer: C

D View Text Solution

144. Which of the following order of molecular force of attraction among given species is incorect ?
A. $\mathrm{HI}>\mathrm{HBr}>\mathrm{Cl}_{2}$
B. $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CCl}_{4}>\mathrm{CH}_{4}$
C. n-pentane $>$ iso-pentane $>$ neo-pentane
D. $\mathrm{OH}_{2}>\mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{OBr}_{2}$

Answer: D

- Watch Video Solution

145. Which gas should not be collected over water because of its high solubility in water ?
A. H_{2}
B. N_{2}
C. CH_{4}
D. HCl

Answer: D

146. Low melting point is expected for a solid:
A. lonic solid
B. Metallic solid
C. Molecular solid
D. Covalent solid

Answer: C

- Watch Video Solution

147. Which substance has the strongest London dispersion forces ?
A. SiH_{4}
B. CH_{4}
C. SnH_{4}
D. GeH_{4}

Answer: C

- Watch Video Solution

148. Which of the following compounds has the lowest boiling point ?
A. $H F$
B. HCl
C. HBr
D. $H I$

Answer: B

- Watch Video Solution

149. When the substances $\mathrm{Si}, \mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ are arranged in order of increasing melting point, what is the correct order ?
A. $\mathrm{Si}, \mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}$
B. $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{Si}, \mathrm{KCl}$
C. $\mathrm{KCl}, \mathrm{Si}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{OH}$
D. $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{KCl}, \mathrm{Si}$

Answer: D

- Watch Video Solution

150. Which substance has the highest melting point ?
A. $C O$
B. CO_{2}
C. SiO_{2}
D. $P_{2} O_{5}$

Answer: C

D Watch Video Solution

 respectively in the following compound ?

A. 4,2
B. 6,0
C. 3,3
D. 5,1

D Watch Video Solution

152. Which one of the following is the correct set with respect to molecule, hybridization and shape?
A. $B e C l_{2}, s p^{2}$, linear
B. $B e C l_{2}, s p^{2}$, triangular planar
C. $B C l_{3}, s p^{2}$, triangular planar
D. $B C l_{3}, s p^{3}$, tetrahedral

Answer: C

D Watch Video Solution

153. Hybridisation of central atom in ICl_{2}^{+}is
A. $d s p^{2}$
B. $s p$
C. $s p^{2}$
D. $s p^{3}$

Answer: D

- Watch Video Solution

154. The state of hybridization of the central atom is not the same as in the others :
A. B in $B F_{3}$
B. O in $\mathrm{H}_{3} \mathrm{O}^{+}$
C. N in NH_{3}
D. P in $P C l_{3}$
155. The number of $s p^{2}-s$ sigma bonds in benzene are
A. 3
B. 6
C. 12
D. none of these

Answer: B

- Watch Video Solution

156. The hybridization of the central atom will change when :
A. NH_{3} combines with H^{+}
B. $\mathrm{H}_{3} \mathrm{BO}_{3}$ combines with OH^{-}
C. NH_{3} forms NH_{2}^{-}
D. $\mathrm{H}_{2} \mathrm{O}$ combines with H^{+}

Answer: B

- Watch Video Solution

157. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ has hybridisation :
A. $s p, s p, s p^{2}, s p^{2}$
B. $s p^{3}, s p^{3}, s p^{2}, s p$
C. $s p^{3}, s p^{3}, s p^{2}, s p^{2}$
D. $s p^{3}, s p^{2}, s p^{2}, s p$

Answer: C

- Watch Video Solution

158. What is the state of hybridisation of Xe in cationic part of solid XeF_{6}
A. $s p^{3} d^{3}$
B. $s p^{3} d^{2}$
C. $s p^{3} d$
D. $s p^{3}$

Answer: B

- Watch Video Solution

159. During the complete combustion of methane CH_{4}, what change in hybridisation does the carbon atom undergo ?
A. $s p^{3}$ to $s p$
B. $s p^{3}$ to $s p^{2}$
C. $s p^{2}$ to $s p$
D. $s p^{2}$ to $s p^{3}$
160. The hybridisation of central iodine atom in $I F_{5}, I_{3}^{-}$and I_{3}^{+}are respectively :
A. $s p^{3} d^{2}, s p^{3} d, s p^{3}$
B. $s p^{3} d, s p^{3} d, s p^{3}$
C. $s p^{3} d^{2}, s p^{3} d^{2}, s p^{3}$
D. $s p^{3} d, s p^{3} d^{2}, s p^{3}$

Answer: A

- Watch Video Solution

161. In which of the following combination hybridisation of central atom (*) does not change?
A. $\mathrm{H}_{2} \mathrm{O}+\stackrel{*}{\mathrm{C}} \mathrm{O}_{2}$
B. $\mathrm{H}_{3} \stackrel{*}{B} \mathrm{O}_{3}+\mathrm{OH}^{-}$
C. $B F_{3}+\stackrel{*}{N} H_{3}$
D. none of these

Answer: C

- Watch Video Solution

162. Which of the following species used both axial set of d-orbitals in hybridisation of central atom ?
A. $P B r_{4}^{+}$
B. $P C l_{4}^{-}$
C. ICl_{4}^{-}
D. none of these

Answer: C

163. Which bonds are formed by a carbon atom with $s p^{2}$-hybridisation ?
A. 4π-bonds
B. 2π-bonds and 2σ-bonds
C. 1π-bonds and 3σ-bonds
D. 4σ-bonds

Answer: C

- Watch Video Solution

164. What are the hybridisation of the carbon atoms labeled C_{1} and C_{2}, respectively in glycine?

$C_{1} \quad C_{2}$
A.
$s p^{2} \quad s p^{2}$
$C_{1} \quad C_{2}$
B.
$s p^{2} \quad s p^{3}$
$C_{1} \quad C_{2}$
C.
$s p^{3} \quad s p^{2}$
D. $\begin{array}{ll}C_{1} & C_{2} \\ s p^{3} & s p^{3}\end{array}$

Answer: C

- Watch Video Solution

165. The H-O-H bond angles in $\mathrm{H}_{3} \mathrm{O}^{+}$are approximately 107°. The orbitals used by oxygen in these bonds are best described as :
A. p-orbitals
B. $s p$-hybrid orbitals
C. $s p^{2}$-hybrid orbital
D. $s p^{3}$-hybrid orbital

Answer: D

- Watch Video Solution

166. Which pair of elements can form multiple bond with itself and oxygen ?
A. F, N
B. N, Cl
C. N, P
D. N, C

Answer: D

167. Which of the following is a covalent compound ?
A. $\mathrm{Al}_{2} \mathrm{O}_{3}$
B. AlF_{3}
C. AlCl_{3}
D. $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: C

Watch Video Solution

168. Which of the following is an example of super octet molecule ?
A. ClF_{3}
B. PCl_{5}
C. $I F_{7}$
D. All the three

Answer: D

- Watch Video Solution

169. Which of the following molecule is theoretically not possible ?
A. $S F_{4}$
B. $O F_{2}$
C. $O F_{4}$
D. $O_{2} F_{2}$

Answer: C

- Watch Video Solution

170. The phosphate of a metal has the formula MHPO_{4}. The formula of its chloride would be
A. MCl
B. $M C l_{2}$
C. $M C l_{3}$
D. $M_{2} C l_{3}$

Answer: B

- Watch Video Solution

171. The compound that has the higest ionic character associated with the $\mathrm{X}-\mathrm{Cl}$ bond is :
A. $P C l_{5}$
B. BCl_{3}
C. CCl_{4}
D. SiCl_{4}
172. The bond having the highest bond energy is :
A. $C=C$
B. $C=S$
C. $C=O$
D. $P=N$

Answer: C

Watch Video Solution
173. Which of the following species is neither hypervalent nor hypovalent
A. ClO_{4}^{-}
B. $B F_{3}$
C. SO_{4}^{2-}
D. CO_{3}^{2-}

Answer: D

- Watch Video Solution

174. In which of the following species central atom is NOT surrounded by exactly 8 valence electrons ?
A. $B F_{4}^{-}$
B. NCl_{3}
C. PCl_{4}^{+}
D. $S F_{4}$

Answer: D

175. Which atom can have more than eight valence electrons when it is forming covalent bonds ?
A. H
B. N
C. F
D. Cl

Answer: D

- Watch Video Solution

176. Which bond is expected to be the least polar?
A. $O-F$
B. $P-F$
C. $S i-N$
D. $B-F$

- Watch Video Solution

177. Which set contains only covalently bonded molecules ?
A. $B C l_{3}, S i C l_{4}, P C l_{3}$
B. $\mathrm{NH}_{4} \mathrm{Br}, \mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{HBr}$
C. $I_{2}, H_{2} S, N a I$
D. $A l, O_{3}, A s_{4}$

Answer: A

Watch Video Solution

178. Which molecule does not exist ?
B. $O F_{4}$
C. $S F_{2}$
D. $S F_{4}$

Answer: B

- Watch Video Solution

179. Solid NaCl is a bad conductor of electricity because
A. in solid NaCl there are no ions
B. solid NaCl is covalent
C. in solid NaCl there is no mobility of ions
D. in solid NaCl there are no electrons

Answer: C

180. An ionic compound $A^{+} B^{-}$is most likely to be formed when :
A. the ionization energy of A high and electron affinity of B is low
B. the ionization energy of A is low and electron affinity of B is high
C. both, the ionization energy of A and electron affinity of B are high
D. both, the ionization energy of A and electron affinity of B are low

Answer: B

- Watch Video Solution

181. A compound contains three elements A, B and C, if the oxidation number of $A=+2 B=+5$ and $C=-2$ then possible formula of the compound is
A. $A_{3}\left(B_{4} C\right)_{2}$
B. $A_{3}\left(B C_{4}\right)_{2}$
C. $A_{2}\left(B C_{3}\right)_{2}$
D. $A B C_{2}$

Answer: B

- Watch Video Solution

182. Which pair of atoms form strongest ionic bond?
A. Al and As
B. Al and N
C. Al and Se
D. Al and O

Answer: D

- Watch Video Solution

183. The correct order of increasing $\mathrm{C}-\mathrm{O}$ bond strength of $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is :
A. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
B. $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
c. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
D. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$

Answer: A

- View Text Solution

184. Resonance structures can be written for .
A. O_{3}
B. NH_{3}
C. CH_{4}
D. $\mathrm{H}_{2} \mathrm{O}$

D Watch Video Solution

185. The correct order of $\mathrm{Cl}-\mathrm{O}$ bond order is :
A. $\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{4}^{-}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}^{-}$
B. $\mathrm{ClO}^{-}<\mathrm{ClO}_{4}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{2}^{-}$
C. $\mathrm{ClO}^{-}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{4}^{-}$
D. $\mathrm{ClO}_{4}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}^{-}$

Answer: C

- Watch Video Solution

186. How many resonance structures can be drawn for the nitrate ion,
NO_{3}^{-}?
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

187. Among given species identify the isostructural pairs :
A. $\left[N F_{3}\right.$ and $\left.B F_{3}\right]$
B. $\left[B F_{4}^{-}\right.$and $\left.N H_{4}^{+}\right]$
C. $\left[B C l_{3}\right.$ and $\left.B r C l_{3}\right]$
D. $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}^{-}\right]$

Answer: B

188. 0.01 mole $H_{3} P_{x}$ is completely neutralised by 0.56 gram of KOH hence :
A. $x=3$ and given acid is dibasic
B. $x=2$ and given acid is monobasic
C. $x=3$ and given acid is monobasic
D. $x=4$ and given acid forms three series of salt

Answer: B

- Watch Video Solution

189. Phosphorus pentachloride in the solid exists as :
A. PCl_{5}
B. $\mathrm{PCl}_{4}^{+} \mathrm{Cl}^{-}$
C. $\mathrm{PCl}_{4}^{+} \mathrm{PCl}_{6}^{-}$
D. $\mathrm{PCl}_{5} . \mathrm{Cl}_{2}$

Answer: C

- Watch Video Solution

190. The ratio of σ - bond and π - bond in tetracryano ethylene is :
A. 2:1
B. 1:1
C. 1:2
D. none of these

Answer: B

- Watch Video Solution

191. The bonds present in $\mathrm{N}_{2} \mathrm{O}_{5}$ are .
A. only ionic
B. only covalent
C. covalent and co-ordinate
D. covalent and ionic

Answer: C

D Watch Video Solution

192. The pair of species with similar shape is
A. $\mathrm{PCl}_{3}, \mathrm{NH}_{3}$
B. $C F_{4}, S F_{4}$
C. $\mathrm{PbCl}_{2}, \mathrm{CO}_{2}$
D. $P F_{5}, I F_{5}$

Answer: A

193. Which of the following statements is correct in the context of the allene molecule, $C_{3} H_{4}$?
A. The central carbon is $s p$ hybridized
B. The terminal carbon atoms are $s p^{2}$ hybridized
C. The planes containing the CH_{2} groups are mutually perpendicular to permit the formations two separate π-bonds
D. all are correct

Answer: D

- Watch Video Solution

194. Number of S-S bond is $\mathrm{H}_{2} S_{n} O_{6}$:
A. n
B. $(\mathrm{n}-1)$
C. $(n-2)$
D. $(\mathrm{n}+1)$

Answer: B

- Watch Video Solution

195. How many S-S bonds, S-O-S bonds, σ-bonds, π-bonds are present in trimer of sulphur trioxide?
A. $0,3,16,2$
B. 0,3,12,6
C. 0,6,12,16
D. $0,4,12,6$

Answer: B

196. Number of identical Cr -O bonds in dichromate ion $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is:
A. 4
B. 6
C. 7
D. 8

Answer: B

- Watch Video Solution

197. The nodal plane in the π-bond of ethene is located in:
A. the molecular plane
B. a plane parallel to the molecular plane
C. a plane perpendicular to the molecular plane which bisects the carbon-carbon σ bond at right angle
D. a plane perpendicular to the molecular plane which contains the carbon-carbon bond

Answer: A

- Watch Video Solution

198. Which of the following are isoelectronics and isostructural ?
A. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
C. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}$

Answer: A

199. In the electronic structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$, the total number of unshared electrons is
A. 20
B. 16
C. 12
D. 8

Answer: B

- Watch Video Solution

200. Which of the following xenon compound has the same number of lone pairs as in I_{3}^{-}? (near central atom)
A. XeO_{4}
B. $X e F_{4}$
C. XeF_{2}
D. XeO_{3}

Answer: C

- Watch Video Solution

201. The shape of $\mathrm{XeF}_{3}{ }^{+}$is:
A. Trigonal planar
B. Pyramidal
C. Bent T-shpae
D. See-saw

Answer: C

- Watch Video Solution

202. Which of the following shape are not possible for possible value of n in $X e F_{n}$ molecule ?
A. Linear
B. Square planar
C. Trigonal planar
D. Capped octahedral

Answer: C

- Watch Video Solution

203. BeCl_{2} is not isostructural with
A. ICl_{2}^{-}
B. $\mathrm{C}_{2} \mathrm{H}_{2}$
C. XeF_{2}
D. GeCl_{2}

Answer: D

- Watch Video Solution

204. Which statement is true about the most stable Lewis structure for $C S_{2}$?
A. There are no lone pairs in molecule
B. All bonds are double bonds
C. The central atom does not have an octet of electrons
D. A sulfur atom must be the central atom for the structure to be stable

Answer: B

D Watch Video Solution

205. $S b F_{5}$ reacts with $X e F_{4}$ and $X e F_{6}$ to form ionic compounds $\left[X e F_{3}^{+}\right]\left[S b F_{6}^{-}\right]$and $\left[X e F_{5}^{+}\right]\left[S b F_{6}^{--}\right.$thenmo \leqcarshapeof $\left[X^{2} F_{-}(3)^{\wedge}(+)\right]$ ion and $\left[X_{e F}(5)^{\wedge}(+)\right]$ ion respectively :
A. Square pyramidal, T-shpaed
B. Bent-T-shape, square pyramidal
C. See-saw, square pyramidal
D. Square pyramidal, see -saw

Answer: B

D View Text Solution

206. In which of the following species maximum atom can lie in same plane?
A. $\mathrm{XeF}_{2} \mathrm{O}_{2}$
B. $P C l_{5}$
C. $A s H_{4}^{+}$
D. XeF_{4}

Answer: D

- Watch Video Solution

207. Correct statement regarding molecules $S F_{4}, C F_{4}$ and $X e F_{4}$ are :
A. 2, 0 and 1 lone pairs of central atom respectively
B. 1, 0 and 1 lone pairs of central atom respectively
C. 0,0 and 2 lone pairs of central atom respectively
D. 1, 0 and 2 lone pairs of central atom respectively

Answer: D

208. The geometrical arrangement and shape of I_{3}^{-}are respectively
A. trigonal bipyramidal geometry, linear shape
B. hexagonal geometry, T-shape
C. triangular planar geometry, triangular shape
D. tetrahedral geometry, pyramidal shape

Answer: A

- Watch Video Solution

209. Which of the following statements is incorrect for PCl_{5} ?
A. Its three $P-C l$ bond lengths are equal
B. It involves $s p^{3} d$ hybridization
C. It has an regular geometry
D. Its shape is trigonal bipyramidal

Answer: C

- Watch Video Solution

210. Molecular shapes of $\mathrm{SF}_{4}, C F_{4}$ and XeF_{4} are :
A. the same with 2,0 and 1 lone pair of electrons respectively
B. the same with 1,1 and 1 lone pair of electrons respectively
C. the same with 0 m 1 and 2 lone pair of electrons respectively
D. the same with 1,0 and 2 lone pair of electrons respectively

Answer: D

- View Text Solution

211. The structure of the noble gas compound $X e F_{4}$ is :
A. square planar
B. distorted tetrahedral
C. tetrahedral
D. octahedral

Answer: A

- Watch Video Solution

212. The molecule exhibiting maximum number of non-bonding electron pairs (l.p.) around the central atom is :
A. XeOF_{4}
B. $\mathrm{XeO}_{2} F_{2}$
C. $X e F_{3}^{+}$
D. XeO_{3}

Answer: C

213. Which is the following pairs of species have identical shapes ?
A. NO_{2}^{+}and NO_{2}^{-}
B. PCl_{5} and $\mathrm{Br} \mathrm{F}_{5}$
C. XeF_{4} and ICl_{4}^{-}
D. TeCl_{4} and XeO_{4}

Answer: C

- Watch Video Solution

214. The shapes of $\mathrm{XeF}_{4}, \mathrm{XeF}_{5}^{-}$and SnCl_{2} are:
A. octahedral, trigonal bipyramidal and bent
B. square pyramidal, pentagonal planar and linear
C. square planar, pentagonal planar and angular
D. see-saw, T-shaped and linear

Answer: C

D Watch Video Solution

215. Which is not correctly matched ?
A. XeO_{3}-Trigonal bipyramidal
B. $C l F_{3}$-bent T-shape
C. XeOF_{4} - Square pyramidal
D. $X e F_{2}$ - Linear shape

Answer: A

Watch Video Solution

216. Amongst $\mathrm{NO}_{3}^{-}, \mathrm{AsO}_{3}^{3-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$ and BO_{3}^{2-}, the nonplanar species are :
A. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}, \mathrm{BO}_{3}^{3-}$
B. $\mathrm{AsO}_{3}^{3-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
C. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{BO}_{3}^{3-}$
D. $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}, \mathrm{BO}_{3}^{3-}$

Answer: B

- Watch Video Solution

217. The geometry of ammonia molecule can be best described as :
A. Nitrogen at one vetex of a regular tetrahedron, the other three vertices being occupied by three hydrogens
B. Nitrogen at the centre of the tetrahedron, three of the vertices being occupied by three hydrogens
C. Nitrogen at the centre of an equilateral triangle, three corners being occupied by three hydrogens
D. Nitrogen at the junction of a T, three open ends being occupied by three hydrogens

Answer: B

- Watch Video Solution

218. Which molecular geometry is least likely to result from a trigonal bipyramidal electron geometry?
A. Trigonal planar
B. See-saw
C. Linear
D. T-shpaed

Answer: A

219. Give the correct order of initials T or F for following statements. Use

T if statement is true and F if it is falese :
(I) The order of repulsion between different pair of electron is
$I_{p}-I_{p}>I_{p}-b_{p}>b_{p}-b_{p}$
(II) In general, as the number o flone pair of electron on central atom increases, value of bond angle from normal bond angle also increases (III) The number of lone pair on O in $\mathrm{H}_{2} \mathrm{O}$ is 2 while on N in NH_{3} is 1 (IV) The structures of xenon fluorides and xenon oxyfluorides could not be explained on the basis of VSEPR theory
A. TTTF
B. TFTF
C. TFT T
D. TF F F

Answer: B

- Watch Video Solution

220. Which species is planar ?
A. CO_{3}^{2-}
B. SO_{3}^{2-}
C. ClO_{3}^{-}
D. $B F_{4}^{-}$

Answer: A

- Watch Video Solution

221. What is the geometry of the $I \mathrm{Br}_{2}^{-}$ion ?
A. Linear
B. Bent shape with bond angle of about 90°
C. Bent shape with bond angle of about 109°
D. Bent shape with bond angle of about 120°

D Watch Video Solution

222. What is the shape of the $C l F_{3}$ molecule?
A. Trigonal planar
B. Trigonal pyramidal
C. T-shaped
D. Tetrahedral

Answer: C

- Watch Video Solution

223. Which species below has the same general shape as $N H_{3}$?
A. SO_{3}^{2-}
B. CO_{3}^{2-}
C. NO_{3}^{-}
D. SO_{3}

Answer: A

- Watch Video Solution

224. According to VSEPR theory, in which species do all the atoms lie in the same plane ?
$\begin{array}{ll}\text { 1. } \mathrm{CH}_{3}^{+} & \text {2. } \mathrm{CH}_{3}^{-}\end{array}$
A. 1 only
B. 2 only
C. both 1 and 2
D. neither 1 nor 2
225. Which of the following species / molecules does not have same number of bond pairs and lone pairs ?
A. OCN^{-}
B. $\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$
D. O_{3}

Answer: D

Watch Video Solution
226. Least stable hydride is

A. stannane

B. silane
C. plumbane
D. germane

Answer: C

- Watch Video Solution

227. The lowest O-O bond length in the following molecule is :
A. $O_{2} F_{2}$
B. O_{2}
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. O_{3}

Answer: B

228. The fluorine molecules is formed by:
A. p-p orbitals (sideways overlap)
B. p-p orbitals (end -to -end overlap)
C. sp-sp orbitals
D. $\mathrm{s}-\mathrm{s}$ orbitals

Answer: B

- Watch Video Solution

229. Which of the following leads to bonding?
A.

B.

ρ-orbital $\quad \rho$-orbital
C.

D.

Answer: B

- Watch Video Solution

230. Which of the following overlaps is incorrect (assuming Z-axis is internucler axis) ?
(A) $2 P_{y}+2 p_{y} \rightarrow \pi-\quad$ Bond formation
(B) $2 p_{x}+2 p_{x} \rightarrow \sigma-\quad$ Bond
formation
(C) $3 d_{x y}+3 d_{x y} \rightarrow \pi$ - Bond formation
(D) $2 s+2 p_{y} \rightarrow \pi$ - Bond formation
(E) $3 d_{x y}+3 d_{x y} \rightarrow \delta$ - Bond formation

> A. A,B,C
B. C,F
C. B,E
D. B,C,D

Answer: D

- Watch Video Solution

231. Which of the following overlapping is not present in XeO_{3} molecule ?
A. $s p^{3}+p_{x}$
B. $s p^{3}+p_{y}$
C. $d_{x z}+p_{x}$
D. $s p^{3}+s$

Answer: D

232. How many sigma bonds are in a molecule of diethyl ether, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$?
A. 14
B. 12
C. 8
D. 16

Answer: A

- Watch Video Solution

233. The lattice energies of $\mathrm{KF}, \mathrm{KCl}, \mathrm{KBr}$ and KI follow the order :
A. $\mathrm{KF}>\mathrm{KCl}>\mathrm{KBr}>\mathrm{KI}$
B. $K I>K B r>K C l>K F$
C. $\mathrm{KF}>\mathrm{KCl}>\mathrm{KI}>\mathrm{KBr}$
D. $\mathrm{KI}>\mathrm{KBr}>\mathrm{KF}>\mathrm{KCl}$

D Watch Video Solution

234. Which set of compounds in the following pair of ionic compounds has the higher lattice energy ?
(i) KCl or $\mathrm{MgO} \quad(i i) L i F$ or $L i B r \quad(i i i) M g_{3} N_{2}$ or NaCl
A. $K C l, L i B r, M g_{2} N_{2}$
B. $\mathrm{Mg} O, \mathrm{LiBr}, M g_{3} N_{2}$
C. $\mathrm{MgO}, \mathrm{LiF}, \mathrm{NaCl}$
D. $M g O, L i F, M g_{3} N_{2}$

Answer: D

- Watch Video Solution

235. The incorrect order of lattice energy is :
A. $A l F_{3}>M g F_{2}$
B. $L i_{3} N>L i_{2} O$
C. $\mathrm{NaCl}>\mathrm{LiF}$
D. $T i C>S c N$

Answer: C

- Watch Video Solution

236. Which ionic compound has the largest amount of lattice energy ?
A. NaF
B. $A l F_{3}$
C. $A l N$
D. $M g F_{2}$

Answer: C

237. Which of the following compounds has the smallest bond angle?
A. OH_{2}
B. SH_{2}
C. NH_{3}
D. SO_{2}

Answer: B

- Watch Video Solution

238. Maximum bond angle is present in case of
A. BBr_{3}
B. BCl_{3}
C. $B F_{3}$
D. none of these

Answer: D

(Watch Video Solution

239. The correct order of $\mathrm{H}-\mathrm{M}-\mathrm{H}$ bonds angle is:
A. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$
B. $\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{PH}_{3}<\mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{BiH}_{3}<\mathrm{SbH}_{3}$
D. $\mathrm{BiH}_{3}<\mathrm{SbH}_{3}<\mathrm{AsH}_{3}<P H_{3}$

Answer: D

(Watch Video Solution

240. The correct increasing bomnd angle among $B F_{3}, P F_{3}$ and $C I F_{3}$ follow the order
A. $B F_{3}<P F_{3}<\mathrm{ClF}_{3}$
B. $P F_{3}<B F_{3}<C l F_{3}$
C. $\mathrm{ClF}_{3}<P F_{3}<B F_{3}$
D. $B F_{3}=P F_{3}=C l F_{3}$

Answer: C

- Watch Video Solution

241. Among the following species, the least angle around the central atom is in :
A. O_{3}
B. I_{3}^{-}
C. NO_{2}^{-}
D. PH_{3}

Answer: D

- Watch Video Solution

242. The bond angles of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$and NH_{2}^{-}are in the order
A. $\mathrm{NH}_{2}^{-}>\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}$
B. $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$
C. $\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}>\mathrm{NH}_{4}^{+}$
D. $\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-}$

Answer: B

- Watch Video Solution

243. The H-C-H bond angle in $\mathrm{CH}_{4} i s 109.5^{\circ}$, due to lone pair repulsion, the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle in $\mathrm{H}_{2} \mathrm{O}$ will :
A. remain the same
B. increase
C. decrease
D. become 180°

Answer: C

- Watch Video Solution

244. The molecule having the largest bond angle is :
A. $\mathrm{H}_{2} \mathrm{O}$
B. $H_{2} S$
C. $\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{Te}$

- Watch Video Solution

245. The compound $M X_{4}$ is tetrahedral. The number of $\angle X M X$ angles formed in the compound is
A. three
B. four
C. five
D. six

Answer: D

- Watch Video Solution

246. The $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle in the nitrite ion, NO_{2}^{-}, is closest to :
A. $\mathrm{N}_{2} \mathrm{O}$
B. NO_{2}^{+}
C. NO_{2}^{-}
D. NO_{3}^{-}

Answer: B

- Watch Video Solution

247. Which of the following is the correct order for increasing bond angle ?
A. $\mathrm{Nh}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{OF}_{2}<\mathrm{Cl}_{2} \mathrm{O}$
C. $\mathrm{H}_{2} \mathrm{Te}^{+}<\mathrm{H}_{3} \mathrm{Se}^{+}<\mathrm{H}_{3} \mathrm{~S}^{+}<\mathrm{H}_{3} \mathrm{O}^{+}$
D. $B F_{3}<B C l_{3}<B B r_{3}<B I_{3}$
248. $N-O-N$ bond angle is maximum in :
A. $\mathrm{N}_{2} \mathrm{O}$
B. NO_{2}^{+}
C. NO_{2}^{-}
D. NO_{3}^{-}

Answer: B

Watch Video Solution

Level 2

1. The incorrect order of boiling point is :
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{CH}_{3} \mathrm{OH}$
B. $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}>\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{Me}_{3} \mathrm{PO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{~N}_{3}>\mathrm{HN}_{3}$

Answer: B,D

- Watch Video Solution

2. Iodine molecules are held in the solid lattice by \qquad
A. London forces
B. dipole-dipole interactions
C. covalent bonds
D. coulombic force

Answer: A

3. At room temperature, CO_{2} is a gas while SiO_{2} is a solid because
A. CO_{2} is a linear molecule, while SiO_{2} is angular
B. van der Waals's forces are very strong in SiO_{2}
C. CO_{2} is covalent, while SiO_{2} is ionic
D. Si cannot form stable bonds with O , hence Si has to form a 3D lattice

Answer: D

- Watch Video Solution

4. Choose the correct code of characteristics for the given order of hybrid orbitals of same atom,

$$
s p<s p^{2}<s p^{3}
$$

(i) Electrongativity (ii) Bond angle between same hybrid orbitals
(iii) Size (iv) Energy level
A. ii, iii and iv
B. iii, iv
C. ii and iv
D. I, ii, iii and iv

Answer: B

- Watch Video Solution

5. Which is correct statement?

As the s-character of a hybrid orbital decreases
(I) The bond angle decreases (II) The bond strength increases
(III) The bond length increases (IV) Size of orbitals increases
A. I, III and IV
B. II, III and IV
C. I and II
D. all are correct

- Watch Video Solution

6. Which of the following is incorrectly match ?
A. Hybridisation Geometry

Orbitals use
$s p^{3} d$
Trigonal bipyramidal
$s+p_{x}+p_{y}+p_{s}+d_{s^{2}}$
B.

Hybridisation	Geometry	Orbitals use
$s p^{3} d^{3}$	Pentagonal bipyramidal	$s+p_{x}+p_{y}+p_{s}+d_{x^{2}-3}$

Hybridisation	Geometry	Orbitals use
$s p^{3} d^{2}$	Capped octahedral	$s+p_{x}+p_{y}+p_{s}+d_{x^{2}-y^{2}}+d$
Hybridisation	Geometry	Orbitals use
$s p^{3}$	Tetrahedral	$s+p_{x}+p_{y}+p_{s}$

Answer: C

- Watch Video Solution

7. The ionic bond $X^{+} Y^{-}$are formed when :
(I) electron affinity of Y is high (II) ionization energy of X is low
(III) lattice energy of XY is high (IV) lattice energy of XY is low

Choose the correct code :
A. I and II
B. I and III
C. I, II and III
D. All

Answer: C

- Watch Video Solution

8. In the Born-Haber cycle for the formation of solid common salt (NaCl), the largest contribution comes from :
A. the low ionization potential of Na
B. the high electron affinity of Cl
C. the low $\Delta H_{\text {vap }}$ of $\mathrm{Na}(\mathrm{s})$
D. the lattice energy

Answer: D

- Watch Video Solution

9. Species having maximum ' $\mathrm{Cl}-\mathrm{O}$ ' bond order is :
A. ClO_{3}^{-}
B. ClO_{3}
C. ClO_{2}
D. ClO_{2}^{-}

Answer: B

10. Which of the following species contains minimum number of atoms in XY plane?
A. $X e F_{5}^{-}$
B. $S F_{6}$
C. $I F_{7}$
D. All

Answer: B

11. The molecule $M L_{x}$ is planar with 7 pairs of electrons around M in the valence shell. The value of x is :
A. 6
B. 5
C. 4
D. 3

Answer: B

- Watch Video Solution

12. Choose the correct option for the collowing molecule in view of chemical bonding :

A. non-planar
B. $\mu \neq 0$
C. both a and b
D. $\mu=0$

Answer: D

13. Which of the following statement is correct about I_{3}^{+}and I_{3}^{-} molecular ions?
A. Number of lone pairs at central atoms are same in both molecular ions
B. Hybridization of central atoms in both ions are same
C. Both are polar species
D. Both are planar species

Answer: D

- Watch Video Solution

14. In which of the following molecular shape $d_{z^{2}}$ orbital must not be involved in bonding ?
A. Pentagonal planar
B. Trigonal planar
C. Linear
D. Square planar

Answer: B

- Watch Video Solution

15. The correct statement regarding SO_{2} molecule is :
A. two $p \pi-d \pi$ bonds
B. molecule has 2 lone pair, 2σ bonds and 2π bonds
C. two $p \pi-p \pi$ bonds
D. one $p \pi-p \pi$ and one $p \pi-d \pi$ bond

Answer: D

16. A molecule $X Y_{2}$ contains two σ bonds two π bond and one lone pair of electrons in the valence shell of X. The arrangement of lone pair as well as bond pairs is
A. square pyramidal
B. linear
C. Trigonal planar
D. unpredictable

Answer: C

- Watch Video Solution

17. In which of the following pairs, both the species have the same hybridisation?
(I)

$$
S F_{4}, X_{e} F_{4} \quad(I I) I_{3}^{-}, \mathrm{XeF}_{2} \quad(I I I) \mathrm{ICI}_{4}^{-}, \mathrm{SiCl}_{4} \quad(\mathrm{IV}) \mathrm{ClO}_{3}^{-}, \mathrm{PO}_{4}^{3-}
$$

A. I,II
B. II, III
C. II, IV
D. I,II,III

Answer: C

- Watch Video Solution

18. Which of the following possess two lone pair of electrons on the central atom and square planar in shape ?
(I) $\mathrm{SF}_{4} \quad$ (II) $\mathrm{XeO}_{4} \quad$ (III) XeF $\mathrm{F}_{4} \quad$ (IV) ICl_{4}^{-}
A. I,III
B. II,IV
C. III, IV
D. All

Answer: C

D Watch Video Solution

19. Select pair of compounds in which both have different hybridization but have same molecular geometry:
A. $B F_{3}, B r F_{3}$
B. $\mathrm{ICl}_{2}{ }^{\Theta}, \mathrm{BeCl}_{2}$
C. $B C l_{3}, P C l_{3}$
D. $\mathrm{PCl}_{3}, \mathrm{NCl}_{3}$

Answer: B

- Watch Video Solution

20. The species having no $p \pi-p \pi$ bond but its bond order equal to that of O_{2}^{-}
A. ClO_{3}^{-}
B. PO_{4}^{3-}
C. SO_{4}^{2-}
D. XeO_{3}

Answer: C

- Watch Video Solution

21. Which of the following fact is directly explained by the statement oxygen is a smaller atom than sulphur?
A. $\mathrm{H}_{2} \mathrm{O}$ boils at a much higher temperature than $\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{H}_{2} \mathrm{O}$ undergoes intermolecular hydrogen bonding
C. $\mathrm{H}_{2} \mathrm{O}$ is liquid and $\mathrm{H}_{2} \mathrm{~S}$ is gas at room temperature
D. S-H bond is longer than O-H bond

Answer: D

22. Which of the following compound has maximum "C-C" single bond length ?
A. $\mathrm{CH}_{2} \mathrm{CHCCH}$
B. HC C C CH
C. $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$
D. $\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$

Answer: C

- Watch Video Solution

23. If two different non-axial d-orbitals having 'xz' nodal plane form π bond by overlapping each other, then internuclear axis will be :
A. x
B. y
C. z
D. They don't form π-bond

Answer: D

- Watch Video Solution

24. Assuming pure 2 s and 2 p orbitals of carbon are used in forming CH_{4} molecule, which of the following statement is false ?
A. Three C-H bonds will be at right angle
B. One C-H bond will be weaker than other three C-H bonds
C. The shape of molecule will be tetrahedral
D. The angle of C-H bond formed by s-s overlapping will be uncertain with respect to other three bonds.

Answer: C

25. The strength of bonds by $2 s-2 s, 2 p 2 p$ and $2 p-2 s$ overlap has the order
A. $s-s>p-p>p-s$
B. $s-s>p-s>p-p$
C. $p-p>p-s>s-s$
D. $p-p>s-s>p-s$

Answer: C

- Watch Video Solution

26. Which of the following statement is not correct for sigma and pibonds formed between two carbon atoms?
A. Sigma-bond is stronger than a π-bond
B. Bond energies of sigma and π-bonds are of the order of $264 \mathrm{~kJ} /$
mol and $347 \mathrm{~kJ} / \mathrm{mol}$
C. Free rotation of surrounding atoms about a sigma -bond is allowed but not in case of a π-bond
D. Sigma-bond determines the direction between carbon atoms but a π-bond has no primary effect in this regard

Answer: B

- Watch Video Solution

27. Assuming the bond direction to the z-axis, which of the overlapping of atomic orbitals of two atom (A) and (B) will result in bonding ?
(I) s -orbital of A and p_{x} orbital of B (II) s -orbital of A and p_{z} orbital of B
(III) p_{y}-orbital of A and p_{z} orbital of B (IV) s-orbital of both (A) and (B)
A. I and IV
B. I and II
C. III and IV
D. II and IV

Answer: D

- Watch Video Solution

28. Which of the following orbital can not form π as well as δ-Bond ?
A. $d_{x y}$
B. $d_{z^{2}}$
C. $d_{x^{2}-y^{2}}$
D. $d_{y z}$

Answer: B

29. Incorrect statement is :
A. $A l F_{3}>M g O>M g F_{2}$: Lattice energy
B. $L i>N a>A l>M g$: Electron afinity
C. $S F_{6}>P F_{5}>S i F_{4}$: Lewis acidic character
D. $S i C l_{4}>S i B r_{4}>S i I_{4}$: Decreasing order of electronegativity of Si

Answer: C

- Watch Video Solution

30. Which of the following set contains species having same angle around the central atom?
A. $S F_{4}, C H_{4}, N H_{3}$
B. $N F_{3}, B C l_{3}, N H_{3}$
C. $B F_{3}, N F_{3}, A l C l_{3}$
D. $B F_{3}, B C l_{3}, B B r_{3}$

Answer: D

- Watch Video Solution

31. Which of the following compound has the smallest $(X-A-X)$ bond angle in each series repectively.
(A) $\mathrm{OsF}_{2}, \mathrm{OsCl}_{2}, \mathrm{OsBr}_{2}$
(B) $\mathrm{SbCl}_{3}, \mathrm{SbBr}_{3}, \mathrm{SbI}_{3}$
(C) $\mathrm{Pl}_{3}, \mathrm{AsI}_{3}, \mathrm{SbI}_{3}$
A. $\mathrm{OSF}_{2}, \mathrm{SbCl}_{3}$ and $P I_{3}$
B. $\mathrm{OSBr}_{2}, \mathrm{SbI}_{3}$ and PI_{3}
C. $\mathrm{OSF}_{2}, \mathrm{SbI}_{3}$ and PI_{3}
D. $\mathrm{OSF}_{2}, \mathrm{SbCl}_{3}$ and SbI_{3}

Answer: D

- Watch Video Solution

32. The incorrect order of boiling point is :
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{CH}_{3} \mathrm{OH}$
B. $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}>\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}$
C. $H_{3} \mathrm{PO}_{4}>\mathrm{Me}_{3} \mathrm{PO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{~N}_{3}>\mathrm{HN}_{3}$

Answer: D

- Watch Video Solution

33. lodine molecules are held in the solid lattice by \qquad
A. London forces
B. dipole-dipole interactions
C. covalent bonds
D. coulombic force

D Watch Video Solution

34. Carbon dioxide is a gas but silica is a solid because:
A. CO_{2} is a linear molecule, while SiO_{2} is angular
B. van der Waals's forces are very strong in SiO_{2}
C. CO_{2} is covalent, while SiO_{2} is ionic
D. Si cannot form stable bonds with O, hence Si has to form a 3D lattice

Answer: D

D Watch Video Solution

35. Choose the correct code of characteristics for the given order of hybrid orbitals of same atom,
$s p<s p^{2}<s p^{3}$
(i) Electrongativity (ii) Bond angle between same hybrid orbitals
(iii) Size (iv) Energy level
A. ii, iii and iv
B. iii, iv
C. ii and iv
D. I, ii, iii and iv

Answer: B

- Watch Video Solution

36. Which is correct statement ?

As the s-character of a hybrid orbital decreases
(I) The bond angle decreases (II) The bond strength increases
(III) The bond length increases (IV) Size of orbitals increases
A. I, III and IV
B. II, III and IV
C. I and II
D. all are correct

Answer: A

- Watch Video Solution

37. Which of the following is incorrectly matched ?
Hybridisation Geometry Orbitals use
A. $s p^{3} d$
Trigonal bipyramidal
$s+p_{x}+p_{y}+p_{s}+d_{s^{2}}$
B.

Hybridisation Geometry
$s p^{3} d^{3} \quad$ Pentagonal bipyramidal
Orbitals use $s+p_{x}+p_{y}+p_{s}+d_{x^{2}-z}$
C.

Hybridisation	Geometry	Orbitals use
$s p^{3} d^{2}$	Capped octahedral	$s+p_{x}+p_{y}+p_{s}+d_{x^{2}-y^{2}}+d$
Hybridisation	Geometry	Orbitals use
$s p^{3}$	Tetrahedral	$s+p_{x}+p_{y}+p_{s}$

Answer: C

Watch Video Solution

38. The ionic bond $X^{+} Y^{-}$are formed when:
(I) electron affinity of Y is high (II) ionization energy of X is low
(III) lattice energy of $X Y$ is high (IV) lattice energy of $X Y$ is low

Choose the correct code :
A. I and II
B. I and III
C. I, II and III
D. All

Answer: C

D Watch Video Solution

39. In the Born-Haber cycle for the formation of solid common salt (NaCl), the largest contribution comes from :
A. the low ionization potential of Na
B. the high electron affinity of Cl
C. the low $\Delta H_{\text {vap }}$ of $\mathrm{Na}(\mathrm{s})$
D. the lattice energy

Answer: D

D Watch Video Solution

40. Species having maximum ' $\mathrm{Cl}-\mathrm{O}$ ' bond order is :
A. ClO_{3}^{-}
B. ClO_{3}
C. ClO_{2}
D. ClO_{2}^{-}

Answer: B

41. Which of the following species contains minimum number of atoms in XY plane?
A. $X e F_{5}^{-}$
B. $S F_{6}$
C. $I F_{7}$
D. All

Answer: B

- Watch Video Solution

42. The molecule $M L_{x}$ is planar with 7 pairs of electrons around M in the valence shell. The value of x is :
A. 6
B. 5
C. 4
D. 3

Answer: B

- Watch Video Solution

43. Choose the correct option for the collowing molecule in view of chemical bonding :

A. non-planar
B. $\mu \neq 0$
C. both a and b
D. $\mu=0$

Answer: D

44. Which of the following statement is correct about I_{3}^{+}and I_{3}^{-} molecular ions?
A. Number of lone pairs at central atoms are same in both molecular ions
B. Hybridization of central atoms in both ions are same
C. Both are polar species
D. Both are planar species

Answer: D

- Watch Video Solution

45. In which of the following molecular shape $d_{z^{2}}$ orbital must not be involved in bonding ?
A. Pentagonal planar
B. Trigonal planar
C. Linear
D. Square planar

Answer: B

- Watch Video Solution

46. The correct statement regarding SO_{2} molecule is :
A. two $p \pi-d \pi$ bonds
B. molecule has 2 lone pair, 2σ bonds and 2π bonds
C. two $p \pi-p \pi$ bonds
D. one $p \pi-p \pi$ and one $p \pi-\pi$ bond

Answer: D

47. A molecule $X Y_{2}$ contains two σ bonds two π bond and one lone pair of electrons in the valence shell of X. The arrangement of lone pair as well as bond pairs is
A. square pyramidal
B. linear
C. Trigonal planar
D. unpredictable

Answer: C

- Watch Video Solution

48. In which of the following pairs, both the species have the same hybridisation?
(I)
${S F_{4}, X_{e}} \quad(I I) I_{3}^{-}, \mathrm{XeF}_{2} \quad(I I I) \mathrm{ICI}_{4}^{-}, \mathrm{SiCl}_{4} \quad(\mathrm{IV}) \mathrm{ClO}_{3}^{-}, \mathrm{PO}_{4}^{3-}$
A. I,II
B. II, III
C. II, IV
D. I,II,III

Answer: C

- Watch Video Solution

49. Which of the following possess two lone pair of electrons on the central atom and square planar in shape ?
(I) $\mathrm{SF}_{4} \quad$ (II) $\mathrm{XeO}_{4} \quad$ (III) $\mathrm{XeF}_{4} \quad$ (IV) ICl_{4}^{-}
A. I,III
B. II,IV
C. III, IV
D. All

Answer: C

- Watch Video Solution

50. Select pair of compounds in which both have different hybridization but have same molecular geometry:
A. $B F_{3}, B r F_{3}$
B. $\mathrm{ICl}_{2}{ }^{\Theta}, \mathrm{BeCl}_{2}$
C. $B C l_{3}, P C l_{3}$
D. $\mathrm{PCl}_{3}, \mathrm{NCl}_{3}$

Answer: B

- Watch Video Solution

51. The species having no $p \pi-p \pi$ bond but its bond order equal to that of O_{2}^{-}
A. ClO_{3}^{-}
B. PO_{4}^{3-}
C. SO_{4}^{2-}
D. XeO_{3}

Answer: D

- Watch Video Solution

52. Which of the following fact is directly explained by the statement oxygen is a smaller atom than sulphur?
A. $\mathrm{H}_{2} \mathrm{O}$ boils at a much higher temperature than $\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{H}_{2} \mathrm{O}$ undergoes intermolecular hydrogen bonding
C. $\mathrm{H}_{2} \mathrm{O}$ is liquid and $\mathrm{H}_{2} \mathrm{~S}$ is gas at room temperature
D. S-H bond is longer than O-H bond

Answer: D

53. Which of the following compound has maximum "C-C" single bond length ?
A. $\mathrm{CH}_{2} \mathrm{CHCCH}$
B. HC C C CH
C. $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$
D. $\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$

Answer: C

- Watch Video Solution

54. If two different non-axial d-orbitals having 'xz' nodal plane form π bond by overlapping each other, then internuclear axis will be :
A. x
B. y
C. z
D. They don't form π-bond

Answer: D

- Watch Video Solution

55. Assuming pure 2 s and 2 p orbitals of carbon are used in forming CH_{4} molecule, which of the following statement is false ?
A. Three C-H bonds will be at right angle
B. One C-H bond will be weaker than other three C-H bonds
C. The shape of molecule will be tetrahedral
D. The angle of C-H bond formed by s-s overlapping will be uncertain with respect to other three bonds.

Answer: C

56. Which of the following is correct order of σ-bond strength ?
I. $2 \mathrm{~s}-2 \mathrm{~s}$
II. $2 s-2 p$
III. $2 p-2 p$
IV. 3s-3s
A. $s-s>p-p>p-s$
B. $s-s>p-s>p-p$
C. $p-p>p-s>s-s$
D. $p-p>s-s>p-s$

Answer: C

57. Which of the following statements in incorrect for sigma and π-bonds formed between two carbon atoms ?
A. Sigma-bond is stronger than a π-bond
B. Bond energies of sigma and π-bonds are of the order of $264 \mathrm{~kJ} /$ mol and $347 \mathrm{~kJ} / \mathrm{mol}$
C. Free rotation of surrounding atoms about a sigma -bond is allowed but not in case of a π-bond
D. Sigma-bond determines the direction between carbon atoms but a
π-bond has no primary effect in this regard

Answer: B

- View Text Solution

58. Assuming the bond direction to the z-axis, which of the overlapping of atomic orbitals of two atom (A) and (B) will result in bonding ?
(I) s-orbital of A and p_{x} orbital of B (II) s -orbital of A and p_{z} orbital of B
(III) p_{y}-orbital of A and p_{z} orbital of B (IV) s-orbital of both (A) and (B)
A. I and IV
B. I and II
C. III and IV
D. II and IV

Answer: D

- Watch Video Solution

59. Which of the following orbital can not form π as well as δ-Bond ?
A. $d_{x y}$
B. $d_{z^{2}}$
C. $d_{x^{2}-y^{2}}$
D. $d_{y z}$

Answer: B

- Watch Video Solution

60. Incorrect statement is :
A. $A l F_{3}>M g O>M g F_{2}$: Lattice energy
B. $L i>N a>A l>M g$: Electron afinity
C. $S F_{6}>P F_{5}>S i F_{4}$: Lewis acidic character
D. $S i C l_{4}>S i B r_{4}>S i I_{4}$: Decreasing order of electronegativity of Si

Answer: C

- View Text Solution

61. Which of the following set contains species having same angle around the central atom?
A. $S F_{4}, C H_{4}, \mathrm{NH}_{3}$
B. $\mathrm{NF}_{3}, \mathrm{BCl}_{3}, \mathrm{NH}_{3}$
C. $B F_{3}, N F_{3}, A l C l_{3}$
D. $B F_{3}, B C l_{3}, B B r_{3}$

Answer: D

- Watch Video Solution

62. Which of the following compound has the smallest $(X-A-X)$ bond angle in each series repectively.
(A) $\mathrm{OsF}_{2}, \mathrm{OsCl}_{2}, \mathrm{OsBr}_{2}$
(B) $\mathrm{SbCl}_{3}, \mathrm{SbBr}_{3}, \mathrm{SbI}_{3}$
(C) $\mathrm{Pl}_{3}, A s I_{3}, S b I_{3}$
A. $\mathrm{OSF}_{2}, \mathrm{SbCl}_{3}$ and PI_{3}
B. $\mathrm{OSBr}_{2}, \mathrm{SbI}_{3}$ and PI_{3}
C. $\mathrm{OSF}_{2}, \mathrm{SbI}_{3}$ and PI_{3}
D. $\mathrm{OSF}_{2}, \mathrm{SbCl}_{3}$ and SbI_{3}

Answer: D

- Watch Video Solution

Level 3 (Passive 1)

1. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π-electrons. However the lone pair creates the maximum repulsive effect.

Which of the following statement is false ?
A. $S b F_{4}^{-}$and $S F_{4}$ are isostructural
B. In $I O F_{5}$ the hybridization of central atom is $s p^{3} d^{2}$
C. Double bond(s) in $S O F_{4}$ and $\mathrm{XeO}_{3} F_{2}$, is / are occupying equatorial position(s) of their respective geometry
D. none of these

Answer: D

- Watch Video Solution

2. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π-electrons. However the lone pair creates the maximum repulsive effect.

Which of the following does not represent the isostructural pair ?
A. $S F_{5}^{-}$and $I F_{5}$
B. $\mathrm{ClO}_{2} \mathrm{~F}_{3}$ and SOF_{4}
C. SeF_{3}^{+}and XeO_{3}
D. None

Answer: D

- Watch Video Solution

3. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π-electrons. However the lone pair creates the maximum repulsive effect.

Select the incorrect statement with respect to $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ molecule :
A. It gives $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl on hydrolysis at room temperature
B. It has two $d \pi-p \pi$ bonds between S and O bonded atoms
C. It is a polar molecule
D. None

Answer: D

- Watch Video Solution

4. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π-electrons. However the lone pair creates the maximum repulsive effect.

Which of the following statement is false ?
A. $S b F_{4}^{-}$and $S F_{4}$ are isostructural
B. In $I O F_{5}$ the hybridization of central atom is $s p^{3} d^{2}$
C. Double bond(s) in $S O F_{4}$ and $X e O_{3} F_{2}$, is / are occupying equatorial position(s) of their respective geometry

D. none of these

Answer: D

- Watch Video Solution

5. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π-electrons. However the lone pair creates the maximum repulsive effect.

Which of the following does not represent the isostructural pair ?
A. $S F_{5}^{-}$and $I F_{5}$
B. $\mathrm{ClO}_{2} \mathrm{~F}_{3}$ and SOF_{4}
C. SeF_{3}^{+}and XeO_{3}
D. None

Answer: D

- Watch Video Solution

6. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π-electrons. However the lone pair creates the maximum repulsive effect.

Select the incorrect statement with respect to $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ molecule :
A. It gives $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl on hydrolysis at room temperature
B. It has two $d \pi-p \pi$ bonds between S and O bonded atoms
C. It is a polar molecule
D. None

Answer: D

Level 3 (Passive 2)

1. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be halffilled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ-bond (b) π-bond (c) δ-bond :

Which of the following set of orbitals does not produce nobal plane in xzplane?
A. $d_{y z}+d_{y z}$
B. $d_{x y}+d_{x y}$
C. $p_{y}+d_{x y}$
D. none of these

Answer: D

2. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be halffilled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ-bond (b) π-bond (c) δ-bond :

The combination of orbital that can not produce non-bonding molecular orbital is (internuclear axis is z -axis) :
A. $p_{y}+d_{x^{2}-y^{2}}$
B. $p_{z}+d_{y z}$
C. $s+d_{x z}$
D. $d_{x y}+d_{x y}$

Answer: D

- Watch Video Solution

3. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be halffilled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ-bond (b) π-bond (c) δ-bond : If $F_{2} C_{1}=C_{2}$ part of $F_{2} C_{1}=C_{2}=C_{3}=C_{4} F_{2}$ lies in yz-plane, then incorrect statment is :
A. Nodal plane of π-bond between C_{1} and C_{2} lies in yz-plane, formed by sideways overlapping of p_{x}-orbitals
B. Nodal plane of π-bond between C_{2} and C_{3} lies in xz-plane, formed by sideways overlapping of p_{y}-orbitals
C. Nodal plane of π - bond between C_{3} and C_{4} lies in yz-plane, formed by sideways overlapping of p_{y}-orbitals
D. Nodal plane of π-bond between C_{2} and C_{3} lies in xy-plane, formed by sideways overlapping of p_{x} - orbitals

Answer: C

4. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be halffilled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ-bond (b) π-bond (c) δ-bond :

Which of the following set of orbitals does not produce nobal plane in xzplane?
A. $d_{y z}+d_{y z}$
B. $d_{x y}+d_{x y}$
C. $p_{y}+d_{x y}$
D. none of these

Answer: D

- Watch Video Solution

5. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be halffilled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ-bond (b) π-bond (c) δ-bond :

The combination of orbital that can not produce non-bonding molecular orbital is (internuclear axis is z-axis):
A. $p_{y}+d_{x^{2}-y^{2}}$
B. $p_{z}+d_{y z}$
C. $s+d_{x z}$
D. $d_{x y}+d_{x y}$

Answer: D

- Watch Video Solution

6. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-
filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ-bond (b) π-bond (c) δ-bond : If $F_{2} C_{1}=C_{2}$ part of $F_{2} C_{1}=C_{2}=C_{3}=C_{4} F_{2}$ lies in yz-plane, then incorrect statment is :
A. Nodal plane of π-bond between C_{1} and C_{2} lies in yz-plane, formed by sideways overlapping of p_{x}-orbitals
B. Nodal plane of π-bond between C_{2} and C_{3} lies in xz-plane, formed by sideways overlapping of p_{y}-orbitals
C. Nodal plane of π - bond between C_{3} and C_{4} lies in yz-plane, formed by sideways overlapping of p_{y}-orbitals
D. Nodal plane of π-bond between C_{2} and C_{3} lies in xy-plane, formed by sideways overlapping of p_{x} - orbitals

Answer: C

- View Text Solution

1. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90°, if the substituent's electronegativity value is ≤ 2.5.

In which of the following option, covalent bond is having maximum s\% character?
A. S-H bond in $\mathrm{H}_{2} \mathrm{~S}$
B. P-H bond in PH_{3}
C. $\mathrm{N}-\mathrm{H}$ bond in NH_{3}
D. All have equal s\% character

Answer: C

- Watch Video Solution

2. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90°, if the substituent's electronegativity value is ≤ 2.5.

Select incorrect statement regarding P_{4} molecule.
A. Each P atom is ioined with three P-atoms
B. P_{4} molecule contains total 12 bond angles
C. Lone pair of each P atom is present in almost pure s -orbital
D. Lone pair of each P atom present in hybrid orbital

Answer: D

- Watch Video Solution

3. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are
nearly 90°, if the substituent's electronegativity value is ≤ 2.5.
The hybridisation of atomic orbitals of central atom "Xe" in $\mathrm{XeO}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$ and XeOF_{4} respectively.
A. $s p^{3}, s p^{3} d^{2}, s p^{3} d^{2}$
B. $s p^{3} d, s p^{3} d, s p^{3} d^{2}$
C. $s p^{3}, s p^{3} d^{2}, s p^{3} d$
D. $s p^{3}, s p^{3} d, s p^{3} d^{2}$

Answer: D

- Watch Video Solution

4. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90°, if the substituent's electronegativity value is ≤ 2.5.

In which of the following option, covalent bond is having maximum $\mathrm{s} \%$ character?
A. S-H bond in $H_{2} S$
B. P-H bond in PH_{3}
C. $\mathrm{N}-\mathrm{H}$ bond in NH_{3}
D. All have equal s\% character

Answer: C

- View Text Solution

5. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90°, if the substituent's electronegativity value is ≤ 2.5.

Select incorrect statement regarding P_{4} molecule.
A. Each P atom is ioined with three P-atoms
B. P_{4} molecule contains total 12 bond angles
C. Lone pair of each P atom is present in almost pure s -orbital
D. Lone pair of each P atom present in hybrid orbital

Answer: D

- View Text Solution

6. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90°, if the substituent's electronegativity value is ≤ 2.5.

The hybridisation of atomic orbitals of central atom "Xe" in $\mathrm{XeO}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$ and XeOF_{4} respectively.
A. $s p^{3}, s p^{3} d^{2}, s p^{3} d^{2}$
B. $s p^{3} d, s p^{3} d, s p^{3} d^{2}$
C. $s p^{3}, s p^{3} d^{2}, s p^{3} d$
D. $s p^{3}, s p^{3} d, s p^{3} d^{2}$

Answer: D

- Watch Video Solution

Level 3 (Passive 4)

1. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital combination does not form π-bond ?
A. $p_{x}+p_{x}$ sideways overlapping
B. $d_{x^{2}-y^{2}}+p_{y}$ sideways overlapping
C. $d_{x y}+d_{x y}$ sideways overlapping
D. $d_{y z}+p_{y}$ sideways overlapping

Answer: B

- Watch Video Solution

2. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital cannot form δ-bond?
A. $d_{x^{2}-y^{2}}$ orbital
B. $d_{x y}$ orbital
C. $d_{z^{2}}$ orbital
D. $d_{z x}$ orbital

Answer: C

- Watch Video Solution

3. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one
having one unpaired electron with opposite spin.
Which of the following combination of orbitals does not from any type of covalent bond (if z -axis is molecular axis)?
A. $p_{s}+p_{z}$
B. $p_{y}+p_{y}$
C. $s+p_{y}$
D. $s+s$

Answer: C

- Watch Video Solution

4. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital combination does not form π-bond ?
A. $p_{x}+p_{x}$ sideways overlapping
B. $d_{x^{2}-y^{2}}+p_{y}$ sideways overlapping
C. $d_{x y}+d_{x y}$ sideways overlapping
D. $d_{y z}+p_{y}$ sideways overlapping

Answer: B

- Watch Video Solution

5. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital cannot form δ-bond?
A. $d_{x^{2}-y^{2}}$ orbital
B. $d_{x y}$ orbital
C. $d_{x^{2}}$ orbital
D. $d_{z x}$ orbital

Answer: C

- View Text Solution

6. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following combination of orbitals does not from any type of covalent bond (if z-axis is molecular axis)?
A. $p_{s}+p_{z}$
B. $p_{y}+p_{y}$
C. $s+p_{y}$
D. $s+s$

Answer: C

- Watch Video Solution

Level 3 (Passive 5)

1. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Select the correct code for the following repulsion orders, according to
VSEPR theory :
(I) lone pair -lone pair > lone pair-bond pair
(II) lone pair-bond pair > bond pair -bond pair
(III) lone pair -lone pair > bond pair-bond pair
(IV) lone pair - bond pair > lone pair-lone pair
A. I,II and III
B. II and IV
C. I,II and IV
D. All

Answer: A

- Watch Video Solution

2. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which molecule has both shape and geometry identical ?
(I) $\mathrm{SnCl}_{2} \quad(I I) \mathrm{NH}_{3} \quad(I I I) P C l_{5} \quad(I V) S F_{6}$
A. I, III and IV
B. IIIIII and IV
C. III and IV

Answer: C

- Watch Video Solution

3. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which is not the electron geometry of covalent molecules?
A. Pentagonal bipyramidal
B. Octahedral
C. Hexagonal
D. Tetrahedral

Answer: C

- Watch Video Solution

4. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Select the correct code for the following repulsion orders, according to VSEPR theory :
(I) lone pair -lone pair > lone pair-bond pair
(II) lone pair-bond pair > bond pair -bond pair
(III) lone pair -lone pair > bond pair-bond pair
(IV) lone pair - bond pair > lone pair-lone pair
A. I,II and III
B. II and IV
C. I,II and IV
D. All

D Watch Video Solution

5. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which molecule has both shape and geometry identical ?
$(I) S n C l_{2} \quad(I I) N H_{3} \quad(I I I) P C l_{5} \quad(I V) S F_{6}$
A. I, III and IV
B. II,III and IV
C. III and IV
D. All

Answer: C

6. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which is not the electron geometry of covalent molecules ?
A. Pentagonal bipyramidal
B. Octahedral
C. Hexagonal
D. Tetrahedral

Answer: C

- View Text Solution

1. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^{2}-y^{2}}, d_{s^{2}}$ and $d_{x y}, d_{z x}$ form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

In $s p^{3} d^{2}$ hybridisation, which sets of d -orbitals is involved?
A. $d_{x^{2}-y^{2}}, d_{z^{2}}$
B. $d_{z^{2}}, d_{x y}$
C. $d_{x y}, d_{y z}$
D. $d_{x^{2}-y^{2}}, d_{x y}$

Answer: A

- Watch Video Solution

2. The d orbitals involved in $s p^{3} d^{3}$ hybridization are ?
A. $d_{x^{2}-y^{2}}, d_{z^{2}}, d_{x y}$
B. $d_{x y}, d_{y z}, d_{z x}$
C. $d_{x^{2}-y^{2}}, d_{x y}, d_{x z}$
D. $d_{x^{2}}, d_{y z}, d_{z x}$

Answer: A

D Watch Video Solution

3. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^{2}-y^{2}}, d_{s^{2}}$ and $d_{x y}, d_{z x}$ form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

Molecule having trigonal bipyramidal geometry and $s p^{3} \mathrm{~d}$ hybridisation, d orbitals involved is:
A. $d_{x y}$
B. $d_{y z}$
C. $d_{x^{2}-y^{2}}$
D. $d_{z^{2}}$

Answer: D

- Watch Video Solution

4. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^{2}-y^{2}}, d_{s^{2}}$ and $d_{x y}, d_{z x}$ form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

Which of the following orbitals can not undergo hybridisation amongst themselves.
(I) $3 d, 4 s \quad(I I) 3 d, 4 d$
(III) $3 d, 4 s \& 4 p \quad(I V) 3 s, 3 p \& 4 s$
A. only II
B. II and III
C. I, II and IV
D. II and IV

Answer: D

D Watch Video Solution

5. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^{2}-y^{2}}, d_{s^{2}}$ and $d_{x y}, d_{z x}$ form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

In $s p^{3} d^{2}$ hybridisation, which sets of d-orbitals is involved?
A. $d_{x^{2}-y^{2}}, d_{s^{2}}$
B. $d_{z^{2}}, d_{x y}$
C. $d_{x y}, d_{y z}$
D. $d_{x^{2}-y^{2}}, d_{x y}$

Answer: A

6. When hybridisation involving d-orbitals are considered then all the five d -orbitals are not degenerate, rather $d_{x^{2}-y^{2}}, d_{s^{2}}$ and $d_{x y}, d_{z x}$ form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.
$\ln s p^{3} d^{3}$ hybridisation, which orbitals are involved?
A. $d_{x^{2}-y^{2}}, d_{z^{2}}, d_{x y}$
B. $d_{x y}, d_{y z}, d_{z x}$
C. $d_{x^{2}-y^{2}}, d_{x y}, d_{x z}$
D. $d_{x^{2}}, d_{y z}, d_{z x}$

Answer: A

- View Text Solution

7. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^{2}-y^{2}}, d_{s^{2}}$ and $d_{x y}, d_{z x}$ form two different sets of orbitals and orbitals of appropriate set is involved in the

hybridisation.

Molecule having trigonal bipyramidal geometry and $s p^{3} \mathrm{~d}$ hybridisation, $\mathrm{d}-$ orbitals involved is:
A. $d_{x y}$
B. $d_{y z}$
C. $d_{x^{2}-y^{2}}$
D. $d_{z^{2}}$

Answer: D

- View Text Solution

8. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^{2}-y^{2}}, d_{s^{2}}$ and $d_{x y}, d_{z x}$ form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

Which of the following orbitals can not undergo hybridisation amongst themselves.
(I) $3 d, 4 \mathrm{~s} \quad$ (II) $3 d, 4 d$
(III) $3 d, 4 s \& 4 p \quad(I V) 3 s, 3 p \& 4 s$
A. only II
B. II and III
C. I, II and IV
D. II and IV

Answer: D

- Watch Video Solution

Level 3 (Passive 7)

1. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons
in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The valence electrons are involved in formation of covalent bonds is /are called :
A. non-bonding electrons
B. Ione pairs
C. unshared pairs
D. none of these

Answer: D

- Watch Video Solution

2. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. lonic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which
binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The amount of energy released when one mole of ionic solid is formed by packing of gaseous ion is called :
A. Ionisation energy
B. Solvation energy
C. Lattice energy
D. Hydration energy

Answer: C

- Watch Video Solution

3. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten
state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

Which of the following is arranged order of increasing boiling point ?
A. $\mathrm{H}_{2} \mathrm{O}<\mathrm{CCl}_{4}<\mathrm{CS}_{2}<\mathrm{CO}_{2}$
B. $\mathrm{CO}_{2}<\mathrm{CS}_{2}<\mathrm{CCl}_{4}<\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CS}_{2}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}<\mathrm{CCl}_{4}$
D. $\mathrm{CCl}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}<\mathrm{CS}_{2}$

Answer: B

- Watch Video Solution

4. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten
state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The valence electrons are involved in formation of covalent bonds is /are called :
A. non-bonding electrons
B. lone pairs
C. unshared pairs
D. none of these

Answer: D

- Watch Video Solution

5. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid
having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The amount of energy released when one mole of ionic solid is formed by packing of gaseous ion is called :
A. Ionisation energy
B. Solvation energy
C. Lattice energy
D. Hydration energy

Answer: C

- Watch Video Solution

6. lonic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. lonic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

Which of the following is arranged order of increasing boiling point ?
A. $\mathrm{H}_{2} \mathrm{O}<\mathrm{CCl}_{4}<\mathrm{CS}_{2}<\mathrm{CO}_{2}$
B. $\mathrm{CO}_{2}<\mathrm{CS}_{2}<\mathrm{CCl}_{4}<\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CS}_{2} \mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}<\mathrm{CCl}_{4}$
D. $\mathrm{CCl}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}<\mathrm{CS}_{2}$

Answer: B

- Watch Video Solution

1. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy . IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Which of the following ionic compound is having maximum lattice energy
A. NaF
B. $M g F_{2}$
C. AlF_{3}
D. $K F$

Answer: C

- Watch Video Solution

2. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy. IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Most hydrated cation is :
A. $C e_{(a q .)}^{4+}$
B. $L a_{(a q .)}^{3+}$
C. $B a_{(a q .)}^{2+}$
D. $C s_{(a q)}^{+}$

Answer: A

- Watch Video Solution

3. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved
in water if its hydration energy is more than lattice energy. IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Which of the following ionic compound is having maximum lattice energy
A. NaF
B. $M g F_{2}$
C. $A l F_{3}$
D. $K F$

Answer: C

- Watch Video Solution

4. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy . IF hydration energy is less than lattice energy then ionic compound is usually either

sparingly soluble or insoluble in water.

Most hydrated cation is :
A. $C e_{(a q .)}^{4+}$
B. $L a_{(a q .)}^{3+}$
C. $B a_{(a q .)}^{2+}$
D. $C S_{(a q)}^{+}$

Answer: A

- Watch Video Solution

Level 3 (Passive 9)

1. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
(i) Sigma bond (σ)
(ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap
about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

The correct order of increasing $\mathrm{C}-\mathrm{O}$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is:
A. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
B. $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
C. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
D. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$

Answer: D

- Watch Video Solution

2. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types:
(i) Sigma bond (σ)
(ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic
orbitals overlap sideway then Pi-bond is formed.
Compound having maximum bond angle is :
A. BBr_{3}
B. BCl_{3}
C. $B F_{3}$
D. none of these

Answer: D

- Watch Video Solution

3. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types:
(i) Sigma bond (σ)
(ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

The strength of bonds formed by $2 s-2 s, 2 p-2 p$ and $2 p-2 s$ overlap has the order :
A. $s-s>p-p>p-s$
B. $s-s>p-s>p-p$
C. $p-p>p-s>s-s$
D. $p-p>s-s>p-s$

Answer: C

- Watch Video Solution

4. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
(i) Sigma bond (σ)
(ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic
orbitals overlap sideway then Pi-bond is formed.
The correct order of increasing $\mathrm{C}-\mathrm{O}$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is :
A. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
B. $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
c. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
D. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$

Answer: D

- Watch Video Solution

5. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
(i) Sigma bond (σ)
(ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic
orbitals overlap sideway then Pi-bond is formed.
Compound having maximum bond angle is :
A. BBr_{3}
B. BCl_{3}
C. $B F_{3}$
D. none of these

Answer: D

- Watch Video Solution

6. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types:
(i) Sigma bond (σ)
(ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

The strength of bonds formed by $2 s-2 s, 2 p-2 p$ and $2 p-2 s$ overlap has the order :
A. $s-s>p-p>p-s$
B. $s-s>p-s>p-p$
C. $p-p>p-s>s-s$
D. $p-p>s-s>p-s$

Answer: C

- Watch Video Solution

Level 3 (Passive 10)

1. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

The incorrect order of bond dissociation energy will be :
A. $\mathrm{H}-\mathrm{H}>\mathrm{Cl}-\mathrm{Cl}>\mathrm{Br}-\mathrm{Br}$
B. $\mathrm{Si}-\mathrm{Si}>\mathrm{P}-\mathrm{P}>\mathrm{Cl}-\mathrm{Cl}$
C. $C-C>N-N>O-O$
D. $\mathrm{H}-\mathrm{Cl}>\mathrm{H}-\mathrm{Br}>\mathrm{H}-\mathrm{I}$

Answer: B

- Watch Video Solution

2. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following combination of orbitals does not form covalent bond (x -axis is inter nuclear axis) :
A. $s+p_{y}$
B. $p_{y}+p_{y}$
C. $d_{y z}+d_{y z}$
D. $d_{x y}+d_{x y}$

Answer: A

- Watch Video Solution

3. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following compound does not form $p \pi-p \pi$ bond ?
A. $S O_{3}$
B. NO_{3}^{-}
C. SO_{4}^{2-}
D. CO_{3}^{2-}

Answer: C

4. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

The incorrect order of bond dissociation energy will be :
A. $\mathrm{H}-\mathrm{H}>\mathrm{Cl}-\mathrm{Cl}>\mathrm{Br}-\mathrm{Br}$
B. $\mathrm{Si}-\mathrm{Si}>\mathrm{P}-\mathrm{P}>\mathrm{Cl}-\mathrm{Cl}$
C. $C-C>N-N>O-O$
D. $\mathrm{H}-\mathrm{Cl}>\mathrm{H}-\mathrm{Br}>\mathrm{H}-\mathrm{I}$

Answer: B

- Watch Video Solution

5. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following combination of orbitals does not form covalent bond (x-axis is inter nuclear axis) :
A. $s+p_{y}$
B. $p_{y}+p_{y}$
C. $d_{y z}+d_{y z}$
D. $d_{x y}+d_{x y}$

Answer: A

- Watch Video Solution

6. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following compound does not form $p \pi-p \pi$ bond ?
A. SO_{3}
B. NO_{3}^{-}
C. SO_{4}^{2-}
D. CO_{3}^{2-}

Answer: C

- Watch Video Solution

Level 3 (Passive 11)

1. Consider the following elements with their period number and valence
electrons.

Elements	Period number	Total valence e^{-}
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

According to the given informations, answer the following questions :
Choose incorrect statement :
A. R exhibits maximum covalency among all elements given
B. Q does not exhibit variable covalency
C. R exhibits minimum covalency among all elements given
D. R and S combine each other and form $S R_{5}$ type of compound

Answer: D

- Watch Video Solution

2. Consider the following elements with their period number and valence electrons.

Elements	Period number	Total valence e^{-}
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

According to the given informations, answer the following questions :
Choose the correct statement :
A. Q has maximum value of electron affinity
B. R has maximum value of electronegativity
C. S has maximum atomic size
D. T and U are same group elements

Answer: C

- Watch Video Solution

3. Consider the following elements with their period number and valence electrons.

Elements	Period number	Total valence e^{-}
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

According to the given informations, answer the following questions :
Choose incorrect statement :
A. $S R_{3}$ is a hypovalent compound
B. $U R_{4}$ can act as a Lewis acid
C. $P Q_{2}$ can not acts as Lewis acid
D. $U R_{4}>S R_{3}$: Lewis acidic character

Answer: C

- Watch Video Solution

4. Consider the following elements with their period number and valence electrons.

Elements	Period number	Total valence e^{-}
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

According to the given informations, answer the following questions :
Choose incorrect statement :
A. R exhibits maximum covalency among all elements given
B. Q does not exhibit variable covalency
C. R exhibits minimum covalency among all elements given
D. R and S combine each other and form $S R_{5}$ type of compound

Answer: D

- Watch Video Solution

5. Consider the following elements with their period number and valence electrons.

Elements	Period number	Total valence e^{-}
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

According to the given informations, answer the following questions :
Choose the correct statement :
A. Q has maximum value of electron affinity
B. R has maximum value of electronegativity
C. S has maximum atomic size
D. T and U are same group elements

Answer: C

- View Text Solution

6. Consider the following elements with their period number and valence electrons.

Elements	Period number	Total valence e^{-}
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

According to the given informations, answer the following questions :
Choose the incorrect statement :
A. $S R_{3}$ is a hypovalent compound
B. $U R_{4}$ can act as a Lewis acid
C. $P Q_{2}$ can not acts as Lewis acid
D. $U R_{4}>S R_{3}$: Lewis acidic character

Answer: C

- View Text Solution

Level 3 (Passive 12)

1. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Which of the following is not correctly match between given species and type of overlapping ?
A. XeO_{3} : Three $(d \pi-p \pi)$ bonds
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$: Two $(d \pi-p \pi)$ bonds
C. $S O_{3}$: Three $(d \pi-p \pi)$ bonds
D. HClO_{4} : Three $(d \pi-p \pi)$ bonds

Answer: C

- Watch Video Solution

2. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Consider the following compounds and select the incorrect statement from the following :
$\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{BF}_{3}, \mathrm{PCl}_{3}, I F_{7}, P_{4}, \mathrm{H}_{2}$
A. Six molecules out of given compounds involves hybridisation
B. Three molecules are hypervalent compounds
C. Six molecules out of above compounds are non-planar in structure
D. Two molecules out of given compounds involves $(d \pi-p \pi)$ bonding as well as also involves $(p \pi-p \pi)$ bonding

Answer: C

- Watch Video Solution

3. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Which of the following is not correctly match between given species and type of overlapping ?
A. XeO_{3} : Three $(d \pi-p \pi)$ bonds
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$: Two $(d \pi-p \pi)$ bonds
C. $S O_{3}$: Three $(d \pi-p \pi)$ bonds
D. HClO_{4} : Three $(d \pi-p \pi)$ bonds

Answer: C

(D) Watch Video Solution

4. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Consider the following compounds and select the incorrect statement from the following :
$N H_{3}, P H_{3}, H_{2} S, S O_{2}, B F_{3}, P C l_{3}, I F_{7}, P_{4}, H_{2}$
A. Six molecules out of given compounds involves hybridisation
B. Three molecules are hypervalent compounds
C. Six molecules out of above compounds are non-planar in structure
D. Two molecules out of given compounds involves ($d \pi-p \pi$) bonding as well as also involves $(p \pi-p \pi)$ bonding

Answer: C

1. In which of the following there is intermolecular hydrogen bonding ?
A. Water
B. Ethanol
C. Acetic acid
D. H-F

Answer: A::B::C::D

- Watch Video Solution

2. Correct order of decreasing boiling points is :
A. $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$
C. $B r_{2}>C l_{2}>F_{2}$
D. $\mathrm{CH}_{4}>\mathrm{GeH}_{4}>\mathrm{SiH}_{4}$

Answer: A::B::C

- Watch Video Solution

3. In which species the hybrid state of central atom is / are $s p^{3} \mathrm{~d}$?
A. I_{3}^{-}
B. $S F_{4}$
C. $P F_{5}$
D. $I F_{5}$

Answer: A::B::C

- View Text Solution

4. Select correct statement(s) is /are :
A. In AsH_{3} molecule lone pair at central atom is present in almost pure s-orbital
B. Number of $p \pi-d \pi$ bond in $S O_{3}$ and $S O_{2}$ are same
C. $N F_{3}$ is better Lewis base than $N C l_{3}$
D. Stable oxidation state of Lead is +2

Answer: A: D

- Watch Video Solution

5. Which of the following species does / do not exist ?
A. $O F_{4}$
B. NH_{2}^{-}
C. NCl_{5}
D. $I C l_{3}^{2-}$
6. Which of the following species is /are superoctet molecule ?
A. $A l F_{3}$
B. SiCl_{4}
C. XeF_{2}
D. ICl_{3}

Answer: C::D

- Watch Video Solution

7. Which of the following statements is incorrect ?
A. $A \sigma$-bond is weaker than $a \pi$-bond
B. There are four co-ordinate bonds in the NH_{4}^{+}ions
C. The covalent bond is directional in nature
D. HF is less polar than HCl

Answer: A::B::D

- Watch Video Solution

8. Which of the following species is /are capable of forming a coordinate bond with $B F_{3}$?
A. PH_{3}
B. NH_{4}^{+}
C. OH^{-}
D. $M g^{2+}$

Answer: A:C

9. Ionic compounds in geneal do not possess :
A. high melting points and non-directional bonds
B. high melting points and low-boiling points
C. directional bonds and low-boiling points
D. high solubilities in polar and non-polar solvents

Answer: B::C::D

- Watch Video Solution

10. Correct statbility order of metal cation is /are:
A. $\mathrm{Pb}^{2+}<\mathrm{Sn}^{2+}$
B. $\mathrm{Pb}^{4+}<\mathrm{Pb}^{2+}$
C. $\mathrm{Sn}^{4+}<\mathrm{Sn}^{2+}$
D. $\mathrm{Pb}^{4+}<\mathrm{Sn}^{4+}$

D Watch Video Solution

11. Consider the following molecule :
$\underset{(1)}{\mathrm{H}_{2} C}=\underset{(2)}{C}=\underset{(3)}{C}=\underset{(4)}{C}=\underset{(5)}{C F_{2}}$
Ih hybridization of $C_{(1)}$ carbon atom is $s p^{2}\left(s+p_{y}+p_{z}\right.$ and hybridization of $C_{(4)}$ carbon atom is $s p\left(s+p_{z}\right)$. Then according to given information the correct statement(s) is / are :
A. Nodal plane of π-bond between $C_{(2)}$ and $C_{(3)}$ lies in xz-plane, formed by sideways overlapping of p_{y}-orbitals
B. Nodal plane of π-bond between $C_{(3)}$ and $C_{(4)}$ lies in yz-plane, formed by side ways overlapping of p_{x}-orbitals
C. The orbitals involve in hybridization of $C_{(5)}$ carbon atom are

$$
s+p_{x}+p_{z}
$$

D. Nodal plane of π-bond between $C_{(1)}$ and $C_{(2)}$ lies in yz-plane, formed by side ways overlapping of p_{y}-orbitals

Answer: A::B::C

- View Text Solution

12. Consider the following two molecules and according to the given information select correct statement(s) about $A X_{2}$ and $A Y_{2}$: where A : 16th group of 3rd period element
X : more electronegative than (A) and same group number of (A) Itbgt Y :
Less atomic size than (A) and same period number of (A)
A. The hybridization of central atoms are different in both compounds
B. The shape of both molecules are same
C. Both compounds are planar
D. The $X-A-X$ bond angle is less than $Y-A-Y$ bond angle
13. Which of the following statements are correct about sulphur hexafluoride?
A. all S-F bonds are equivalent
B. $S F_{6}$ is a planar molecule
C. oxidation number of sulphur is the same as number of electrons of sulphu involved in bonding
D. sulphur has acquired the elctronic structure of the gas argon

Answer: A::C

- Watch Video Solution

14. If $A B_{4}^{n}$ types species are tetrahedral, then which of the following is /are correctly match ?

ค B n
$\begin{array}{lll}X e & O & 0\end{array}$
B. $A \quad B \quad n$

Se $F 0$
C. $\begin{array}{lll}A & B & n \\ P & O & -3\end{array}$
D. $\begin{array}{lll}A & B & n \\ N & H & +1\end{array}$

Answer: A::C::D

- Watch Video Solution

15. Which of the following statements is correct ?
A. ClF_{3} molecule is bent T-shape
B. In $S F_{4}$ molecule, F-S-F equatorial bond angle is 103° due to lp-lp repulsion
C. $\operatorname{In}\left[\mathrm{ICl}_{4}\right]^{-}$molecular ion, $\mathrm{Cl--}-\mathrm{Cl}$ bond angle is 90°
D. In $O B r_{2}$, the bond angle is less than $O C l_{2}$

Answer: A:C

Watch Video Solution

16. Which of the following combination of bond pair (b.p.) and lone pair (l.p.) give same shape ?
(i) 3 b.p. +1 l.p. (ii) 2 b.p. +2 l.p. (iii) 2 b.p. 1 I.p. (iv) 2 b.p. +0 I. p.
(v) 3 b.p. +2 l.p. (vi) 2 b.p. +3 I.p.
A. ii and iii
B. iv and v
C. iv and vi
D. iii and vi

Answer: A:C

Watch Video Solution

17. Select the true statement(s) among the following :
A. Pure overlapping of two $d_{x y}$ orbitals along x -axis results in the formation of π-bond
B. $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{-}$is the correct order of bond angle as well as $\mathrm{N}-\mathrm{O}$ bond order
C. $N F_{3}<N C l_{3}<N B r_{3}<N I_{3}$ is the correct order of Lewis basic character as well as bond angle
D. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>H I$ is the correct order of dipole moment as well as boiling point

Answer: A:C

- Watch Video Solution

18. p_{y}-orbital can not form π-bond by lateral overlap with :
A. $d_{x z}$ - orbital
B. $d_{x^{2}-y^{2}}$-orbitals
C. $d_{x y}$-orbital
D. p_{z}-orbital

Answer: A::B::D

- Watch Video Solution

19. Which of the following orbital (s) cannot form δ-bond ?
A. $d_{x^{2}-y^{2}}$-orbital
B. $d_{x y}$-orbital
C. $d_{z^{2}}$-orbital
D. p_{x}-orbital

Answer: C::D

- Watch Video Solution

20. Select correct statement(s) regarding σ and π bonds :
A. σ-bond lies on the line joining the nuclei of bonded atoms
B. π-electron cloud lies on either side to the line joining the nuclei of bonded atoms
C. $\left(2 p_{\pi}-3 d_{\pi}\right) \pi$ - bond is stronger than $\left(2 p_{\pi}-3 p_{\pi}\right) \pi$ - bond.
D. σ-bond has primary effect to decide direction of covalent bond, while π - bond has no primary effect in direction of bond

Answer: A::B::C::D

(Watch Video Solution

21. Which of the following statements is / are correct ?
A. All carbon to carbon bonds contain a sigma bond and one or more

$$
\pi \text {-bonds }
$$

B. All carbon to carbon bonds are sigma bonds
C. All oxygen to hydrogen bonds are hydrogen bonds
D. All carbon to hydrogen bonds are sigma bonds

Answer: D

- Watch Video Solution

22. Consider the following three orbitals :

(i)

(ii)

(iii)

Correct statement(s) regarding given information is /are :
A. Orbitals (i) and (ii) can never form any type of covalent bond
B. If internuclear axis is x, then combination of (ii) and (iii) orbitals can form π - bond
C. Orbital (iii) can form δ - bond with other orbital having same orientation of lobes
D. If internuclear axis is ' x ', then combination of (i) and (iii) orbitals can form π - bond

Answer: A::C::D

D Watch Video Solution

23. Which of the following combination of orbitals can not form bond. (If x axis in internuclear axis)
A. $s+p_{z}$
B. $s+s$
C. $p_{z}+p_{x}$
D. $d_{x y}+p_{y}$
24. Consider the following atomic orbitals :

Which of the following statement(s) is /are correct regarding given orbital ?
A. It is a gerade atomic orbital
B. It has zero nodal plane
C. Circular electron density is present in XY plane
D. Opposite lobes of orbital have same sign of wave function (ψ)

D Watch Video Solution

25. In which of the following there is intermolecular hydrogen bonding ?
A. Water
B. Ethanol
C. Acetic acid
D. H-F

Answer: A::B::C::D

- Watch Video Solution

26. Correct order of decreasing boiling points is :

$$
\text { A. } \mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}
$$

B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$
C. $B r_{2}>C l_{2}>F_{2}$
D. $\mathrm{CH}_{4}>\mathrm{GeH}_{4}>\mathrm{SiH}_{4}$

Answer: A::B::C

- Watch Video Solution

27. In which species the hybrid state of central atom is / are $s p^{3} d$?
A. I_{3}^{-}
B. $S F_{4}$
C. $P F_{5}$
D. $I F_{5}$

Answer: A: : $\mathrm{B}:: \mathrm{C}$

28. Select correct statement(s) is /are :
A. In AsH_{3} molecule lone pair at central atom is present in almost pure s-orbital
B. Number of $p \pi-d \pi$ bond in $S O_{3}$ and $S O_{2}$ are same
C. NF_{3} is better Lewis base than NCl_{3}
D. Stable oxidation state of Lead is +2

Answer: A:D

- Watch Video Solution

29. Which of the following species does / do not exist?
A. $O F_{4}$
B. NH_{2}^{-}
C. NCl_{5}
D. $I C l_{3}^{2-}$

Answer: A::C::D

- Watch Video Solution

30. Which of the following species is /are superoctet molecule ?
A. AlF_{3}
B. SiCl_{4}
C. XeF_{2}
D. ICl_{3}

Answer: C::D

- Watch Video Solution

31. Which of the following statements is incorrect ?
A. $A \sigma$-bond is weaker than $a \pi$-bond
B. There are four co-ordinate bonds in the NH_{4}^{+}ions
C. The covalent bond is directional in nature
D. HF is less polar than HCl

Answer: A::B::D

- View Text Solution

32. Which of the following species is /are capable of forming a coordinate bond with $B F_{3}$?
A. PH_{3}
B. NH_{4}^{+}
C. OH^{-}
D. $M g^{2+}$
33. Ionic compounds in geneal do not possess :
A. high melting points and non-directional bonds
B. high melting points and low-boiling points
C. directional bonds and low-boiling points
D. high solubilities in polar and non-polar solvents

Answer: B::C::D

- Watch Video Solution

34. Correct statbility order of metal cation is /are :
A. $\mathrm{Pb}^{2+}<\mathrm{Sn}^{2+}$
B. $\mathrm{Pb}^{4+}<\mathrm{Pb}^{2+}$
C. $S n^{4+}<S n^{2+}$
D. $\mathrm{Pb}^{4+}<\mathrm{Sn}^{4+}$

Answer: B::D

- Watch Video Solution

35. Consider the following molecule :

$$
\underset{(1)}{\mathrm{H}_{2} C}=\underset{(2)}{C}=\underset{(3)}{C}=\underset{(4)}{C}=\underset{(5)}{C F_{2}}
$$

Ih hybridization of $C_{(1)}$ carbon atom is $s p^{2}\left(s+p_{y}+p_{z}\right.$ and hybridization of $C_{(4)}$ carbon atom is $s p\left(s+p_{z}\right)$. Then according to given information the correct statement(s) is / are :
A. Nodal plane of π-bond between $C_{(2)}$ and $C_{(3)}$ lies in xz-plane, formed by sideways overlapping of p_{y}-orbitals
B. Nodal plane of π-bond between $C_{(3)}$ and $C_{(4)}$ lies in yz-plane,
formed by side ways overlapping of p_{x}-orbitals
C. The orbitals involve in hybridization of $C_{(5)}$ carbon atom are

$$
s+p_{x}+p_{z}
$$

D. Nodal plane of π-bond between $C_{(1)}$ and $C_{(2)}$ lies in yz-plane, formed by side ways overlapping of p_{y}-orbitals

Answer: A::B::C

- View Text Solution

36. Consider the following two molecules and according to the given information select correct statement(s) about $A X_{2}$ and $A Y_{2}$: where A : 16th group of 3rd period element
X : more electronegative than (A) and same group number of (A) ltbgt Y :
Less atomic size than (A) and same period number of (A)
A. The hybridization of central atoms are different in both compounds
B. The shape of both molecules are same
C. Both compounds are planar
D. The $X-A-X$ bond angle is less than $Y-A-Y$ bond angle
37. Which of the following statements are correct about sulphur hexafluoride?
A. all $S-F$ bonds are equivalent
B. $S F_{6}$ is a planar molecule
C. oxidation number of sulphur is the same as number of electrons of sulphu involved in bonding
D. sulphur has acquired the elctronic structure of the gas argon

Answer: A: C

- Watch Video Solution

38. If $A B_{4}^{n}$ types species are tetrahedral, then which of the following is /are correctly match ?

ค B n
$\begin{array}{lll}X e & O & 0\end{array}$
B. $A \quad B \quad n$

Se $F 0$
C. $\begin{array}{lll}A & B & n \\ P & O & -3\end{array}$
D. $\begin{array}{lll}A & B & n \\ N & H & +1\end{array}$

Answer: A::C::D

- Watch Video Solution

39. Which of the following statements is correct ?
A. ClF_{3} molecule is bent T-shape
B. In $S F_{4}$ molecule, F-S-F equatorial bond angle is 103° due to lp-lp repulsion
C. $\operatorname{In}\left[\mathrm{ICl}_{4}\right]^{-}$molecular ion, $\mathrm{Cl--}-\mathrm{Cl}$ bond angle is 90°
D. In $O B r_{2}$, the bond angle is less than $O C l_{2}$

Answer: A:C

- View Text Solution

40. Which of the following combination of bond pair (b.p.) and lone pair (I.p.) give same shape ?
(i) 3 b.p.+1 l.p. (ii) 2 b.p.+2 l.p. (iii) 2 b.p. 1 l.p. (iv) 2 b.p. +0 l. p.
(v) 3 b.p. +2 I.p. (vi) 2 b.p. +3 I.p.
A. ii and iii
B. iv and v
C. iv and vi
D. iii and vi

Answer: A::C

- Watch Video Solution

41. Select the true statement(s) among the following :
A. Pure overlapping of two $d_{x y}$ orbitals along x -axis results in the formation of π-bond
B. $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{-}$is the correct order of bond angle as well as $\mathrm{N}-\mathrm{O}$ bond order
C. $N F_{3}<N C l_{3}<N B r_{3}<N I_{3}$ is the correct order of Lewis basic character as well as bond angle
D. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>H I$ is the correct order of dipole moment as well as boiling point

Answer: A::C

- Watch Video Solution

42. p_{y}-orbital can not form π-bond by lateral overlap with :
A. $d_{x z}$ - orbital
B. $d_{x^{2}-y^{2}}$-orbitals
C. $d_{x y}$-orbital
D. p_{z}-orbital

Answer: A::B::D

- View Text Solution

43. Which of the following orbital (s) cannot form δ-bond ?
A. $d_{x^{2}-y^{2}}$-orbitals
B. $d_{x y}$-orbital
C. $d_{z^{2}}$-orbital
D. p_{x}-orbital

Answer: C::D

- Watch Video Solution

44. Select correct statement(s) regarding σ and π bonds :
A. σ-bond lies on the line joining the nuclei of bonded atoms
B. π-electron cloud lies on either side to the line joining the nuclei of bonded atoms
C. $\left(2 p_{\pi}-3 d_{\pi}\right) \pi$ - bond is stronger than $\left(2 p_{\pi}-3 p_{\pi}\right) \pi$ - bond.
D. σ-bond has primary effect to decide direction of covalent bond, while π - bond has no primary effect in direction of bond

Answer: A::B::C::D

- Watch Video Solution

45. Which of the following statements is / are correct ?
A. All carbon to carbon bonds contain a sigma bond and one or more π-bonds
B. All carbon to carbon bonds are sigma bonds
C. All oxygen to hydrogen bonds are hydrogen bonds
D. All carbon to hydrogen bonds are sigma bonds

Answer: D

- View Text Solution

46. Consider the following three orbitals :

(i)

(ii)

(iii)

Correct statement(s) regarding given information is /are :
A. Orbitals (i) and (ii) can never form any type of covalent bond
B. If internuclear axis is x, then combination of (ii) and (iii) orbitals can form π-bond
C. Orbital (iii) can form δ - bond with other orbital having same orientation of lobes
D. If internuclear axis is ' x ', then combination of (i) and (iii) orbitals can form π - bond

Answer: A::C::D

- View Text Solution

47. Which of the following combination of orbitals do / does not form bond (if x-axis is internuclear axis) ?
A. $s+p_{z}$
B. $s+s$
C. $p_{z}+p_{x}$
D. $d_{x y}+p_{y}$
48. Consider the following atomic orbitals :

Which of the following statement(s) is /are correct regarding given orbital ?
A. It is a gerade atomic orbital
B. It has zero nodal plane
C. Circular electron density is present in XY plane
D. Opposite lobes of orbital have same sign of wave function (ψ)

Answer: A::B::C::D

- View Text Solution

MATCH THE COLUMN

1. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Columa-I

(A) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$
(B) I_{3}^{-}
(C) $\mathrm{B}_{2} \mathrm{Cl}_{4}$ (Solid)
(D) SiF_{4}

Column-II

(P) Planar geometry
(Q) Non-planar geometry
(R) Compound having coordinate bond
(S) Compound having back bond
(T) Non-polar compound

Watch Video Solution

2. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one
entries of Column-I may have the matching with the same entries of

Column-II.

Columa I (Shase)

(A) Linear	(P) $s p^{3}$
(B) Angular	(Q) $s p^{3} d^{2}$
(C) Square planar	(R) $s p^{2}$
(D) Trigonal planar	(S) $s p^{3} d$

- Watch Video Solution

3. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column-1

(A) SO_{3}
(B) BeCl_{2}
(C) NH_{3}
(D) NO_{2}^{-}

Column-II

(P) Largest bond angle
(Q) Lowest bond angle
(R) $s p^{2}$-hybridisation
(S) $s p^{3}$-hybridisation

- Watch Video Solution

4. Column-I and Column -II contains four entries each. Entries of Column-I
entries of Column-I may have the matching with the same entries of

Column-II.

(A) Mitwryel Colhans
(A) Hypo phosphoric acid
(B) Pyro phosphorous acid
(C) Boric acid
(D) Hypo phosphorous acid

Column-H

(P) All hydrogen are ionizable in water
(Q) Lewis acid in water
(R) Monobasic
(S) $s p^{3}$-hybridised central atom

Watch Video Solution

5. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.
(A) NH_{2}^{-}
(B) XeOF_{2}
(C) ICl_{4}^{-}
(D) $\left[\mathrm{SbF}_{5}\right]^{2-}$
Column-II
(P) Square pyramidal
(Q) V-shaped
(R) T-shaped
(S) Square planar

- Watch Video Solution

6. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

	Column-I	Columa-II
(A) ICl_{2}^{-} (P) Linear (B) BrF_{2}^{+} (Q) Pyramidal (C) ClF_{4}^{-} (R) Tetrahedral (D) AlCl_{4}^{-} (S) Square planar (I) Angular		

- Watch Video Solution

7. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.
Column-I
(Bond order range)
Column-II
(Oxyanions)
(P) NO_{3}^{-}
(Q) ClO_{4}^{-}
(R) PO_{4}^{3-}
(S) ClO_{3}^{-}
(T) SO_{4}^{2-}
8. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column-1

Column-II

(A) AsO_{4}^{3-}
(B) ICl_{2}^{+}
(C) SOF_{4}
(D) XeOF_{4}
(P) All three p-orbitals used in hybridisation
(Q) Tetrahedral shape
(R) Axial d-orbital with two nodal cones used in hybridisation
(S) All bond lengths are identical
(T) $p \pi-d \pi$ bond(s) present

- Watch Video Solution

9. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of

Column-II.

Watch Video Solution

10. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

View Text Solution

11. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

		Columpn-II
(A)	XeF_{5}^{-}	(P) d-orbital with zero nodal plane is used in hybridisation
(B)	PBr_{4}^{+}	(Q) Non-axial d-orbital is used in hybridisation
(C)	IOF_{3}	(R) Planar species
(D)	NH_{2}^{-}	(S) Non-planar species
		(T) Bond angle $109^{\circ} 28^{\prime}$ or less than $109^{\circ} 28^{\prime}$

- Watch Video Solution

12. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

[^0]13. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column-I

(A) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$
(B) I_{3}^{-}
(C) $\mathrm{B}_{2} \mathrm{Cl}_{4}$ (Solid)
(D) SiF_{4}

Column-II

(P) Planar geometry
(Q) Non-planar geometry
(R) Compound having coordinate bond
(S) Compound having back bond
(T) Non-polar compound

Watch Video Solution

14. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Columas I (G7, 2e)

(20. Solumn-In (Bybyidisation)
(A) Linear
(B) Angular
(C) Square planar
(D) Trigonal planar
(P) $s p^{3}$
(Q) $s p^{3} d^{2}$
(R) $s p^{2}$
(S) $s p^{3} d$
15. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column- I

(A) SO_{3}
(B) BeCl_{2}
(C) NH_{3}
(D) NO_{2}^{-}

Column-II

(P) Largest bond angle
(Q) Lowest bond angle
(R) $s p^{2}$-hybridisation
(S) $s p^{3}$-hybridisation

- Watch Video Solution

16. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.
(B) Pyro phosphorous acid
(P) All hydrogen are ionizable in water
(Q) Lewis acid in water
(C) Boric acid
(D) Hypo phosphorous acid
(R) Monobasic
(S) $s p^{3}$-hybridised central atom
17. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.
(A) NH_{2}^{-}
(B) XeOF_{2}
(C) ICl_{4}^{-}
(D) $\left[\mathrm{SbF}_{5}\right]^{2-}$

Column-1I

(P) Square pyramidal
(Q) V-shaped
(R) T-shaped
(S) Square planar

- Watch Video Solution

18. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of

Column-II.
(A) ICl_{2}^{-}
(B) BrF_{2}^{+}
(C) ClF_{4}^{-}
(D) AlCl_{4}^{-}

Column-II
(P) Linear
(Q) Pyramidal
(R) Tetrahedral
(S) Square planar
(I) Angular

- Watch Video Solution

19. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of

Column-II.

Column-1
(A) $\mathrm{Re}_{2} \mathrm{Cl}_{8}^{2-}$
(B) NO_{3}^{-}
(C) SO_{4}^{2-}
(D) SO_{3}

Wian Column-II
(P) $p \pi-p \pi$ bonding
(Q) $p \pi-d \pi$ bonding
(R) $d \pi-d \pi$ bonding
(S) δ-bonding

- View Text Solution

20. Column-I and Column -II contains four entries each. Entries of ColumnI are to be matched with some entries of Column-II. One or more than one
entries of Column-I may have the matching with the same entries of

Column-II.

Column-1
(Bond order range)

(P) NO_{3}^{-}
(Q) ClO_{4}^{-}
(R) PO_{4}^{3-}
(S) ClO_{3}^{-}
(T) SO_{4}^{2-}
(A) 1.0 to 1.30
(B) 1.31 to 1.55
(C) 1.56 to 1.70
(D) 1.71 to 2.0
is

- Watch Video Solution

21. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column-1

(A) AsO_{4}^{3-}
(B) ICl_{2}^{+}
(C) SOF_{4}
(D) XeOF_{4}

Column-II

(P) All three p-orbitals used in hybridisation
(Q) Tetrahedral shape
(R) Axial d-orbital with two nodal cones used in hybridisation
(S) All bond lengths are identical
(T) $p \pi-d \pi$ bond(s) present

- Watch Video Solution

22. Column-I and Column -II contains four entries each. Entries of ColumnI are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

- Watch Video Solution

23. Column-I and Column -II contains four entries each. Entries of ColumnI are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of

Column-II.

Column-II
[Combining orbitals (Internuclear
axis)]
(P) $d_{y z}+p_{y},(z)$
(Q) $s+p_{x},(y)$
(R) $d_{y z}+d_{y z},(x)$
(S) $s+s,(z)$
(T) $s+d_{x y},(y)$

11㤟 (T) $s+d_{x y},(y)$

- Watch Video Solution

24. Column-I and Column -II contains four entries each. Entries of Column-

I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

		Colame-II
(A)	XeF_{5}^{-}	(P) d-orbital with zero nodal plane is used in hybridisation
(B)	PBr_{4}^{+}	(Q) Non-axial d-orbital is used in hybridisation
(C)	IOF_{3}	(R) Planar species
(D)	$\mathrm{NH}_{2}{ }^{-}$	(S) Non-planar species
		(T) Bond angle $109^{\circ} 28^{\prime}$ or less than $109^{\circ} 28^{\prime}$

25. Column-I and Column -II contains four entries each. Entries of ColumnI are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

(P) Trigonal pyramidal shape
(Q) Square pyramidal shape
(R) See-saw shape
(S) Non-planar
(I) One of the bond angle $<90^{\circ}$

D View Text Solution

ASSERTION-REASON TYPE QUESTIONS

1. Assertion : Multiple bond between two bonded atoms can have more than three bonds.

Reason : Multiple bond between two bonded atoms can not have more than two π-bonds.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

- View Text Solution

2. Assertion : $2^{\text {nd }}$ period elements do not involve in excitation of electron. Reason : $2^{\text {nd }}$ period elements do not have vacant 2 d -orbitals.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

D Watch Video Solution

3. Assertion : In SO_{3} molecule bond dissociation energy of all $\mathrm{S}=\mathrm{O}$ bonds are not equivalent.

Reason : $S O_{3}$ molecule is having two types of $2 p \pi-3 p \pi$ and $2 p \pi-3 d \pi$ pi-bonds.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
explanation of assertion
D. If both assertion and reason are true but reason is not the correct

Answer: B

- Watch Video Solution

4. Assertion : PH_{4}^{+}ion is having tetrahedron geometry. Reason : P-atom is unhybridised in PH_{4}^{+}ion.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

D Watch Video Solution

5. Assertion : All diatomic molecules with polar bond have dipole moment.

Reason : Dipole moment is a vector quantity.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

- Watch Video Solution

6. Assertion : Water is a good solvent for ionic compounds but poor one for covalent compounds.

Reason :Hydrogen energy of ions realeases sufficient energy to overcome lattice energy and break hydrogen bonds in water, white covalent bonded
compound interact so weakly that even van der walls force between molecule of convalent compounds cannot be broken .
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

- Watch Video Solution

7. Assertion : Xe-atom in $X e F_{2}$ assumes sp-hybrid state.

Reason : $X e F_{2}$ molecule does not follow octet rule.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

- Watch Video Solution

8. Assertion : The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.

Reason :In a polar covalent molecule, the shared electron spend more time on the average near one of the atoms .
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

D Watch Video Solution

9. Assertion : $C C l_{4}$ is a non-polar molecule.

Reason: $C C l_{4}$ has polar bonds.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct
explanation of assertion

Answer: D

- Watch Video Solution

10. Assertion : Geometry of $I C l_{3}$ is tetrahedral.

Reason : Its shape is T-shape, due to the presence of two lone pairs.
A. assertion is true but the reason is false
B. assertion is false but reason is true
C. both assertion and reason are true and the reason is the correct
explanation of assertion
D. both assertion and reason are true but reason is not the correct
explanation of assertion
11. Assertion : The covalency of carbon is four in excited state.

Reason : The four half-filled pure orbitals of carbon form same kind of bonds with an atom as those are with hybridised orbitals.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

- Watch Video Solution

12. Assertion : The shape of XeF_{4} is square- planar.

Reason:In an octahedral geometry, a single lone pair can occupy any position but a second lone pair will occupy the opposite position to the first lone pair.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

- Watch Video Solution

13. Assertion : Multiple bond between two bonded atoms can have more than three bonds.

Reason : Multiple bond between two bonded atoms can not have more than two π-bonds.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

- View Text Solution

14. Assertion : $2^{\text {nd }}$ period elements do not involve in excitation of electron.

Reason : $2^{\text {nd }}$ period elements do not have vacant 2 d -orbitals.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

- Watch Video Solution

15. Assertion : In $S O_{3}$ molecule bond dissociation energy of all $\mathrm{S}=\mathrm{O}$ bonds are not equivalent.

Reason : SO_{3} molecule is having two types of $2 p \pi-3 p \pi$ and $2 p \pi-3 d \pi$ pi-bonds.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

- Watch Video Solution

16. Assertion : PH_{4}^{+}ion is having tetrahedron geometry.

Reason : P-atom is unhybridised in PH_{4}^{+}ion.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

- View Text Solution

17. Assertion : All diatomic molecules with polar bond have dipole moment.

Reason : Dipole moment is a vector quantity.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

- Watch Video Solution

18. Assertion : Water is a good solvent for ionic compounds but poor one for covalent compounds.

Reason :Hydrogen energy of ions realeases sufficient energy to overcome lattice energy and break hydrogen bonds in water, white covalent bonded compound interact so weakly that even van der walls force between molecule of convalent compounds cannot be broken .
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
D. If both assertion and reason are true but reason is not the correct
explanation of assertion

Answer: C

- Watch Video Solution

19. Assertion : Xe-atom in XeF_{2} assumes sp-hybrid state.

Reason : $X e F_{2}$ molecule does not follow octet rule.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion
20. Assertion : The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.

Reason :In a polar covalent molecule, the shared electron spend more time on the average near one of the atoms .
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

- Watch Video Solution

21. Assertion : $C C l_{4}$ is a non-polar molecule.

Reason: $C C l_{4}$ has polar bonds.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

- View Text Solution

22. Assertion : Geometry of ICl_{3} is tetrahedral.

Reason : Its shape is T-shape, due to the presence of two lone pairs.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct explanation of assertion
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

- View Text Solution

23. Assertion : The covalency of carbon is four in excited state.

Reason : The four half-filled pure orbitals of carbon form same kind of bonds with an atom as those are with hybridised orbitals.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

- Watch Video Solution

24. Assertion : The shape of XeF_{4} is square- planar.

Reason: In an octahedral geometry, a single lone pair can occupy any position but a second lone pair will occupy the opposite position to the first lone pair.
A. If assertion is true but the reason is false
B. If assertion is false but reason is true
C. IF both assertion and reason are true and the reason is the correct
explanation of assertion
D. If both assertion and reason are true but reason is not the correct

Answer: C

- Watch Video Solution

SUBJECTIVE PROBLEMS

1. Consider following compounds A to E :
(A) $X e F_{n}$
(B) $X e F_{(n+1)}^{+}$
(C) $X e F_{(n+1)}^{-}$
(D) $X e F_{(n+2)}$
(E) $X e F_{(n+4)}^{2-}$,

If value of n is 4 , then calculate value of $p \div q$ here, ' p ' is total number of bond pair and ' q ' is total number of lone pair on central atoms of compounds (A) to (E).

- Watch Video Solution

2. Consider the following five group (According to modern periodic table) of elements with their increasing order to atomic numbers :

Group $1 \rightarrow A, B, C, D, E \quad$ Group $2 \rightarrow F, G, H, I, J$

Group

$13 \rightarrow K, L, M, N, O \quad$ Group15 $\rightarrow P, Q, R, S, T \quad$ Group $17 \rightarrow U$
IF first and last element of each group belongs to 2nd and 6th period respectively and Z represents to carbonate ion $\left(\mathrm{CO}_{3}^{2-}\right)$ then consider the following orders.
(i) $\mathrm{O}^{+}>\mathrm{H}^{2+}$, Polarising power
(ii) $T^{3+}>S^{3+}>R^{3+}$, Stability of cation
$(i i i) U^{-}(a q)>V^{-}(a q)>W^{-}(a q)>X^{-}(a q)$, Size
(iv) $J V_{2}<I V_{2}<G V_{2}<L V_{3}$, Covalent character
(v) $G Z>I Z>J Z$, Thermal stability
(vi) $A V>B V>C V>D V>E V$, Thermal stability
(vii) $C_{3} P>B_{3} P>A_{3} P$, Lattice energy
(viii) $K U_{3}<K V_{3}<K W_{3}<K X_{3}$, Melting point

Then calculate value of $|p-q|^{2}$, here p and q are correct and incorrect orders in the given eight orders respectively.

D View Text Solution

3. Consider the following species and find out total number of species which are polar and can act as Lewis acid

$$
C C l_{4}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{AlCl}_{3}, \mathrm{HCHO}, \mathrm{SO}_{3}, \mathrm{SiCl}_{4}, \mathrm{BCl}_{3}, \mathrm{CF}_{4}
$$

- Watch Video Solution

4. Consider the following table regarding interhalogen compounds, $X Y_{n}$
(where Y is more electronegative than X)

Value of \boldsymbol{n} for respective interhalogen compound	Total number of \boldsymbol{d}-orbitals used in hybridization of central atom	Polarity	Planarity
P_{1}	1	Polar	Planar
P_{2}	Q_{1}	Polar	Non-Planar
P_{3}	Q_{2}	Non-Polar	Non-Planar

Thn according to given information calculate value of expression $P_{2} \times\left(\frac{P_{3}-P_{1}}{\left(Q_{1}+Q_{2}\right)}\right.$

- View Text Solution

5. What is covalency of chlorine atom in second excited state ?
6. Sum of σ and π bonds in NH_{4}^{+}cation is ..

- Watch Video Solution

7. Calculate the value $X-Y$ for XeOF_{4}. ($X=$ Number of σ bond pair and $Y=$ Number of lone pair on central atom).

- Watch Video Solution

8. The molecule $A B_{n}$ is planar with six pairs of electrons around A in the valence shell. The value of n is

- Watch Video Solution

9. Calculate value of $\frac{X+Y+Z}{10}$, here X is $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle in $\mathrm{NO}_{3}^{-} \mathrm{Y}$ is $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle in NO_{2}^{+}and Z is $\mathrm{F}-\mathrm{Xe}-\mathrm{F}$ adjacent bond angle in

$X e F_{4}$.

- Watch Video Solution

10. Calculate $\mathrm{x}+\mathrm{y}+\mathrm{z}$ for $\mathrm{H}_{3} \mathrm{PO}_{3}$ acid, where x is no. of lone pairs, y is no. of σ bonds and z is no. of π bonds.

- Watch Video Solution

11. How many right angle, bond angles are present in TeF_{5}^{-}molecular ion?

- Watch Video Solution

12. How may possible $\angle F S e F$ bond angles are present in $S e F_{4}$ molecule ?
13. In $I F_{6}^{-}$and $T e F_{5}^{-}$, sum of axial d-orbitals which are used in hybridisation in both species.

- Watch Video Solution

14. Among the following, total no. of planar species is:
(i) $\mathrm{SF}_{4} \quad$ (ii) $\mathrm{Br} \mathrm{F}_{3} \quad$ (iii) $\mathrm{XeF}_{2} \quad$ (iv) $I F_{5}$
(v) $\mathrm{SbF}_{4}^{-} \quad(v i) S F_{5}^{-} \quad(v i i) \mathrm{SeF}_{3}^{+} \quad(v i i i) \mathrm{CH}_{3}^{+}$
(ix) PCl_{4}^{+}

- Watch Video Solution

15. Calculate the value of " $x+y-z$ " here x, y and z are total number of nonbonded electron pair (s),pie (π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.

- Watch Video Solution

16. Consider the following table

Total number of electron pairs (1.p. $+\sigma$-bond)	Total number of lone pairs	Shape
5	$\ldots \ldots \ldots$	linear
$\ldots . \ldots \ldots$	1	see-saw
4	$\ldots \ldots \ldots$	Bent shape
$\ldots . .$.	2	Square planar
5	$\ldots \ldots \ldots$	Bent ' T ' shape

Then calculate value of " $\mathrm{p}+\mathrm{q}+\mathrm{r}-\mathrm{s} \mathrm{t}$ ".

- View Text Solution

17. In phosphorus acid, if X is number of non bonding electron pairs. Y is number of σ-bonds and Z is number of π-bonds. Then, calculate value of $Y \times Z-X$.

- Watch Video Solution

18. Calculate the number of $p_{\pi}-d_{\pi}$ bond(s) present in SO_{4}^{2-} :

- Watch Video Solution

19. Sum of σ and π bonds in NH_{4}^{+}cation is ..

- Watch Video Solution

20. Consider the following orbitals (i) $3 p_{x}$ (ii) $4 d_{x^{2}}$ (iii) $3 d_{x^{2}-y^{2}}$ (iv) $3 d_{y z}$ Then, calculate value of " $x+y-z$ " here x is total number of gerade orbital and y is total number of ungerade orbitals and z is total number of axial orbitals in given above orbitals.

- Watch Video Solution

21. Calculate value of $|x-y|$, here x and y are the total number of bonds in benzene and benzyne respectively which are formed by overlapping of hybridized orbitals.

- Watch Video Solution

22. Consider the following compounds :
(i) $I F_{5}$
(ii) ClI_{4}^{-}
(iii) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(iv) NH_{2}^{-}
$(v) \mathrm{BCl}_{3} \quad(v i) \mathrm{BeCl}_{2} \quad(v i i) \mathrm{AsCl}_{4}^{+} \quad(v i i i) B(\mathrm{OH})_{3}$
(ix) $\mathrm{NO}_{2}^{-} \quad(x) \mathrm{ClO}_{2}^{+}$

Then calculate value of " $x+y-z$ ", here, x, y and z are total number of compounds in given compounds in which central atom used their all three p-orbitals, only two p-orbitals and only one p-orbital in hybridisation respectively.

- Watch Video Solution

23. Total number of species which used all three p-orbitals in hybridisation of central atom and should be non-polar also.
$\mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{SnCl}_{2}, \mathrm{IF}_{5}, \mathrm{I}_{3}^{+}, \mathrm{XeO}_{4}, \mathrm{SO}_{2}, \mathrm{XeF}_{7}^{+}, \mathrm{SeF}_{4}$

- Watch Video Solution

24.

$\mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}, \mathrm{PO}_{4}^{3-}, \mathrm{XeO}_{3}, \mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
Then calculate value of $|x-y|$, where
x : Total number of species which have bond order 1.5 or greater than 1.5
y : Total number of species which have bond order less than 1.5

- Watch Video Solution

25. Consider the following orbitals
$3 s, 2 p_{x}, 4 d_{x y}, 4 d_{z^{2}}, 3 d_{x^{2}-y^{2}}, 3 p_{y}, 4 s, 4 p_{z}$ and find total number of orbital
(s) having even number of nodal plane.

- Watch Video Solution

26. For the following molecules:
$\mathrm{PCl}_{5}, \mathrm{BrF}_{3}, \mathrm{ICl}_{2}^{-}, \mathrm{XeF}_{5}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{PCl}_{4}^{+}, \mathrm{CH}_{3}^{+}$
Calculate the value of $\frac{a+b}{c}$
$\mathrm{a}=$ Number of species having $s p^{3} \mathrm{~d}$-hybridisation
$b=$ Number of species which are planar
$c=$ Number of species which are non-planar

- Watch Video Solution

27. Find out number of transformation among following which involves the change of hybridisation of underlined atom.
(a)
$\mathrm{H}_{2} \underline{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \underline{O}^{+} \quad(b) N H_{3}+\underline{B} F_{3} \rightarrow N H_{3}$. Underl $\in e(B) F_{3}$
(c) $\underline{X} e F_{6} \rightarrow \underline{X} e F_{5}^{+}+F^{-}$
(d) $\left.2 \underline{P} \underline{P C l}_{5} \rightarrow \underline{P} \mathrm{Pl}_{4}^{+}\right)+\mathrm{PCl}_{6}^{-}$
(e) $\underline{\mathrm{C}}_{3}-\mathrm{CH}_{3} \rightarrow \underline{\mathrm{C}} \mathrm{H}_{3}^{-}+\mathrm{CH}_{3}^{+}$

(Watch Video Solution

28. Consider following compounds A to E:
(A) $X e F_{n}$
(B) $X e F_{(n+1)}^{+}$
(C) $\mathrm{Xe}_{(n+1)}^{-}$
(D) $X e F_{(n+2)}$
(E) $X e F_{(n+4)}^{2-}$,

If value of n is 4 , then calculate value of $p \div q$ here, ' p ' is total number of
bond pair and ' q ' is total number of lone pair on central atoms of compounds (A) to (E).

- Watch Video Solution

29. Consider the following five group (According to modern periodic table) of elements with their increasing order to atomic numbers :

Group $1 \rightarrow A, B, C, D, E \quad$ Group $2 \rightarrow F, G, H, I, J$

Group

$13 \rightarrow K, L, M, N, O \quad$ Group15 $\rightarrow P, Q, R, S, T \quad$ Group $17 \rightarrow U$
IF first and last element of each group belongs to 2nd and 6th period respectively and Z represents to carbonate ion $\left(\mathrm{CO}_{3}^{2-}\right)$ then consider the following orders.
(i) $\mathrm{O}^{+}>\mathrm{H}^{2+}$, Polarising power
(ii) $T^{3+}>S^{3+}>R^{3+}$, Stability of cation
$(i i i) U^{-}(a q)>V^{-}(a q)>W^{-}(a q)>X^{-}(a q)$, Size
(iv) $J V_{2}<I V_{2}<G V_{2}<L V_{3}$, Covalent character
(v) $G Z>I Z>J Z$, Thermal stability
(vi) $A V>B V>C V>D V>E V$, Thermal stability
(vii) $C_{3} P>B_{3} P>A_{3} P$, Lattice energy
(viii) $K U_{3}<K V_{3}<K W_{3}<K X_{3}$, Melting point

Then calculate value of $|p-q|^{2}$, here p and q are correct and incorrect orders in the given eight orders respectively.

- View Text Solution

30. Consider the following species and find out total number of species which are polar and can act as Lewis acid

$$
C C l_{4}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{AlCl}_{3}, \mathrm{HCHO}, \mathrm{SO}_{3}, \mathrm{SiCl}_{4}, \mathrm{BCl}_{3}, \mathrm{CF}_{4}
$$

(D) Watch Video Solution

31. Consider the following table regarding interhalogen compounds, $X Y_{n}$
(where Y is more electronegative than X)

Value of \boldsymbol{n} for respective interhalogen compound	Total number of \boldsymbol{d}-orbitals used in hybridization of central atom	Polarity	Planarity
P_{1}	1	Polar	Planar
P_{2}	Q_{1}	Polar	Non-Planar
P_{3}	Q_{2}	Non-Polar	Non-Planar

Thn according to given information calculate value of expression $P_{2} \times\left(\frac{P_{3}-P_{1}}{\left(Q_{1}+Q_{2}\right)}\right.$

- View Text Solution

32. What is covalency of chlorine atom in second excited state ?

- Watch Video Solution

33. Sum of σ and π bonds in NH_{4}^{+}cation is ..

- View Text Solution

34. Calculate the value $X-Y$ for XeOF_{4}. ($X=$ Number of σ bond pair and $Y=$ Number of lone pair on central atom).

- Watch Video Solution

35. The molecule $M L_{x}$ is planar with 6 electron pairs around M in the valence shell. The value of x is :

- View Text Solution

36. Calculate value of $\frac{X+Y+Z}{10}$, here X is $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle in $\mathrm{NO}_{3}^{-} \mathrm{Y}$ is $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle in NO_{2}^{+}and Z is $\mathrm{F}-\mathrm{Xe}-\mathrm{F}$ adjacent bond angle in $X e F_{4}$.

- View Text Solution

37. Calculate $\mathrm{x}+\mathrm{y}+\mathrm{z}$ for $\mathrm{H}_{3} \mathrm{PO}_{3}$ acid, where x is no. of lone pairs, y is no. of σ bonds and z is no. of π bonds.

- Watch Video Solution

38. How many right angle, bond angles are present in TeF_{5}^{-}molecular ion ?

- Watch Video Solution

39. How may possible $\angle F S e F$ bond angles are present in $S e F_{4}$ molecule ?

- Watch Video Solution

40. In $I F_{6}^{-}$and $T e F_{5}^{-}$, sum of axial d-orbitals which are used in hybridisation in both species.

- Watch Video Solution

41. Among the following, total no. of planar species is:
(i) $\mathrm{SF}_{4} \quad$ (ii) $\mathrm{Br} \mathrm{F}_{3} \quad$ (iii) $\mathrm{XeF} F_{2} \quad$ (iv) $I F_{5}$
(v) $\mathrm{SbF}_{4}^{-} \quad(v i) \mathrm{SF}_{5}^{-} \quad(v i i) \mathrm{SeF}_{3}^{+} \quad\left(\right.$ viii) CH_{3}^{+} (ix) PCl_{4}^{+}

- Watch Video Solution

42. Calculate the value of " $x+y-z$ " here x, y and z are total number of nonbonded electron pair (s),pie (π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.

View Text Solution

43. Consider the following table
Total number of electron pairs
(1.p. $+\sigma$-bond)
5
$\ldots 9 \ldots$
4
\ldots
5

Total number of lone pairs

$\ldots \mathrm{p} \ldots .$.	linear
1	see-saw
$\ldots \mathrm{r} \ldots$	Bent shape
2	Square planar
$\ldots \mathrm{t} \ldots$	Bent ' T ' shape

Then calculate value of " $\mathrm{p}+\mathrm{q}+\mathrm{r}-\mathrm{s}-\mathrm{t}$ ".
44. In phosphorus acid, if X is number of non bonding electron pairs. Y is number of σ-bonds and Z is number of π-bonds. Then, calculate value of $Y \times Z-X$.

- Watch Video Solution

45. Calculate the number of $p_{\pi}-d_{\pi}$ bond(s) present in SO_{4}^{2-} :

- Watch Video Solution

46. Sum of σ and π bonds in NH_{4}^{+}cation is ..

- Watch Video Solution

47. Consider the following orbitals (i) $3 p_{x}$ (ii) $4 d_{x^{2}}$ (iii) $3 d_{x^{2}-y^{2}}$ (iv) $3 d_{y z}$

Then, calculate value of " $x+y-z$ " here x is total number of gerade
orbital and y is total number of ungerade orbitals and z is total number of axial orbitals in given above orbitals.

- Watch Video Solution

48. Calculate value of $|x-y|$, here x and y are the total number of bonds in benzene and benzyne respectively which are formed by overlapping of hybridized orbitals.

- View Text Solution

49. Consider the following compounds :
(i) $\mathrm{IF}_{5} \quad$ (ii) $\mathrm{ClI}_{4}^{-} \quad$ (iii) $\mathrm{XeO}_{2} \mathrm{~F}_{2} \quad$ (iv) NH_{2}^{-}
$(v) \mathrm{BCl}_{3} \quad(v i) \mathrm{BeCl}_{2} \quad(v i i) \mathrm{AsCl}_{4}^{+} \quad(v i i i) B(\mathrm{OH})_{3}$
(ix) $\mathrm{NO}_{2}^{-} \quad(x) \mathrm{ClO}_{2}^{+}$

Then calculate value of " $x+y-z$ ", here, x, y and z are total number of compounds in given compounds in which central atom used their all three p-orbitals, only two p-orbitals and only one p-orbital in hybridisation respectively.

(D) Watch Video Solution

50. Total number of species which used all three p-orbitals in hybridisation of central atom and should be non-polar also.
$\mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{SnCl}_{2}, \mathrm{IF}_{5}, \mathrm{I}_{3}^{+}, \mathrm{XeO}_{4}, \mathrm{SO}_{2}, \mathrm{XeF}_{7}^{+}, \mathrm{SeF}_{4}$

- Watch Video Solution

51. Consider the following species
$\mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}, \mathrm{PO}_{4}^{3-}, \mathrm{XeO}_{3}, \mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
Then calculate value of $|x-y|$, where
x : Total number of species which have bond order 1.5 or greater than 1.5
y : Total number of species which have bond order less than 1.5

- Watch Video Solution

52.

Consider
the
following
orbitals
$3 s, 2 p_{x}, 4 d_{x y}, 4 d_{z^{2}}, 3 d_{x^{2}-y^{2}}, 3 p_{y}, 4 s, 4 p_{z}$ and find total number of orbital
(s) having even number of nodal plane.

- Watch Video Solution

53. For the following molecules:
$\mathrm{PCl}_{5}, \mathrm{BrF}_{3}, \mathrm{ICl}_{2}^{-}, \mathrm{XeF}_{5}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{PCl}_{4}^{+}, \mathrm{CH}_{3}^{+}$
Calculate the value of $\frac{a+b}{c}$
$\mathrm{a}=$ Number of species having $s p^{3} \mathrm{~d}$-hybridisation
$\mathrm{b}=$ Number of species which are planar
c= Number of species which are non-planar

- Watch Video Solution

54. Find out number of transformation among following which involves the change of hybridisation of underlined atom.
(a)

$$
\mathrm{H}_{2} \underline{\mathrm{O}}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \underline{O}^{+} \quad(b) \mathrm{NH}_{3}+\underline{B} F_{3} \rightarrow N H_{3} . \text { Underl } \in e(B) F_{3}
$$

(c) $\underline{X} e F_{6} \rightarrow \underline{X} e F_{5}^{+}+F^{-}$
 $\left.(d) 2 \underline{P} C l_{5} \rightarrow \underline{P} C l_{4}^{+}\right)+P C l_{6}^{-}$

(e) $\underline{\mathrm{C}} \mathrm{H}_{3}-\mathrm{CH}_{3} \rightarrow \underline{\mathrm{C}} \mathrm{H}_{3}^{-}+\mathrm{CH}_{3}^{+}$

- Watch Video Solution

[^0]: Column-1
 (P) Trigonal pyramidal shape
 (Q) Square pyramidal shape
 (R) See-saw shape
 (S) Non-planar
 (1) One of the bond angle $<90^{\circ}$

