

India's Number 1 Education App

CHEMISTRY

BOOKS - VK JAISWAL CHEMISTRY (HINGLISH)

CHEMICAL BONDING (BASIC)

Level 1

1. The correct order of boiling point is:

A.
$$I > II > III$$

B.
$$III > II > I$$

$$\mathsf{C}.\,II > I > III$$

D.
$$III > I > II$$

Answer: B

Watch Video Solution

- **2.** Which of the following is not true about H_2O molecule?
 - A. The molecule has $\mu=0$
 - B. The molecule can act as a base
 - C. Shows abnormally high boiling point in comparison to the hydrides
 - of other elements of oxygen group
 - D. The molecule has a bent shape

Answer: A

3. The boiling points at atmospheric pressure of $HF,\,H_2S,\,NH_3$ can be arranged in the following order :

A.
$$HF>NH_3>H_2S$$

B.
$$HF>H_2S>NH_3$$

$$\mathsf{C.}\,HF < H_2S < NH_3$$

D.
$$HF < NH_3 < H_2S$$

Answer: A

4. The correct order of strength of $H-\,$ bond in the following compound .

A.
$$H_2O>H_2O_2>HF>H_2S$$

B.
$$HF > H_2O_2 > H_2O_2 > H_2S$$

C.
$$HF>H_2O>H_2S>H_2O_2$$

D.
$$HF>H_2O>H_2O_2>H_2S$$

Answer: D

Watch Video Solution

- **5.** Which compound has electrovalent, covalent, co-ordinate as well as hydrogen bond ?
 - A. $\left[Cu(H_2O)_4\right]SO_4$. H_2O
 - B. $\left[Zn(H_2O)_6\right]SO_4$. H_2O
 - C. $\left[Fe(H_2O)_6\right]SO_4$. H_2O
 - D. $\left[Fe(H_2O)_6\right]Cl_3$

Answer: A

6. Which statement is correct?

A. m.p. of $H_2O,\,NH_3$ are maximum in their respective group due to intermolecular H-Bonding

B. b.p. of CH_4 out of CH_4 , SiH_4 , GeH_4 and SnH_4 is least due to weak intermolecular force of attraction

C. formic acid forms dimer by H-bonding

D. all are correct

Answer: D

Watch Video Solution

- **7.** Which of the following molecules are expected to exhibit intermolecular H-bonding ?
- (I) Acetic acid ((II) o-nitrophenol (III) m-nitrophenol (IV)o-boric acid

Select correct alternate:

A. I, II, III B. I,II,IV C. I,III,IV D. II,III,IV **Answer: C Watch Video Solution** 8. Which of the following compounds can form H-bonding with each other? A. CH_3COOH and H_2O B. Phenol and CH_4 C. CHF_3 and acetone D. PH_{3} and HF Answer: A

- **9.** BF_3 and NF_3 both are covalent compounds but NF_3 is polar whereas BF_3 is non-polar. This is because :
 - A. Nitrogen atom is smaller than boron atom
 - B. N-F bond is more polar than B-F bond
 - C. NF_3 is pyramidal whereas BF_3 is planar triangular
 - D. BF_3 is electron deficient whereas NF_3 is not

Answer: C

- **10.** Dipole moment of NF_3 is smaller than :
 - A. NH_3
 - B. CO_2

$C.BF_3$
D. CCl_4
Answer: A
Watch Video Solution
11. Which of the following molecules will have polar bonds but zero dipole
moment?
A. O_2
B. $CHCl_3$
$C.CF_4$
D. none of these

Answer: C

12. Which has maximum dipole moment?

В.

C.

A.

D.

Answer: B

Watch Video Solution

- 13. Which of the following compound is planar and non-polar?
 - A. XeO_4
 - B. SF_4
 - C. XeF_4
 - D. CF_4

Answer: C

Watch Video Solution

14. H_2O has a net dipole moment while BeF_2 has zero dipole moment because :

 $\ensuremath{\mathsf{A}}.\ensuremath{\,\mathsf{F}}$ is more electronegativity than oxygen

B. Be is more electronegativity than oxygen

C. H_2O molecule is linear and BeF_2 is bent

D. BeF_2 molecule is linear and H_2O is bent

Answer: D

Watch Video Solution

15. Correct set of species with zero dipole moment is :

(i) CO_2 $(ii)COCl_2$ $(iii)CH_2Cl_2$ $(iv)BCl_3$

A. I and iv

B. ii and iv

C. iii and iv

D. I, iii and iv

Answer: A

16. Which pair of molecules are polar species ?

- A. CO_2 and H_2O
- $B.BF_3$ and PCl_3
- $\mathsf{C}.\,SO_2$ and SCl_2
- D. CS_2 and SO_3

Answer: C

17. In which molecule does the chlorine have the most positive partial charge?

A. HCl

B. BrCl

\boldsymbol{c}	Ocl
C.	Oci_2

D. SCl_2

Answer: C

Watch Video Solution

18. Which of the following attraction is strongest?

B. CHCl₃ :::: CHCl₃

D. CI IIII H₂O

Answer: D

View Text Solution

19. Which is distilled first? A. Liquid H_2 B. Liquid CO_2 C. Liquid O_2 D. Liquid N_2 Answer: A **Watch Video Solution 20.** Molecular size of ICI and Br_2 is nearly same but b. pt. of ICI is about $40^{\,\circ}$ higher than BR_2 . This is due to : A. Icl bond is stronger than Br-Br bond B. IE of iodine < IE of bromine C. Icl is polar while Br_2 is nonpolar D. I has larger size than Br

Answer: C

Watch Video Solution

21. Which of the following order of molecular force of attraction among given species is incorect ?

A.
$$HI > HBr > Cl_2$$

$$\mathsf{B.}\,CH_3Cl > CCl_4 > CH_4$$

C. n-pentane > iso-pentane > neo-pentane

$$\mathsf{D}.\,OH_2 > O(CH_3)_2 > OBr_2$$

Answer: D

Watch Video Solution

22. Which gas should not be collected over water because of its high solubility in water?

24. Which substance has the strongest London dispersion forces ?
A. SiH_4
B. CH_4
C. SnH_4
D. GeH_4
Answer: C Watch Video Solution
25. Which of the following compounds has the lowest boiling point?
A. HF
B. HCl
C. HBr

Answer: B

Watch Video Solution

26. When the substances $Si, KCl, CH_3OH \text{ and } C_2H_6$ are arranged in order of increasing melting point, what is the correct order ?

A. Si, KCl, CH_3OH, C_2H_6

 $\mathsf{B.}\,CH_3OH,\,C_2H_6,\,Si,\,KCl$

 $\mathsf{C}.\,KCl,\,Si,\,C_2H_6,\,CH_3OH$

 $\mathsf{D.}\,C_2H_6,\,CH_3OH,\,KCl,\,Si$

Answer: D

- A. 4,2
- B. 6,0
- C. 3,3
- D. 5,1

Answer: B

29. Which of the following is a correct set with respect to molecule,

hybridization, and shape?

A. $BeCl_2$, sp^2 , linear

B. $BeCl_2$, sp^2 , triangular planar

C. BCl_3, sp^2 , triangular planar

D. BCl_3 , sp^3 , tetrahedral

Answer: C

Watch Video Solution

30. Hybridisation of central atom in ICl_2^+ is

A. dsp^2

B.sp

 $\mathsf{C}.\,sp^2$

D. sp^3

Answer: D

Watch Video Solution

31. The state of hybridization of the central atom is not the same as in the others :

- A. B in BF_3
- B. O in H_3O^+
- C. N in NH_3
- D. P in PCl_3

Answer: A

Watch Video Solution

32. The number of sp^2-s sigma bonds in benzene are

A. 3 B. 6 C. 12 D. none of these **Answer: B Watch Video Solution** 33. The hybridization of the central atom will change when: A. NH_3 combines with $H^{\,+}$ B. H_3BO_3 combines with OH^- C. NH_3 forms NH_2^- D. H_2O combines with H^+ **Answer: B Watch Video Solution**

34. $CH_3-CH_2-CH=CH_2$ has hybridisation :

A. $sp,\,sp,\,sp^2,\,sp^2$

 $\mathrm{B.}\,sp^3,sp^3,sp^2,sp$

 $\mathsf{C.}\,sp^3,sp^3,sp^2,sp^2$

D. sp^3, sp^2, sp^2, sp

Answer: C

Watch Video Solution

35. The state of hybridization of xenon of XeF_6 is

A. sp^3d^3

 ${\sf B.}\, sp^3d^2$

 $\mathsf{C}.\,sp^3d$

D.	sp^3
$\boldsymbol{\mathcal{L}}$	ν_{ν}

Answer: A

Watch Video Solution

36. During the complete combustion of methane CH_4 , what change in hybridisation does the carbon atom undergo ?

A. sp^3 to ${\sf sp}$

 $B. sp^3$ to sp^2

 $\operatorname{C.} sp^2 \operatorname{to} \operatorname{sp}$

D. sp^2 to sp^3

Answer: A

37. The hybridisation of central iodine atom in $IF_5,\,I_3^-$ and I_3^+ are respectively :

A.
$$sp^3d^2,\,sp^3d,\,sp^3$$

 $\mathsf{B.}\, sp^3d,\, sp^3d,\, sp^3$

C. $sp^3d^2,\,sp^3d^2,\,sp^3$

D. sp^3d, sp^3d^2, sp^3

Answer: A

Watch Video Solution

38. In which of the following combination hybridisation of central atom (*) does not change ?

A.
$$H_2O+\overset{*}{C}O_2$$

B.
$$H_3 \overset{*}{B} O_3 + OH^-$$

C.
$$BF_3 + \overset{*}{N}H_3$$

D. none of these

Answer: C

Watch Video Solution

39. Which of the following species has used both axial set of d-orbitals in hybridisation of central atom ?

A. $PBr_4^{\,+}$

 $\operatorname{B.}\operatorname{PCl}_4^-$

 $\mathsf{C.}\,ICl_4^-$

D. none of these

Answer: C

- **40.** Which bonds are formed by a carbon atom with sp^2 -hybridisation ?
 - A. 4π -bonds
 - B. $2\pi\text{-bonds}$ and $2\sigma\text{-bonds}$
 - C. 1π -bonds and 3σ -bonds
 - D. 4σ -bonds

Answer: C

41. What are the hybridisation of the carbon atoms labeled C_1 and C_2 , respectively in glycine ?

B.
$$rac{C_1}{sp^2} rac{C_2}{sp^3}$$
C. $rac{C_1}{sp^3} rac{C_2}{sp^2}$
D. $rac{C_1}{sp^3} rac{C_2}{sp^3}$

Answer: C

Watch Video Solution

used by oxygen in these bonds are best described as:

A. p-orbitals

B. sp-hybrid orbitals

42. The H-O-H bond angles in H_3O^+ are approximately 107° . The orbitals

C. sp^2 -hybrid orbital

D. sp^3 -hybrid orbital

Answer: D

43. Which pair of elements can form multiple bond with itself and oxygen

A. F,N

?

B. N, Cl

C. N,P

D. N,C

Answer: D

Watch Video Solution

44. Which of the following is a covalent compound?

A. Al_2O_3

 $\operatorname{B.}AlF_3$

C. $AlCl_3$

D. $Al_2(SO_4)_3$

Answer: C

Watch Video Solution

45. Which of the following is an example of super octet molecule?

A. ClF_3

B. PCl_5

 $\mathsf{C}.\,IF_7$

D. All the three

Answer: D

Answer: B

Watch Video Solution

48. The compound that has the higest ionic character associated with the

X-Cl bond is:

- A. PCl_5
- B. BCl_3
- $C. CCl_4$
- D. $SiCl_4$

Answer: D

Watch Video Solution

49. The bond having the highest bond energy is :

A.
$$C=C$$

B. C = S

C. C = O

D.P = N

Answer: C

Watch Video Solution

50. Which of the following species in neither hypervalent nor hypovalent

?

A. ClO_{4}^{-}

 $\operatorname{C.}SO_4^{2\,-}$

B. BF_3

D. CO_3^{2-}

Answer: D

51. In which of the following species central atom is NOT surrounded by exactly 8 valence electrons ?

- A. $BF_4^{\,-}$
- B. NCl_3
- $\mathsf{C.}\,PCl_4^{\,+}$
- D. SF_4

Answer: D

Watch Video Solution

52. Which atom can have more than eight valence electrons when it is forming covalent bonds ?

A. H

54. Which set contains only covalently bonded molecules?

- A. BCl_3 , $SiCl_4$, PCl_3
- $\mathsf{B.}\,NH_4Br,\,N_2H_4,\,HBr$
- $\mathsf{C}.\,I_2,\,H_2S,\,NaI$
- D. Al, O_3, As_4

Answer: A

Watch Video Solution

55. Which molecule does not exist?

- A. OF_2
- B. OF_4
- $\mathsf{C}.\,SF_2$
- D. SF_4

Answer: B

Watch Video Solution

56. Solid NaCl is a bad conductor of electricity because

- A. in solid NaCl there are no ions
- B. solid NaCl is covalent
- C. in solid NaCl there is no mobility of ions
- D. in solid NaCl there are no electrons

Answer: C

Watch Video Solution

57. An ionic compound $A^{\,+}B^{\,-}$ is most likely to be formed when :

A. the ionization energy of A is high and electron affinity of B is low

B. the ionization energy of A is low and electron affinity of B is high

C. both, the ionization energy of A and electron affinity of B are high

D. both, the ionization energy of A and electron affinity of B are low

Answer: B

Watch Video Solution

58. A compound contains three elements A, B and C, if the oxidation number of $A=\,+\,2$ $B=\,+\,5$ and $C=\,-\,2$ then possible formula of the compound is

A.
$$A_3(B_4C)_2$$

 $B. A_3(BC_4)_2$

C. $A_2(BC_3)_2$

D. ABC_2

Answer: B

59. Which pair of atoms form strongest ionic bond?

A. Al and As

B. Al and N

C. Al and Se

D. Al and O

Answer: D

60. The correct order of increasig C-O bond length of CO, CO_3^{2-}, CO_2 is

A.
$$CO_3^{2-} < CO_2 < CO$$

B.
$$CO_2 < CO_3^{2-} < CO$$

 ${\sf C.}\ CO < CO_3^{2-} < CO_2$

 ${\rm D.}\, CO < CO_2 < CO_3^{2-}$

Answer: A

Watch Video Solution

61. Resonance structures can be written for.

A. O_3

B. NH_3

C. CH_4

D. H_2O

Answer: A

 $\textbf{62.} \ \textbf{The correct order of Cl-O bond order is:} \\$

A.
$$ClO_3^- < ClO_4^- < ClO_2^- < ClO^-$$

$$\operatorname{B.}{ClO}^{-} < \operatorname{ClO}_{4}^{-} < \operatorname{ClO}_{3}^{-} < \operatorname{ClO}_{2}^{-}$$

$$\operatorname{\mathsf{C}}.\mathit{ClO}^- < \mathit{ClO}_2^- < \mathit{ClO}_3^- < \mathit{ClO}_4^-$$

$${\rm D.}\, ClO_4^- < ClO_3^- < ClO_3^- < ClO^-$$

Answer: C

63. How many resonance structures can be drawn for the nitrate ion,

 NO_3^- ?

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

64. Among given species identify the isostructural pairs :

- A. $[NF_3 \text{ and } BF_3]$
- B. $\left[BF_4^{\ -} \text{ and } NH_4^{\ +}\right]$
- C. $[BCl_3 \text{ and } BrCl_3]$
- D. $\left[NH_3 \text{ and } NO_3^-\right]$

Answer: B

Watch Video Solution

65. 0.01 mole H_3PO_x is completely neutralised by 0.56 gram of KOH hence :

A. x=3 and given acid is dibasic

B. x=2 and given acid is monobasic

C. x=3 and given acid is monobasic

D. x=4 and given acid forms three series of salt

Answer: B

Watch Video Solution

66. The solid PCl_5 exists as

A. PCl_5

 $\operatorname{B.}\operatorname{PCl}_{4}^{+}\operatorname{Cl}^{-}$

C. $PCl_4^+PCl_6^-$

D. PCl_5 . Cl_2

Answer: C

67. The ratio of $\sigma-$ bond and $\pi-$	bond in tetracryano ethylene is :
A. 2:1	

B. 1:1

C. 1: 2

D. none of these

Answer: B

Watch Video Solution

68. The bonds present in $N_2{\cal O}_5$ are .

A. only ionic

B. only covalent

C. covalent and co-ordinate

D. covalent and	ionic

Answer: C

Watch Video Solution

- **69.** The pair of species with similar shape is
 - A. PCl_3, NH_3
 - B. $CF_4,\,SF_4$
 - $\mathsf{C.}\,PbCl_2,CO_2$
 - D. PF_5 , IF_5

Answer: A

70. Which of the following statements is correct in the context of the allene molecule, C_3H_4 ?

A. The central carbon is sp hybridized

B. The terminal carbon atoms are sp^2 hybridized

to permit the formations two separate π -bonds

C. The planes containing the CH_2 groups are mutually perpendicular

D. all are correct

Answer: D

Watch Video Solution

71. Number of S-S bond is $H_2S_nO_6$:

A. n

B. (n-1)

C. (n-2)

D. (n+1)

Answer: B

Watch Video Solution

- **72.** How many S-S bonds, S-O-S bonds, σ -bonds, π -bonds are present in trimer of sulphur trioxide ?
 - A. 0,3,16,2
 - B. 0,3,12,6
 - C. 0,6,12,16
 - D. 0,4,12,6

Answer: B

73. Number of identical Cr-O bonds in dichromate ion $Cr_2O_7^{2-}$ is :
A. 4
B. 6
C. 7
D. 8
Answer: B
Watch Video Solution
74. The nodal plane in the π -bond of ethene is located in:
A. the molecular plane
B. a plane parallel to the molecular plane
C. a plane perpendicular to the molecular plane which bisects the
carbon-carbon σ bond at right angle

D. a plane perpendicular to the molecular plane which contains the

carbon-carbon bond

Answer: A

Watch Video Solution

75. Which of the following are isoelectronic and isostructural?

$$NO_3^-, CO_3^{2-}, ClO_3^-, SO_3$$

A.
$$NO_3^-, CO_3^{2-}$$

$$\mathsf{B.}\,SO_3,NO_3^-$$

$$\mathsf{C}.\,ClO_3^-\,,\,CO_3^{2-}$$

$$\operatorname{D.}CO_3^{2\,-}, ClO_3^{\,-}$$

Answer: A

Answer: C

Watch Video Solution

78. The geometry of $XeF_3^{\,+}$ is

- A. Trigonal planar
- B. Pyramidal
- C. Bent T-shpae
- D. See-saw

Answer: C

79. Which of the following shape are not possible for possible value of n in XeF_n molecule ? A. Linear B. Square planar C. Trigonal planar D. Capped octahedral **Answer: C Watch Video Solution 80.** $BeCl_2$ is not isostructural with A. ICl_2^- B. C_2H_2 $\mathsf{C}.\,XeF_2$

D. $GeCl_2$

Answer: D

View Text Solution

81. Which statement is true about the most stable Lewis structure for CS_2 ?

- A. There are no lone pairs in molecule
- B. All bonds are double bonds
- C. The central atom does not have an octet of electrons
- D. A sulfur atom must be the central atom for the structure to be stable

Answer: B

- A. Square pyramidal, T-shpaed
 - B. Bent-T-shape, square pyramidal
 - C. See-saw, square pyramidal
- D. Square pyramidal, see -saw

Answer: B

Watch Video Solution

83. In which of the following species maximum atom can lie in same plane ?

- A. XeF_2O_2

 - C. AsH_4^+

B. PCl_5

D. XeF_4

Answer: D

84. Correct statement regarding molecules SF_4 , CF_4 and XeF_4 are :

- A. 2,0 and 1 lone pairs of central atom respectively
- B. 1,0 and 1 lone pairs of central atom respectively
- C. 0,0 and 2 lone pairs of central atom respectively
- D. 1,0 and 2 lone pairs of central atom respectively

Answer: D

85. The geometrical arrangement and shape of I_3^- are respectively

- A. trigonal bipyramidal geometry, linear shape
- B. hexagonal geometry, T-shape
- C. triangular planar geometry, triangular shape

D. tetrahedral geometry, pyramidal shape

Answer: A

Watch Video Solution

- **86.** Which of the following statements is incorrect for PCl_5 ?
 - A. Its three P-Cl bond lengths are equal
 - B. It involves sp^3 d hybridization
 - C. It has an regular geometry
 - D. Its shape is trigonal bipyramidal

Answer: C

A. the same with 2,0 and 1 lone pair of electrons respectively

B. the same with 1,1 and 1 lone pair of electrons respectively

C. the same with 0m1 and 2 lone pair of electrons respectively

D. the same with 1,0 and 2 lone pair of electrons respectively

88. The structure of the noble gas compound XeF_4 is :

Answer: D

A. square planar

B. distorted tetrahedral

C. tetrahedral

D. octahedral

Answer: A

89. The molecule exhibiting maximum number of non-bonding electron pairs (l.p.) around the central atom is :

- A. $XeOF_4$
- B. XeO_2F_2
- C. XeF_3^-
- D. XeO_3

Answer: C

- 90. Which is the following pairs of species have identical shapes?
 - A. NO_2^+ and NO_2^-
 - $B.\,PCl_5$ and BrF_5
 - $\mathsf{C}.\,XeF_4$ and ICl_4^-

D. $TeCl_4$ and XeO_4

Answer: C

Watch Video Solution

- **91.** The shapes of $XeF_4, XeF_5^- \ \ {
 m and} \ \ SnCl_2$ are :
 - A. octahedral, trigonal bipyramidal and bent
 - B. square pyramidal, pentagonal planar and linear
 - C. square planar, pentagonal planar and angular
 - D. see-saw, T-shaped and linear

Answer: C

Watch Video Solution

92. Which is not correctly matched?

A. XeO_3 -Trigonal bipyramidal

B. ClF_3 - bent T-shape

C. $XeOF_4$ - Square pyramidal

D. XeF_2 - Linear shape

Answer: A

Watch Video Solution

planar species are: A. CO_3^{2-} , SO_3^{2-} , BO_3^{3-}

$$^{-}, BO_{3}^{3}^{-}$$

93. Amongst $NO_3^-, AsO_3^{3-}, CO_3^{2-}, ClO_3^-, SO_3^{2-}$ and BO_3^{2-} , the non-

B. $AsO_3^{3-}, ClO_3^{-}, SO_3^{2-}$

 $\mathsf{C.}\,NO_3^-,CO_3^{2-},BO_3^{3-}$

D. SO_3^{2-} , NO_3^- , BO_3^{3-}

Answer: B

94. The geometry of ammonia molecule can be best described as:

A. Nitrogen at one vetex of a regular tetrahedron, the other three vertices being occupied by three hydrogens

B. Nitrogen at the centre of the tetrahedron, three of the vertices being occupied by three hydrogens

C. Nitrogen at the centre of an equilateral triangle, three corners being occupied by three hydrogens

D. Nitrogen at the junction of a T, three open ends being occupied by three hydrogens

Answer: B

95. Which molecular geometry is least likely to result from a trigonal bipyramidal electron geometry?

- A. Trigonal planar
- B. See-saw
- C. Linear
- D. T-shpaed

Answer: A

Watch Video Solution

- **96.** Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is falese:
- $\left(I\right)$ The order of repulsion between different pair of electron is

$$I_p-I_p>I_p-b_p>b_p-b_p$$

(II) In general, as the number o flone pair of electron on central atom increases, value of bond angle from normal bond angle also increases

(III) The number of lone pair on O in H_2O is 2 while on N in NH_3 is 1 $\left(IV\right)$ The structures of xenon fluorides and xenon oxyfluorides could not be explained on the basis of VSEPR theory A. T T TF B. TFTF C. TFT T D. TF F F **Answer: B Watch Video Solution** 97. Which species is planar? A. $CO_3^{2\,-}$

 $\mathsf{C}.\,ClO_3^-$

D.	BF_4^-	

Answer: A

Watch Video Solution

- **98.** What is the geometry of the IBr_2^- ion ?
 - A. Linear
 - B. Bent shape with bond angle of about $90\,^\circ$
 - C. Bent shape with bond angle of about 109°
 - D. Bent shape with bond angle of about 120°

Answer: A

C. T-shaped D. Tetrahedral **Answer: C Watch Video Solution 100.** Which species below has the same general shape as NH_3 ? A. $SO_3^{2\,-}$ B. CO_3^{2-} $\mathsf{C}.\,NO_3^-$ D. SO_3 **Answer: A Watch Video Solution**

A. Trigonal planar

B. Trigonal pyramidal

101. According to VSEPR theory, in which species do all the atoms lie in the same plane ?

- 1. CH_3^+ 2. CH_3^-
 - A. 1 only
 - B. 2 only
 - C. both 1 and 2
 - D. neither 1 nor 2

Answer: A

Watch Video Solution

102. Which of the following species / molecules does not have same number of bond pairs and lone pairs ?

A. OCN^-

104. The lowest O-O bond length in the following molecule is :	
A. O_2F_2	
B. O_2	
C. H_2O_2	
D. O_3	
Answer: B	
Watch Video Solution	
105. The fluorine molecules is formed by:	
A. p-p orbitals (sideways overlap)	
B. p-p orbitals (end -to -end overlap)	
C. sp-sp orbitals	
D. s-s orbitals	

Answer: B

Watch Video Solution

106. Which of the following leads to bonding?

Answer: B

107. Which of the following overlaps is incorrect (assuming Z-axis is internucler axis)?

$$(A)2P_y+2p_y
ightarrow\pi$$
- Bond formation $(B)2p_x+2p_x
ightarrow\sigma$ - Bond formation

(C)
$$33d_{xy}+3dp_{xy}
ightarrow \pi$$
- Bond formation $(D)2s+2p_y
ightarrow \pi$ - Bond formation

(E)
$$3d_{xy}+3d_{xy}
ightarrow \delta$$
- Bond formation $(F)2p_x+2p_x
ightarrow \sigma$ -Bond formation

Answer: D

108. Which of the following overlapping is not present in XeO_3 molecule

A.
$$sp^3+p_x$$

?

B.
$$sp^3+p_y$$

C.
$$d_{xz}+p_x$$

D.
$$sp^3+s$$

Answer: D

109. How many sigma bonds are in a molecule of diethyl ether, $C_2H_5OC_2H_5$?

- A. 14
- B. 12
- C. 8

Answer: A

Watch Video Solution

110. The lattice energies of KF, KCl, KBr and KI follow the order:

A.
$$KF > KCl > KBr > KI$$

$$B.\,KI > KBr > KCl > KF$$

$$\mathsf{C}.\,KF > KCl > KI > KBr$$

D.
$$KI > KBr > KF > KCl$$

Answer: A

111. Which set of compounds in the following pair of ionic compounds has

the higher lattice energy?

- (i) KCl or MgO (ii) LiF or LiBr (iii) Mg_3N_2 or NaCl
 - A. $KCl, LiBr, Mg_3N_2$
 - B. $MgO, LiBr, Mg_3N_2$
 - $\mathsf{C}.\,MgO,LiF,NaCl$
 - D. MgO, LiF, Mg_3N_2

Answer: D

112. The incorrect order of lattice energy is :

- A. $AlF_3>MgF_2$
- B. $Li_3N > Li_2O$
- C. NaCl > LiF

Answer: C

Watch Video Solution

- 113. Which ionic compound has the largest amount of lattice energy?
 - A. NaF
 - B. AlF_3
 - $\mathsf{C.}\,AlN$
 - D. MgF_2

Answer: C

114. Which of the following compounds has the smallest bond angle in its molecule? A. OH_2 B. SH_2 $\mathsf{C}.\,NH_3$ D. SO_2 **Answer: B Watch Video Solution** 115. Maximum bond angle is present in case of A. BBr_3 $B.\,BCl_3$ $\mathsf{C}.\,BF_3$ D. none of these

Answer: D

Watch Video Solution

116. The correct order of H-M-H bonds angle is:

A.
$$NH_3 < PH_3 < SbH_3 < BiH_3$$

$${\rm B.} \, AsH_3 < SbH_3 < PH_3 < NH_3$$

C.
$$NH_3 < PH_3 < BiH_3 < SbH_3$$

$$\mathsf{D.}\,BiH_3 < SbH_3 < AsH_3 < PH_3$$

Answer: D

Watch Video Solution

117. The correct increasing bomnd angle among $BF_3,\,PF_3$ and CIF_3 follow the order

A. $BF_3 < PF_3 < ClF_3$

B. $PF_3 < BF_3 < ClF_3$

C. $ClF_3 < PF_3 < BF_3$

Watch Video Solution

Answer: C

is in:

A. O_3

 $\mathrm{B.}\,I_3^{\,-}$

 $\mathsf{C}.\,NO_2^-$

D. PH_3

Answer: D

D. $BF_3 = PF_3 = ClF_3$

118. Among the following species, the least angle around the central atom

119. The bond angles of $NH_3,\,NH_4^{\,\oplus}$ and $\stackrel{\Theta}{NH_2}$ are in the order .

A.
$$NH_2^- > NH_3 > NH_4^+$$

B.
$$NH_4^{\,+} > NH_3 > NH_2^{\,-}$$

C.
$$NH_3>NH_2^->NH_4^+$$

D.
$$NH_3>NH_4^{\,+}>NH_2^{\,-}$$

Answer: B

Watch Video Solution

120. The H-C-H bond angle in $CH_4is109.5^{\circ}$, due to lone pair repulsion, the H-O-H angle in H_2O will :

A. remain the same

B. increase

C. decrease
D. become 180°
Answer: C
Watch Video Solution
121. The molecule having the largest bond angle is :
A. H_2O

 $\mathsf{B.}\,H_2S$

 $\mathsf{C.}\,H_2Se$

D. H_2Te

Answer: A

122. The compound MX_4 is tetrahedral. The number of $\angle XMX$ angles formed in the compound is

A. three

B. four

C. five

D. six

Answer: D

Watch Video Solution

123. Which of the following is the correct order for increasing bond angle ?

A.
$$Nh_3 < PH_3 < AsH_3 < SbH_3$$

$$\mathsf{B.}\,H_2O < OF_2 < Cl_2O$$

C.
$$H_2 T e^+ < H_3 S e^+ < H_3 S^+ < H_3 O^+$$

D. $BF_3 < BCl_3 < BBr_3 < BI_3$

Answer: C

Watch Video Solution

124. The correct order of boiling point is:

A.
$$I > II > III$$

B.
$$III > II > I$$

$$\mathsf{C}.\,II > I > III$$

D.
$$III > I > II$$

Answer: B

View Text Solution

125. Which of the following is not true about H_2O molecule?

A. The molecule has $\mu=0$

B. The molecule can act as a base

C. Shows abnormally high boiling point in comparison to the hydrides of other elements of oxygen group

D. The molecule has a bent shape

Answer: A

Watch Video Solution

126. The boiling points at atmospheric pressure of $HF,\,H_2S,\,NH_3$ can be arranged in the following order :

A.
$$HF>NH_3>H_2S$$

B.
$$HF > H_2S > NH_3$$

$$\mathsf{C.}\,HF < H_2S < NH_3$$

D. $HF < NH_3 < H_2S$

Answer: A

Watch Video Solution

127. The correct order of strength of H- bond in the following compound :

A.
$$H_2O>H_2O_2>HF>H_2S$$

B.
$$HF > H_2O_2 > H_2O_2 > H_2S$$

$$\mathsf{C}.\,HF>H_2O>H_2S>H_2O_2$$

D.
$$HF>H_2O>H_2O_2>H_2S$$

Answer: D

128. Which compound has electrovalent, covalent, co-ordinate as well as

hydrogen bond?

A. $\left[Cu(H_2O)_4\right]SO_4$. H_2O

B. $[Zn(H_2O)_6]SO_4$. H_2O

C. $\left[Fe(H_2O)_6\right]SO_4$. H_2O

D. $\left[Fe(H_2O)_6\right]Cl_3$

Answer: A

129. Which statement is correct?

A. m.p. of $H_2O,\,NH_3$ are maximum in their respective group due to

intermolecular H-Bonding

B. b.p. of CH_4 out of $CH_4,\,SiH_4,\,GeH_4$ and SnH_4 is least due to

weak intermolecular force of attraction

C. formic acid forms dimer by H-bonding

D. all are correct

Answer: D

View Text Solution

130. Which of the following molecules are expected to exhibit intermolecular H-bonding ?

(I) Acetic acid ((II) o-nitrophenol (III) m-nitrophenol (IV)o-boric acid

Select correct alternate:

A. I, II, III

B. I,II,IV

C. I,III,IV

D. II,III,IV

Answer: C

Watch Video Solution

131. Which of the following compounds can form H-bonding with each other?

- A. CH_3COOH and H_2O
- B. Phenol and CH_4
- C. CHF_3 and acetone
- D. PH_3 and HF

Answer: A

Watch Video Solution

132. BF_3 and NF_3 both are covalent compounds but NF_3 is polar whereas BF_3 is non-polar. This is because :

A. Nitrogen atom is smaller than boron atom

B. N-F bond is more polar than B-F bond

C. NF_3 is pyramidal whereas BF_3 is planar triangular

D. BF_3 is electron deficient whereas NF_3 is not

Answer: C

Watch Video Solution

133. Dipole moment of NF_3 is smaller than :

A. NH_3

B. CO_2

 $\mathsf{C.}\,BF_3$

D. CCl_4

Answer: A

134. Which of the following molecules will have polar bonds but zero dipole moment ?

- A. O_2
- B. $CHCl_3$
- $C. CF_4$
- D. none of these

Answer: C

Watch Video Solution

135. Which has maximum dipole moment?

В.

D.

Answer: B

View Text Solution

- A. XeO_4 B. SF_4 $\mathsf{C}.\,XeF_4$
 - D. CF_4

Answer: C

Watch Video Solution

- **137.** H_2O has a net dipole moment while BeF_2 has zero dipole moment because:
- A. F is more electronegativity than oxygen
 - B. Be is more electronegativity than oxygen
 - C. H_2O molecule is linear and BeF_2 is bent
 - D. BeF_2 molecule is linear and H_2O is bent

Answer: D

138. Correct set of species with zero dipole moment is:

- (i) CO_2 $(ii)COCl_2$ $(iii)CH_2Cl_2$ $(iv)BCl_3$
 - A. i and iv
 - B. ii and iv
 - C. iii and iv
 - D. I, iii and iv

Answer: A

Watch Video Solution

139. Which pair of molecules are polar species ?

- A. CO_2 and H_2O
- $B.BF_3$ and PCl_3

C. SO_2 and SCl_2 D. CS_2 and SO_3

Answer: C

140. In which molecule does the chlorine have the most positive partial charge?

A. HCl

 $\mathsf{B}.\,BrCl$

 $\mathsf{C.}\,OCl_2$

D. SCl_2

Answer: C

141. Which of the following attraction is strongest?
A. (CI):::::(H—CI)
B. CHCl ₃ :::: CHCl ₃
$C.$ CCl_4 $EEEE$ CCl_4 $CCCl_4$ $CCCl_4$ $CCCC$
D. H_2O
Answer: D
View Text Solution
142. Which is distilled first ?
A. Liquid H_2
B. Liquid CO_2
C. Liquid O_2

Answer: A

Watch Video Solution

143. The molecular size of Icl and Br_2 is approximately same, but b.p. if Icl is about $40\,^\circ\,C$ higher than that of Br_2 . It is because :

A. Icl bond is stronger than Br-Br bond

B. IE of iodine < IE of bromine

C. Icl is polar while Br_2 is nonpolar

D. I has larger size than Br

Answer: C

View Text Solution

144. Which of the following order of molecular force of attraction among given species is incorect ?

A.
$$HI > HBr > Cl_2$$

B. $CH_3Cl > CCl_4 > CH_4$

C. n-pentane > iso-pentane > neo-pentane

D. $OH_2 > O(CH_3)_2 > OBr_2$

Answer: D

Watch Video Solution

145. Which gas should not be collected over water because of its high solubility in water?

A. H_2

B. N_2

 $C. CH_4$

D. HCl

Answer: D

146. Low melting point is expected for a solid :

A. Ionic solid

B. Metallic solid

C. Molecular solid

D. Covalent solid

Answer: C

147. Which substance has the strongest London dispersion forces?

A. SiH_4

B. CH_4

C. SnH_4

D. GeH_4
Answer: C
Watch Video Solution
48. Which of the following compounds has the lowest boiling point?
A. HF
B. HCl
C. HBr
D. HI

Answer: B

149. When the substances Si, KCl, CH_3OH and C_2H_6 are arranged in order of increasing melting point, what is the correct order ?

- A. Si, KCl, CH_3OH, C_2H_6
- $\mathsf{B}.\,CH_3OH,\,C_2H_6,\,Si,\,KCl$
- C. KCl, Si, C_2H_6 , CH_3OH
- D. $C_2H_6,\,CH_3OH,\,KCl,\,Si$

Answer: D

150. Which substance has the highest melting point?

- $\mathsf{A.}\,CO$
- B. CO_2
- C. SiO_2
- D. P_2O_5

Watch Video Solution

151. How many sp^2 and sp-hybridised carbon atoms are present respectively in the following compound ?

- A. 4,2
- B. 6,0
- C. 3,3
- D. 5,1

Answer: B

Watch Video Solution

152. Which one of the following is the correct set with respect to molecule, hybridization and shape ?

- A. $BeCl_2$, sp^2 , linear
- B. $BeCl_2,\,sp^2$, triangular planar
- C. BCl_3, sp^2 , triangular planar
- D. BCl_3 , sp^3 , tetrahedral

Answer: C

Watch Video Solution

153. Hybridisation of central atom in ICl_2^+ is

A. dsp^2 B. sp $\mathsf{C.}\,sp^2$ D. sp^3 **Answer: D Watch Video Solution** 154. The state of hybridization of the central atom is not the same as in the others: A. B in BF_3 B. O in H_3O^+ $\mathsf{C}.\,N$ in NH_3 D. P in PCl_3 **Answer: A**

155. The number of sp^2-s sigma bonds in benzene are

A. 3

B. 6

C. 12

D. none of these

Answer: B

156. The hybridization of the central atom will change when:

A. NH_3 combines with $H^{\,+}$

B. H_3BO_3 combines with OH^-

C. NH_3 forms $NH_2^{\,-}$

D. H_2O combines with $H^{\,+}$

Answer: B

Watch Video Solution

157. $CH_3-CH_2-CH=CH_2$ has hybridisation :

A. $sp,\,sp,\,sp^2,\,sp^2$

 $\mathsf{B.}\, sp^3,\, sp^3,\, sp^2,\, sp$

 $\mathrm{C.}\,sp^3,\,sp^3,\,sp^2,\,sp^2$

D. sp^3, sp^2, sp^2, sp

Answer: C

Watch Video Solution

158. What is the state of hybridisation of Xe in cationic part of solid XeF_6

- A. sp^3d^3
- $\mathsf{B.}\, sp^3d^2$
- $\mathsf{C}.\,sp^3d$
- $\mathsf{D.}\, sp^3$

Answer: B

Watch Video Solution

hybridisation does the carbon atom undergo?

159. During the complete combustion of methane CH_4 , what change in

- A. sp^3 to sp
- $B. sp^3$ to sp^2
- $\mathsf{C}.\,sp^2$ to sp
- D. sp^2 to sp^3

Answer: A

160. The hybridisation of central iodine atom in IF_5, I_3^- and I_3^+ are respectively :

A.
$$sp^3d^2,\,sp^3d,\,sp^3$$

$$\mathrm{B.}\,sp^3d,\,sp^3d,\,sp^3$$

C.
$$sp^3d^2,\,sp^3d^2,\,sp^3$$

D.
$$sp^3d, sp^3d^2, sp^3$$

Answer: A

Watch Video Solution

161. In which of the following combination hybridisation of central atom

A.
$$H_2O+\overset{*}{C}O_2$$

B. $H_3 \overset{*}{B} O_3 + OH^-$

C. $BF_3 + \overset{*}{N}H_3$

D. none of these

Answer: C

Watch Video Solution

162. Which of the following species used both axial set of d-orbitals in hybridisation of central atom?

A. $PBr_{4}^{\,+}$

B. PCl_{A}^{-}

 $\mathsf{C.}\,ICl_4^-$

D. none of these

Answer: C

163. Which bonds are formed by a carbon atom with sp^2 -hybridisation ?

- A. 4π -bonds
- B. 2π -bonds and 2σ -bonds
- C. 1π -bonds and 3σ -bonds
- D. 4σ -bonds

Answer: C

Watch Video Solution

164. What are the hybridisation of the carbon atoms labeled C_1 and C_2 , respectively in glycine?

- A. $rac{C_1}{sp^2}$ $rac{C_2}{sp^2}$
- B. $\begin{array}{ccc} sp^2 & sp^3 \end{array}$
- C. $rac{C_1}{sp^3}$ $rac{C_2}{sp^2}$
- D. $rac{C_1}{3}$

Answer: C

Watch Video Solution

165. The H-O-H bond angles in H_3O^+ are approximately 107° . The orbitals used by oxygen in these bonds are best described as :

A. p-orbitals

B. sp-hybrid orbitals C. sp^2 -hybrid orbital D. sp^3 -hybrid orbital Answer: D Watch Video Solution 166. Which pair of elements can form multiple bond with itself and oxygen? A. F. NB. N, Cl $\mathsf{C}.\,N,\,P$ D. N, CAnswer: D **Watch Video Solution**

167. Which of the following is a covalent compound? A. Al_2O_3 B. AlF_3 $\mathsf{C}.\,AlCl_3$ D. $Al_2(SO_4)_3$ **Answer: C Watch Video Solution** 168. Which of the following is an example of super octet molecule? A. ClF_3 B. PCl_5 $\mathsf{C}.\,IF_7$ D. All the three

Answer: D

Watch Video Solution

169. Which of the following molecule is theoretically not possible?

- A. SF_4
- B. OF_2
- $\mathsf{C}.\,OF_4$
- D. O_2F_2

Answer: C

Watch Video Solution

170. The phosphate of a metal has the formula $MHPO_4$. The formula of its chloride would be

A. MCl
B. MCl_2
C. MCl_3
D. M_2Cl_3
Answer: B
Watch Video Solution
171. The compound that has the higest ionic character associated with
the X-Cl bond is :
A. PCl_5
B. BCl_3
C. CCl_4
D. $SiCl_4$
Answer: D

172. The bond having the highest bond energy is :

A.
$$C=C$$

$$B. C = S$$

$$C. C = O$$

D.
$$P=N$$

Answer: C

173. Which of the following species is neither hypervalent nor hypovalent

A. ClO_{4}^{-}

?

B. BF_3

D.
$$CO_3^{2\,-}$$

Answer: D

Watch Video Solution

174. In which of the following species central atom is NOT surrounded by

exactly 8 valence electrons?

A.
$$BF_4^{\,-}$$

 $\operatorname{B.}NCl_3$

 $\mathsf{C.}\,PCl_4^{\,+}$

D. SF_4

Answer: D

175. Which atom can have more than eight valence electrons when it is
forming covalent bonds ?
A. H
B. N
C.F
D. Cl
Answer: D
Watch Video Solution
Watch Video Solution
176. Which bond is expected to be the least polar?
176. Which bond is expected to be the least polar?
176. Which bond is expected to be the least polar? $ A.O - F $

Answer: A

Watch Video Solution

177. Which set contains only covalently bonded molecules?

- A. BCl_3 , $SiCl_4$, PCl_3
- B. NH_4Br, N_2H_4, HBr
- $\mathsf{C}.\,I_2,\,H_2S,\,NaI$
- D. Al, O_3, As_4

Answer: A

Watch Video Solution

178. Which molecule does not exist?

A. OF_2

179. Solid NaCl is a bad conductor of electricity because

- A. in solid NaCl there are no ions
- B. solid NaCl is covalent
- C. in solid NaCl there is no mobility of ions
- D. in solid NaCl there are no electrons

Answer: C

180. An ionic compound A^+B^- is most likely to be formed when :

A. the ionization energy of A high and electron affinity of B is low

 ${\bf B}.$ the ionization energy of ${\bf A}$ is low and electron affinity of ${\bf B}$ is high

C. both, the ionization energy of A and electron affinity of B are high

D. both, the ionization energy of A and electron affinity of B are low

Answer: B

Watch Video Solution

181. A compound contains three elements A,B and C, if the oxidation number of $A=\,+\,2B=\,+\,5$ and $C=\,-\,2$ then possible formula of the compound is

A.
$$A_3(B_4C)_2$$

B.
$$A_3(BC_4)_2$$

$$\mathsf{C.}\,A_2(BC_3)_2$$

Answer: B

Watch Video Solution

- **182.** Which pair of atoms form strongest ionic bond?
 - A. Al and As
 - B. Al and N
 - C. Al and Se
 - D. Al and O

Answer: D

183. The correct order of increasing C-O bond strength of CO, CO_3^{2-}, CO_2 is :

A.
$$CO_3^{2\,-} < CO_2 < CO$$

 ${\rm B.} \, CO_2 < CO_3^{2-} < CO$

 ${\sf C.}\ CO < CO_3^{2-} < CO_2$

D. $CO < CO_2 < CO_3^{2-}$

Answer: A

184. Resonance structures can be written for .

A. O_3

B. NH_3

C. CH_4

D. H_2O

Answer: A

Watch Video Solution

185. The correct order of Cl-O bond order is:

A.
$$ClO_3^- < ClO_4^- < ClO_2^- < ClO^-$$

$${\rm B.}\,ClO^{-}\,< ClO_{4}^{-}\,< ClO_{3}^{-}\,< ClO_{2}^{-}$$

$${\rm C.}\,ClO^-\,< ClO_2^-\,< ClO_3^-\,< ClO_4^-$$

$${\rm D.} \, ClO_4^- \, < ClO_3^- \, < ClO_3^- \, < ClO^-$$

Answer: C

Watch Video Solution

186. How many resonance structures can be drawn for the nitrate ion,

 NO_3^- ?

A. 1 B. 2 C. 3 D. 4 **Answer: C** Watch Video Solution 187. Among given species identify the isostructural pairs: A. $[NF_3 \text{ and } BF_3]$ B. $\left[BF_4^{\,-} \text{ and } NH_4^{\,+}\right]$ C. $[BCl_3 \text{ and } BrCl_3]$ D. $\left[NH_3 \text{ and } NO_3^-\right]$ **Answer: B Watch Video Solution**

188. 0.01 mole H_3PO_x is completely neutralised by 0.56 gram of KOH hence :

A. x=3 and given acid is dibasic

B. x=2 and given acid is monobasic

C. x=3 and given acid is monobasic

D. x=4 and given acid forms three series of salt

Answer: B

Watch Video Solution

189. Phosphorus pentachloride in the solid exists as:

A. PCl_5

 $\operatorname{B.}\operatorname{PCl}_4^+\operatorname{Cl}^-$

 $\mathsf{C.}\,PCl_4^+PCl_6^-$

D. PCl_5 . Cl_2

Answer: C

Watch Video Solution

- **190.** The ratio of $\sigma-$ bond and $\pi-$ bond in tetracryano ethylene is :
 - A. 2:1
 - B.1:1
 - C. 1: 2
 - D. none of these

Answer: B

Watch Video Solution

191. The bonds present in $N_2 O_5$ are .

C. covalent and co-ordinate D. covalent and ionic **Answer: C Watch Video Solution** 192. The pair of species with similar shape is A. PCl_3 , NH_3 B. CF_4 , SF_4 $\mathsf{C}.\,PbCl_2,\,CO_2$ D. PF_5 , IF_5 **Answer: A Watch Video Solution**

A. only ionic

B. only covalent

193. Which of the following statements is correct in the context of the allene molecule, C_3H_4 ?

- A. The central carbon is sp hybridized
- B. The terminal carbon atoms are sp^2 hybridized
- C. The planes containing the CH_2 groups are mutually perpendicular to permit the formations two separate π -bonds
- D. all are correct

Answer: D

Watch Video Solution

194. Number of S-S bond is $H_2S_nO_6$:

A. n

B. (n-1)

C.	(n-2)

D. (n+1)

Answer: B

Watch Video Solution

195. How many S-S bonds, S-O-S bonds, σ -bonds, π -bonds are present in trimer of sulphur trioxide ?

A. 0,3,16,2

B. 0,3,12,6

C. 0,6,12,16

D. 0,4,12,6

Answer: B

D. a plane perpendicular to the molecular plane which contains the carbon-carbon bond

Answer: A

Watch Video Solution

198. Which of the following are isoelectronics and isostructural?

A.
$$NO_3^-$$
 , $CO_3^{2\,-}$

$$\mathsf{B.}\,SO_3,NO_3^-$$

$$\mathsf{C.}\,ClO_3^-,CO_3^{2-}$$

D.
$$CO_3^{2-}$$
 , ClO_3^-

Answer: A

Answer: C

Watch Video Solution

201. The shape of $XeF_3^{\,+}$ is :

- A. Trigonal planar
- B. Pyramidal
- C. Bent T-shpae
- D. See-saw

Answer: C

202. Which of the following shape are not possible for possible value of n in XeF_n molecule ? A. Linear B. Square planar C. Trigonal planar D. Capped octahedral **Answer: C Watch Video Solution 203.** $BeCl_2$ is not isostructural with A. ICl_2^- B. C_2H_2

 $\mathsf{C}.\,XeF_2$

D. $GeCl_2$

Answer: D

Watch Video Solution

204. Which statement is true about the most stable Lewis structure for

 CS_2 ?

- A. There are no lone pairs in molecule
- B. All bonds are double bonds
- C. The central atom does not have an octet of electrons
- D. A sulfur atom must be the central atom for the structure to be stable

Answer: B

205. SbF_5 reacts with XeF_4 and XeF_6 to form ionic compounds

 $ig[XeF_3^{\,+}ig]ig[SbF_6^{\,-}ig] ext{ and } ig[XeF_5^{\,+}ig]ig[SbF_6^{\,-}\ \hat{} thenmo \leq car{a}rshapeof$

 $[XeF_(3)^(+)]ion$ and $[XeF_(5)^(+)]$ ion respectively:

- A. Square pyramidal, T-shpaed
- B. Bent-T-shape, square pyramidal
- C. See-saw, square pyramidal
- D. Square pyramidal, see -saw

Answer: B

206. In which of the following species maximum atom can lie in same plane?

- A. XeF_2O_2
- B. PCl_5

 $\mathsf{C.}\,AsH_{\scriptscriptstyle A}^{\,+}$

D. XeF_4

Answer: D

Watch Video Solution

207. Correct statement regarding molecules $SF_4,\,CF_4\,$ and $\,XeF_4$ are :

A. $2,\,0$ and 1 lone pairs of central atom respectively

 ${\rm B.}\ 1,\ 0$ and 1 lone pairs of central atom respectively

 ${\sf C.}\ 0,\, 0$ and 2 lone pairs of central atom respectively

D. $1,\,0$ and 2 lone pairs of central atom respectively

Answer: D

- **208.** The geometrical arrangement and shape of $I_3^{\,-}$ are respectively
 - A. trigonal bipyramidal geometry, linear shape
 - B. hexagonal geometry, T-shape
 - C. triangular planar geometry, triangular shape
 - D. tetrahedral geometry, pyramidal shape

Answer: A

- **209.** Which of the following statements is incorrect for PCl_5 ?
 - A. Its three P-Cl bond lengths are equal
 - B. It involves sp^3d hybridization
 - C. It has an regular geometry
 - D. Its shape is trigonal bipyramidal

Answer: C

Watch Video Solution

210. Molecular shapes of SF_4, CF_4 and XeF_4 are :

- A. the same with 2,0 and 1 lone pair of electrons respectively
- B. the same with 1,1 and 1 lone pair of electrons respectively
- C. the same with 0m1 and 2 lone pair of electrons respectively
- D. the same with 1,0 and 2 lone pair of electrons respectively

Answer: D

View Text Solution

211. The structure of the noble gas compound XeF_4 is :

A. square planar

B. distorted tetrahedral C. tetrahedral D. octahedral Answer: A **Watch Video Solution** 212. The molecule exhibiting maximum number of non-bonding electron pairs (l.p.) around the central atom is: A. $XeOF_4$ B. XeO_2F_2 C. XeF_3^+ D. XeO_3 **Answer: C Watch Video Solution**

213. Which is the following pairs of species have identical shapes?

A. NO_2^+ and NO_2^-

 $B.PCl_5$ and BrF_5

 $\mathsf{C}.\,XeF_4\,\,\mathrm{and}\,\,ICl_4^-$

D. $TeCl_4$ and XeO_4

Answer: C

Watch Video Solution

214. The shapes of XeF_4, XeF_5^- and $SnCl_2$ are :

A. octahedral, trigonal bipyramidal and bent

B. square pyramidal, pentagonal planar and linear

C. square planar, pentagonal planar and angular

D. see-saw, T-shaped and linear

Answer: C

Watch Video Solution

215. Which is not correctly matched?

- A. XeO_3 -Trigonal bipyramidal
- B. ClF_3 bent T-shape
- C. $XeOF_4$ Square pyramidal
- D. XeF_2 Linear shape

Answer: A

Watch Video Solution

216. Amongst $NO_3^-, AsO_3^{3-}, CO_3^{2-}, ClO_3^-, SO_3^{2-}$ and BO_3^{2-} , the non-planar species are :

A.
$$CO_3^{2-}, SO_3^{2-}, BO_3^{3-}$$

$${\rm B.}\, AsO_3^{3\,-}\,, ClO_3^{-}\,, SO_3^{2\,-}$$

$$\mathsf{C.}\,NO_3^-,CO_3^{2-},BO_3^{3-}$$

D.
$$SO_3^{2-}$$
 , NO_3^- , BO_3^{3-}

Answer: B

Watch Video Solution

217. The geometry of ammonia molecule can be best described as:

- A. Nitrogen at one vetex of a regular tetrahedron, the other three vertices being occupied by three hydrogens
- B. Nitrogen at the centre of the tetrahedron, three of the vertices
- being occupied by three hydrogens
- C. Nitrogen at the centre of an equilateral triangle, three corners being occupied by three hydrogens

D. Nitrogen at the junction of a T, three open ends being occupied by three hydrogens

Answer: B

Watch Video Solution

218. Which molecular geometry is least likely to result from a trigonal bipyramidal electron geometry?

- A. Trigonal planar
- B. See-saw
- C. Linear
- D. T-shpaed

Answer: A

219. Give the correct order of initials T or F for following statements. Use

T if statement is true and F if it is falese:

be explained on the basis of VSEPR theory

(I) The order of repulsion between different pair of electron is

$$I_p - I_p > I_p - b_p > b_p - b_p$$

(II) In general, as the number o flone pair of electron on central atom increases, value of bond angle from normal bond angle also increases (III) The number of lone pair on O in H_2O is 2 while on N in NH_3 is 1 (IV) The structures of xenon fluorides and xenon oxyfluorides could not

A. T T TF

B. TFTF

C. TFT T

D. TF F F

Answer: B

220. Which species is planar ?					
A. CO_3^{2-}					
B. SO_3^{2-}					
C. ClO_3^-					
D. BF_4^{-}					
Answer: A					
Watch Video Solution					
221. What is the geometry of the IBr_2^- ion ?					
221. What is the geometry of the IBr_2^- ion ? A. Linear					
A. Linear					
A. Linear B. Bent shape with bond angle of about 90°					

.

.

Answer: A

Watch Video Solution

222. What is the shape of the ClF_3 molecule?

- A. Trigonal planar
- B. Trigonal pyramidal
- C. T-shaped
- D. Tetrahedral

Answer: C

Watch Video Solution

223. Which species below has the same general shape as NH_3 ?

A. SO_3^{2-}

 $\operatorname{B.}CO_3^{2\,-}$

 $\mathsf{C}.\,NO_3^-$

D. SO_3

Answer: A

Watch Video Solution

the same plane? 1. CH_3^+ 2. CH_3^-

224. According to VSEPR theory, in which species do all the atoms lie in

A. 1 only

B. 2 only

C. both 1 and 2

D. neither 1 nor 2

Answer: A

225. Which of the following species / molecules does not have same number of bond pairs and lone pairs ?

- A. OCN^-
- $\mathsf{B.}\,H_2O$
- $\mathsf{C.}\ C_2H_2Cl_2$
- D. O_3

Answer: D

Watch Video Solution

226. Least stable hydride is

A. stannane

B. silane

C. piumbane	
D. germane	
Answer: C	
Watch Video Solution	
227. The lowest O-O bond length in the following molecule is :	
A. O_2F_2	
B. O_2	
C. H_2O_2	
D. O_3	
Answer: B	

- 228. The fluorine molecules is formed by:
 - A. p-p orbitals (sideways overlap)
 - B. p-p orbitals (end -to -end overlap)
 - C. sp-sp orbitals
 - D. s-s orbitals

Answer: B

Watch Video Solution

229. Which of the following leads to bonding?

Answer: B

Watch Video Solution

230. Which of the following overlaps is incorrect (assuming Z-axis is internucler axis)?

internucler axis) ?

 $(A)2P_y+2p_y
ightarrow\pi$ - Bond formation $(B)2p_x+2p_x
ightarrow\sigma$ - Bond

formation

(C) $3d_{xy}+3d_{xy}
ightarrow\pi$ - Bond formation $(D)2s+2p_y
ightarrow\pi$ - Bond

formation

(E) $3d_{xy}+3d_{xy}
ightarrow \delta$ - Bond formation

A. A,B,C

B. C,F

C. B,E

D. B,C,D

Answer: D

Watch Video Solution

231. Which of the following overlapping is not present in XeO_3 molecule

?

A. sp^3+p_x

B. sp^3+p_y

C. $d_{xz}+p_x$

 $\mathsf{D.}\, sp^3 + s$

Answer: D

232. How many sigma bonds are in a molecule of diethyl ether, $C_2H_5OC_2H_5$?

A. 14

B. 12

C. 8

D. 16

Answer: A

Watch Video Solution

233. The lattice energies of KF, KCl, KBr and KI follow the order:

A. KF > KCl > KBr > KI

 $\mathsf{B}.\,KI > KBr > KCl > KF$

C. KF > KCl > KI > KBr

D. KI > KBr > KF > KCl

Answer: A

Watch Video Solution

234. Which set of compounds in the following pair of ionic compounds has the higher lattice energy?

(i) KCl or MgO (ii) LiF or LiBr (iii) Mg_3N_2 or NaCl

A. KCl, LiBr, Mg_2N_2

 $\mathsf{B.}\,MgO,LiBr,Mg_3N_2$

 $\mathsf{C}.\,MgO,\,LiF,\,NaCl$

D. MgO, LiF, Mg_3N_2

Answer: D

Watch Video Solution

235. The incorrect order of lattice energy is:

A. $AlF_3 > MgF_2$

B. $Li_3N > Li_2O$

C. NaCl > LiF

D. TiC > ScN

Answer: C

Watch Video Solution

236. Which ionic compound has the largest amount of lattice energy?

A. NaF

 $\mathsf{C}.\,AlN$

B. AlF_3

D. MgF_2

Answer: C

D. none of these

Answer: D

Watch Video Solution

239. The correct order of H-M-H bonds angle is:

A. $NH_3 < PH_3 < SbH_3 < BiH_3$

 ${\rm B.} \ AsH_{3} < SbH_{3} < PH_{3} < NH_{3}$

C. $NH_3 < PH_3 < BiH_3 < SbH_3$

 $\mathsf{D.}\,BiH_3 < SbH_3 < AsH_3 < PH_3$

Answer: D

240. The correct increasing bomnd angle among $BF_3,\,PF_3$ and CIF_3 follow the order

A.
$$BF_3 < PF_3 < ClF_3$$

$$\mathsf{B.}\,PF_3 < BF_3 < ClF_3$$

$$\mathsf{C.}\,\mathit{Cl}F_3 < \mathit{PF}_3 < \mathit{BF}_3$$

$$\operatorname{D.}BF_3=PF_3=ClF_3$$

Answer: C

241. Among the following species, the least angle around the central atom is in :

A.
$$O_3$$

$$\mathsf{B.}\,I_3^{\,-}$$

$$\mathsf{C.}\,NO_2^-$$

 $\mathsf{D.}\,PH_3$

Answer: D

Watch Video Solution

- **242.** The bond angles of $NH_3, NH_4^+ \; {
 m and} \; NH_2^-$ are in the order
 - A. $NH_2^{\,-}>NH_3>NH_4^{\,+}$
 - ${\rm B.}\,N{H_{4}^{\,+}}>N{H_{3}}>N{H_{2}^{-}}$
 - $\mathsf{C}.\,NH_3>NH_2^{\,-}>NH_4^{\,+}$
 - D. $NH_3>NH_4^{\,+}>NH_2^{\,-}$

Answer: B

243. The H-C-H bond angle in $CH_4is109.5^{\circ}$, due to lone pair repulsion, the H-O-H angle in H_2O will : A. remain the same B. increase C. decrease D. become 180° **Answer: C Watch Video Solution** 244. The molecule having the largest bond angle is:

A. H_2O

B. H_2S

 $\mathsf{C}.\,H_2Se$

D. H_2Te

Answer: A

Watch Video Solution

245. The compound MX_4 is tetrahedral. The number of $\angle XMX$ angles formed in the compound is

- A. three
- B. four
- C. five
- D. six

Answer: D

Watch Video Solution

246. The ${\cal O}-{\cal N}-{\cal O}$ bond angle in the nitrite ion, ${\cal N}{\cal O}_2^-$, is closest to :

A.
$$N_2O$$

 $B.NO_2^+$

 $\mathsf{C}.\,NO_2^-$

D. NO_3^-

Answer: B

Watch Video Solution

?

247. Which of the following is the correct order for increasing bond angle

 $\mathsf{B}.\,H_2O < OF_2 < Cl_2O$

C. $H_2 T e^+ < H_3 S e^+ < H_3 S^+ < H_3 O^+$

D. $BF_3 < BCl_3 < BBr_3 < BI_3$

 $\mathsf{A.}\,Nh_3 < PH_3 < AsH_3 < SbH_3$

Answer: C

1.
$$N-O-N$$
 bond angle is maximum in :

- A. N_2O
- $\mathrm{B.}\,NO_2^{\,+}$
- $\mathsf{C.}\,NO_2^-$
- D. NO_3^-

Answer: B

Watch Video Solution

Level 2

1. The incorrect order of boiling point is:

A. $H_2O > CH_3OH$

B. $N(CH_3)_3 > NH(CH_3)_2$

 $\mathsf{C.}\,H_3PO_4>Me_3PO_4$

Watch Video Solution

A. London forces

C. covalent bonds

D. coulombic force

Answer: A

B. dipole-dipole interactions

Watch Video Solution

Answer: B,D

D. $CH_3N_3 > HN_3$

2. Iodine molecules are held in the solid lattice by _____

3. At room temperature, CO_2 is a gas while SiO_2 is a solid because

A. CO_2 is a linear molecule, while SiO_2 is angular

B. van der Waals's forces are very strong in SiO_2

C. CO_2 is covalent, while SiO_2 is ionic

D. Si cannot form stable bonds with O, hence Si has to form a 3D

lattice

Answer: D

Watch Video Solution

4. Choose the correct code of characteristics for the given order of hybrid orbitals of same atom,

 $\mathit{sp} < \mathit{sp}^2 < \mathit{sp}^3$

(i) Electrongativity (ii) Bond angle between same hybrid orbitals

(iii) Size (iv) Energy level

A. ii, iii and iv B. iii, iv C. ii and iv D. I, ii, iii and iv **Answer: B Watch Video Solution** 5. Which is correct statement? As the s-character of a hybrid orbital decreases (I) The bond angle decreases (II) The bond strength increases (III) The bond length increases (IV) Size of orbitals increases A. I, III and IV B. II, III and IV C. I and II D. all are correct

Answer: A

Watch Video Solution

- 6. Which of the following is incorrectly match?
 - Hybridisation Geometry Orbitals use A. sp^3d Trigonal bipyramidal $s + p_x + p_y + p_s + d_{s^2}$
 - B.

Orbitals use Hybridisation Geometry sp^3d^3 Pentagonal bipyramidal $s + p_x + p_y + p_s + d_{x^2}$

C.

Hybridisation Geometry sp^3d^2 ${
m Capped\ octahedral} \hspace{0.5cm} s+p_x+p_y+p_s+d_{x^2-y^2}+d_{x^2-y^2}$ Hybridisation Geometry Orbitals use

Orbitals use

 sp^3 Tetrahedral $s + p_x + p_y + p_s$

Answer: C

7. The ionic bond $X^{+}Y^{-}$ are formed when :
(I) electron affinity of Y is high (II) ionization energy of X is low
(III) lattice energy of XY is high (IV) lattice energy of XY is low
Choose the correct code :
A. I and II
B. I and III
C. I, II and III
D. All
Answer: C
Watch Video Solution
8. In the Born-Haber cycle for the formation of solid common salt (NaCl), the largest contribution comes from :
A. the low ionization potential of Na

B. the high electron affinity of Cl C. the low ΔH_{vap} of Na(s) D. the lattice energy **Answer: D Watch Video Solution** 9. Species having maximum 'Cl-O' bond order is: A. ClO_3^- B. ClO_3 $C. ClO_2$ D. ClO_2^-

Answer: B

10. Which of the following species contains minimum number of atoms in
XY plane ?
A. XeF_5^{-}
B. SF_6
$C.\: IF_7$
D. All
Answer: B
Watch Video Solution
11. The molecule ML_x is planar with 7 pairs of electrons around M in the
valence shell. The value of x is :

A. 6

B. 5

C. 4

Answer: B

Watch Video Solution

12. Choose the correct option for the collowing molecule in view of chemical bonding :

$$_{CI}^{H}$$
 c=c=c< $_{CI}^{CI}$

A. non-planar

B. $\mu \neq 0$

C. both a and b

D. $\mu=0$

Answer: D

13. Which of the following statement is correct about I_3^+ and I_3^- molecular ions ?

A. Number of lone pairs at central atoms are same in both molecular ions

B. Hybridization of central atoms in both ions are same

C. Both are polar species

D. Both are planar species

Answer: D

Watch Video Solution

14. In which of the following molecular shape d_{z^2} orbital must not be involved in bonding ?

A. Pentagonal planar

- B. Trigonal planar
- C. Linear
- D. Square planar

Answer: B

Watch Video Solution

- **15.** The correct statement regarding SO_2 molecule is :
 - A. two $p\pi-d\pi$ bonds
 - B. molecule has 2 lone pair, 2σ bonds and 2π bonds
 - C. two $p\pi-p\pi$ bonds
 - D. one $p\pi-p\pi$ and one $p\pi-d\pi$ bond

Answer: D

16. A molecule XY_2 contains two σ bonds two π bond and one lone pair of electrons in the valence shell of X. The arrangement of lone pair as well as bond pairs is

A. square pyramidal

B. linear

C. Trigonal planar

D. unpredictable

Answer: C

Watch Video Solution

17. In which of the following pairs, both the species have the same hybridisation?

(I)

 $SF_4, XeF_4 \qquad (II)I_3^-, XeF_2 \qquad (III)ICI_4^-, SiCl_4 \qquad (IV)ClO_3^-, PO_4^3$

A. I,II						
B. II, III						
C. II, IV						
D. I,II,III						
Answer: C						
Watch Video Solution						
18. Which of the following possess two lone pair of electrons on the						
central ato	om and square	planar in shape	?			
(I) SF_4	$(II)XeO_4$	$(III)XeF_4$	$(IV)ICl_4^-$			
A. I,III						
B. II,IV						
C. III, IV	/					
D. All						

Answer: C

Watch Video Solution

19. Select pair of compounds in which both have different hybridization but have same molecular geometry:

- A. BF_3 , BrF_3
- B. ICl_2^{Θ} , $BeCl_2$
- $C. BCl_3, PCl_3$
- $\mathsf{D.}\,PCl_3,\,NCl_3$

Answer: B

Watch Video Solution

20. The species having no $p\pi-p\pi$ bond but its bond order equal to that of O_2^-

- A. ClO_3^-
- B. PO_4^{3-}
- $\mathsf{C.}\,SO_4^{2\,-}$
- D. XeO_3

Answer: C

Watch Video Solution

- **21.** Which of the following fact is directly explained by the statement oxygen is a smaller atom than sulphur?
 - A. $H_2{\cal O}$ boils at a much higher temperature than $H_2{\cal S}$
 - B. $H_2{\cal O}$ undergoes intermolecular hydrogen bonding
 - C. $H_2{\cal O}$ is liquid and $H_2{\cal S}$ is gas at room temperature
 - D. S-H bond is longer than O-H bond

Answer: D

22. Which of the following compound has maximum "C-C" single bond length?

A.
$$CH_2CHCCH$$

B. HC C C CH

C. CH_3CHCH_2

D. $CH_2CHCHCH_2$

Answer: C

Watch Video Solution

23. If two different non-axial d-orbitals having 'xz' nodal plane form π -bond by overlapping each other, then internuclear axis will be :

A. x

В. у

C.z

D. They don't form π -bond

Answer: D

Watch Video Solution

24. Assuming pure 2s and 2p orbitals of carbon are used in forming CH_4 molecule, which of the following statement is false ?

A. Three C-H bonds will be at right angle

B. One C-H bond will be weaker than other three C-H bonds

C. The shape of molecule will be tetrahedral

D. The angle of C-H bond formed by s-s overlapping will be uncertain with respect to other three bonds.

Answer: C

25. The strength of bonds by 2s -2s, 2p2p and 2p-2s overlap has the order

A.
$$s-s>p-p>p-s$$

$$\mathtt{B.}\, s-s>p-s>p-p$$

C.
$$p - p > p - s > s - s$$

D.
$$p-p>s-s>p-s$$

Answer: C

26. Which of the following statement is not correct for sigma and pibonds formed between two carbon atoms ?

A. Sigma-bond is stronger than a π -bond

mol and 347 kJ / mol

but not in case of a π -bond

C. Free rotation of surrounding atoms about a sigma -bond is allowed

B. Bond energies of sigma and π -bonds are of the order of 264 kJ /

D. Sigma-bond determines the direction between carbon atoms but a π -bond has no primary effect in this regard

Answer: B

27. Assuming the bond direction to the z-axis, which of the overlapping of atomic orbitals of two atom (A) and (B) will result in bonding ? (I) s-orbital of A and p_x orbital of B (II) s-orbital of A and p_z orbital of B

(III) p_y -orbital of A and p_z orbital of B (IV) s-orbital of both (A) and (B)

A. I and IV

B. I and II

C. III and IV

D. II and IV

Answer: D

Watch Video Solution

28. Which of the following orbital can not form π as well as δ -Bond ?

A. d_{xy}

B. d_{z^2}

C. $d_{x^2-y^2}$

D. d_{yz}

Answer: B

29. Incorrect statement is:

A. $AlF_3>MgO>MgF_2$: Lattice energy

B. Li>Na>Al>Mg : Electron afinity

C. $SF_6 > PF_5 > SiF_4$: Lewis acidic character

D. $SiCl_4 > SiBr_4 > SiI_4$: Decreasing order of electronegativity of Si

Answer: C

30. Which of the following set contains species having same angle around the central atom?

A. $SF_4,\,CH_4,\,NH_3$

 $\mathsf{B.}\,NF_3,\,BCl_3,\,NH_3$

 $\mathsf{C}.\,BF_3,NF_3,AlCl_3$

D. $BF_3,\,BCl_3,\,BBr_3$

Watch Video Solution

31. Which of the following compound has the smallest (X-A-X) bond angle in each series repectively.

- $(A) \ OsF_2, OsCl_2, OsBr_2$
- $(B) SbCl_3, SbBr_3, SbI_3$
- $(C) Pl_3, AsI_3, SbI_3$
 - A. OSF_2 , $SbCl_3$ and PI_3
 - $B. OSBr_2, SbI_3 \text{ and } PI_3$
 - $C. OSF_2, SbI_3 \text{ and } PI_3$
 - D. OSF_2 , $SbCl_3$ and SbI_3

Answer: D

32. The incorrect order of boiling point is:

A.
$$H_2O>CH_3OH$$

B.
$$N(CH_3)_3 > NH(CH_3)_2$$

$$\mathsf{C.}\,H_3PO_4>Me_3PO_4$$

D.
$$CH_3N_3>HN_3$$

Answer: D

33. Iodine molecules are held in the solid lattice by _____

A. London forces

B. dipole-dipole interactions

C. covalent bonds

D. coulombic force

Answer: A

Watch Video Solution

- 34. Carbon dioxide is a gas but silica is a solid because:
 - A. CO_2 is a linear molecule, while SiO_2 is angular
 - B. van der Waals's forces are very strong in SiO_2
 - C. CO_2 is covalent, while SiO_2 is ionic
 - D. Si cannot form stable bonds with O, hence Si has to form a 3D

lattice

Answer: D

Watch Video Solution

35. Choose the correct code of characteristics for the given order of hybrid orbitals of same atom,

 $\mathit{sp} < \mathit{sp}^2 < \mathit{sp}^3$

(i) Electrongativity (ii) Bond angle between same hybrid orbitals

(iii) Size (iv) Energy level

A. ii, iii and iv

B. iii, iv

C. ii and iv

D. I, ii, iii and iv

Answer: B

Watch Video Solution

36. Which is correct statement?

As the s-character of a hybrid orbital decreases

(I) The bond angle decreases (II) The bond strength increases

(III) The bond length increases (IV) Size of orbitals increases

A. I, III and IV

B. II, III and IV

C. I and II

D. all are correct

Answer: A

Watch Video Solution

37. Which of the following is incorrectly matched?

Hybridisation Geometry Orbitals use A. sp^3d Trigonal bipyramidal $s + p_x + p_y + p_s + d_{s^2}$

B.

Hybridisation Geometry Orbitals use sp^3d^3 Pentagonal bipyramidal $s + p_x + p_y + p_s + d_{x^2}$

C.

Hybridisation Geometry Orbitals use sp^3d^2 $ext{Capped octahedral} \quad s + p_x + p_y + p_s + d_{x^2 - y^2} + d_{x^2 - y^2}$

Hybridisation Geometry Orbitals use sp^3 Tetrahedral $s + p_x + p_y + p_s$

Answer: C

38. The ionic bond X^+Y^- are formed when :

(I) electron affinity of Y is high (II) ionization energy of X is low

(III) lattice energy of XY is high (IV) lattice energy of XY is low

Choose the correct code:

A. Land II

B. I and III

C. I, II and III

D. All

Answer: C

Watch Video Solution

39. In the Born-Haber cycle for the formation of solid common salt (NaCl), the largest contribution comes from:

A. the low ionization potential of Na B. the high electron affinity of Cl C. the low $\Delta H_{
m vap}$ of Na(s) D. the lattice energy

Answer: D

Watch Video Solution

A. ClO_3^-

B. ClO_3

 $C.ClO_2$

D. ClO_2^-

Answer: B

41. Which of the following species contains minimum number of atoms in
XY plane ?
A. XeF_5^-
B. SF_6

D. All

 $\mathsf{C}.\,IF_7$

Answer: B

42. The molecule ML_x is planar with 7 pairs of electrons around M in the valence shell. The value of x is :

A. 6

B. 5

C. 4

D. 3

Answer: B

Watch Video Solution

43. Choose the correct option for the collowing molecule in view of chemical bonding:

$$\frac{H}{CI}$$
 $C = C = C < \frac{CI}{H}$

A. non-planar

B. $\mu \neq 0$

C. both a and b

 $\mathrm{D.}\,\mu=0$

Answer: D

44. Which of the following statement is correct about I_3^+ and I_3^- molecular ions ?

A. Number of lone pairs at central atoms are same in both molecular ions

B. Hybridization of central atoms in both ions are same

C. Both are polar species

D. Both are planar species

Answer: D

Watch Video Solution

45. In which of the following molecular shape d_{z^2} orbital must not be involved in bonding ?

A. Pentagonal planar

B. Trigonal planar

C. Linear

D. Square planar

Answer: B

Watch Video Solution

A. two $p\pi-d\pi$ bonds

B. molecule has 2 lone pair, 2σ bonds and 2π bonds

46. The correct statement regarding SO_2 molecule is :

C. two $p\pi-p\pi$ bonds

D. one $p\pi-p\pi$ and one $p\pi-\pi$ bond

Answer: D

47. A molecule XY_2 contains two σ bonds two π bond and one lone pair of electrons in the valence shell of X. The arrangement of lone pair as well as bond pairs is

A. square pyramidal

B. linear

C. Trigonal planar

D. unpredictable

Answer: C

Watch Video Solution

48. In which of the following pairs, both the species have the same hybridisation?

(1)

 $SF_4, XeF_4 \qquad (II)I_3^-, XeF_2 \qquad (III)ICI_4^-, SiCl_4 \qquad (IV)ClO_3^-, PO_4^3$

A. I,II					
B. II, III					
C. II, IV					
D. I,II,III	I				
Answer: C					
Watch Video Solution					
49. Which of the following possess two lone pair of electrons on the					
central atom and square planar in shape ?					
(I) SF_4	$(II)XeO_4$	$(III)XeF_4$	$(IV)ICl_4^-$		
A. I,III					
B. II,IV					
C. III, IV	/				
D. All					

Answer: C

Watch Video Solution

50. Select pair of compounds in which both have different hybridization but have same molecular geometry:

- A. BF_3 , BrF_3
- B. ICl_2^{Θ} , $BeCl_2$
- $C. BCl_3, PCl_3$
- $\mathsf{D}.\,PCl_3,\,NCl_3$

Answer: B

Watch Video Solution

51. The species having no $p\pi-p\pi$ bond but its bond order equal to that of O_2^-

- A. ClO_3^-
- B. $PO_4^{3\,-}$
- $\mathsf{C.}\,SO_4^{2\,-}$
- D. XeO_3

Answer: D

Watch Video Solution

- **52.** Which of the following fact is directly explained by the statement oxygen is a smaller atom than sulphur?
 - A. $H_2{\cal O}$ boils at a much higher temperature than $H_2{\cal S}$
 - $\operatorname{B.}H_2O$ undergoes intermolecular hydrogen bonding
 - C. $H_2{\cal O}$ is liquid and $H_2{\cal S}$ is gas at room temperature
 - D. S-H bond is longer than O-H bond

Answer: D

53. Which of the following compound has maximum "C-C" single bond length?

A. CH_2CHCCH

B. HC C C CH

C. CH_3CHCH_2

D. $CH_2CHCHCH_2$

Answer: C

Watch Video Solution

54. If two different non-axial d-orbitals having 'xz' nodal plane form π -bond by overlapping each other, then internuclear axis will be :

A. x

В. у

C.z

D. They don't form π -bond

Answer: D

Watch Video Solution

55. Assuming pure 2s and 2p orbitals of carbon are used in forming CH_4 molecule, which of the following statement is false ?

A. Three C-H bonds will be at right angle

B. One C-H bond will be weaker than other three C-H bonds

C. The shape of molecule will be tetrahedral

D. The angle of C-H bond formed by s-s overlapping will be uncertain with respect to other three bonds.

Answer: C

56. Which of the following is correct order of σ - bond strength ?

- I. 2s-2s
- II. 2s-2p
- III. 2p-2p

IV. 3s-3s

A.
$$s-s>p-p>p-s$$

$$\mathtt{B.}\, s-s>p-s>p-p$$

C.
$$p-p>p-s>s-s$$

D.
$$p-p>s-s>p-s$$

Answer: C

57. Which of the following statements in incorrect for sigma and π -bonds formed between two carbon atoms ?

A. Sigma-bond is stronger than a π -bond

B. Bond energies of sigma and π -bonds are of the order of 264 kJ / mol and 347 kJ / mol

C. Free rotation of surrounding atoms about a sigma -bond is allowed but not in case of a π -bond

D. Sigma-bond determines the direction between carbon atoms but a π -bond has no primary effect in this regard

Answer: B

View Text Solution

58. Assuming the bond direction to the z-axis, which of the overlapping of atomic orbitals of two atom (A) and (B) will result in bonding?

(I) s-orbital of A and p_x orbital of B (II) s-orbital of A and p_z orbital of B (III) p_y -orbital of A and p_z orbital of B (IV) s-orbital of both (A) and (B)

A. I and IV

B. I and II

C. III and IV

D. II and IV

Answer: D

Watch Video Solution

59. Which of the following orbital can not form π as well as δ -Bond ?

A. d_{xy}

 $\mathbf{B}.d_{z^2}$

C. $d_{x^2-y^2}$

D. d_{uz}

Answer: B

Watch Video Solution

60. Incorrect statement is:

A. $AlF_3>MgO>MgF_2$: Lattice energy

B. Li>Na>Al>Mg : Electron afinity

C. $SF_6 > PF_5 > SiF_4$: Lewis acidic character

D. $SiCl_4 > SiBr_4 > SiI_4$: Decreasing order of electronegativity of Si

Answer: C

View Text Solution

61. Which of the following set contains species having same angle around the central atom?

- A. SF_4 , CH_4 , NH_3
- B. NF_3 , BCl_3 , NH_3
- $C. BF_3, NF_3, AlCl_3$
- D. BF_3 , BCl_3 , BBr_3

Answer: D

Watch Video Solution

bond angle in each series repectively. $(A) \ OsF_2, OsCl_2, OsBr_2$

62. Which of the following compound has the smallest (X - A - X)

- $(B) SbCl_3, SbBr_3, SbI_3$
- $(C) Pl_3, AsI_3, SbI_3$
- A. OSF_2 , $SbCl_3$ and PI_3
 - B. $OSBr_2$, SbI_3 and PI_3
 - $\mathsf{C}.\,OSF_2,\,SbI_3\,\,\mathrm{and}\,\,PI_3$

 $D. OSF_2, SbCl_3 \text{ and } SbI_3$

Answer: D

Watch Video Solution

Level 3 (Passive 1)

1. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π -electrons. However the lone pair creates the maximum repulsive effect.

Which of the following statement is false?

A. SbF_4^- and SF_4 are isostructural

B. In IOF_5 the hybridization of central atom is sp^3d^2

C. Double bond(s) in SOF_4 and XeO_3F_2 , is / are occupying

equatorial position(s) of their respective geometry

D. none of these

Answer: D

Watch Video Solution

2. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π -electrons. However the lone pair creates the maximum repulsive effect.

Which of the following does not represent the isostructural pair?

A. SF_5^- and IF_5

 $B. ClO_2F_3$ and SOF_4

 $\mathsf{C.}\,SeF_3^+$ and XeO_3

D. None

Answer: D

Watch Video Solution

3. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π -electrons. However the lone pair creates the maximum repulsive effect.

Select the incorrect statement with respect to SO_2Cl_2 molecule :

A. It gives H_2SO_4 and HCl on hydrolysis at room temperature

B. It has two $d\pi-p\pi$ bonds between S and O bonded atoms

C. It is a polar molecule

D. None

Answer: D

Watch Video Solution

4. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π -electrons. However the lone pair creates the maximum repulsive effect.

Which of the following statement is false?

- A. SbF_4^- and SF_4 are isostructural
- B. In IOF_5 the hybridization of central atom is sp^3d^2
- C. Double bond(s) in SOF_4 and XeO_3F_2 , is / are occupying equatorial position(s) of their respective geometry

D. none of these

Answer: D

Watch Video Solution

5. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π -electrons. However the lone pair creates the maximum repulsive effect.

Which of the following does not represent the isostructural pair?

- A. SF_5^- and IF_5
- $B. ClO_2F_3$ and SOF_4
- C. SeF_3^+ and XeO_3
- D. None

Answer: D

Watch Video Solution

6. According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π -electrons. However the lone pair creates the maximum repulsive effect.

Select the incorrect statement with respect to SO_2Cl_2 molecule :

A. It gives H_2SO_4 and HCl on hydrolysis at room temperature

B. It has two $d\pi-p\pi$ bonds between S and O bonded atoms

C. It is a polar molecule

D. None

Answer: D

Level 3 (Passive 2)

1. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond: Which of the following set of orbitals does not produce nobal plane in xz-plane?

A.
$$d_{yz}+d_{yz}$$

B.
$$d_{xy}+d_{xy}$$

C.
$$p_y + d_{xy}$$

D. none of these

Answer: D

2. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond: The combination of orbital that can not produce non-bonding molecular

A.
$$p_y+d_{x^2-y^2}$$

orbital is (internuclear axis is z-axis):

B.
$$p_z + d_{yz}$$

$$\mathsf{C}.\, s + d_{xz}$$

D.
$$d_{xy}+d_{xy}$$

Answer: D

3. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond: If $F_2C_1=C_2$ part of $F_2C_1=C_2=C_3=C_4F_2$ lies in yz-plane, then incorrect statment is:

A. Nodal plane of π -bond between C_1 and C_2 lies in yz-plane, formed by sideways overlapping of p_x -orbitals

B. Nodal plane of π -bond between C_2 and C_3 lies in xz-plane, formed by sideways overlapping of p_y -orbitals

C. Nodal plane of π - bond between C_3 and C_4 lies in yz-plane, formed by sideways overlapping of p_y -orbitals

D. Nodal plane of π -bond between C_2 and C_3 lies in xy-plane, formed by sideways overlapping of p_x - orbitals

4. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond:

Which of the following set of orbitals does not produce nobal plane in xz-

plane ?

A.
$$d_{yz}+d_{yz}$$

B.
$$d_{xy}+d_{xy}$$

$$\mathsf{C.}\,p_y+d_{xy}$$

D. none of these

Answer: D

5. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond: The combination of orbital that can not produce non-bonding molecular orbital is (internuclear axis is z-axis):

A.
$$p_y+d_{x^2-y^2}$$

B.
$$p_z + d_{uz}$$

$$\mathsf{C}.\, s + d_{xz}$$

D.
$$d_{xy} + d_{xy}$$

Answer: D

Watch Video Solution

6. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-

filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond : If $F_2C_1=C_2$ part of $F_2C_1=C_2=C_3=C_4F_2$ lies in yz-plane, then incorrect statment is :

- A. Nodal plane of π -bond between C_1 and C_2 lies in yz-plane, formed by sideways overlapping of p_x -orbitals
- B. Nodal plane of π -bond between C_2 and C_3 lies in xz-plane, formed by sideways overlapping of p_y -orbitals
- C. Nodal plane of π bond between C_3 and C_4 lies in yz-plane, formed by sideways overlapping of p_y -orbitals
- D. Nodal plane of π -bond between C_2 and C_3 lies in xy-plane, formed by sideways overlapping of p_x orbitals

Answer: C

1. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 .

In which of the following option, covalent bond is having maximum s% character?

- A. S-H bond in H_2S
- B. P-H bond in PH_3
- C. N-H bond in NH_3
- D. All have equal s% character

Answer: C

2. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 . Select incorrect statement regarding P_4 molecule.

- A. Each P atom is ioined with three P-atoms
- B. P_4 molecule contains total 12 bond angles
- C. Lone pair of each P atom is present in almost pure s-orbital
- D. Lone pair of each P atom present in hybrid orbital

Answer: D

Watch Video Solution

3. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are

nearly 90° , if the substituent's electronegativity value is $~\leq 2.5.$

The hybridisation of atomic orbitals of central atom "Xe" in XeO_4, XeO_2F_2 and $XeOF_4$ respectively.

- A. sp^3, sp^3d^2, sp^3d^2
- B. sp^3d, sp^3d, sp^3d^2
- C. sp^3, sp^3d^2, sp^3d
- D. $sp^{3}, sp^{3}d, sp^{3}d^{2}$

Answer: D

4. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 .

In which of the following option, covalent bond is having maximum s% character?

- A. S-H bond in H_2S
- B. P-H bond in PH_{3}
- C. N-H bond in NH_3
- D. All have equal s% character

Answer: C

View Text Solution

5. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 .

Select incorrect statement regarding P_4 molecule.

- A. Each P atom is ioined with three P-atoms
- B. P_4 molecule contains total 12 bond angles
- C. Lone pair of each P atom is present in almost pure s-orbital

D. Lone pair of each P atom present in hybrid orbital

Answer: D

View Text Solution

6. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 .

The hybridisation of atomic orbitals of central atom "Xe" in $XeO_4,\,XeO_2F_2$ and $XeOF_4$ respectively.

- A. sp^3, sp^3d^2, sp^3d^2
- $\mathrm{B.}\,sp^3d,\,sp^3d,\,sp^3d^2$
- C. sp^3, sp^3d^2, sp^3d
- D. sp^3, sp^3d, sp^3d^2

Answer: D

Level 3 (Passive 4)

1. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital combination does not form π -bond ?

- A. $p_x + p_x$ sideways overlapping
- B. $d_{x^2-y^2}+p_y$ sideways overlapping
- C. $d_{xy}+d_{xy}$ sideways overlapping
- D. $d_{yz} + p_y$ sideways overlapping

Answer: B

2. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital cannot form δ -bond ?

- A. $d_{x^2-y^2}$ orbital
- B. d_{xy} orbital
- C. d_{z^2} orbital
- D. d_{zx} orbital

Answer: C

Watch Video Solution

3. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one

having one unpaired electron with opposite spin.

Which of the following combination of orbitals does not from any type of covalent bond (if z-axis is molecular axis)?

A.
$$p_s+p_z$$

B.
$$p_y + p_y$$

$$\mathsf{C}.\, s + p_{u}$$

$$\mathsf{D}.\,s+s$$

Answer: C

Watch Video Solution

4. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital combination does not form π -bond ?

A. $p_x + p_x$ sideways overlapping

B. $d_{x^2-y^2}+p_y$ sideways overlapping

C. $d_{xy}+d_{xy}$ sideways overlapping

D. $d_{yz}+p_y$ sideways overlapping

Answer: B

Watch Video Solution

5. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital cannot form δ -bond ?

A. $d_{x^2-y^2}$ orbital

B. d_{xy} orbital

C. d_{x^2} orbital

D. d_{zx} orbital

Answer: C

View Text Solution

6. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following combination of orbitals does not from any type of covalent bond (if z-axis is molecular axis)?

A. $p_s + p_z$

B. $p_y + p_y$

 $\mathsf{C.}\,s+p_y$

 $\mathsf{D}.\,s+s$

Level 3 (Passive 5)

1. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Select the correct code for the following repulsion orders, according to VSEPR theory:

- (I) lone pair -lone pair > lone pair-bond pair
- (II) lone pair-bond pair > bond pair -bond pair
- (III) lone pair -lone pair > bond pair-bond pair
- (IV) lone pair bond pair > lone pair-lone pair
 - A. I,II and III
 - B. II and IV

C. I,II and IV

D. All

Answer: A

Watch Video Solution

2. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which molecule has both shape and geometry identical?

$$(I)SnCl_2 \hspace{0.5cm} (II)NH_3 \hspace{0.5cm} (III)PCl_5 \hspace{0.5cm} (IV)SF_6$$

A. I, III and IV

B. II,III and IV

C. III and IV

Answer: C

Watch Video Solution

3. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which is not the electron geometry of covalent molecules?

- A. Pentagonal bipyramidal
- B. Octahedral
- C. Hexagonal
- D. Tetrahedral

Answer: C

4. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Select the correct code for the following repulsion orders, according to VSEPR theory:

- (I) lone pair -lone pair > lone pair-bond pair
- (II) lone pair-bond pair > bond pair -bond pair
- (III) lone pair -lone pair > bond pair-bond pair
- (IV) lone pair bond pair > lone pair-lone pair
 - A. I,II and III
 - B. II and IV
 - C. I,II and IV
 - D. All

Answer: A

Watch Video Solution

5. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm. Which molecule has both shape and geometry identical?

 $(I)SnCl_2$ $(II)NH_3$ $(III)PCl_5$ $(IV)SF_6$

A. I, III and IV

B. II,III and IV

C. III and IV

D. All

Answer: C

6. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which is not the electron geometry of covalent molecules?

- A. Pentagonal bipyramidal
- B. Octahedral
- C. Hexagonal
- D. Tetrahedral

Answer: C

View Text Solution

1. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

In sp^3d^2 hybridisation, which sets of d-orbitals is involved ?

- A. $d_{x^2-y^2},\, d_{z^2}$
- B. $d_{z^2},\,d_{xy}$
- C. $d_{xy},\,d_{yz}$
- D. $d_{x^2-y^2}, d_{xy}$

Answer: A

- **2.** The d orbitals involved in sp^3d^3 hybridization are ?
 - A. $d_{x^2-y^2},\, d_{z^2},\, d_{xy}$

B.
$$d_{xy}, d_{yz}, d_{zx}$$

C.
$$d_{x^2-y^2}, d_{xy}, d_{xz}$$

D.
$$d_{x^2}, d_{yz}, d_{zx}$$

Answer: A

Watch Video Solution

3. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

Molecule having trigonal bipyramidal geometry and $sp^3{\rm d}$ hybridisation, dorbitals involved is :

- A. d_{xy}
- B. d_{uz}
- C. $d_{x^2-y^2}$

D. d_{z^2}

Answer: D

Watch Video Solution

4. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

Which of the following orbitals can not undergo hybridisation amongst themselves.

- (I) 3d, 4s (II) 3d, 4d
- (III) 3d, 4s&4p (IV)3s, 3p&4s
 - A. only II
 - B. II and III
 - C. I, II and IV
 - D. II and IV

Answer: D

Watch Video Solution

5. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

In sp^3d^2 hybridisation, which sets of d-orbitals is involved ?

- A. $d_{x^2-y^2},\, d_{s^2}$
- B. d_{z^2}, d_{xy}
- $\mathsf{C}.\,d_{xy},\,d_{yz}$
- D. $d_{x^2-y^2},\,d_{xy}$

Answer: A

View Text Solution

6. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

In sp^3d^3 hybridisation, which orbitals are involved ?

- A. $d_{x^2-y^2},\, d_{z^2},\, d_{xy}$
- B. d_{xy}, d_{yz}, d_{zx}
- C. $d_{x^2-y^2}, d_{xy}, d_{xz}$
- D. d_{x^2}, d_{uz}, d_{zx}

Answer: A

View Text Solution

7. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2},\,d_{s^2}$ and $d_{xy},\,d_{zx}$ form two different sets of orbitals and orbitals of appropriate set is involved in the

hybridisation.

Molecule having trigonal bipyramidal geometry and $sp^3{\rm d}$ hybridisation, dorbitals involved is :

- A. d_{xy}
- B. d_{yz}
- C. $d_{x^2-y^2}$
- D. d_{z^2}

Answer: D

View Text Solution

8. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

Which of the following orbitals can not undergo hybridisation amongst themselves.

D. II and IV

Answer: D

Watch Video Solution

1. Ionic bond is defined as the electrostatic force of attraction holding the

oppositely charged ions. Ionic compounds are mostly crystalline solid

having high melting and boiling points, electrical conductivity in moleten

state, solubility in water etc. Covalent bond is defined as the force which

binds atoms of same or different elements by mutual sharing of electrons

(I) 3d, 4s (II) 3d, 4d

A. only II

B. II and III

C. I, II and IV

Level 3 (Passive 7)

(III) 3d, 4s&4p (IV) 3s, 3p&4s

in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The valence electrons are involved in formation of covalent bonds is /are called:

A. non-bonding electrons

B. lone pairs

C. unshared pairs

D. none of these

Answer: D

Watch Video Solution

2. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which

binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The amount of energy released when one mole of ionic solid is formed by packing of gaseous ion is called :

- A. Ionisation energy
- B. Solvation energy
- C. Lattice energy
- D. Hydration energy

Answer: C

Watch Video Solution

3. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten

state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

Which of the following is arranged order of increasing boiling point?

A.
$$H_2O < CCl_4 < CS_2 < CO_2$$

$$\mathsf{B.}\,CO_2 < CS_2 < CCl_4 < H_2O$$

C.
$$CS_2 < H_2O < CO_2 < CCl_4$$

D.
$$CCl_4 < H_2O < CO_2 < CS_2$$

Answer: B

Watch Video Solution

4. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten

state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The valence electrons are involved in formation of covalent bonds is /are called:

A. non-bonding electrons

B. lone pairs

C. unshared pairs

D. none of these

Answer: D

Watch Video Solution

5. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid

having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The amount of energy released when one mole of ionic solid is formed by packing of gaseous ion is called :

- A. Ionisation energy
- B. Solvation energy
- C. Lattice energy
- D. Hydration energy

Answer: C

6. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

Which of the following is arranged order of increasing boiling point?

A.
$$H_2O < CCl_4 < CS_2 < CO_2$$

$$\operatorname{B.}CO_2 < CS_2 < CCl_4 < H_2O$$

C.
$$CS_2H_2O < CO_2 < CCl_4$$

D.
$$CCl_4 < H_2O < CO_2 < CS_2$$

Answer: B

1. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy. IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Which of the following ionic compound is having maximum lattice energy

- A. NaF
- B. MgF_2
- $\mathsf{C}.\,AlF_3$
- D. KF

Answer: C

2. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy. IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Most hydrated cation is:

- A. $Ce^{4\,+}_{(\,aq\,.\,)}$
- B. $La^{3\,+}_{(\,aq\,.\,)}$
- C. $Ba^{2\,+}_{(\,aq\,.\,)}$
- D. $Cs^+_{(\mathit{aq})}$

Answer: A

Watch Video Solution

3. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved

in water if its hydration energy is more than lattice energy. IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Which of the following ionic compound is having maximum lattice energy

- A. NaF
- B. MqF_2
- $\mathsf{C}.\,AlF_3$
- D.KF

Answer: C

Watch Video Solution

4. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy . IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Most hydrated cation is:

- A. $Ce_{(aq.)}^{4+}$
- B. $La^{3\,+}_{(\,aq.\,)}$
- C. $Ba^{2\,+}_{(\,aq\,.\,)}$

D. $CS^+_{(aq)}$

Answer: A

Watch Video Solution

Level 3 (Passive 9)

(i) Sigma bond (σ)

- 1. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types:
- Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap

(ii) Pi bond (π)

about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

The correct order of increasing C-O bond length of CO, CO_3^{2-}, CO_2 is :

A.
$$CO_3^{2-} < CO_2 < CO$$

$${\rm B.}\, CO_2 < CO_3^{2-} < CO$$

$${\sf C.}\ CO < CO_3^{2-} < CO_2$$

D.
$$CO < CO_2 < CO_3^{2-}$$

Answer: D

- **2.** A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
- (i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic

orbitals overlap sideway then Pi-bond is formed.

Compound having maximum bond angle is:

A. BBr_3

 $\mathsf{B.}\,BCl_3$

 $\mathsf{C}.\,BF_3$

D. none of these

Answer: D

Watch Video Solution

3. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :

(i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

The strength of bonds formed by 2s-2s,2p-2p and 2p-2s overlap has the order:

A.
$$s-s>p-p>p-s$$

$$\mathtt{B.}\,s-s>p-s>p-p$$

$$\mathsf{C.}\ p-p>p-s>s-s$$

$$\mathsf{D}.\, p-p>s-s>p-s$$

Answer: C

Watch Video Solution

- **4.** A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
- (i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic

orbitals overlap sideway then Pi-bond is formed.

The correct order of increasing C-O bond length of CO, CO_3^{2-}, CO_2 is :

A.
$$CO_3^{2-} < CO_2 < CO$$

$${\rm B.}\, CO_2 < CO_3^{2\,-} < CO$$

$$\mathsf{C.}\,CO < CO_3^{2\,-} < CO_2$$

$${\rm D.}\, CO < CO_2 < CO_3^{2\,-}$$

Answer: D

Watch Video Solution

- **5.** A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
- (i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic

orbitals overlap sideway then Pi-bond is formed.

Compound having maximum bond angle is:

A. BBr_3

 $\mathsf{B.}\,BCl_3$

 $\mathsf{C}.\,BF_3$

D. none of these

Answer: D

6. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :

(i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

The strength of bonds formed by 2s-2s,2p-2p and 2p-2s overlap has the order:

A.
$$s-s>p-p>p-s$$

$$\mathtt{B.}\, s - s > p - s > p - p$$

$$\mathsf{C.}\ p-p>p-s>s-s$$

D.
$$p-p>s-s>p-s$$

Answer: C

Watch Video Solution

Level 3 (Passive 10)

1. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

The incorrect order of bond dissociation energy will be:

A.
$$H-H>Cl-Cl>Br-Br$$

$$\mathsf{B.}\,Si-Si>P-P>Cl-Cl$$

$$\mathsf{C.}\,C-C>N-N>O-O$$

D.
$$H-Cl>H-Br>H-I$$

Answer: B

Watch Video Solution

2. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following combination of orbitals does not form covalent bond (x-axis is inter nuclear axis):

A.
$$s+p_y$$

B.
$$p_y+p_y$$

C.
$$d_{yz}+d_{yz}$$

D.
$$d_{xy}+d_{xy}$$

Answer: A

Watch Video Solution

3. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following compound does not form $p\pi-p\pi$ bond ?

- A. SO_3
- B. NO_3^-
- $\mathsf{C.}\,SO_4^{2\,-}$
- D. CO_3^{2-}

Answer: C

Watch Video Solution

4. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

The incorrect order of bond dissociation energy will be:

A.
$$H-H>Cl-Cl>Br-Br$$

$$\operatorname{B.}Si-Si>P-P>Cl-Cl$$

$$\mathsf{C}.\,C-C>N-N>O-O$$

D.
$$H-Cl>H-Br>H-I$$

Answer: B

Watch Video Solution

5. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following combination of orbitals does not form covalent bond (x-axis is inter nuclear axis):

- A. $s+p_y$
- B. p_y+p_y
- $\mathsf{C}.\,d_{uz}+d_{uz}$
- D. $d_{xy}+d_{xy}$

Answer: A

Watch Video Solution

6. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following compound does not form $p\pi-p\pi$ bond ?

- A. SO_3
- $\mathrm{B.}\,NO_3^-$

C.
$$SO_4^{2\,-}$$

D.
$$CO_3^{2-}$$

Watch Video Solution

Level 3 (Passive 11)

electrons.

T U

1. Consider the following elements with their period number and valence

Elements	Period number	Total valence e^-
P	2	4
Q	2	6
R	3	7
S	3	3

According to the given informations, answer the following questions :

Choose incorrect statement:

A. R exhibits maximum covalency among all elements given

- B. Q does not exhibit variable covalency
- C. R exhibits minimum covalency among all elements given
- D. R and S combine each other and form SR_5 type of compound

Answer: D

Watch Video Solution

2. Consider the following elements with their period number and valence electrons.

Elements	Period number	1 otal valencee	
P	2	4	
Q	2	6	
R	3	7	
S	3	3	
T	3	6	
U	3	4	

Flomenta Deriod number Total realenges

According to the given informations, answer the following questions:

Choose the correct statement:

A. Q has maximum value of electron affinity

- B. R has maximum value of electronegativity
- C. S has maximum atomic size
- D. T and U are same group elements

Watch Video Solution

3. Consider the following elements with their period number and valence electrons.

Elements	Period number	1 otal valencee	
P	2	4	
Q	2	6	
R	3	7	
S	3	3	
T	3	6	
U	3	4	

Flomenta Deriod number Total realenges

According to the given informations, answer the following questions:

Choose incorrect statement:

A. SR_3 is a hypovalent compound

B. UR_4 can act as a Lewis acid

C. PQ_2 can not acts as Lewis acid

D. $UR_4 > SR_3$: Lewis acidic character

Answer: C

Watch Video Solution

4. Consider the following elements with their period number and valence electrons.

Elements	Period number	Total valence e^-
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

According to the given informations, answer the following questions:

Choose incorrect statement:

A. R exhibits maximum covalency among all elements given

- B. Q does not exhibit variable covalency
- C. R exhibits minimum covalency among all elements given
- D. R and S combine each other and form SR_5 type of compound

Answer: D

Watch Video Solution

5. Consider the following elements with their period number and valence electrons.

Elements	Period number	1 otal valencee		
P	2	4		
Q	2	6		
R	3	7		
S	3	3		
T	3	6		
U	3	4		

Flomenta Deriod number Total realenges

According to the given informations, answer the following questions:

Choose the correct statement:

A. Q has maximum value of electron affinity

- B. R has maximum value of electronegativity
- C. S has maximum atomic size
- D. T and U are same group elements

View Text Solution

6. Consider the following elements with their period number and valence electrons.

Elements	Period number	rotai vaiencee		
P	2	4		
Q	2	6		
R	3	7		
S	3	3		
T	3	6		
U	3	4		

Flomenta Deriod number Total realenges

According to the given informations, answer the following questions:

Choose the incorrect statement:

A. SR_3 is a hypovalent compound

- B. UR_4 can act as a Lewis acid
- C. PQ_2 can not acts as Lewis acid
- D. $UR_4 > SR_3$: Lewis acidic character

View Text Solution

Level 3 (Passive 12)

1. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Which of the following is not correctly match between given species and type of overlapping ?

- A. XeO_3 : Three $(d\pi-p\pi)$ bonds
- B. H_2SO_4 : Two $(d\pi-p\pi)$ bonds

- C. SO_3 : Three $(d\pi-p\pi)$ bonds
- D. $HClO_4$: Three $(d\pi-p\pi)$ bonds

Watch Video Solution

2. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Consider the following compounds and select the incorrect statement from the following :

$$NH_3, PH_3, H_2S, SO_2, BF_3, PCl_3, IF_7, P_4, H_2$$

- A. Six molecules out of given compounds involves hybridisation
- B. Three molecules are hypervalent compounds
- C. Six molecules out of above compounds are non-planar in structure

D. Two molecules out of given compounds involves $(d\pi-p\pi)$

bonding as well as also involves $(p\pi-p\pi)$ bonding

Answer: C

Watch Video Solution

energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

3. Hybridisation involves the mixing of orbitals having comparable

Which of the following is not correctly match between given species and type of overlapping ?

A. XeO_3 : Three $(d\pi-p\pi)$ bonds

B. H_2SO_4 : Two $(d\pi-p\pi)$ bonds

C. SO_3 : Three $(d\pi-p\pi)$ bonds

D. $HClO_4$: Three $(d\pi-p\pi)$ bonds

Answer: C

4. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Consider the following compounds and select the incorrect statement from the following :

$$NH_3,\,PH_3,\,H_2S,\,SO_2,\,BF_3,\,PCl_3,\,IF_7,\,P_4,\,H_2$$

A. Six molecules out of given compounds involves hybridisation

B. Three molecules are hypervalent compounds

C. Six molecules out of above compounds are non-planar in structure

D. Two molecules out of given compounds involves $(d\pi-p\pi)$ bonding as well as also involves $(p\pi-p\pi)$ bonding

Answer: C

Watch Video Solution

ONE OR MORE ANSWERS IS / ARE CORRECT

1. In which of the	following there	is intermolecula	ar hydrogen	bonding?
II III WIIICII OI CIIC	ronowing there	is intecrinione care	41 11yan 06cm	bonanig .

A. Water

B. Ethanol

C. Acetic acid

D. H-F

Answer: A::B::C::D

Watch Video Solution

2. Correct order of decreasing boiling points is :

A.
$$HF > HI > HBr > HCl$$

$$\mathsf{B}.\,H_2O>H_2Te>H_2Se>H_2S$$

$$\mathsf{C.}\,Br_2>Cl_2>F_2$$

D.
$$CH_4 > GeH_4 > SiH_4$$

Answer: A::B::C

Watch Video Solution

- **3.** In which species the hybrid state of central atom is / are sp^3 d ?
 - A. I_3^-
 - B. SF_4
 - C. PF_5
 - D. IF_5

Answer: A::B::C

View Text Solution

4. Select correct statement(s) is /are :

A. In AsH_3 molecule lone pair at central atom is present in almost

pure s-orbital

B. Number of $p\pi-d\pi$ bond in SO_3 and SO_2 are same

C. NF_3 is better Lewis base than NCl_3

D. Stable oxidation state of Lead is +2

Answer: A::D

Watch Video Solution

5. Which of the following species does / do not exist?

- A. OF_4
- $\mathrm{B.}\,NH_2^-$

 $\mathsf{C}.\,NCl_5$

D. ICl_3^{2-}

Answer: A::C::D

6. Which of the following species is /are superoctet molecule?

A. AlF_3

B. $SiCl_4$

C. XeF_2

D. ICl_3

Answer: C::D

A. $A\sigma$ - bond is weaker than $a\pi$ -bond

B. There are four co-ordinate bonds in the $NH_4^{\,+}$ ions

C. The covalent bond is directional in nature

7. Which of the following statements is incorrect?

D. HF is less polar than HCl

Answer: A::B::D

Watch Video Solution

8. Which of the following species is /are capable of forming a coordinate bond with BF_3 ?

A. PH_3

 ${\rm B.}\,N{H_4^{\,+}}$

C. OH^-

D. $Mg^{2\,+}$

Answer: A::C

Watch Video Solution

- **9.** Ionic compounds in geneal do not possess :
 - A. high melting points and non-directional bonds
 - B. high melting points and low-boiling points
 - C. directional bonds and low-boiling points
 - D. high solubilities in polar and non-polar solvents

Answer: B::C::D

Watch Video Solution

- 10. Correct statbility order of metal cation is /are:
 - A. $Pb^{2\,+}\,< Sn^{2\,+}$
 - $\mathsf{B.}\,Pb^{4\,+}\,< Pb^{2\,+}$
 - C. $Sn^{4+} < Sn^{2+}$
 - D. $Pb^{4+} < Sn^{4+}$

Watch Video Solution

11. Consider the following molecule:

$$H_2C = C = C = C = CF_2$$

Ih hybridization of $C_{(1)}$ carbon atom is $sp^2 \big(s+p_y+p_z \,$ and hybridization of $C_{(4)}$ carbon atom is $sp(s+p_z)$. Then according to given information the correct statement(s) is / are :

- A. Nodal plane of π -bond between $C_{(2)}$ and $C_{(3)}$ lies in xz-plane, formed by sideways overlapping of p_y -orbitals
- B. Nodal plane of π -bond between $C_{(3)}$ and $C_{(4)}$ lies in yz-plane, formed by side ways overlapping of p_x -orbitals
- C. The orbitals involve in hybridization of $C_{\left(5\right)}$ carbon atom are

$$s + p_x + p_z$$

D. Nodal plane of π -bond between $C_{(1)}$ and $C_{(2)}$ lies in yz-plane, formed by side ways overlapping of p_v -orbitals

Answer: A::B::C

View Text Solution

12. Consider the following two molecules and according to the given information select correct statement(s) about $AX_2 \ {
m and} \ AY_2$:

X: more electronegative than (A) and same group number of (A) ltbgt Y:

Less atomic size than (A) and same period number of (A)

B. The shape of both molecules are same

where A: 16th group of 3rd period element

A. The hybridization of central atoms are different in both compounds

C. Both compounds are planar

D. The X-A-X bond angle is less than Y-A-Y bond angle

Answer: A::B::C

13. Which of the following statements are correct about sulphur hexafluoride?

A. all S-F bonds are equivalent

B. SF_6 is a planar molecule

C. oxidation number of sulphur is the same as number of electrons of sulphu involved in bonding

D. sulphur has acquired the elctronic structure of the gas argon

Answer: A::C

Watch Video Solution

14. If AB_4^n types species are tetrahedral, then which of the following is

/are correctly match?

- B. $\begin{pmatrix} A & B & n \\ Se & F & 0 \end{pmatrix}$ C. $egin{array}{cccc} A & B & n \\ P & O & -3 \end{array}$
- Answer: A::C::D

Watch Video Solution

A. ClF_3 molecule is bent T-shape

C. In $[ICl_4]^-$ molecular ion, Cl-I-Cl bond angle is 90°

B. In SF_4 molecule, F-S-F equatorial bond angle is 103° due to lp-lp

D. In OBr_2 , the bond angle is less than OCl_2

15. Which of the following statements is correct?

repulsion

16. Which of the following combination of bond pair (b.p.) and lone pair

(l.p.) give same shape?

(i) 3 b.p.+1 l.p. (ii) 2 b.p.+2 l.p. (iii) 2 b.p.1 l.p. (iv) 2 b.p. + 0 l. p.

(v) 3 b.p. +2 l.p. (vi) 2 b.p.+3 l.p.

A. ii and iii

B. iv and v

C. iv and vi

D. iii and vi

Answer: A::C

Watch Video Solution

17. Select the true statement(s) among the following :

A. Pure overlapping of two d_{xy} orbitals along x-axis results in the

formation of π -bond

character as well as bond angle

B. $NO_2^+ > NO_3^- > NO_2^-$ is the correct order of bond angle as well as N-O bond order

C. $NF_3 < NCl_3 < NBr_3 < NI_3$ is the correct order of Lewis basic

D. HF > HCl > HBr > HI is the correct order of dipole moment as well as boiling point

Answer: A::C

18. p_y -orbital can not form π -bond by lateral overlap with :

A. d_{xz} - orbital

B. $d_{x^2-y^2}$ -orbitals

C. d_{xy} -orbital
D. p_z -orbital
Answer: A::B::D
Watch Video Solution
19. Which of the following orbital (s) cannot form δ -bond ?
A.d. corbital

A. $d_{x^2-y^2}$ -orbital

B. d_{xy} -orbital

C. d_{z^2} -orbital

D. p_x -orbital

Answer: C::D

20. Select correct statement(s) regarding σ and π bonds :

A. σ - bond lies on the line joining the nuclei of bonded atoms

B. π - electron cloud lies on either side to the line joining the nuclei of bonded atoms

C. $(2p_\pi-3d_\pi)\pi$ - bond is stronger than $(2p_\pi-3p_\pi)\pi$ - bond.

D. σ -bond has primary effect to decide direction of covalent bond, while π - bond has no primary effect in direction of bond

Answer: A::B::C::D

Watch Video Solution

21. Which of the following statements is / are correct?

A. All carbon to carbon bonds contain a sigma bond and one or more $$\pi$\text{-}\ \text{bonds}$$

- B. All carbon to carbon bonds are sigma bonds
- C. All oxygen to hydrogen bonds are hydrogen bonds
- D. All carbon to hydrogen bonds are sigma bonds

Answer: D

Watch Video Solution

22. Consider the following three orbitals:

Correct statement(s) regarding given information is /are:

- A. Orbitals (i) and (ii) can never form any type of covalent bond
- B. If internuclear axis is x, then combination of (ii) and (iii) orbitals can

form π - bond

C. Orbital (iii) can form δ - bond with other orbital having same orientation of lobes

D. If internuclear axis is 'x', then combination of (i) and (iii) orbitals can form π - bond

Answer: A::C::D

Watch Video Solution

23. Which of the following combination of orbitals can not form bond. (If x axis in internuclear axis)

A. $s + p_z$

 $\mathsf{C.}\,p_z+p_x$

B.s + s

D. $d_{xy}+p_y$

Answer: A::C

24. Consider the following atomic orbitals:

Which of the following statement(s) is /are correct regarding given orbital?

- A. It is a gerade atomic orbital
- B. It has zero nodal plane
- C. Circular electron density is present in XY plane
- D. Opposite lobes of orbital have same sign of wave function (ψ)

Answer: A::B::C::D Watch Video Solution 25. In which of the following there is intermolecular hydrogen bonding?

A. Water

B. Ethanol

C. Acetic acid

D. H-F

Answer: A::B::C::D

Watch Video Solution

26. Correct order of decreasing boiling points is :

A. HF > HI > HBr > HCl

B. $H_2O>H_2Te>H_2Se>H_2S$

 $\mathsf{C}.\,Br_2>Cl_2>F_2$

D. $CH_4 > GeH_4 > SiH_4$

Answer: A::B::C

Watch Video Solution

27. In which species the hybrid state of central atom is / are sp^3d ?

A. I_3^-

B. SF_4

 $\mathsf{C}.\,PF_5$

D. IF_5

Answer: A::B::C

Watch Video Solution

28. Select correct statement(s) is /are:

A. In AsH_3 molecule lone pair at central atom is present in almost pure s-orbital

B. Number of $p\pi-d\pi$ bond in SO_3 and SO_2 are same

C. NF_3 is better Lewis base than NCl_3

D. Stable oxidation state of Lead is +2

Answer: A::D

Watch Video Solution

29. Which of the following species does / do not exist?

A. OF_4

 $\mathrm{B.}\,NH_2^-$

C. NCl_5

D. ICl_3^2

Answer: A::C::D

Watch Video Solution

- **30.** Which of the following species is /are superoctet molecule?
 - A. AlF_3
 - B. $SiCl_4$
 - C. XeF_2
 - D. ICl_3

Answer: C::D

Watch Video Solution

31. Which of the following statements is incorrect?

A. $A\sigma$ - bond is weaker than $a\pi$ -bond

B. There are four co-ordinate bonds in the $NH_4^{\,+}\,$ ions

C. The covalent bond is directional in nature

D. HF is less polar than HCl

Answer: A::B::D

View Text Solution

32. Which of the following species is /are capable of forming a coordinate bond with BF_3 ?

A. PH_3

B. $NH_4^{\,+}$

 $\mathsf{C}.\,OH^{\,-}$

D. Mg^{2+}

Answer: A::C

33. Ionic compounds in geneal do not possess:

A. high melting points and non-directional bonds

B. high melting points and low-boiling points

C. directional bonds and low-boiling points

D. high solubilities in polar and non-polar solvents

Answer: B::C::D

34. Correct statbility order of metal cation is /are :

A.
$$Pb^{2\,+}\,< Sn^{2\,+}$$

$${\rm B.} \, Pb^{4\,+} \, < Pb^{2\,+}$$

C.
$$Sn^{4+} < Sn^{2+}$$

D.
$$Pb^{4+} < Sn^{4+}$$

Answer: B::D

Watch Video Solution

35. Consider the following molecule:

$$H_2C = C = C = C = CF_2$$

Ih hybridization of $C_{(1)}$ carbon atom is $sp^2 \big(s+p_y+p_z \,$ and hybridization of $C_{(4)}$ carbon atom is $sp(s+p_z)$. Then according to given information the correct statement(s) is / are :

- A. Nodal plane of π -bond between $C_{(2)}$ and $C_{(3)}$ lies in xz-plane, formed by sideways overlapping of p_y -orbitals
- B. Nodal plane of π -bond between $C_{(3)}$ and $C_{(4)}$ lies in yz-plane, formed by side ways overlapping of p_x -orbitals
- C. The orbitals involve in hybridization of $C_{\left(5\right)}$ carbon atom are

$$s+p_x+p_z$$

D. Nodal plane of π -bond between $C_{(1)}$ and $C_{(2)}$ lies in yz-plane, formed by side ways overlapping of p_v -orbitals

Answer: A::B::C

View Text Solution

36. Consider the following two molecules and according to the given information select correct statement(s) about $AX_2 \ {
m and} \ AY_2$:

X: more electronegative than (A) and same group number of (A) ltbgt Y:

Less atomic size than (A) and same period number of (A)

B. The shape of both molecules are same

where A: 16th group of 3rd period element

A. The hybridization of central atoms are different in both compounds

C. Both compounds are planar

D. The X-A-X bond angle is less than Y-A-Y bond angle

Answer: A::B::C

37. Which of the following statements are correct about sulphur hexafluoride?

A. all S-F bonds are equivalent

B. SF_6 is a planar molecule

C. oxidation number of sulphur is the same as number of electrons of

sulphu involved in bonding

D. sulphur has acquired the elctronic structure of the gas argon

Answer: A::C

Watch Video Solution

38. If AB_4^n types species are tetrahedral, then which of the following is

/are correctly match?

- B. $\begin{pmatrix} A & B & n \\ Se & F & 0 \end{pmatrix}$
- C. $egin{array}{cccc} A & B & n \\ P & O & -3 \end{array}$

Answer: A::C::D

Watch Video Solution

- - A. ClF_3 molecule is bent T-shape

C. In $[ICl_4]^-$ molecular ion, Cl-I-Cl bond angle is 90°

B. In SF_4 molecule, F-S-F equatorial bond angle is 103° due to lp-lp

D. In OBr_2 , the bond angle is less than OCl_2

39. Which of the following statements is correct?

Answer: A::C

repulsion

- **40.** Which of the following combination of bond pair (b.p.) and lone pair
- (l.p.) give same shape?
- (i) 3 b.p.+1 l.p. (ii) 2 b.p.+2 l.p. (iii) 2 b.p.1 l.p. (iv) 2 b.p. + 0 l. p.
- (v) 3 b.p. +2 l.p. (vi) 2 b.p.+3 l.p.
 - A. ii and iii
 - B. iv and v
 - C. iv and vi
 - D. iii and vi

Answer: A::C

Watch Video Solution

41. Select the true statement(s) among the following:

A. Pure overlapping of two d_{xy} orbitals along x-axis results in the

formation of π -bond

as N-O bond order

B. $NO_2^+ > NO_3^- > NO_2^-$ is the correct order of bond angle as well

C. $NF_3 < NCl_3 < NBr_3 < NI_3$ is the correct order of Lewis basic character as well as bond angle

D. HF > HCl > HBr > HI is the correct order of dipole moment as well as boiling point

Answer: A::C

42. p_{y} -orbital can not form π -bond by lateral overlap with :

A. d_{xz} - orbital

B. $d_{x^2-y^2}$ -orbitals

C. d_{xy} -orbital		
D. p_z -orbital		
Answer: A::B::D		
View Text Solution		
43. Which of the following orbital (s)		

cannot form δ -bond ?

A. $d_{x^2-y^2}$ -orbitals

B. d_{xy} -orbital

C. d_{z^2} -orbital

D. p_x -orbital

Answer: C::D

44. Select correct statement(s) regarding σ and π bonds :

A. σ - bond lies on the line joining the nuclei of bonded atoms

B. π - electron cloud lies on either side to the line joining the nuclei of bonded atoms

C. $(2p_\pi-3d_\pi)\pi$ - bond is stronger than $(2p_\pi-3p_\pi)\pi$ - bond.

D. σ -bond has primary effect to decide direction of covalent bond, while π - bond has no primary effect in direction of bond

Answer: A::B::C::D

Watch Video Solution

45. Which of the following statements is / are correct?

A. All carbon to carbon bonds contain a sigma bond and one or more

 π - bonds

- B. All carbon to carbon bonds are sigma bonds
- C. All oxygen to hydrogen bonds are hydrogen bonds
- D. All carbon to hydrogen bonds are sigma bonds

Answer: D

View Text Solution

46. Consider the following three orbitals:

Correct statement(s) regarding given information is /are:

- A. Orbitals (i) and (ii) can never form any type of covalent bond
- B. If internuclear axis is x, then combination of (ii) and (iii) orbitals can

form π - bond

C. Orbital (iii) can form δ - bond with other orbital having same orientation of lobes

D. If internuclear axis is 'x', then combination of (i) and (iii) orbitals can form π - bond

Answer: A::C::D

View Text Solution

47. Which of the following combination of orbitals do / does not form bond (if x-axis is internuclear axis) ?

A. $s+p_z$

C. p_z+p_x

B.s + s

D. $d_{xy}+p_y$

Answer: A::C

48. Consider the following atomic orbitals:

Which of the following statement(s) is /are correct regarding given orbital?

- A. It is a gerade atomic orbital
- B. It has zero nodal plane
- C. Circular electron density is present in XY plane
- D. Opposite lobes of orbital have same sign of wave function (ψ)

Answer: A::B::C::D

View Text Solution

MATCH THE COLUMN

1. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column-I	Column-II
(A) $B_3N_3H_6$	(P) Planar geometry
(B) I ₃	(Q) Non-planar geometry
(C) B ₂ Cl ₄ (Solid)	(R) Compound having coordinate bond
(D) SiF ₄	(S) Compound having back bond
	(T) Non-polar compound

Watch Video Solution

2. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one

entries of Column-I may have the matching with the same entries of

3. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

4. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one

entries of Column-I may have the matching with the same entries of

Column-II.

- (A) Hypo phosphoric acid
- (B) Pyro phosphorous acid
- (C) Boric acid
- (D) Hypo phosphorous acid
- (P) All hydrogen are ionizable in water
 (Q) Lewis acid in water
 (R) Monobasic
- (S) sp³-hybridised central atom

5. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

7. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

9. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of

Column-II.

(S) Non-polar (T) Planar

(R) Polar

Watch Video Solution

10. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

View Text Solution

12. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

(P) Trigonal pyramidal shape (Q) Square pyramidal shape (R) See-saw shape (S) Non-planar (T) One of the bond angle < 90°

Column-I (A) B ₃ N ₃ H ₆	Column-II (P) Planar geometry
(B) I ₃	(Q) Non-planar geometry
(C) B ₂ Cl ₄ (Solid)	(R) Compound having coordinate bond
(D) SiF ₄	(S) Compound having back bond
y and and had been	(T) Non-polar compound

14. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column-I (Shape)	Column-II (Hybridisation)
(A) Linear	(P) sp ³
(B) Angular	(Q) sp^3d^2
(C) Square planar	(R) sp^2
(D) Trigonal planar	(S) sp^3d

Column-I	Column-II
(A) SO ₃	(P) Largest bond angle
(B) BeCl ₂	(Q) Lowest bond angle
(C) NH ₃	(R) sp ² -hybridisation
(D) NO ₂	(S) sp ³ -hybridisation

16. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

18. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of

Column-II.

Watch Video Solution

19. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

View Text Solution

20. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one

entries of Column-I may have the matching with the same entries of

Watch Video Solution

21. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Watch Video Solution

23. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of

Column-II.


```
Column-II
[Combining orbitals (Internuclear axis)]

(P) d_{yz} + p_y, (z)

(Q) s + p_x, (y)

(R) d_{yz} + d_{yz}, (x)

(S) s + s, (z)
```


Watch Video Solution

24. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

(T) $s+d_{xy}$, (y)

View Text Solution

ASSERTION-REASON TYPE QUESTIONS

1. Assertion: Multiple bond between two bonded atoms can have more than three bonds.

Reason : Multiple bond between two bonded atoms can not have more than two π -bonds.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

explanation of assertion

- C. IF both assertion and reason are true and the reason is the correct
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

- **2.** Assertion : 2^{nd} period elements do not involve in excitation of electron.
- ${\sf Reason}: 2^{nd} \ {\sf period} \ {\sf elements} \ {\sf do} \ {\sf not} \ {\sf have} \ {\sf vacant} \ 2{\sf d-orbitals}.$
 - A. If assertion is true but the reason is false
 - B. If assertion is false but reason is true
 - C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

Watch Video Solution

 ${\bf 3.}\,{\rm Assertion}:$ In SO_3 molecule bond dissociation energy of all S=O bonds are not equivalent.

Reason : SO_3 molecule is having two types of $2p\pi-3p\pi$ and $2p\pi-3d\pi$ pi-bonds.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

4. Assertion : PH_4^+ ion is having tetrahedron geometry.

Reason : P-atom is unhybridised in PH_4^+ ion.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

Watch Video Solution

5. Assertion: All diatomic molecules with polar bond have dipole moment.

Reason: Dipole moment is a vector quantity.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

6. Assertion: Water is a good solvent for ionic compounds but poor one for covalent compounds.

Reason :Hydrogen energy of ions realeases sufficient energy to overcome

lattice energy and break hydrogen bonds in water, white covalent bonded

compound interact so weakly that even van der walls force between molecule of convalent compounds cannot be broken .

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true

explanation of assertion

- C. IF both assertion and reason are true and the reason is the correct
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

7. Assertion : Xe-atom in XeF_2 assumes sp-hybrid state.

Reason : XeF_2 molecule does not follow octet rule.

A. If assertion is true but the reason is false

- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

- **8.** Assertion: The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.
- Reason :In a polar covalent molecule , the shared electron spend more time on the average near one of the atoms .
 - A. If assertion is true but the reason is false
 - B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

Watch Video Solution

9. Assertion : CCl_4 is a non-polar molecule.

 ${\sf Reason}: CCl_4 \ {\sf has} \ {\sf polar} \ {\sf bonds}.$

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct

Answer: D

Watch Video Solution

explanation of assertion

10. Assertion : Geometry of ICl_3 is tetrahedral.

Reason: Its shape is T-shape, due to the presence of two lone pairs.

- A. assertion is true but the reason is false
- B. assertion is false but reason is true
- C. both assertion and reason are true and the reason is the correct
 - explanation of assertion

explanation of assertion

D. both assertion and reason are true but reason is not the correct

Answer: B

11. Assertion: The covalency of carbon is four in excited state.

Reason: The four half-filled pure orbitals of carbon form same kind of bonds with an atom as those are with hybridised orbitals.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true

explanation of assertion

- C. IF both assertion and reason are true and the reason is the correct
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

12. Assertion : The shape of XeF_4 is square-planar.

Reason: In an octahedral geometry, a single lone pair can occupy any position but a second lone pair will occupy the opposite position to the first lone pair.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

13. Assertion : Multiple bond between two bonded atoms can have more than three bonds.

Reason : Multiple bond between two bonded atoms can not have more than two π -bonds.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

14. Assertion : 2^{nd} period elements do not involve in excitation of electron.

Reason : 2^{nd} period elements do not have vacant 2d-orbitals.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true

explanation of assertion

- C. IF both assertion and reason are true and the reason is the correct
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

Watch Video Solution

15. Assertion : In SO_3 molecule bond dissociation energy of all S=O bonds are not equivalent.

Reason : SO_3 molecule is having two types of $2p\pi-3p\pi$ and $2p\pi-3d\pi$ pi-bonds.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

16. Assertion : $PH_4^{\,+}$ ion is having tetrahedron geometry.

Reason : P-atom is unhybridised in $PH_4^{\,+}$ ion.

A. If assertion is true but the reason is false

- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

17. Assertion : All diatomic molecules with polar bond have dipole moment.

Reason: Dipole moment is a vector quantity.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

Watch Video Solution

18. Assertion : Water is a good solvent for ionic compounds but poor one for covalent compounds.

Reason :Hydrogen energy of ions realeases sufficient energy to overcome lattice energy and break hydrogen bonds in water, white covalent bonded compound interact so weakly that even van der walls force between molecule of convalent compounds cannot be broken .

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true

explanation of assertion

C. IF both assertion and reason are true and the reason is the correct

D. If both assertion and reason are true but reason is not the correct

explanation of assertion

Answer: C

Watch Video Solution

19. Assertion : Xe-atom in XeF_2 assumes sp-hybrid state.

Reason : XeF_2 molecule does not follow octet rule.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

explanation of assertion

D. If both assertion and reason are true but reason is not the correct

Answer: B

20. Assertion: The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.

Reason :In a polar covalent molecule , the shared electron spend more time on the average near one of the atoms .

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

21. Assertion : CCl_4 is a non-polar molecule.

Reason : CCl_4 has polar bonds.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

22. Assertion : Geometry of ICl_3 is tetrahedral.

Reason: Its shape is T-shape, due to the presence of two lone pairs.

A. If assertion is true but the reason is false

- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

View Text Solution

23. Assertion : The covalency of carbon is four in excited state.

Reason: The four half-filled pure orbitals of carbon form same kind of bonds with an atom as those are with hybridised orbitals.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

Watch Video Solution

24. Assertion : The shape of XeF_4 is square-planar.

Reason: In an octahedral geometry, a single lone pair can occupy any position but a second lone pair will occupy the opposite position to the first lone pair.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion

explanation of assertion

D. If both assertion and reason are true but reason is not the correct

Answer: C

Watch Video Solution

SUBJECTIVE PROBLEMS

- 1. Consider following compounds A to E:
- (A) XeF_{n} \qquad $(B)XeF_{(n+1)}^{\,+}$ \qquad $(C)XeF_{(n+1)}^{\,-}$ \qquad $(D)XeF_{(n+2)}$
- (E) $XeF_{(n+4)}^{2-}$,

compounds (A) to (E).

If value of n is 4, then calculate value of $p \div q$ here, 'p' is total number of bond pair and 'q' is total number of lone pair on central atoms of

Watch Video Solution

2. Consider the following five group (According to modern periodic table)

of elements with their increasing order to atomic numbers :

 $\texttt{Group } 1 \rightarrow A, B, C, D, E \qquad \quad \texttt{Group } 2 \rightarrow F, G, H, I, J$

Group

13
ightarrow K, L, M, N, O Group 15
ightarrow P, Q, R, S, T Group 17
ightarrow U

IF first and last element of each group belongs to 2nd and 6th period respectively and Z represents to carbonate ion (CO_3^{2-}) then consider the following orders.

$$(i)O^+>H^{2+}$$
 , Polarising power

(ii)
$$T^{3\,+}>S^{3\,+}>R^{3\,+}$$
 , Stability of cation

$$(iii)U^-(aq) > V^-(aq) > W^-(aq) > X^-(aq)$$
 , Size

(vi) AV>BV>CV>DV>EV , Thermal stability

(iv)
$$JV_2 < IV_2 < GV_2 < LV_3$$
 , Covalent character

(v)
$$GZ>IZ>JZ$$
 , Thermal stability

(vii)
$$C_3P>B_3P>A_3P$$
 , Lattice energy

(viii) $KU_3 < KV_3 < KW_3 < KX_3$, Melting point

Then calculate value of $\left| p - q
ight|^2$, here p and q are correct and incorrect orders in the given eight orders respectively.

View Text Solution

3. Consider the following species and find out total number of species which are polar and can act as Lewis acid

 CCl_4 , CO_2 , SO_2 , $AlCl_3$, HCHO, SO_3 , $SiCl_4$, BCl_3 , CF_4

Watch Video Solution

4. Consider the following table regarding interhalogen compounds, XY_n

(where Y is more electronegative than X)

	Total number of <i>d</i> -orbitals used in hybridization of central atom	Polarity	Planarity
P_1	1	Polar	Planar
P_2	Q_1	Polar	Non-Planar
P ₃	Q ₂	Non-Polar	Non-Planar

Thn according to given information calculate value of expression

$$P_2 imes \left(rac{P_3-P_1}{(Q_1+Q_2)}
ight.$$

View Text Solution

5. What is covalency of chlorine atom in second excited state?

6. Sum of σ and π bonds in NH_4^+ cation is ..

7. Calculate the value X-Y for $XeOF_4$. (X= Number of σ bond pair and Y= Number of lone pair on central atom).

8. The molecule AB_n is planar with six pairs of electrons around A in the valence shell. The value of n is

9. Calculate value of $\frac{X+Y+Z}{10}$, here X is O-N-O bond angle in NO_3^- Y is O-N-O bond angle in NO_2^+ and Z is F-Xe-F adjacent bond angle in

10. Calculate x+y+z for H_3PO_3 acid, where x is no. of lone pairs, y is no. of σ bonds and z is no. of π bonds.

11. How many right angle, bond angles are present in TeF_5^- molecular ion?

12. How may possible $\angle FSeF$ bond angles are present in SeF_4 molecule

?

13. In IF_6^- and TeF_5^- , sum of axial d-orbitals which are used in hybridisation in both species.

Watch Video Solution

14. Among the following, total no. of planar species is:

- (i) SF_4 (ii) BrF_3 (iii) XeF_2 (iv) IF_5
- $\mbox{(v)} SbF_4^{\;-} \qquad (vi) SF_5^{\;-} \qquad (vii) SeF_3^{\;+} \qquad (viii) CH_3^{\;+}$
- (ix) PCl_{A}^{+}

Watch Video Solution

15. Calculate the value of "x+y-z" here x,y and z are total number of nonbonded electron pair (s), pie (π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.

16. Consider the following table

Total number of electron pairs (l.p. $+\sigma$ -bond)	Total number of lone pairs	Shape
5	<u>p</u>	linear
9	1	see-saw
4	<u>r</u>	Bent shape
s	2	Square planar
5	t	Bent 'T' shape

Then calculate value of "p+q+r-s-t".

View Text Solution

17. In phosphorus acid, if X is number of non bonding electron pairs. Y is number of σ -bonds and Z is number of π - bonds. Then, calculate value of $Y \times Z - X$.

Watch Video Solution

18. Calculate the number of $p_\pi - d_\pi$ bond(s) present in SO_4^{2-} :

19. Sum of σ and π bonds in $NH_{\scriptscriptstyle A}^{\,+}$ cation is ..

Watch Video Solution

20. Consider the following orbitals (i) $3p_x$ (ii) $4d_{x^2}$ (iii) $3d_{x^2-y^2}$ (iv) $3d_{yz}$

Then, calculate value of "x + y - z" here x is total number of gerade orbital and y is total number of ungerade orbitals and z is total number of axial orbitals in given above orbitals.

Watch Video Solution

21. Calculate value of |x-y|, here x and y are the total number of bonds in benzene and benzyne respectively which are formed by overlapping of hybridized orbitals.

22. Consider the following compounds:

$$(i)IF_5 \hspace{0.5cm} (ii)ClI_4^- \hspace{0.5cm} (iii)XeO_2F_2 \hspace{0.5cm} (iv)NH_2^-$$

$$(v)BCl_3 \qquad (vi)BeCl_2 \qquad (vii)AsCl_4^{\,+} \qquad (viii)B(OH)_3$$

(ix)
$$NO_2^ (x)ClO_2^+$$

Then calculate value of "x+y-z", here, x,y and z are total number of compounds in given compounds in which central atom used their all three p-orbitals, only two p-orbitals and only one p-orbital in hybridisation respectively.

Watch Video Solution

23. Total number of species which used all three p-orbitals in hybridisation of central atom and should be non-polar also.

 $XeO_{2}F_{2}, SnCl_{2}, IF_{5}, I_{3}^{+}, XeO_{4}, SO_{2}, XeF_{7}^{+}, SeF_{4}$

$$NO_3^-, SO_4^{2-}, ClO_3^-, SO_3, PO_4^{3-}, XeO_3, CO_3^{2-}, SO_3^{2-}$$

Then calculate value of |x-y|, where

Consider

x: Total number of species which have bond order 1.5 or greater than 1.5

the

following

species

y: Total number of species which have bond order less than 1.5

24.

Watch Video Solution

Consider following 25. the orbitals $3s, 2p_x, 4d_{xy}, 4d_{z^2}, 3d_{x^2-y^2}, 3p_y, 4s, 4p_z$ and find total number of orbital

(s) having even number of nodal plane.

Watch Video Solution

26. For the following molecules:

 $PCl_{5}, BrF_{3}, ICl_{2}^{-}, XeF_{5}^{-}, NO_{3}^{-}, XeO_{2}F_{2}, PCl_{4}^{+}, CH_{3}^{+}$

Calculate the value of $\frac{a+b}{c}$

a = Number of species having sp^3 d-hybridisation

b= Number of species which are planar

c= Number of species which are non-planar

Watch Video Solution

27. Find out number of transformation among following which involves the change of hybridisation of underlined atom.

(a)

$$H_2 \underline{O} + H^+
ightarrow H_3 \underline{O}^+ \hspace{1cm} (b) N H_3 + \underline{B} F_3
ightarrow N H_3. \ Under l \in e(B) F_3$$

(c)
$$\underline{X}eF_6
ightarrow \underline{X}eF_5^{\,+} + F^{\,-} \qquad (d) 2\underline{P}Cl_5
ightarrow \underline{P}Cl_4^{\,+} ig) + PCl_6^{\,-}$$

(e)
$$\underline{C}H_3-CH_3
ightarrow\underline{C}H_3^-+CH_3^+$$

Watch Video Solution

28. Consider following compounds A to E:

(A)
$$XeF_n$$
 $(B)XeF_{(n+1)}^+$ $(C)XeF_{(n+1)}^ (D)XeF_{(n+2)}$

(E)
$$XeF_{(n+4)}^{2-}$$
 ,

If value of n is 4, then calculate value of $p \div q$ here, 'p' is total number of

bond pair and 'q' is total number of lone pair on central atoms of compounds (A) to (E).

29. Consider the following five group (According to modern periodic table) of elements with their increasing order to atomic numbers :

 $ext{Group } 1 o A, B, C, D, E \qquad ext{Group } 2 o F, G, H, I, J$

Group

13 o K, L, M, N, O Group15 o P, Q, R, S, T Group 17 o U IF first and last element of each group belongs to 2nd and 6th period

respectively and Z represents to carbonate ion (CO_3^{2-}) then consider

the following orders. $(i)O^+>H^{2+}$, Polarising power

(ii)
$$T^{3\,+} > S^{3\,+} > R^{3\,+}$$
 , Stability of cation

(v) GZ>IZ>JZ , Thermal stability

 $(iii)U^{\,-}(aq)>V^{\,-}(aq)>W^{\,-}(aq)>X^{\,-}(aq)$, Size

(iv)
$$JV_2 < IV_2 < GV_2 < LV_3$$
 , Covalent character

(vi) AV>BV>CV>DV>EV , Thermal stability

(vii) $C_3P>B_3P>A_3P$, Lattice energy

(viii) $KU_3 < KV_3 < KW_3 < KX_3$, Melting point

Then calculate value of $\left|p-q\right|^2$, here p and q are correct and incorrect orders in the given eight orders respectively.

View Text Solution

30. Consider the following species and find out total number of species which are polar and can act as Lewis acid

 $CCl_4, CO_2, SO_2, AlCl_3, HCHO, SO_3, SiCl_4, BCl_3, CF_4$

Watch Video Solution

31. Consider the following table regarding interhalogen compounds, XY_n (where Y is more electronegative than X)

Total number of <i>d</i> -orbitals used in hybridization of central atom	Polarity	Planarity
1	Polar	Planar
Q_1	Polar	Non-Planar
Q ₂	Non-Polar	Non-Planar
	in hybridization of central atom $\frac{1}{Q_1}$	In hybridization of central atom 1 Polar Q1 Polar

Thn according to given information calculate value of expression

$$P_2 imes \left(rac{P_3-P_1}{(Q_1+Q_2)}
ight)$$

32. What is covalency of chlorine atom in second excited state?

33. Sum of σ and π bonds in NH_4^+ cation is ..

34. Calculate the value X-Y for $XeOF_4$. (X= Number of σ bond pair and Y= Number of lone pair on central atom).

35. The molecule ML_x is planar with 6 electron pairs around M in the valence shell. The value of x is:

View Text Solution

36. Calculate value of $\frac{X+Y+Z}{10}$, here X is O-N-O bond angle in NO_3^- Y is O-N-O bond angle in NO_2^+ and Z is F-Xe-F adjacent bond angle in XeF_4 .

37. Calculate x+y+z for H_3PO_3 acid, where x is no. of lone pairs, y is no. of σ bonds and z is no. of π bonds.

38. How many right angle, bond angles are present in TeF_5^- molecular ion ?

39. How may possible $\angle FSeF$ bond angles are present in SeF_4 molecule ?

40. In IF_6^- and TeF_5^- , sum of axial d-orbitals which are used in hybridisation in both species.

- **41.** Among the following, total no. of planar species is:
- (i) $SF_4 = (ii)BrF_3 = (iii)XeF_2 = (iv)IF_5$

 $({\rm v})SbF_4^{\;-} \qquad (vi)SF_5^{\;-} \qquad (vii)SeF_3^{\;+} \qquad (viii)CH_3^{\;+}$

(ix) PCl_4^+

42. Calculate the value of "x+y-z" here x,y and z are total number of non-bonded electron pair (s),pie (π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.

43. Consider the following table

Total number of electron pairs (l.p. $+\sigma$ -bond)	Total number of lone pairs	Shape
5	p	linear
<u>9</u>	1	see-saw
4	<u>r</u>	Bent shape
s	2	Square planar
5	t	Bent 'T' shape

Then calculate value of "p+q+r-s-t".

44. In phosphorus acid, if X is number of non bonding electron pairs. Y is number of σ -bonds and Z is number of π - bonds. Then, calculate value of $Y \times Z - X$.

Watch Video Solution

45. Calculate the number of $p_\pi - d_\pi$ bond(s) present in SO_4^{2-} :

Watch Video Solution

46. Sum of σ and π bonds in NH_4^+ cation is ..

Watch Video Solution

47. Consider the following orbitals (i) $3p_x$ (ii) $4d_{x^2}$ (iii) $3d_{x^2-y^2}$ (iv) $3d_{yz}$

Then, calculate value of "x+y-z" here ${\sf x}$ is total number of gerade

orbital and y is total number of ungerade orbitals and z is total number of axial orbitals in given above orbitals.

48. Calculate value of |x-y|, here x and y are the total number of bonds in benzene and benzyne respectively which are formed by overlapping of hybridized orbitals.

49. Consider the following compounds :

$$(i)IF_5 \hspace{0.5cm} (ii)ClI_4^- \hspace{0.5cm} (iii)XeO_2F_2 \hspace{0.5cm} (iv)NH_2^-$$

$$(v)BCl_3 \hspace{0.5cm} (vi)BeCl_2 \hspace{0.5cm} (vii)AsCl_4^+ \hspace{0.5cm} (viii)B(OH)_3$$

(ix)
$$NO_2^ (x)ClO_2^+$$

Then calculate value of "x+y-z", here, x,y and z are total number of compounds in given compounds in which central atom used their all three p-orbitals, only two p-orbitals and only one p-orbital in hybridisation respectively.

50. Total number of species which used all three p-orbitals in hybridisation of central atom and should be non-polar also. $XeO_2F_2, SnCl_2, IF_5, I_3^+, XeO_4, SO_2, XeF_7^+, SeF_4$

51.

 $NO_3^-, SO_4^{2-}, ClO_3^-, SO_3, PO_4^{3-}, XeO_3, CO_3^{2-}, SO_3^{2-}$

x: Total number of species which have bond order 1.5 or greater than 1.5

following

species

the

Then calculate value of |x-y|, where

Consider

y: Total number of species which have bond order less than 1.5

52. Consider the following orbitals $3s, 2p_x, 4d_{xy}, 4d_{z^2}, 3d_{x^2-y^2}, 3p_y, 4s, 4p_z$ and find total number of orbital

(s) having even number of nodal plane.

Watch Video Solution

53. For the following molecules :

 $PCl_{5}, BrF_{3}, ICl_{2}^{-}, XeF_{5}^{-}, NO_{3}^{-}, XeO_{2}F_{2}, PCl_{4}^{+}, CH_{3}^{+}$

Calculate the value of $\frac{a+b}{c}$

a = Number of species having sp^3 d-hybridisation

b= Number of species which are planar

c= Number of species which are non-planar

Watch Video Solution

54. Find out number of transformation among following which involves the change of hybridisation of underlined atom.

(a)

 $H_2 \underline{O} + H^+
ightarrow H_3 \underline{O}^+ \qquad (b) N H_3 + \underline{B} F_3
ightarrow N H_3. \ Under l \in e(B) F_3$

(c)
$$\underline{X}eF_6 o \underline{X}eF_5^+ + F^- \hspace{1cm} (d) 2\underline{P}Cl_5 o \underline{P}Cl_4^+ ig) + PCl_6^-$$

(e)
$$\underline{C}H_3-CH_3
ightarrow \underline{C}H_3^-+CH_3^+$$

